The correction algorithm is capable of correcting errors up to a first bit error rate in a correctable group of memory cells having a standard size. The memory is operative to store a first set of ECC bits having information corresponding to a first group of memory cells having a first size larger than the standard size, and to store a second set of ECC bits having information corresponding to a second group of memory cells having a second size smaller than said first size and being a portion of said first group. The error correction algorithm is operative to correct errors in the second group based on the second set of ECC bits if a failure occurs in correction of the first group based on the first set of ECC bits.
Title: CORRECTION OF ERRORS IN A MEMORY ARRAY

FIELD OF THE INVENTION

The present invention relates to error correction codes (ECC) for correction of errors in a memory.

BACKGROUND OF THE INVENTION

Non-volatile memory devices and especially solid state memory devices tend to wear out over time. One main effect of such wear is the creation of errors in stored data. Different device types have different typical and industry accepted reliability, depending, for example, on the technology used and on the manufacturing process tolerance which can be achieved. Some flash controllers are designed capable of correcting errors up to a first ("weak") bit error rate (for example up to 6-bits per 512 bytes) in a correctable group of memory cells having a standard size (for example 256 Bytes), while other controllers require a second bit error rate that is higher than the first bit error rate (for example up to 8-bits per 512 bytes) to obtain a stronger protection.

Several error handling schemes have been made in the art to provide a strong bit error rate protection using a weak error handling schemes. One solution is to split the group of memory cells to sub-groups (correctable groups) and to apply the existing, weaker error correction scheme on each sub-group separately. As such, each sub-group is individually protected by a weaker bit error rate. However, such error correction schemes require applying an error correction operation on each one of the sub group, thereby degrading the overall performance.

Another common approach is designing a new, stronger error correction scheme that is capable of correcting errors up to the desired bit error rate. The drawback of a new designed system is high cost affect and the time it takes to design such a system.

Although each of the prior art error handling schemes provides some protection for defective memory locations, none of them are perfect. Some schemes require excessive resource and development time; some degrade the system's overall read performance; and others provide inadequate protection.
SUMMARY OF THE INVENTION

The present invention may be embodied as a computer system having an error correction algorithm for correction of errors in a memory array and a method thereof. Memory cells are stored in the memory array in association with corresponding ECC bits. The ECC bits are generated as follows: one set of ECC bits include information corresponding to a first group of memory cells (the first group has a first size that is larger than or equals to a standard size, for example 256 Bytes); a second set of ECC bits includes information corresponding to a second group of memory cells (the second group is inclusive inside the first group), a third set of ECC bits includes information corresponding to a third group of memory cells (the third group is inclusive inside the second group) and so on. Generating the ECC bits as such provides correction of errors in the memory array, while achieving optimal overall performance.

In one embodiment of the foregoing approach, a method for correcting errors in a memory array may include the step of providing an error correction algorithm which is capable of correcting errors up to a first bit error rate in a correctable group of memory cells. The correctable group has a standard size. The method also includes the steps of generating a first set of ECC bits having information corresponding to a first group of memory cells; generating a second set of ECC bits having information corresponding to a second group of memory cells; and applying the error correction algorithm to correct errors in the first group based on the first set of ECC bits. The first group has a first size larger than the standard size. The second group has a second size smaller than the first size and being a portion of the first group. If the error correction algorithm based on the first set of ECC bits fails, then the method also includes applying the error correction algorithm to correct errors in the second group based on the second set of ECC bits.

The method may also include correcting the first group based on the first set of ECC bits. The method may also include correcting the second group based on the second set of ECC bits.

The method may also include generating an additional set of ECC bits having information corresponding to an additional group of memory cells. The additional set of ECC bits may be generated preceding the generation of the error correction algorithm.
portion of the second group. If the error correction algorithm based on the second set of
ECC bits fails, then the method may include applying the error correction algorithm to
correct errors in the additional group based on the additional set of ECC bits. The method
may include correcting the additional group based on the additional set of ECC bits. The
method may be applied to thereby correct errors up to a second bit error rate in the first
group, where the second bit error rate is larger than the first bit error rate.

In another embodiment of the foregoing approach, a computer system for
correction of errors in a memory array includes an error correction algorithm that is
capable of correcting errors up to a first bit error rate in a correctable group of memory
ceils. The correctable group has a standard size. A memory is operative to store a first set
of ECC bits having information corresponding to a first group of memory cells, and to
store a second set of ECC bits having information corresponding to a second group of
memory cells. The first group has a first size larger than the standard size and the second
group has a second size smaller than the first size and being a portion of the first group.

The error correction algorithm is operative to correct errors in the second group based on
the second set of ECC bits if the error correction algorithm, which is applied in the first
group based on the first set of ECC bits, fails.

The memory may be a flash memory. The error correction algorithm may also be
operative to correct the first group based on the first set of ECC bits. The error correction
algorithm may also be operative to correct the second group based on the second set of
ECC bits.

The memory may be operative to store an additional set of ECC bits having
information corresponding to an additional group of memory cells. The additional group
has a third size smaller than the second size and being a portion of the second group. The
error correction algorithm may be further operative to be applied in the additional group
based on the additional ECC bits if the error correction algorithm that is applied in the
second group based on the second group of ECC bits fails. The error correction algorithm
may be operative to correct the additional group based on the additional set of ECC bits.
The error correction algorithm may be applied to thereby correct errors up to a second bit
error rate in the first group, where the second bit error rate is larger than the first bit error
rate.
Additional features, advantages and possible variation of the embodiments described will become apparent from the following drawings and description.

5

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the invention with regard to the embodiments thereof, reference is made to the accompanying drawings, in which like numerals designate corresponding sections or elements throughout, and in which:

Figure IA is a block diagram of an embodiment of a computer system for correction of errors in a memory array;

Figure IB is a block diagram of the memory array of Figure IA, where an error correction algorithm is implemented to generate three sets of ECC bits for each data unit;

Figure 2 is a flow chart of writing data to a memory array, in accordance with an exemplary embodiment; and

Figure 3 is a flow chart of reading data from the memory array, in accordance with an exemplary embodiment.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The invention defined by the claims below will be better understood by referring to the present detailed description of the exemplary and preferred embodiments. This description is not intended to limit the scope of claims but instead to provide examples of such embodiments. The following discussion therefore presents exemplary embodiments, which include a computer system for correcting errors in a memory array and a method thereof.

One embodiment of the computer system employs an error correction algorithm for correction of errors in a memory array. The memory array may include two or more groups of memory cells, where the smallest group of memory cells is inclusive inside the smaller group of memory cells, the smaller group of memory cells is inclusive inside a bigger group, and so on. Each group of memory cells is stored in the memory array in association with a set of ECC bits corresponding to the width and lengths of its group. One set of ECC bits include information corresponding to the first group of memory
cells; the other set of ECC bits include information corresponding to the second group of memory cells, and so on. Generating the ECC bits as such provides correction of errors in the memory array, while achieving optimal overall performance.

The error correction algorithm is capable of correcting errors up to a first bit error rate (for example up to 6-bits per 512 bytes) in a correctable group of memory cells having a standard size (for example 256 Bytes). The error correction algorithm is applied to correct the larger group of memory cells first using this group's corresponding ECC bits, and upon failure of this correcting action, the error correction algorithm is applied to correct the smaller group of memory cells. Upon the failure of the smaller group, the error correction algorithm may be further applied to correct an even smaller group of memory cells that is inclusive inside the former group. This correction action may be applied recursively, each time on a smaller group of memory cells based on the corresponding ECC bits, until correction succeeds. Upon success, the data of all the groups of memory cells interrelated in the process are corrected.

Figure 1A is an exemplary embodiment of a computer system 10 having an error correction algorithm 12 for correction of errors in a memory array 14. Memory array 14 may be a flash memory. The error correction algorithm 12 is capable of correcting errors up to a first bit error rate (for example up to 6-bits per 512 bytes) in a correctable group of memory cells (for example MCl) having a standard size (for example 256 Bytes). A controller 18 is provided for writing data to the memory array 14 and for reading the data from the memory array 14.

Memory array 14 includes a plurality of data units 16. Note that a data unit may be related with any number of bytes, including but not limited to 256 bytes, 512 bytes, etc. In this example, the error correction algorithm 12 is implemented to generate two sets of ECC bits for each data unit 16, as follows: a first set of ECC bits, ECCI-2, having information corresponding to a first group of memory cells MCI and MC2; and a second set of ECC bits, ECCI, having information corresponding to a second group of memory cells MCl (Alternatively, the second set of ECC bits may have information corresponding to group of memory cells MC2). The first group of memory cells MCl and MC2 has a first size (for example 512 Bytes) that is larger than the standard size. The second group of memory cells MCI has a second size (for example 256 Bytes) that is...
smaller than the first size. The second group of memory cells MC1 is a portion of the first
group \textbf{MC1} and \textbf{MC2}. The first set ECC-2 and second set ECC-1 of ECC bits are stored
in the memory array 14 in association with the respective data unit 16.

Error correction algorithm 12 is operative to correct errors in the first group MC1
and MC2 based on the first set of ECC bits \textbf{ECCI-2}. If this process fails (e.g. there are
more than 6 errors in the first group MC1 and MC2), then the error correction algorithm
12 is operative to correct errors in the second group MC1 based on the second set of ECC
bits ECC1. In other words, error correction algorithm 12 is operative to correct errors in
the second group MC1 based on the second set of ECC bits ECC1 if the error correction
algorithm, applied in the first group MC1 and \textbf{MC2} based on the first set of ECC bits
ECCI-2, fails. As such, the error correction algorithm 12 (that is originally implemented
to correct up to 6-bit error rate) may be used to thereby correct errors in the first group
MC1 and MC2 up to a second bit error rate, for example up to 8-bits per 512 bytes, that
is larger than the first bit error rate.

It should be appreciated that various implementations may use a wide range of
memory configuration and the particular one illustrated should not be construed as
limiting to only that implementation. For example, the sets of ECC bits may be
contiguous with the memory cells, the arrangement may be other than in data units and/or
various types of error correction algorithms may be provided. The error correction
algorithm may be further applied to generate two sets of ECC bits, three sets of ECC bits
(see Figure 1B), or more; and the memory array may be implemented to store the two
sets of ECC bits, the three sets of ECC bits or more.

Error correction algorithm 12 may also be operative to correct the first group
MC1 and MC2 based on the first set of ECC bits ECC-2. Alternatively or additionally,
error correction algorithm 12 may also be operative to correct the second group MC1
based on the second set of ECC bits ECC1. Memory array 14 may be operative to store
an additional set of ECC bits having information corresponding to an additional group of
memory cells, where this additional group of memory cells have a third size smaller than
the second size and being a portion of the second group MC1. In such case, error
correction algorithm 12 is further operative to be applied in the additional group of
memory cells based on the additional ECC bits if the error correction algorithm 12
applied in the second group MC\textsubscript{1} based on the second group of ECC bits ECC\textsubscript{1} fails (see Figure IB). Error correction algorithm 12 is also operative to correct the additional group of memory cells based on the additional set of ECC bits.

Figure IB is an exemplary embodiment of the memory array 14 of Figure IA, where the error correction algorithm 12 is implemented to generate three sets of ECC bits for each data unit 16. In this example, the error correction algorithm 12 is implemented to generate three sets of ECC bits for each data unit 16, as follows: a first set of ECC bits, ECC\textsubscript{1-3}, having information corresponding to a first group of memory cells MC\textsubscript{1}, MC\textsubscript{2} and MC\textsubscript{3}; a second set of ECC bits, ECC\textsubscript{1-2}, having information corresponding to a second group of memory cells MC\textsubscript{1} and MC\textsubscript{2}; and a third set of ECC bits, ECC\textsubscript{1}, having information corresponding to a third group of memory cells MC\textsubscript{1}. The first group of memory cells MC\textsubscript{1}, MC\textsubscript{2} and MC\textsubscript{3} has a first size (for example 640 Bytes) that is larger than the standard size. The second group of memory cells MC\textsubscript{1} and MC\textsubscript{2} has a second size that is smaller than the first size. The second group of memory cells MC\textsubscript{1} and MC\textsubscript{2} is a portion of the first group MC\textsubscript{1}, MC\textsubscript{2} and MC\textsubscript{3}. The third group of memory cells MC\textsubscript{1} has a third size that is smaller than the second size. The third group of memory cells MC\textsubscript{1} is a portion of the second group MC\textsubscript{1} and MC\textsubscript{2}. The first set ECC\textsubscript{1-3}, the second set ECC\textsubscript{1-2} and the third set ECC\textsubscript{1} of ECC bits are stored in the memory array 14 in association with the respective data unit 16.

Error correction algorithm 12 is operative to correct errors in the first group MC\textsubscript{1}, MC\textsubscript{2} and MC\textsubscript{3} based on the first set of ECC bits ECC\textsubscript{1-3}. If this process fails (e.g. there are more than 6 errors in the first group MC\textsubscript{1}, MC\textsubscript{2} and MC\textsubscript{3}), then the error correction algorithm 12 is operative to correct errors in the second group MC\textsubscript{1} and MC\textsubscript{2} based on the second set of ECC bits ECC\textsubscript{1-2}. Only if this second process fails (e.g. there are more than 6 errors in the second group MC\textsubscript{1} and MC\textsubscript{2}), then the error correction algorithm 12 is operative to correct errors in the third group MC\textsubscript{1} based on the third set of ECC bits ECC\textsubscript{1}.

Figure 2 is a flowchart 30 of a method for writing data to a memory array of computer system 10 having error correction algorithm 12, in accordance with an exemplary embodiment. At 32 data is written to the memory array. The error correction algorithm is capable of correcting errors up to a first bit error rate in a correctable group.
of memory cells having standard size (for example 256 Bytes). In this example, the error
correction algorithm 12 is implemented to generate three sets of ECC bits for each data
unit 16.

At 34 a first set of ECC bits ECC 1-3 is generated for the written data. The first
set of ECC bits has information corresponding to a first group of memory cells MC1,
MC'2 and MC'3. The first group has a first size (for example 512 Bytes) larger than the
standard size.

At 36 a second set of ECC bits ECC 1-2 is generated for the written data. The
second set of ECC bits has information corresponding to a second group of memory cells
MC1 and MC'2 is generated. The second group has a second size smaller than the first
size and is a portion of the first group of memory cells.

At 38 an additional set of ECC bits (in our example, third set ECCI) is generated
for the written data. The additional set of ECC bits has information corresponding to an
additional group of memory cells (in our example, third group MC1). The third group of
memory cells has a third size smaller than the second size and being a portion of the
second group of memory cells. At 39 the sets of ECC bits are all written to the memory
array.

In some embodiments and/or some codes, generation of the first, the second set
and the third sets of ECC bits is applied as a single step. In other embodiments, there may
be at least two separate steps of generating the first set of ECC bits, the second set of
ECC bits and the third set of ECC bits.

Figure 3 is a flowchart 50 of a method for reading data from the memory array, in
accordance with an exemplary embodiment. At 52 data and its corresponding ECC bits
are read from the memory array and the error correction algorithm (of Figure 2) is
applied to correct errors in the first group of memory cells based on the first set of ECC
bits.

If the error correction algorithm based on the first set of ECC bits succeeds (54),
then the first group of memory cells MC1, MC2 and MC3 is corrected based on the
first set of ECC bits ECC 1-3; and a success signal is asserted (step 56).

If the error correction algorithm based on the first set of ECC bits fails (54), then
the second group of memory cells MC1 and MC2 are corrected based on the second set
of ECC bits ECC'1-2 (58). If the error correction algorithm based on the second set of ECC bits succeeds (60); then the second group of memory cells MCl and MC'2 are corrected based on the second set of ECC bits ECC'1-2; and then the first group of memory cells MCl, MC'2 and MC'3 are corrected based on the first set of ECC bits ECC 1-3. A success signal is then asserted (step 56). If the error correction algorithm based on the second set of ECC bits fails (60), then the additional group of memory cells MCl are corrected based on the additional set of ECC bits ECC1 (62). At this step (62) the additional group of memory cells MCl are corrected based on the additional set of ECC bits ECC1; then the second group of memory cells MCl and MC'2 are corrected based on the second set of ECC bits ECC 1-2; and then the first group of memory cells MCl, MC'2 and MC'3 are corrected based on the first set of ECC bits ECC'1-3. A success signal is then asserted (step 56).

It should be understood that while the computer system is configured herein with an error correction algorithm applied to generate two or three ECC bits and with a memory array that is implemented to store these sets of ECC bits, the computer system and method are further applicable to generate more than three sets of ECC bits and to store more than three sets of ECC bits. Furthermore, any other types of hubs providing a connection port to mass storage may be employed.

Having described the various embodiments of a system and method, it is to be understood that the description is not meant as a limitation, since further modifications will now suggest themselves to those skilled in the art, and it is intended to cover such modifications as fall within the scope of the appended claims.
CLAIMS

1. A method for correcting errors in a memory array, the method comprising:
 (a) providing an error correction algorithm for correcting errors up to a first bit error rate in a correctable group of memory cells, said correctable group having a standard size;
 (b) generating a first set of ECC bits having information corresponding to a first group of memory cells, said first group having a first size larger than the standard size;
 (c) generating a second set of ECC bits having information corresponding to a second group of memory cells, said second group having a second size smaller than said first size and being a portion of said first group;
 (d) applying said error correction algorithm to correct errors in said first group based on said first set of ECC bits;
 (e) determining if said error correction algorithm based on said first set of ECC bits fails in step (d); and
 (f) if said error correction algorithm fails then applying said error correction algorithm to correct errors in said second group based on said second set of ECC bits.

2. The method of claim 1 further comprising:
 (f) correcting said first group based on said first set of ECC bits.

3. The method of claim 1 further comprising:
 (f) correcting said second group based on said second set of ECC bits.

4. The method of claim 1 further comprising:
 (f) preceding said generation of said error correction algorithm in step (d), generating an additional set of ECC bits having information corresponding to an additional group of memory cells, said additional group having a third size smaller than said second size and being a portion of said second group.
5. The method of claim 4 further comprising:
 (g) if said error correction algorithm based on said second set of ECC bits fails in step (e), then applying said error correction algorithm to correct errors in said additional group based on said additional set of ECC bits.

6. The method of claim 5 further comprising:
 (h) correcting said additional group based on said additional set of ECC bits.

7. The method of claim 1, wherein step (e) is applied to thereby correct errors up to a second bit error rate in said first group, said second bit error rate being larger than the first bit error rate.

8. A computer system for correction of errors in a memory array, the computer system comprising:
 - an error correction algorithm capable of correcting errors up to a first bit error rate in a correctable group of memory cells, said correctable group having a standard size; and
 - a memory operative to store a first set of ECC bits having information corresponding to a first group of memory cells, and to store a second set of ECC bits having information corresponding to a second group of memory cells, said first group having a first size larger than the standard size and said second group having a second size smaller than said first size and being a portion of said first group;
 - said error correction algorithm being operative to correct errors in said second group based on said second set of ECC bits if said error correction algorithm, applied in said first group based on said first set of ECC bits, fails.

9. The computer system of claim 8, wherein said memory is a flash memory.
10. The computer system of claim 8, wherein said error correction algorithm is also operative to correct said first group based on said first set of ECC bits.

11. The computer system of claim 8, wherein said error correction algorithm is also operative to correct said second group based on said second set of ECC bits.

12. The computer system of claim 8, wherein said memory is operative to store an additional set of ECC bits having information corresponding to an additional group of memory cells, said additional group having a third size smaller than said second size and being a portion of said second group.

13. The computer system of claim 12, wherein said error correction algorithm is further operative to be applied in said additional group based on said additional ECC bits if said error correction algorithm applied in said second group based on said second group of ECC bits fails.

14. The computer system of claim 13, wherein said error correction algorithm is also operative to correct said additional group based on said additional set of ECC bits.

15. The computer system of claim 8, wherein said error correction algorithm is applied to thereby correct errors up to a second bit error rate in said first group, said second bit error rate being larger than the first bit error rate.
FIG. 2

30

Write data to memory array

Generate 1st set of ECC bits

Generate 2nd set of ECC bits

Generate 3rd set of ECC bits

Write ECC bits to memory array
INTERNATIONAL SEARCH REPORT

PCT/IB2008/054108

A. CLASSIFICATION OF SUBJECT MATTER

INV. G06F11/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and where practical search terms used)
EPO-Internal, WPI Data, IBM-TDB, INSPEC, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2007/226592 A1 (RADKE WILLIAM H [US]) 27 September 2007 (2007-09-27) paragraphs [0008], [0009], [0024], [0037], [0038], [0045] - [0047], [0061] figures 2a, 2b, 2c, 3a, 3b</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>US 2007/171714 A1 (WU ZINING [US] ET AL) 26 July 2007 (2007-07-26) paragraphs [0014], [0015], [0058], [0068], [0069], [0077], [0087], [0088], [0091] figures 4, 10a, 11a, lib, lie, 12</td>
<td>1-15</td>
</tr>
</tbody>
</table>

D

Further documents are listed in the continuation of Box C

X See patent family annex

* Special categories of cited documents

'A' document defining the general state of the art which is not considered to be of particular relevance

'E' earlier document but published on or after the international filing date

'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

'O' document referring to an oral disclosure, use, exhibition or other means

'P' document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

'X' document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

'Y' document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

'S' document member of the same patent family

Date of the actual completion of the international search

27 February 2009

Date of mailing of the international search report

06/03/2009

Name and mailing address of the ISA/Authorized officer

European Patent Office, P B 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel (+31-70) 340-2040, Fax (+31-70) 340-3016

Johansson, Ulf

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2007226592 A1</td>
<td>27-09-2007</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2007266295 A1</td>
<td>15-11-2007</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20080098041 A</td>
<td>06-11-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007084751 A2</td>
<td>26-07-2007</td>
</tr>
</tbody>
</table>