0O 01/41530 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

14 June 2001 (14.06.2001) PCT WO 01/41530 A2
(51) International Patent Classification: Not classified (74) Agents: MALLIE, Michael, J. et al.; Blakely, Sokoloff,
Taylor & Zafman LLP, 7th floor, 12400 Wilshire Boule-
(21) International Application Number: PCT/US00/28422 vard, Los Angeles, CA 90025 (US).
(22) International Filing Date: 12 October 2000 (12.10.2000) (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
(25) Filing Language: English DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
(26) Publication Language: English LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL,, TJ, TM,
L. TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
(30) Priority Data:
09/458,570 9 December 1999 (09.12.1999) US
(84) Designated States (regional): ARIPO patent (GH, GM,
(71) Applicant (for all designated States except US): INTEL KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
CORPORATION [US/US]; 2200 Mission College Boule- patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
vard, Santa Clara, CA 95052 (US) patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
’ ’ ’ IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(72) Inventors; and
(75) Inventors/Applicants (for US only): RODGERS, Dion
Published:

[US/US]; 452 SW Brookwood Avenue, Hillsboro, OR
97123 (US). BOGGS, Darrell [US/US]; 2200 S.W. 195th
Avenue, Aloha, OR 97006 (US). MERCHANT, Amit
[US/US]; 5468 N.W. Deerfield Way, Portland, OR 97229
(US). KOTA, Rajesh [IN/US]; 223 NW Gina Way, Apt
209, Aloha, OR 97006 (US). HSU, Rachel [US/US]; 3113
NE 13th Place, Hillsboro, OR 97124 (US).

Without international search report and to be republished
upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR ENTERING AND EXITING MULTIPLE THREADS WITHIN A MULTI-

THREADED PROCESSOR

(57) Abstract: A method includes maintaining a state machine to provide a multi-bit output, each bit of the multi-bit output indi-
cating a respective status for an associated thread of multiple threads being executed within a multithreaded processor. Status for a
first thread is detected, responsive to which a functional unit within the multithreaded processor is configured in accordance with the

multi-bit output of the state machine.



WO 01/41530 PCT/US00/28422

METHOD AND APPARATUS FOR ENTERING AND EXITING MULTIPLE
THREADS WITHIN A MUTLITHREADED PROCESSOR

FIELD OF THE INVENTION

The present invention relates generally to the field of multithreaded
processors and, more specifically, to a method and apparatus for entering and

exiting multiple threads within a multithreaded (MT) processor.

BACKGROUND OF THE INVENTION

Multithreaded (MT) processor design has recently been considered as an
increasingly attractive option for increasing the performance of processors.
Multithreading within a processor, inter alia, provides the potential for more
effective utilization of various processor resources, and particularly for more
effective utilization of the execution logic within a processor. Specifically, by
feeding multiple threads to the execution logic of a processor, clock cycles that
would otherwise have been idle due to a stall or other delay in the processing of
a particular thread may be utilized to service a further thread. A stall in the
processing of a particular thread may result from a number of occurrences
within a processor pipeline. For example, a cache miss or a branch
misprediction (i.e., a long-latency operation) for an instruction included within a
thread typically results in the processing of the relevant thread stalling. The
negative effect of long-latency operations on execution logic efficiencies is
exacerbated by the recent increases in execution logic throughput that have
outstripped advances in memory access and retrieval rates. -

Multithreaded computer applications are also becoming increasingly
common in view of the support provided to such multithreaded applications by
a number of popular operating systems, such as the Windows NT® and Unix
operating systems. Multithreaded computer applications are particularly
efficient in the multi-media arena.

Multithreaded processors may broadly be classified into two categories

(i.e., fine or coarse designs) according to the thread interleaving or switching
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scheme employed within the relevant processor. Fine multithreaded designs
support multiple active threads within a processor and typically interleave two
different threads on a cycle-by-cycle basis. Coarse multithreaded designs
typically interleave the instructions of different threads on the occurrence of
some long-latency event, such as a cache miss. A coarse multithreaded design is
discussed in Eickemayer, R.; Johnson, R.; et al., "Evaluation of Multithreaded
Uniprocessors for Commercial Application Environments", The 23rd Annual

International Symposium on Computer Architecture, pp. 203-212, May 1996.
The distinctions between fine and coarse designs are further discussed in

Laudon, J; Gupta, A, " Architectural and Implementation Tradeoffs in the Design
of Multiple-Context Processors"”, Multithreaded Computer Architectures: A

Summary of the State of the Art, edited by R.A. Iannuci et al., pp. 167-200,

Kluwer Academic Publishers, Norwell, Massachusetts, 1994. Laudon further
proposes an interleaving scheme that combines the cycle-by-cycle switching of a
fine design with the full pipeline interlocks of a coarse design (or blocked
scheme). To this end, Laudon proposes a "back off" instruction that makes a
specific thread (or context) unavailable for a specific number of cycles. Such a
"back off" instruction may be issued upon the occurrence of predetermined
events, such as a cache miss. In this way, Laudon avoids having to perform an
actual thread switch by simply making one of the threads unavailable.

A multithreaded architecture for a processor presents a number of further
challenges in the context of an out-of-order, speculative execution processor
architecture. More specifically, the handling of events (e.g., branch instructions,
exceptions or interrupts) that may result in an unexpected change in the flow of
an instruction stream is complicated when multiple threads are considered. In a
processor where resource sharing between multiple threads is implemented (i.e.,
there is limited or no duplication of functional units for each thread supported
by the processor), the handling of event occurrences pertaining to a specific
thread is complicated in that further threads must be considered in the handling
of such events.

Where resource sharing is implemented within a multithreaded processor

it is further desirable to attempt increased utilization of the shared resources
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responsive to changes in the state of threads being serviced within the

multithreaded processor.

SUMMARY OF THE INVENTION

According to the invention there is provided a method that includes
maintaining a state machine to provide a multi-bit output, each bit of the multi-
bit output indicating a respective status of an associated thread of multiple
threads being executed within the multithreaded processor. A change in the
status of a first thread within the multithreaded processor is detected. A
functional unit within the multithreaded processor is configured in accordance
with the multi-bit output of the state machine.

Other features of the present invention will be apparent from the

accompanying drawings and from the detailed description which follows.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and not limited in
the figures of the accompanying drawings, in which like references indicate

similar elements and in which:

Figure 1 is a block diagram illustrating one embodiment of a pipeline of a

processor with multithreading support.

Figure 2 is a block diagram illustrating an exemplary embodiment of a
processor, in the form of a general-purpose multithreaded

Microprocessor.

Figure 3 is a block diagram illustrating selected components of an
exemplary multithreaded microprocessor, and specifically depicts various
functional units that provide a buffering (or storage) capability as being

logically partitioned to accommodate multiple thread.

Figure 4 is a block diagram illustrating an out-of-order cluster, according



WO 01/41530 PCT/US00/28422

to one embodiment.

Figure 5 is a diagrammatic representation of a register alias table and a

register file and utilized within one embodiment .

Figure 6A is a block diagram illustrating details regarding a re-order
buffer, according to one embodiment, that is logically partitioned to

service multiple threads within a multithreaded processor.

Figure 6B is a diagrammatic representation of a pending event register

and an event inhibit register, according to one embodiment.

Figure 7A is a flow chart illustrating a method, according to one

embodiment, of processing an event within a multithreaded processor.

Figure 7B is a flow chart illustrating a method, according to one
embodiment, of handling a "virtual nuke" event within a multithreaded

processor.

Figure 8 is a diagrammatic representation of a number of exemplary
events that may be detected by an event detector, according to one

embodiment, implemented within a multithreaded processor.

Figures 9 and 10 are respective block diagrams showing exemplary
content of a reorder table, within an exemplary reorder buffer such as that

illustrated in Figure 6A.

Figure 11A is a flow chart illustrating a method, according to an
exemplary embodiment, of performing a clearing (or nuke) operation
within a multithreaded processor supporting at least first and second

threads.
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Figure 11B is a block diagram illustrating configuration logic, according
to one exemplary embodiment, that operates to configure a functional

unit in accordance with the output of an active thread state machine.

Figure 12 is a timing diagram illustrating the assertion of a nuke signal,

according to one embodiment.

Figure 13 is a flow chart illustrating a method, according to one
embodiment, of providing exclusive access to an event handler within a

multithreaded processor.

Figure 14 is a state diagram depicting operation, according to one
embodiment, of an exclusive access state machine implemented within a

multithreaded processor.

Figure 15 is a state diagram illustrating states, according to one
embodiment, that may be occupied by an active thread state machine

implemented within a multithreaded processor.

Figure 16A is a flow chart illustrating a method, according to one
embodiment, of exiting an active thread on the detection of a sleep event

for the active thread within a multithreaded processor.

Figure 16B is a diagrammatic representation of the storing of state and
the delocation of registers upon exiting a thread, according to one

embodiment.
Figure 17 is a flow chart illustrating a method, according to one
embodiment, of transitioning a thread from an inactive to an active state

upon the detection of a break event for the inactive thread.

Figure 18 is a flow chart illustrating a method, according to one
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embodiment, of managing the enablement and disablement of a clock

signal to at least one functional unit within a multithreaded processor.

Figure 19A is a block diagram illustrating clock control logic, according to
one embodiment, for enabling and disabling a clock signal within a

multithreaded processor.

Figure 19B is a schematic diagram showing one embodiment of the clock

control logic shown in Figure 19A.

DETAILED DESCRIPTION

A method and apparatus for entering and exiting multiple threads within
a multithreaded processor are described. In the following description, for
purposes of explanation, numerous specific details are set forth in order to
provide a thorough understanding of the present invention. It will be evident,
however, to one skilled in the art that the present invention may be practiced
without these specific details.

For the purposes of the present specification, the term "event" shall be
taken to include any event, internal or external to a processor, that causes a
change or interruption to the servicing of an instruction stream (macro- or
microinstruction) within a processor. Accordingly, the term "event" shall be
taken to include, but not be limited to, branch instructions processes, exceptions
and interrupts that may be generated within or outside the processor.

For the purposes of the present specification, the term "processor" shall be
taken to refer to any machine that is capable of executing a sequence of
instructions (e.g., macro- or microinstructions), and shall be taken to include, but
not be limited to, general purpose microprocessors, special purpose
microprocessors, graphics controllers, audio controllers, multi-media controllers,
microcontrollers or network controllers. Further, the term "processor” shall be
taken to refer to, inter alia, Complex Instruction Set Computers (CISC), Reduced
Instruction Set Computers (RISC), or Very Long Instruction Word (VLIW)

processors.
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Further, the term "clearing point” shall be taken to include any
instructions provided in an instruction stream (including a microinstruction or
macroinstruction stream) by way of a flow marker or other instruction, of a
location in the instruction stream at which an event may be handled or
processed.

The term "instruction” shall be taken to include, but not be limited to, a
macroinstruction or a microinstruction.

Certain exemplary embodiments of the present invention are described as
being implemented primarily in either hardware or software. It will nonetheless
be appreciated by those skilled in the art that many features may readily be
implemented in hardware, software or a combination of hardware and software.

Software (e.g., either microinstructions and macroinstructions) for
implementing embodiments of the invention may reside, completely or at least
partially, within a main memory accessible by a processor and/or within the
processor itself (e.g., in a cache or a microcode sequencer). For example, event
handlers and state machines may be implemented in microcode dispatched from
a microcode sequencer.

Software may further be transmitted or received via the network
interface device.

For the purposes of this specification, the term " machine-readable
medium" shall be taken to include any medium which is capable of storing or
encoding a sequence of instructions for execution by the machine and that cause
the machine to perform any one of the methodologies of the present invention.
The term " machine-readable medium" shall accordingly be taken to included,
but not be limited to, solid-state memories, optical and magnetic disks, and

carrier wave signals.

Processor Pipeline

Figure 1 is a high-level block diagram illustrating one embodiment of
processor pipeline 10. The pipeline 10 includes a number of pipe stages,
commencing with a fetch pipe stage 12 at which instructions (e.g.,

macroinstructions) are retrieved and fed into the pipeline 10. For example, a
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macroinstruction may be retrieved from a cache memory that is integral with the
processor, or closely associated therewith, or may be retrieved from an external
main memory via a processor bus. From the fetch pipe stage 12, the
macroinstructions are propagated to a decode pipe stage 14, where
macroinstructions are translated into microinstructions (also termed
"microcode") suitable for execution within the processor. The microinstructions
are then propagated downstream to an allocate pipe stage 16, where processor
resources are allocated to the various microinstructions according to availability
and need. The microinstructions are then executed at an execute stage 18 before
being retired, or "written-back" (e.g., committed to an architectural state) at a

retire pipe stage 20.

Microprocessor Architecture

Figure 2 is a block diagram illustrating an exemplary embodiment of a
processor 30, in the form of a general-purpose microprocessor. The processor 30
is described below as being a multithreaded (MT) processor, and is accordingly
able to process multiple instruction threads (or contexts). However, a number of
the teachings provided below in the specification are not specific to a
multithreaded processor, and may find application in a single threaded
processor. In an exemplary embodiment, the processor 30 may comprise an
Intel Architecture (IA) microprocessor that is capable of executing the Intel
Architecture instruction set. An example of such an Intel Architecture
microprocessor is the Pentium Pro ® microprocessor or the Pentium III ®
microprocessor manufactured by Intel Corporation of Santa Clara, California.

In one embodiment, the processor 30 comprises an in-order front end and
an out-of-order back end. The in-order front end includes a bus interface unit
32, which functions as the conduit between the processor 30 and other
components (e.g., main memory) of a computer system within which the
processor 30 may be employed. To this end, the bus interface unit 32 couples the
processor 30 to a processor bus (not shown) via which data and control
information may be received at and propagated from the processor 30. The bus

interface unit 32 includes Front Side Bus (FSB) logic 34 that controls
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communications over the processor bus. The bus interface unit 32 further
includes a bus queue 36 that provides a buffering function with respect to
communications over the processor bus. The bus interface unit 32 is shown to
receive bus requests 38 from, and to send snoops or bus returns to, a memory
execution unit 42 that provides a local memory capability within the processor
30. The memory execution unit 42 includes a unified data and instruction cache
44, a data Translation Lookaside Buffer (TLB) 46, and memory ordering buffer
48. The memory execution unit 42 receives instruction fetch requests 50 from,
and delivers raw instructions 52 (i.e., coded macroinstructions) to, a
microinstruction translation engine 54 that translates the received
macroinstructions into a corresponding set of microinstructions.

The microinstruction translation engine 54 effectively operates as a trace
cache "miss handler" in that it operates to deliver microinstructions to a trace
cache 62 in the event of a trace cache miss. To this end, the microinstruction
translation engine 54 functions to provide the fetch and decode pipe stages 12
and 14 in the event of a trace cache miss. The microinstruction translation
engine 54 is shown to include a next instruction pointer (NIP) 100, an instruction
Translation Lookaside Buffer (TLB) 102, a branch predictor 104, an instruction
streaming buffer 106, an instruction pre-decoder 108, instruction steering logic
110, an instruction decoder 112, and a branch address calculator 114. The next
instruction pointer 100, TLB 102, branch predictor 104 and instruction streaming
buffer 106 together constitute a branch prediction unit (BPU) 99. The instruction
decoder 112 and branch address calculator 114 together comprise an instruction
translate (IX) unit 113.

The next instruction pointer 100 issues next instruction requesté to the
unified cache 44. In the exemplary embodiment where the processor 30
comprises a multithreaded microprocessor capable of processing two threads,
the next instruction pointer 100 may include a multiplexer (MUX) (not shown)
that selects between instruction pointers associated with either the first or
second thread for inclusion within the next instruction request issued therefrom.
In one embodiment, the next instruction pointer 100 will interleave next

instruction requests for the first and second threads on a cycle-by-cycle ("ping
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pong") basis, assuming instructions for both threads have been requested, and
instruction streaming buffer 106 resources for both of the threads have not been
exhausted. The next instruction pointer requests may be for 16, 32 or 64-bytes
depending on whether the initial request address is in the upper half of a 32-byte
or 64-byte aligned line. The next instruction pointer 100 may be redirected by
the branch predictor 104, the branch address calculator 114 or by the trace cache
62, with a trace cache miss request being the highest priority redirection request.

When the next instruction pointer 100 makes an instruction request to the
unified cache 44, it generates a two-bit "request identifier" that is associated with
the instruction request and functions as a "tag" for the relevant instruction
request. When returning data responsive to an instruction request, the unified
cache 44 returns the following tags or identifiers together with the data:

1. The "request identifier” supplied by the next instruction pointer

100;

2. A three-bit "chunk identifier" that identifies the chunk returned;

and

3. A "thread identifier" that identifies the thread to which the

returned data belongs.

Next instruction requests are propagated from the next instruction
pointer 100 to the instruction TLB 102, which performs an address lookup
operation, and delivers a physical address to the unified cache 44. The unified
cache 44 delivers a corresponding macroinstruction to the instruction streaming
buffer 106. Each next instruction request is also propagated directly from the
next instruction pointer 100 to the instruction streaming buffer 106 so as to allow
the instruction streaming buffer 106 to identify the thread to which a
macroinstruction received from the unified cache 44 belongs. The
macroinstructions from both first and second threads are then issued from the
instruction streaming buffer 106 to the instruction pre-decoder 108, which
performs a number of length calculation and byte marking operations with
respect to a received instruction stream (of macroinstructions). Specifically, the
instruction pre-decoder 108 generates a series of byte marking vectors that serve,

inter alia, to demarcate macroinstructions within the instruction stream

-10-
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propagated to the instruction steering logic 110.

The instruction steering logic 110 then utilizes the byte marking vectors to
steer discrete macroinstructions to the instruction decoder 112 for the purposes
of decoding. Macroinstructions are also propagated from the instruction
steering logic 110 to the branch address calculator 114 for the purposes of branch
address calculation. Microinstructions are then delivered from the instruction
decoder 112 to the trace delivery engine 60.

During decoding, flow markers are associated with each microinstruction
into which a macroinstruction is translated. A flow marker indicates a
characteristic of the associated microinstruction and may, for example, indicate
the associated microinstruction as being the first or last microinstruction in a
microcode sequence representing a macroinstruction. The flow markers include
a "beginning of macroinstruction” (BOM) and an "end of macroinstruction”
(EOM) flow markers. According to the present invention, the decoder 112 may
further decode the microinstructions to have shared resource (multiprocessor)
(SHRMP) flow markers and synchronization (SYNC) flow markers associated
therewith. Specifically, a shared resource flow marker identifies a
microinstruction as a location within a parﬁcular thread at which the thread may
be interrupted (e.g., re-started or paused) with less negative consequences than
elsewhere in the thread. The decoder 112, in an exemplary embodiment of the
present invention, is constructed to mark microinstructions that comprise the
end or the beginning of a parent macroinstruction with a shared resource flow
marker as well as intermittent points in longer microcode sequences. A
synchronization flow marker identifies a microinstruction as a location within a
particular thread at which the thread may be synchronized with another thread
responsive to, for example, a synchronization instruction within the other
thread. For the purposes of the present specification, the term "synchronize"
shall be taken to refer to the identification of at least a first point in at least one
thread at which processor state may be modified with respect to that thread
and/or at least one further thread with a reduced or lower disruption to the
processor, relative to a second point in that thread or in another thread.

The decoder 112, in an exemplary embodiment of the present invention, is

-11-
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constructed to mark microinstructions that are located at selected
macroinstruction boundaries where state shared among threads coexisting in the
same processor can be changed by one thread without adversely impacting the
execution of other threads.

From the microinstruction translation engine 54, decoded instructions
(i.e., microinstructions) are sent to a trace delivery engine 60. The trace delivery
engine 60 includes a trace cache 62, a trace branch predictor (BTB) 64, a
microcode sequencer 66 and a microcode (uop) queue 68. The trace delivery
engine 60 functions as a microinstruction cache, and is the primary source of
microinstructions for a downstream execution unit 70. By providing a
microinstruction caching function within the processor pipeline, the trace
delivery engine 60, and specifically the trace cache 62, allows translation work
done by the microinstruction translation engine 54 to be leveraged to provide
increased microinstruction bandwidth. In one exemplary embodiment, the trace
cache 62 may comprise a 256 set, 8 way set associate memory. The term "trace",
in the present exemplary embodiment, may refer to a sequence of
microinstructions stored within entries of the trace cache 62, each entry
including pointers to preceding and proceeding microinstructions comprising
the trace. In this way, the trace cache 62 facilitates high-performance sequencing
in that the address of the next entry to be accessed for the purposes of obtaining
a subsequent microinstruction is known before a current access is complete.
Traces, in one embodiment, may be viewed as "blocks” of instructions that are
distinguished from one another by trace heads, and are terminated upon
encountering an indirect branch or by reaching one of many present threshold
conditions, such as the number of conditioned branches that may be
accommodated in a single trace or the maximum number of total
microinstructions that may comprise a trace.
The trace cache branch predictor 64 provides local branch predictions pertaining
to traces within the trace cache 62. The trace cache 62 and the microcode
sequencer 66 provide microinstructions to the microcode queue 68, from where
the microinstructions are then fed to an out-of-order execution cluster. The

microcode sequencer 66 is furthermore shown to include a number of event
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handlers 67, embodied in microcode, that implement a number of operations
within the processor 30 in response to the occurrence of an event such as an
exception or an interrupt. The event handlers 67, as will be described in further
detail below, are invoked by an event detector 188 included within a register
renamer 74 in the back end of the processor 30.

The processor 30 may be viewed as having an in-order front-end,
comprising the bus interface unit 32, the memory execution unit 42, the
microinstruction translation engine 54 and the trace delivery engine 60, and an
out-of-order back-end that will be described in detail below.

Microinstructions dispatched from the microcode queue 68 are received
into an out-of-order cluster 71 comprising a scheduler 72, a register renamer 74,
an allocator 76, a reorder buffer 78 and a replay queue 80. The scheduler 72
includes a set of reservation stations, and operates to schedule and dispatch
microinstructions for execution by the execution unit 70. The register renamer
74 performs a register renaming function with respect to hidden integer and
floating point registers (that may be utilized in place of any of the eight general
purpose registers or any of the eight floating-point registers, where a processor
30 executes the Intel Architecture instruction set). The allocator 76 operates to
allocate resources of the execution unit 70 and the cluster 71 to microinstructions
according to availability and need. In the event that insufficient resources are
available to process a microinstruction, the allocator 76 is responsible for
asserting a stall signal 82, that is propagated through the trace delivery engine 60
to the microinstruction translation engine 54, as shown at 58. Microinstructions,
which have had their source fields adjusted by the register renamer 74, are
placed in a reorder buffer 78 in strict program order. When microinstructions
within the reorder buffer 78 have completed execution and are ready for
retirement, they are then removed from a reorder buffer and retrieved in an in-
order manner (i.e., according to an original program order). The replay queue
80 propagates microinstructions that are to be replayed to the execution unit 70.

The execution unit 70 is shown to include a floating-point execution
engine 84, an integer execution engine 86, and a level 0 data cache 88. In one

exemplary embodiment in which is the processor 30 executes the Intel
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Architecture instruction set, the floating point execution engine 84 may further
execute MMX® instructions and Streaming SIMD (Single Instruction, Multiple
Data) Extensions (SSE's).

Multithreading Implementation

In the exemplary embodiment of the processor 30 illustrated in Figure 2,
there may be limited duplication or replication of resources to support a
multithreading capability, and it is accordingly necessary to implement some
degree of resource sharing among threads. The resource sharing scheme
employed, it will be appreciated, is dependent upon the number of threads that
the processor is able simultaneously to process. As functional units within a
processor typically provide some buffering (or storage) functionality and
propagation functionality, the issue of resource sharing may be viewed as
comprising (1) storage and (2) processing/propagating bandwidth sharing
components. For example, in a processor that supports the simultaneous
processing of two threads, buffer resources within various functional units may
be statically or logically partitioned between two threads. Similarly, the
bandwidth provided by a path for the propagation of information between two
functional units must be divided and allocated between the two threads. As
these resource sharing issues may arise at a number of locations within a
processor pipeline, different resource sharing schemes may be employed at these
various locations in accordance with the dictates and characteristics of the
specific location. It will be appreciated that different resource sharing schemes
may be suited to different locations in view of varying functionalities and
operating characteristics.

Figure 3 is a block diagram illustrating selected components for one
embodiment of the processor 30 illustrated in Figure 2, and depicts various
functional units that provide a buffering capability as being logically partitioned
to accommodate two threads (i.e., thread 0 and thread 1). The logical
partitioning for two threads of the buffering (or storage) and processing facilities
of a functional unit may be achieved by allocating a first predetermined set of

entries within a buffering resource to a first thread and allocating a second
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predetermined set of entries within the buffering resource to a second thread.
However, in alternative embodiments, buffering can also be dynamically shared.
Specifically, this may be achieved by providing two pairs of read and write
pointers, a first pair of read and write pointers being associated with a first
thread and a second pair of read and write pointers being associated with a
second thread. The first set of read and write pointers may be limited to a first
predetermined number of entries within a buffering resource, while the second
set of read and write pointers may be limited to a second predetermined number
of entries within the same buffering resource. In the illustrated embodiment, the
instruction streaming buffer 106, the trace cache 62, and an instruction queue 103
are shown to each provide a storage capacity that is logically partitioned

between the first and second threads.

The Qut-of-Order Cluster (71)

Figure 4 is a block diagram illustrating further details of one embodiment
of the out-of-order cluster 71. The cluster 71 provides the reservation station,
register renaming, replay and retirement functionality within the processor 30.
The cluster 71 receives microinstructions from the trace delivery engine 60,
allocates resources to these microinstructions, renames source and destination
registers for each microinstruction, schedules microinstructions for dispatch to
the appropriate execution units 70, handles microinstructions that are replayed
due to data speculation, and then finally retires microinstructions (i.e., commits
the microinstructions to a permanent architectural state).

Microinstructions received at the cluster 71 are simultaneously delivered
to a register alias table 120 and allocation and free list management logic 122.
The register alias table 120 is responsible for translating logical register names to
physical register addresses used by the scheduler 72 and the execution units 70.
More specifically, referring to Figure 5, the register alias table 120 renames
integer, floating point and segment registers maintained within a physical
register file 124. The register file 124 is shown to include 126 physical registers
that are aliased to eight (8) architectural registers. In the illustrated

embodiment, the register alias table 120 is shown to include both a front-end

-15-



WO 01/41530 PCT/US00/28422

table 126 and a back-end table 128 for utilization by the respective front and back
ends of the processor 30. Each entry within the register alias table 120 is
associated with, or viewed as, an architectural register, and includes a pointer
130 that points to a location within the register file 124 at which the data
attributed to the relevant architectural register is stored. In this way, the
challenges provided by a legacy microprocessor architecture that specifies a
relatively small number of architectural registers may be addressed.

The allocation and free list management logic 122 is responsible for
resource allocation and state recovery within the cluster 71. The logic 122
allocates the following resources to each microinstruction:

1. A sequence number, which is given to each microinstruction to track
the logical order thereof within a thread as the microinstruction is
processed within the cluster 71. The sequence number attributed to
each microinstruction is stored together with status information for the
microinstruction within a table 180 (shown below in Figure 10) within
the reorder buffer 162.

2. A free list management entry, that is given to each microinstruction to
allow the history of the microinstruction to be tracked and recovered in
the case of a state recovery operation.

3. A reorder buffer (ROB) entry, that is indexed by the sequence number.

4. A physical register file 124 entry (known as a "marble") within which
the microinstruction may store useful results.

5. Aload buffer (not shown) entry.

6. A stall buffer (not shown) entry.

7. An instruction queue entry (e.g., to either a memory instruction queue

or a general instruction address queue, as will be described below).

In the event of the logic 122 is not able to obtain the necessary resources
for a received sequence of microinstructions, the logic 122 will request that the
trace delivery engine 60 stall the delivery of microinstructions until sufficient
resources become available. This request is communicated by asserting the stall

signal 82 illustrated in Figure 2.
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Regarding the allocation of an entry within the register file 124 to a
microinstruction, Figure 5 shows a trash heap array 132 that maintains a record
of entries within the register file 124 that have not been allocated to architectural
registers (i.e., for which they are no pointers within the register alias table 120).
The logic 122 accesses the trash heap array 132 to identify entries within the
register file 124 that are available to allocation to a received microinstruction.
The logic 122 is also responsible for re-claiming entries within the register file
124 that become available.

The logic 122 further maintains a free list manager (FLM) 134 to enable
tracking of architectural registers. Specifically, the free list manager 134
maintains a history of the changes to the register alias table 120 as
microinstructions are allocated thereto. The free list manager 134 provides the
capability to "unwind" the register alias table 120 to point to a non-speculative
state given a misprediction or an event. The free list manager 134 also "ages" the
storage of data in the entries of the register file 124 to guarantee that all the state
information is current. Finally, at retirement, physical register identifiers are
transferred from the free list manager 134 to the trash heap array 132 for
allocation to a further microinstruction.

An instruction queue unit 136 delivers microinstructions to a scheduler
and scoreboard unit (SSU) 138 in sequential program order, and holds and
dispatches microinstruction information needed by the execution units 70. The
instruction queue unit 136 may include two distinct structures, namely an
instruction queue (IQ) 140 and an instruction address queue (IAQ) 142. The
instruction address queues 142 are small structures designed to feed critical
information (e.g., microinstruction sources, destinations and latency) to the unit
138 as needed. The instruction address queue 142 may furthermore comprise a
memory instruction address queue (MIAQ) that queues information for memory
operations and a general instruction address queue (GIAQ) that queues
information for non-memory operations. The instruction queue 140 stores less
critical information, such as opcode and immediate data for microinstructions.
Microinstructions are de-allocated from the instruction queue unit 136 when the

relevant microinstructions are read and written to the scheduler and scoreboard
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unit 138.

The scheduler and scoreboard unit 138 is responsible for scheduling
microinstructions for execution by determining the time at which each
microinstructions sources may be ready, and when the appropriate execution
unit is available for dispatch. The unit 138 is shown in Figure 4 to comprise a
register file scoreboard 144, a memory scheduler 146, a matrix scheduler 148, a
slow-microinstruction scheduler 150 and a floating point scheduler 152.

The unit 138 determines when the source register is ready by examining
information maintained within the register file scoreboard 144. To this end, the
register file scoreboard 144, in one embodiment, has 256 bits that track data
resource availability corresponding to each register within the register file 124.
For example, the scoreboard bits for a particular entry within the register file 124
may be cleared upon allocation of data to the relevant entry or a write operation
into the unit 138.

The memory scheduler 146 buffers memory-class microinstructions,
checks resource availability, and then schedules memory-class microinstructions.
The matrix scheduler 148 comprises two tightly-bound arithmetic logic unit
(ALU) schedulers that allow the scheduling of dependent back-to-back
microinstructions. The floating point scheduler 152 buffers and schedules
floating point microinstructions, while the slow microinstruction scheduler 150
schedules microinstructions not handled by the above mentioned schedulers.

A checker, replay and retirement unit (CRU) 160 is shown to include a
reorder buffer 162, a checker 164, a staging queue 166 and a retirement control
circuit 168. The unit 160 has three main functions, namely a checking function, a
replay function and a retirement function. Specifically, the checker and replay
functions comprise re-executing microinstructions which have incorrectly
executed. The retirement function comprises committing architectural in-order
state to the processor 30. More specifically, the checker 164 operates to
guarantee that each microinstruction has properly executed the correct data. In
the event that the microinstruction has not executed with the correct data (e.g.,
due to a mispredicted branch), then the relevant microinstruction is replayed to

execute with the correct data.
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The reorder buffer 162 is responsible for committing architectural state to
the processor 30 by retiring microinstructions in program order. A retirement
pointer 182, generated by a retirement control circuit 168, indicates an entry
within the reorder buffer 162 that is being retired. As the retirement pointer 182
moves past a microinstruction within an entry, the corresponding entry within
the free list manager 134 is then freed, and the relevant register file entry may
now be reclaimed and transferred to the trash heap array 132. The retirement
control circuit 168 is also shown to implement an active thread state machine
171, the purpose and functioning of which will be explained below. The
retirement control circuit 168 controls the commitment of speculative results
held in the reorder buffer 162 to the corresponding architectural state within the
register file 124

The reorder buffer 162 is also responsible for handling internal and
external events, as will be described in further detail below. Upon the detection
of an event occurrence by the reorder buffer 162, a "nuke" signal 170 is asserted.
The nuke signal 170 has the effect of flushing all microinstructions from the
processor pipeline that are currently in transit. The reorder buffer 162 also
provides the trace delivery engine 60 with an address from which to commence
sequencing microinstructions to service the event (i.e., from which to dispatch an

event handler 67 embodied in microcode).

The Reorder Buffer (162)

Figure 6A is a block diagram illustrating further details regarding an
exemplary embodiment of reorder buffer 162, that is logically partitioned to
service multiple threads within the multithreaded processor 30. Specifically, the
reorder buffer 162 is shown to include a reorder table 180 that may be logically
partitioned to accommodate entries for first and second threads when the
processor 30 is operating in a multithreaded mode. When operating in a single
thread mode, the entire table 180 may be utilize to service the single thread. The
table 180 comprises, in one embodiment, a unitary storage structure that, when
operating in multithreaded mode, is referenced by two (2) retirement pointers

182 and 183 that are limited to predetermined and distinct sets of entries within
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the table 180. Similarly, when operating in a single thread mode, the table 180 is
referenced by a single retirement pointer 182. The table 180 includes an entry
corresponding to each entry of the register file 124, and stores a sequence
number and status information in the form of fault information, a logical
destination address, and a valid bit for each microinstruction data entry within
the register file 124. The entries within the table 180 are each indexed by the
sequence number that constitutes a unique identifier for each microinstruction.
Entries within the table 180 are, in accordance with the sequence numbers,
allocated and de-allocated in a sequential and in-order manner. In addition to
other flow markers, the table 180 is furthermore shown to store a shared
resource flow marker 184 and a synchronization flow marker 186 for each
microinstruction.

The reorder buffer 162 includes an event detector 188 that is coupled to
receive interrupt requests in the form of interrupt vectors and also to access
entries within the table 180 referenced by the retirement pointers 182 and 183.
The event detector 188 is furthermore shown to output the nuke signal 170 and
the clear signal 172.

Assuming that a specific microinstruction for a specific thread (e.g.,
thread 0) experiences no branch misprediction, exception or interrupt, then the
information stored in the entry within the table 180 for the specific instruction
will be retired to the architectural state when the retirement pointer 182 or 183 is
incremented to address the relevant entry. In this case, an instruction pointer
calculator 190, which forms part of the retirement control circuit 168, increments
the macro-or microinstruction pointer to point to (1) a branch target address
specified within the corresponding entry within the register file 124 or to (2) the
next macro-or microinstruction if a branch is not taken.

If a branch misprediction has occurred, the information is conveyed
through the fault information field to the retirement control circuit 168 and the
event detector 188. In view of the branch misprediction indicated through the
fault information, the processor 30 may have fetched at least some incorrect
instructions that have permeated the processor pipeline. As entries within the

table 180 are allocated in sequential order, all entries after the mispredicted
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branch microinstruction are microinstructions tainted by the mispredicted
branch instruction flow. In response to the attempted retirement of a
microinstruction for which a mispredicted branch is registered within the fault
information, the event detector 188 asserts the clear signal 172, that clears the
entire out-of-order back end of the processor of all state, and accordingly flushes
the out-of-order back end of all state resulting from instructions following a
misprediction microinstruction. The assertion of the clear signal 172 also blocks
the issue of subsequently fetched microinstructions that may be located within
the in-order front-end of the processor 30.

Within the retirement control circuit 168, upon notification of a
mispredicted branch through the fault information of a retiring microinstruction,
the IP calculator 190 insures that instruction pointers 179 and/or 181 are
updated to represent the correct instruction pointer value. Based upon whether
the branch is to be taken or not taken, the IP calculator 190 updates the
instruction pointers 179 and/or 181with the result data from the register file
entry corresponding to the relevant entry of the table 180, or increments the
instruction pointers 179 and 181 when the branch was not taken.

The event detector 188 also includes a number of registers 200 for
maintaining information regarding events detected for each of multiple threads.
The registers 200 includes an event information register 202, a pending event
register 204, an event inhibit register 206, and unwind register 208 and a pin
state register 210. Each of the registers 202-210 is capable of storing information
pertaining to an event generated for a specific thread. Accordingly, event
information for multiple threads may be maintained by the registers 200.

Figure 6B is a schematic illustration of an exemplary pending event
register 204 and an exemplary event inhibit register 206 for a first thread (e.g.,
TO).

Pending event and event inhibit registers 204 and 206 are provided for
each thread supported within the multithreaded processor 30. Distinct registers
204 and 206 may be provided for each thread, or alternatively a single physical
register may be logically partitioned to support multiple threads.

The exemplary pending event register 204 contains a bit, or other data
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item, for each event type that is registered by the event detector 188 (e.g., the
events described below with reference to Figure 8). These events may constitute
internal events, which are generated internally within the processor 30, or
external events generated outside the processor 30 (e.g., pin events that are
received from the processor bus). The pending event register 204 for each
thread, in the illustrated embodiment, does not include a bit for writeback event,
as such events are not thread specific and accordingly are not "queued" in the
pending event register. To this end, the event detector 188 may include
writeback detect logic 205 that asserts a writeback signal on the detection of a
writeback event. The bits within the pending event register 204 for each thread
are set by the event detector 188 that triggers a latch which sets the appropriate
bit within the pending event register 204. In an exemplary embodiment, a set bit
associated with a predetermined event, within the pending event register 204
provides an indication, as will be described below, that an event of the relevant
type is pending.

The event inhibit register 206 for each thread similarly contains a bit, or
other data structure, for each event type that is recognized by the event detector
188, this bit being either set or reset (i.e., cleared) to record an event as being a
break event with respect to the specific thread. The respective bits within an
event inhibit register 206 are set by a control register write operation, that
utilizes a special microinstruction that modifies non-renamed state within the
processor 30. A bit within an event inhibit register 206 may similarly be reset (or
cleared) utilizing a control register write operation.

An exemplary processor may also have certain modes in which bits in the
event inhibit register 206 may be set to inhibit select events within the respective
modes.

Bits for a specific event type maintained within each of the pending event
and event inhibit registers 204 and 206 for a specific thread are outputted to an
AND gate 209, which in turn outputs an event detected signal 211 for each event
type when the contents of the registers 204 and 206 indicate that the relevant
event type is pending and not inhibited. For example, where an event type is

not inhibited, upon the registering of an event within the pending event register
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204, the event will immediately be signaled as being detected by the assertion of
the event detected signal 211 for the relevant event type. On the other hand,
should the event type be inhibited by the contents of the event inhibit register
206, the event occurrence will be recorded within the pending event register 204,
but the event detected signal 211 will only be asserted if the appropriate bit
within the event inhibit register 206 is cleared while the event is still recorded as
pending within the register 204. Thus, an event may be recorded within the
pending event register 204, but the event detected signal 211 for the relevant
event occurrence may only be signaled at some later time when the inhibiting of
the event for the specific thread is removed.

The event detected signals 211 for each event type for each thread are fed
to event handling logic (event prioritization and selection logic) and clock
control logic, as will further be described below.

An event handler for a specific event is responsible for clearing the
appropriate bit within the pending event register 204 for a specific thread once
the handling of the event has been completed. . In an alternative embodiment,

the pending event register may be cleared by hardware.

Event Occurrences and Event Handling within a Multithreaded Processor

Environment

Events within the multithreaded processor 30 may be detected and
signaled from a variety of sources. For example, the in-order front-end of the
processor 30 may signal an event, and the execution units 70 may likewise signal
an event. Events may comprise interrupts and exceptions. Intérrupts are events
that are generated outside the processor 30, and may be initiated from a device
to the processor 30 via a common bus (not shown). Interrupts may cause the
flow of control to be directed to a microcode event handler 67. Exceptions may
be loosely classified as faults, traps and assist, among others. Exceptions are
events that are typically generated within the processor 30.

Events are communicated directly to the event detector 188 within the
reorder buffer 162, responsive to which the event detector 188 performs a

number of operations pertaining to the thread for which, or against which, the
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event was generated. At a high-level, the event detector 188, responsive to the
detection of an event, suspends retirement of microinstructions for the thread,
writes the appropriate fault information into the table 180, asserts the nuke
signal 170, invokes an event handler 67 to process the event, determines a restart
address, and then restarts the fetching of microinstructions. The events may be
communicated directly to the event detector 188 in the form of an interrupt
request (or interrupt sector) or through fault information recorded within the
reorder table 180 for an instruction of either a first or second thread that is
retiring.

The assertion of the nuke signal 170 has the effect of clearing both the in-
order front-end and the out-of-order back-end of the multithreaded processor 30
of state. Specifically, numerous functional units, but not necessarily all, are
cleared of state and microinstructions responsive to assertion of the nuke signal
170. Some parts of the memory order buffer 48 and bus interface unit 32 are not
cleared (e.g., retired but not committed stores, bus snoops, etc.) The assertion of
the nuke signal 170 further stalls instruction fetching by the front-end and also
stalls the sequencing of microinstructions into the microcode queue 68. While
this operation can be performed with impunity within a single-threaded
multiprocessor, or a multiprocessor executing the single thread, where multiple
threads are extant and being processed within a multithreaded processor 30, the
presence of other threads cannot be ignored when addressing the event
occurrence pertaining to a single thread. Accordingly, the present invention
proposes a method and apparatus for handling an event within a multithreaded
processor that takes cognizant of the processing and presence of multiple
threads within the multithreaded processor 30 when an event for a single thread
occurs.

Figure 7A is a flowchart illustrating a method 220, according to
exemplary embodiment of the present invention, of processing an event
occurrence within a multithreaded processor 30. The method 220 commences at
block 222 with the detection by the event detector 188 of a first event for a first
thread. Figure 8 is a diagrammatic representation of a number of exemplary

events 224 that may be detected by the event detector 188 at block 222. The
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events represented in Figure 8 have been loosely grouped according to
characteristics of the responses to the events 224. A first group of events
includes a RESET event 226 and a MACHINE CHECK event 228 that are
signaled by the event detector 188 to multiple threads within a multithreaded
processor 30, in the manner described below, immediately upon detection and
cause all threads to go to the same event handler 67 at the same time. A second
group of events includes a FAULT event 230, an ASSIST event 232, a DOUBLE
FAULT event 234, a SHUTDOWN event 236 and a SMC (Self Modifying Code)
event 238 that are each reported on the retirement of the microinstruction of a
.specific thread that signaled the event. Specifically, the event detector 188 will
detect an event of the second group upon the retirement of a microinstruction
for which fault information indicates a fault condition. The detection of an event
of the second group is signaled by the event detector 188 only to the thread for
which the relevant event was generated.

A third group of events include an INIT (short reset) event 240, an INTR
(local interrupt) event 242, a NMI (non-maskable interrupt) event 244, a DATA
BREAKPOINT event 246, a TRACE MESSAGE event 248 and an A20M (address
wrap-around) event 250. Events of the third group are reported on the
retirement of a microinstruction having an accept interrupt or accept trap flow
marker. The detection of event of the third group is signaled by the event
detector 188 only to the thread for which the relevant event was generated.

A fourth group of events include a SMI (system management interrupt)
event 250, a STOP CLOCK event 252, and a PREQ (probe request) event 254.
The events of the fourth group are signaled to all threads extant within the
lmultithreaded processor 30, and are reported when any one of multiple threads
retires a microinstruction having an appropriate interrupt flow marker. No
synchronization is implemented between multiple threads responsive to any of
the events of the fourth group.

A fifth group of events, according to an exemplary embodiment, are
specific to a multithreaded processor architecture and are implemented within
the described embodiment to address a number of considerations that are

particular to a multithreaded processor environment. The fifth group of events
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include a VIRTUAL NUKE event 260, a SYNCHRONIZATION event 262 and a
SLEEP event 264.
The VIRTUAL NUKE event 260 is an event that is registered with respect

to a second thread when (1) a first thread within the multithreaded processor 30
has a pending event (e.g., any of the events described above is pending), (2) the
second thread has no pending events (other than the event 260), and (3) a
microinstruction having either a shared resource flow marker 184 or a
synchronization flow marker 186 is retired by the reorder buffer 162. A
VIRTUAL NUKE event 260 has the effect of invoking a virtual nuke event

~ handler that restarts execution of the second thread at the microinstruction
subsequent to the retired microinstruction having the flow marker 184 or 186.

The SYNCHRONIZATION event 262 is signaled by microcode when a
particular thread (e.g., a first thread) is required to modify a shared state or
resource within the multithreaded processor 30. To this end, the microcode
sequencer 66 inserts a synchronization microinstruction into the flow for the first
thread and, in order to avoid a deadlock situation, marks the “synchronization
microinstruction” with both a shared resource flow marker 184 and a
synchronization flow marker 186. The SYNCHRONIZATION event 262 is only
detected (or registered) upon the retirement of the synchronization
microinstruction for the first thread, and upon the retirement of a
microinstruction for the second thread that has a synchronization flow marker
186 associated therewith. A SYNCHRONIZATION event 262 has the effect of
invoking a synchronization event handler that restarts execution of the first
thread at an instruction pointer stored in a microcode temporary register.
Further details regarding the handling of a SYNCHRONIZATION event 262 are
provided below. The second thread performs the virtual NUKE 260.

The SLEEP event 264 is an event that causes a relevant thread to
transition from an active state to an inactive (or sleep) state. The inactive thread
may then again be transitioned from the inactive to the active state by an
appropriate BREAK event. The nature of the BREAK event that transitions the
thread back to the active state is dependent upon the SLEEP event 264 that
transitioned the thread to the inactive state. The entry to and exiting from an
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active state by threads is detailed below.

Figure 9 is a block diagram showing exemplary content of the reorder
table 180 within the reorder buffer 162 that shall be described below for the
purposes of explaining event and clearing point (also termed “nuke point”)
detection within an exemplary embodiment of the present invention. The
detection of any one of the above events by the event detector 188 at block 222
may occur responsive to an event 266 communicated to the event detector 188
from an internal source within the multithreaded processor 30 or from an
external source outside the processor 30. An example of such an event 266
communication may be an interrupt vector. Alternatively, an event occurrence
may be communicated to the event detector 188 by fault information 268 for a
microinstruction of a particular thread (e.g., thread 1) that is being retired and
accordingly identified by the retirement pointer 182. It will be noted that, for
external events; there is one (1) signal per thread (e.g., signals 266 and 267
respectively). For internal events, the reorder buffer 162 entry containing the
thread dictates the thread to which the fault pertains by its position (e.g., TO vs.
T1). Upon the detection of an event, the event detector 188 stores event
information (e.g., event type, event source, etc.) concerning the particular event
within the event information register 202, and furthermore registers a pending
event for the relevant thread in the pending event register 204. As described
above, the registering of a pending event within the pending event register 204
for the relevant thread comprises setting a bit, associated with the particular
event, within the register 204. It will furthermore be noted that the event may be
effectively detected, by assertion of an appropriate event detected signal 211, if
the event is not inhibited by a bit setting within the event inhibit register 206 for
the relevant thread and, in some cases, a microinstruction includes an
appropriate flow marker.

Returning now to the flowchart shown in Figure 7A, following the
detection of the first event for the first thread at block 222, the event detector 188
stops retirement of the first thread at block 270 and asserts a "pre-nuke" signal
169. The pre-nuke signal 169 is asserted to avoid a deadlock situation in which

the first thread dominates the instruction pipeline to the exclusion of the second
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thread. Specifically, should the second thread be excluded from access to the
instruction pipeline, the conditions with respect to the second thread which are
required to commence a multithreaded nuke operation may not occur. The pre-
nuke signal 169 is accordingly propagated to the front-end of the processor, and
specifically to the memory execution unit 42, to starve the processor pipeline of
microinstructions constituting the first thread for which the event was detected.
The starving of the processor pipeline may, merely for example, be performed
by disabling the prefetching of instruction and Self Modifying Code (SMC)
operations performed by the memory execution unit 42 or other components of
the front-end. In summary, by stopping the retirement of microinstructions of
the first thread, and/or by halting or substantially reducing, the feeding of
microinstructions with the first thread into the processor pipeline, the second
thread is given preference in the processor and the probability of a deadlock
situation is reduced.

At decision box 272, a determination is made as to whether a second
thread is active within the multithreaded processor 30, and accordingly being
retired by the reorder buffer 162. If no second thread is active, the method 220
proceeds directly to block 274, where a first type of clearing operation termed a
"nuke operation" is performed. The determination as to whether a particular
thread is active or inactive may be performed with reference to the active thread
state machine 171 maintained by the retirement control circuit 168. The nuke
operation commences with the assertion of the nuke signal 170 that has the effect
of clearing both the in-order front-end and the out-of-order back-end of the
multithreaded processor 30 of state, as described above. As only the first thread
is active, no consideration needs to be given to the effect of the nuke operation
on any other threads that may be present and extant within the multithreaded
processor 30.

On the other hand, if it is determined that a second thread is active within
the multithreaded processor 30 at decision box 272, the method 220 proceeds to
perform a series of operations that constitute the detection of a clearing point (or
nuke point) for the second thread at which a nuke operation may be performed

with reduced negative consequences for the second thread. The nuke operation
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performed following the detection of a clearing point is the same operation as
performed at block 274, and accordingly clears the multithreaded processor 30 of
state (i.e., state for both the first and second threads). The clearing of state
includes microinstruction "draining” operations described elsewhere in the
specification. In an exemplary embodiment disclosed in the present application,
the nuke operation performed following the detection of a clearing point does
not discriminate between the state maintained for a first thread and the state
maintained for a second thread within the multithreaded processor 30. In an
alternative embodiment, the nuke operation performed following the detection
of a clearing point may clear state for only a single thread (i.e., the thread for
which the event was detected), where a significant degree of resource sharing
occurs within a multithreaded processor 30 and where such shared resources are
dynamically partitioned and un-partitioned to service multiple threads, the
clearing of state for a single thread is particularly complex. However, this
alternative embodiment may require increasingly complex hardware.

Following the positive determination at decision box 272, a further
determination is made at decision box 278 as to whether the second thread has
encountered an event. Such an event may comprise any of the events discussed
above, except the VIRTUAL NUKE event 260. This determination is again made
by the event detector 188 responsive to an event signal 266 or a fault information
signal 269 for the second thread. Information concerning any event encountered
by the second thread is stored in the portion of the event information register
202 dedicated to the second thread, and the event occurrence is registered within
the pending event register 204.

If the second thread has independently encountered an event, then the
method proceeds directly to block 280, where a multithreaded nuke operation is
performed to clear the multithreaded processor 30 of state. Alternatively,
should the second thread not have encountered an event, a determination is
made at decision box 282 whether the first event encountered for the first thread
requires that a shared state, or shared resources, be modified to handle the first
event. For example, where the first event comprises a SYNCHRONIZATION

event 262 as discussed above, this indicates that the first thread requires access
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to a shared state resource. The SYNCHRONIZATION event 262 may be
identified by the retirement of a synchronization microinstruction for the first
thread that has both shared resource and synchronization flow markers 184 and
186 associated therewith. Figure 10 is a block diagram, similar to that shown in
Figure 9, that shows exemplary content for the reorder table 180. The portion of
the table 180 allocated to the first thread (e.g., thread 0), is shown to include a
synchronization microinstruction that is referenced by the retirement pointer
182. The synchronization microinstruction is furthermore shown to have a
shared resource flow marker 184 and a synchronizatioh flow marker 186
associated therewith. The retirement of the illustrated synchronization
microinstruction will be registered by the event detector 188 as the occurrence of
a SYNCHRONIZATION event 262.

If the first event for the first thread (e.g., thread 0) is determined not to
modify a shared state or resource, the method 220 proceeds to decision box 284,
where a determination is made as to whether the second thread (e.g., thread 1) is
retiring a microinstruction that has a shared resource flow marker 184 associated
therewith. Referring to Figure 9, the retirement pointer 182 for the thread 1 is
shown to reference a microinstruction having both a shared resource flow
marker 184 and a synchronization flow marker 186. In this situation, the
condition presented at decision box 284 will have been fulfilled, and the method
220 accordingly proceeds to block 280, where the multithreaded nuke operation
is performed. Alternatively, should the retirement pointer 182 for the second
thread (e.g., thread 1) not reference a microinstruction having either a shared
resource flow marker 184 or a synchronization flow marke; 186, the method
proceeds to block 286, where retirement of the second thread continues by
advancement of the retirement pointer 182. From the block 286, the method 220
loops back to the decision box 278, where a determination is again made
whether the second thread has encountered an event.

If, at decision box 282, it is determined that the handling of the first event
for the first thread (e.g., thread 0) requires the modification of a shared state
resource, the method 220 proceeds to decision box 288, where a determination is

made whether the second thread (e.g., thread 1) is retiring a microinstruction
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that has a synchronization flow marker 186 associated therewith. If so, then the
multithreaded nuke operation is performed at block 280. If not, the retirement
of microinstruction for the second thread continues at block 286 until either an
event is encountered for the second thread or the retirement pointer 182 for the
second thread indexes a microinstruction having a synchronization flow marker
186 associated therewith.

Following the commencement of the nuke operation at block 280, at block
290, an appropriate event handler 67, implemented in microcode and sequenced

from the microcode sequencer 66, proceeds to handle the relevant event.

Virtual Nuke Event
As described above, the VIRTUAL NUKE event 260 is handled in a

slightly different manner than other events. To this end, Figure 7B is a flow
chart illustrating a method 291, according to an exemplary embodiment, of
detecting and handling a VIRTUAL NUKE event 260. The method 291 assumes
that no events for a second thread are currently pending (i.e., recorded in a
pending register for the second thread).

The method 291 begins at block 292 with the detection by the event
detector 188 of a first event for the first thread. Such an event could be any one
of the events discussed above with reference to Figure 8.

At block 293, the event detector 188 stops retirement of the first thread.
At block 294, the event detector 188 detects retirement of a microinstruction with
either a shared resource flow marker 184 or a synchronization flow marker. At
block 295, a "virtual nuke" handler is invoked from the microcode sequencer 66.
The "virtual nuke" event handler, at block 296, restarts execution of the second
thread at a microinstruction subsequent to the microinstruction retired above at

block 294. The method 291 then ends at block 297.

The Nuke Operation

Figure 11A is a flowchart illustrating a method 300, according to
exemplary embodiment, of performing a clearing (or nuke) operation within a

multithreaded processor supporting at least first and second threads. The
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method 300 commences at block 302 with the assertion of the nuke signal 170 by
the event detector 188 responsive to the occurrence and detection of an event.
The nuke signal 170 is communicated to numerous functional units within the
multithreaded processor 30, and the assertion and de-assertion thereof defines a
window within which activities in preparation for the clearing of state and the
configuration of functional units are performed. Figure 12 is a timing diagram
showing the assertion of the nuke signal 170 occurring synchronous with the
rising edge of a clock signal 304.

At block 303, the active thread state machine is evaluated.

At block 306 the sequence number and last microinstruction signal, that
indicates whether the microinstruction on which the event occurs retired or not,
for both the first and the second threads are communicated to the allocation and
free list management logic 122 and the TBIT which is a structure in a Trace
Branch Prediction Unit (TBPU) (that is in turn part of the TDE 60) for tracking
macroinstruction and microinstruction pointer information within the in-order
front-end of the processor 30. The TBIT utilizes this information to latch
information concerning the event (e.g., the microinstruction and
macroinstruction instruction pointer).

At block 308, the event detector 188 constructs and propagates an event
vector for each of the first and second threads to the microcode sequencer 66.
Each event vector includes, inter alia, information that identifies (1) the physical
reorder buffer location that was retiring when the nuke point (or clearing point)
was located (i.e., the value of each retirement pointer 182 when the nuke point
was identified), (2) an event handler identifier that identifies a location within
the microcode sequencer 66 where microcode constituting an event handler 67 to
process the detected event is locatea, and (3) a thread identifier to identify either
the first or the second thread, and (4) a thread priority bit that determines the
priority of the event handler 67 relative to the event handler invoked for other
threads.

At block 310, the allocation and free list management logic 122 utilizes the
sequence numbers communicated at block 306 to advance a shadow register

alias table (shadow RAT) to a point at which the nuke point was detected and, at
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block 312, the state of the primary register alias table 120 is restored from the
shadow register alias table.

At block 314, the allocation and free list management logic 122 recovers
register numbers (or "marbles”) from the free list manager 134, and assigns the
recovered register numbers to the trash heap array 132 from which the register
numbers may again be allocated. The allocation and free list management logic
122 furthermore asserts a "recovered" signal (not shown) when all appropriate
register numbers have been recovered from the free list manager 134. The nuke
signal 170 is held in an asserted state until this "recovered" signal is received
from the allocation and free list management logic 122.

At block 316, all "senior" stores (i.e., stores that have retired but have not
yet updated memory) for both the first and second threads are drained from the
memory order buffer using store commit logic (not shown).

At block 320, the event detector 188 then de-asserts the nuke signal 170 on
a rising edge of the clock signal 304, as shown in Figure 12. It will be noted that
the nuke signal 170 was held in an asserted state for a minimum of three clock
cycles of the clock signal 304. However, in the event that the "recovered" signal
from the allocation and free list management logic 122 is not asserted within the
first two clock cycles of the clock signal 304 following the assertion of the nuke
signal 170, the event detector 188 will extend assertion of the nuke signal 170
beyond the illustrated three clock cycles. The nuke signal 170 may, in one
embodiment, be held long enough (e.g., the three clock cycles) to allow
completion of blocks 303, 306 and 308 discussed above. The nuke signal 170 may
be required to be held for additional cycles to allow completion of blocks 310,
312,314 and 316. To this end, the memory order buffer asserts a "store buffer
drained" signal to extend the assertion of the nuke signal.

At block 322, the microcode sequencer 66 and other functional units
within the multithreaded processor 30 examine "active bits" maintained by the
active thread state machine 171 to determine whether the first and second
threads are each within an active or an inactive state following the occurrence of
the event. More specifically, the active thread state machine 171 maintains a

respective bit indication for each thread extant within the multithreaded
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processor 30 that indicates whether the relevant thread is in an active or inactive
(sleep) state. The event, detected by the event detector 188 and responsive to
which the event detector 188 asserted the nuke signal 170, may comprise either a
SLEEP event 264 or a BREAK event that transitions either the first or the second
thread between active and inactive states. Asindicated at 324 in Figure 12, the
active thread state machine 171 is evaluated during the assertion of the nuke
signal 170, and the state of the "active bits" are accordingly regarded as valid
upon the de-assertion of the nuke signal 170.

At decision box 326, each of the functional units that examined the active
bits of the active thread state machine 171 makes a determination as to whether
both the first and second threads are active. If both threads are determined to be
active based on the state of the active bits, the method 300 proceeds to block 328,
where each of the functional units is configured to support and service both the
first and the second active threads. For example, storage and buffering
capabilities provided within various functional units may be logically
partitioned by activating a second pointer, or a second set of pointers, that are
limited to a specific set (or range) of entries within a storage array. Further,
some MT specific support may be activated if two threads are active. For
example, thread selection logic associated with the microcode sequencer may
sequence threads from a first thread (e.g., T0), from a second thread (e.g., T1) or
from both first and second threads (e.g., T0O and T1) in a "ping-pong" manner
based on the output of the active thread state machine 171. Further, localized
clock gating may be performed based on the bit output of the active thread state
machine. In a further embodiment, any number of state machines within a
processor may modify their behavior, or change state, based on the output of the
active thread state machine.At block 330, the microcode sequencer 66 then
proceeds to sequence microinstructions for both the first and second threads.

Alternatively, if it is determined at decision box 326 that only one of the
first and second threads is active, or that both threads are inactive, each of the
functional units is configured to support and service only a single active thread
at block 332 and some MT specific support may be deactivated. Where no

threads are active, functional units are as a default setting configured to support
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a single active thread. In the case where a functional unit was previously
configured (e.g., logically partitioned) to support multiple threads, pointers
utilized to support further threads may be disabled, and the set of entries within
a data array that are referenced by remaining pointer may be expanded to
include entries previously referenced by the disabled pointers. In this way, it
will be appreciated that data entries that previously allocated to other threads
may then be made available for use by a single active thread. By having greater
resources available to the single active thread when further threads are inactive,
the performance of the single remaining thread may be enhanced relative to the
performance thereof when other threads are also supported within the
multithreaded processor 30.

At block 334, the microcode sequencer 66 ignores event vectors for an
inactive thread, or inactive threads, and sequences microinstructions only for a
possible active thread. Where no threads are active, the microcode sequencer 66
ignores the event vectors for all threads.

By providing active bits maintained by the active thread state machine
171 that can be examined by various functional units upon the de-assertion of
the nuke signal 170 (signaling the end of a nuke operation), a convenient and
centralized indication is provided according to which the various functional
units may be configured to support a correct number of active threads within a
multithreaded processor 30 following completion of a nuke operation.

Figure 11B is a block diagram showing exemplary configuration logic
329, which is associated with a functional unit 331, and that operates to
configure the functional unit 331 to support one or more active threads within
the multithreaded processor. The functional unit 331 may be any one of the
functional units described above, or any functional unit that will be understood
by a person skilled in the art to be included within a processor. The functional
unit 331 is shown to have both storage and logic components that are configured
by the configuration logic 329. For example, the storage component may
comprise a collection of registers. Each of these registers may be allocated to
storing microinstruction or data for a specific one of these threads when multiple

threads are active (i.e., when a processor is operating in a MT mode).
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Accordingly, the storage component as shown in Figure 11B to be logically
partitioned to support first and second threads (e.g., TO and T1). Of course, the
storage component could be partitioned to support any number of active
threads.

The logic component is shown to include MT logic that is specifically to
support multithreaded operation within the processor (i.e., a MT mode). [

The configuration logic 329 is shown to maintain pointer values 333,
which are outputted to the storage component of the functional unit 331. In one
exemplary embodiment, these pointer values 333 are utilized to logically
partition the storage component. For example, a separate pair of read and write
pointer values could be generated for each active thread. The upper and lower
bounds of the pointer values for each thread are determined by the
configuration logic 329 dependent on the number of active threads. For
example, the range of registers that may be indicated by a set of pointer values
for a particular thread may be increased to cover registers previously allocated
to another thread, should that other thread become inactive.

The configuration logic 329 also includes MT support enable indications
335, that are outputted to the logic component of the functional unit to either
enable or disable the MT support logic of the functional logic 331.

The active bits 327, outputted by the active thread state machine 174,
provide input to the configuration logic, and are utilized by the configuration
logic 329 to generate the appropriate point of values 333 and to provide the
appropriate MT support enable outputs. '

Exclusive Access by an Event Handler

Certain event handlers (e.g., those for handling the paging and
synchronization events) require exclusive access to the multithreaded processor
30 to utilize shared resources and to modify shared state. Accordingly, the
microcode sequencer 66 implements an exclusive access state machine 69 which
gives exclusive access, in turn, to event handlers for the first and second threads
where either of these event handlers requires such exclusive access. The

exclusive access state machine 69 may only be referenced when more than one
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thread is active within the multithreaded processor 30. A flow marker,
associated with an event handler that is provided with exclusive access, is
inserted into the flow for the thread to mark the end of the exclusive code
comprising the event handler. Once the exclusive access is completed for all
threads, the microcode sequencer 66 resumes normal issuance of
microinstructions.

Figure 13 is a flowchart illustrating a method 400, according to exemplary
embodiment, of providing exclusive access to an event handler 67 within a
multithreaded processor 30. The method 400 commences at block 402 with the
receipt by the microcode sequencer 66 of first and second event vectors, for
respective first and second threads, from the event detector 188. As described
above, each of the first and second event vectors will identify a respective event
handler 67.

At decision box 403, a determination is made as to whether more than one
(1) thread is active. This determination is made by the microcode sequencer
with reference to the active thread state machine 171. If not, the method 400
proceeds to block 434. If so, the method 400 proceeds to decision box 404.

At decision box 404, the microcode sequencer 66 makes a determination
as to whether either of the first or second event handlers 67 requires exclusive
access to a shared resource, or modifies a shared state. If so, at block 406 the
microcode sequencer 66 implements the exclusive access state machine 69 to
provide exclusive access, in turn, to each of the first and second event handlers
67. Figure 14 is a state diagram depicting operation, according to exemplary
embodiment, of the exclusive access state machine 69. The state machine 69 is
shown to include five states. In a first state 408, microcode for the first and
second threads is both issued by the microcode sequencer 66. On the occurrence
of a nuke operation 410 responsive to an event that requires an exclusive access
event handler, the state machine 69 transitions to a second state 412, wherein a
first event handler 67 (i.e., microinstructions), associated with an event for a first
thread, is issued. Following the sequencing of all microinstructions that
constitute the first event handler 67, and also following completion of all

operations instructed by such microinstructions, the microcode sequencer 66
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then issues a stall microinstruction (e.g., microinstruction having an associated
stall flow marker) at 414 to transition the state machine 69 from the second state
412 to a third state 416 in which issuance of a first thread microinstructions is
stalled. At 418, the stall microinstruction issued at 414 is retired from the
reorder buffer 162 to thereby transition the state machine 69 from the third state
416 to a fourth state 420 in which the microcode sequencer 66 issues the second
event handler 67, associated with an event for the second thread. Following the
sequencing ofvall microinstructions that constitute the second event handler 67,
and also following the completion of all operations instructed by such
microinstructions, the microcode sequencer 66 then issues a further stall
microinstruction at 422 to transition the state machine 69 from the fourth state to
a fifth state 424 in which the second event handler 67 is stalled. At 426, the stall
microinstruction issued at 422 is retired from the reorder buffer 162 to thereby
transition the state machine 69 from the fifth state 424 back to the first state 408.

At block 432, the normal sequencing and issuance of microinstructions for
both the first and second threads is resumed, assuming that both threads are
active.

Alternatively, if it is determined the decision box 404 that neither of the
first or second event handlers require exclusive access to shared resources or
state of the processor 30, the method proceeds to block 434, where the microcode
sequencer 66 sequences microcode constituting the first and second event

handlers 67 a non-exclusive, interleaved manner.

The Active Thread State Machine (171)

Figure 15 is a state diagram 500 illustrating states, according to an
exemplary embodiment, that may be occupied by the active thread state
machine 171 and also illustrating transition events, according to an exemplary
embodiment, that may cause the active thread state machine 171 to transition
between the various states.

The active thread state machine 171 is shown to reside in one of four
states, namely a single thread 0 (ST0) state 502, a single thread 1 (ST1) state 504, a
multi-thread (MT) state 506, and a zero thread (ZT) state 508. The active thread
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state machine 171 maintains a single active bit for each thread that, when set,
identifies the associated thread as being active and, when reset, indicates the
associate thread as being inactive or asleep.

The transitions between the four states 502-508 are triggered by event
pairs, each event of an event pair pertaining to the first or the second thread. In
the state diagram 500, a number of event types are indicated as contributing
towards a transition between states. Specifically, a SLEEP event is an event that
causes a thread to become inactive. A BREAK event is an event that, when
occurring for a specific thread, causes the thread to transition from an inactive
state to an active state. Whether a particular event qualifies as a BREAK event
may depend on the SLEEP event that caused the thread to become inactive.
Specifically, only certain events will cause a thread to become active once
inactive as a result of a specific SLEEP event. A NUKE event is any event, when
occurring for specific thread, that results in the performance of a nuke operation,
as described above. All events discussed above with reference to Figure 8
potentially comprise nuke events. Finally, a "no event" occurrence with respect
to a specific thread is also illustrated within the state diagram 500 as being a
condition that may be present in combination with an event occurrence with
respect to a further thread to cause a state transition.

In one embodiment, if a SLEEP event is signaled for a particular thread,
and a BREAK event for that thread is pending, the BREAK event is serviced
immediately (e.g., the thread does not go to sleep and wake later to service the
BREAK event). The reverse may also be true, in that a BREAK event may be
signaled for a particular thread, and a SLEEP event is pending, whereafter the
BREAK event s then serviced.

Upon the assertion of the nuke signal 170 by the event detector 188, the
active thread state machine 171 is evaluated, as indicated at 324 in Figure 12.
Following de-assertion of the nuke signal 170, all functional units within the
multithreaded processor 30 are configured based on the active bits maintained
by the active thread state machine 171. Specifically, the checker, replay and
retirement unit (CRU) 160 propagates a signal generated based on the active bits

to all effected functional units to indicate to the functional units how many

-39-



WO 01/41530 PCT/US00/28422

threads are extant within the multithreaded processor, and which of these
threads are active. Following the assertion of the nuke signal 170, the
configuration of the functional units (e.g. partitioning or un-partitioning) is

typically completed in one clock cycle of the clock signal 304.

Thread Exit and Entry

The present invention proposes an exemplary mechanism whereby
threads within a multithreaded processor 30 may enter and exit (e.g., become
active or inactive) where such entry and exiting occurs in a uniform sequence
regardless of the number of threads running, and where clock signals to various
functional units may be gracefully stopped when no further threads within the
multithreaded processor 30 are active or running.

As described above with reference to the state diagram 500, thread entry
(or activation) occurs responsive to the detection of a BREAK event for a
currently inactive thread. BREAK event definition for a specific inactive thread
is dependent on the reason for the relevant thread being inactive. Thread exit
occurs responsive to a SLEEP event for a currently active thread. Examples of
SLEEP events include the execution of a halt (HLT) instruction included within
an active thread, the detection of a SHUTDOWN or an ERROR _ SHUTDOWN
condition, or a "wait for SIPI" (start-up inter-processor interrupt) condition with
respect to the active thread.

Figure 16A is a flowchart illustrating a method 600, according to
exemplary embodiment of the present invention, of exiting an active thread on
the detection of a SLEEP event for the active thread. The method 600
commences at block 602, where all required state for the active thread is saved,
and all register entries within the register file 124 that have been previously
allocated to microinstructions for the active thread are de-allocated. Merely for
example, of the 128 register entries within the register file 124, 28 entries that
were previously allocated to microinstructions of the active thread are de-
allocated. The content of the de-allocated registers for the active thread is saved
in a "scratch pad”, that may comprise a register array or random access memory

(RAM) coupled to a control register bus within the multithreaded processor 30.

-40-



WO 01/41530 PCT/US00/28422

The de-allocation of the register entries within the register file 124 may be
performed by a deallocate microcode sequence that is issued by the microcode
sequencer 66 responsive to the detection of a STOPCLK, HALT (HLT) or
SHUTDOWN event for the active thread. The de-allocate microcode sequence
operates to remove (or invalidate) records for the register file entries within the
free list manager 134, and to create (or validate) records for the register file
entries within the trash heap array 132. In other words, records for the de-
allocate register file entries are transferred from the free list manager 134 to the
trash heap array 132 by the de-allocated microcode sequence.

Figure 16B is a diagrammatic representation of an exemplary
embodiment of the operations that may be performed at block 602. For example,
the transfer of the contents of a first set of registers, within the register file 124,
that were previously allocated to a first thread (e.g., TO) are shown to be
transferred to the scratch pad. Additional operations that may be performed in
the saving of state include the storage of the contents of architectural registers
for an exiting thread to the scratch pad, and also the storage of the contents of
microcode temporary registers, allocated to the first thread, to the scratch pad on
exiting on this first thread. The registers vacated on the exiting of a thread are
then available for reallocation to another thread (e.g., T1).

Upon the re-entering of a particular thread (e.g., T0), it will be
appreciated that the contents of the registers allocated to this thread may be
restored from the scratch pad, as indicated in broken line in Figure 16B.

At block 604, a thread-specific "fence microinstruction” for the exiting
thread is inserted into the microinstruction flow for the exiting thread to drain
any remaining pending memory accesses associated with the thread from the
memory order buffer 48, various caches and the processor busses. This operation
does not retire until all these blocks are complete.

As these execution units 20 execute microinstructions relatively quickly,
all new microinstructions added to the execution unit input are cleared with the
assertion of the nuke signal responsive to the detection of the SLEEP event. As
described above, the nuke signal 170 is held for sufficient period of time (e.g.,

three clock cycles) so as to allow microinstructions that entered the execution
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unit 70 prior to assertion of the nuke signal 170 to emerge therefrom. As these
microinstructions emerge from the execution unit 70, they are cleared and the
write backs canceled.

At block 606, the unwind register 208, maintained within the event
detector 188, is set to indicate that the exiting thread is in an inactive (or a sleep)
state by a microinstruction that, generated by the microcode sequencer 66, writes
back a value that sets the state of the unwind register.

At block 608, the event inhibit registers 206 for the exiting thread are set
to inhibit non-break events for the exiting thread by control register write
microinstructions issued by microcode sequencer 66. The setting of the event
inhibit register for the exiting thread, instructed as the control register
microinstruction, is dependent upon the type of sleep event being serviced. As
discussed above, depending on the SLEEP event that triggered the transition to
the inactive stage, only certain events qualify as break events with respect to the
inactive thread. The determination as to whether an event qualifies as a break
event for a particular inactive thread is made with specific reference to the state
of the event inhibit register 206 for the inactive thread.

At block 612, the sleep event for the exiting thread is signaled using a
special microinstruction that places a sleep event encoding in the write-back
fault information field of the special microinstruction

Figure 17 is a flow chart illustrating a method 700, according to an
exemplary embodiment, of entering an inactive thread to an active state upon
the detection of a BREAK event for the inactive thread. The method 700
commences at 702 with the detection of an event occurrence for an event that
may or may not qualify as a BREAK event with respect to an inactive thread. At
decision box 703, a determination is made by an event detection logic 185 for the
relevant event to determine whether the event qualifies as a BREAK event for
the inactive thread. To this end, the event detection logic 185 examines the event
inhibit registers 206 within the registers 200 of the event detector 188. If the
relevant event type is not indicated as being an inhibited BREAK event with
respect to the inactive thread, the method 700 proceeds to block 704, where the

clocks are turned on as necessary, the event is signaled normally (waiting for a
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nukeable point on the other thread), and the handler is invoked as for any event.
The event handler checks the thread sleep state and, if set, proceeds to restore
microcode state at block 706. The event handler 67 confirms the inactive state of
the thread by accessing the unwind register 208.

More specifically, the event handler 67 proceeds to restore the microcode
state for the entering thread by restoring all saved register state, inhibit register
state, and instruction pointer information.

Following restoration of the microcode state at block 706, the
method 700 proceeds to block 708, where architectural state is restored for the
entering thread. At block 710, the event inhibit register 206 for the entering
thread is reset or cleared by an appropriate microinstruction issued from the
microcode sequencer 66. At block 712, the event handler 67 proceeds to service
the BREAK event. At this point, microcode constituting the event handler 67 is
executed within the multithreaded processor 30 to perform a series of operations
responsive to the event occurrence. At block 716, instruction fetching operations
are then again resumed within the processor 30 for the entering thread. The
method 700 then terminates at block 718.

’

Clock Control Logic

In order to reduce power consumption and heat dissipation within the
multithreaded processor 30, it is desirable to stop, or suspend, at least some
clock signals within the processor 30 under certain conditions. Figure 18 is a
flow chart illustrating a method 800, according to an exemplary embodiment, of
stopping, or suspending, selected clock signals within a multithreaded
processor, such as the exemplary processor 30 described above. For the
purposes of the present specification, reference to the suspension or the stopping
of clock signals within the processor shall be taken to encompass a number of
techniques of suspending or stopping a clock signal, or signals, within the
processor 30. For example, a Phase Lock Loop (PLL) within the processor 30
could be suspended, distribution of a core clock signal along a clock spine could
be inhibited, or the distribution of a clock signal via the clock spine to individual

functional units within the processor could be gated or otherwise prevented.
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One embodiment envisages the later situation, in which the supply of an internal
clock signal to functional units within the processor 30 is suspended, or stopped,
on a functional unit by functional unit basis. Accordingly, the internal clock
signal may be supplied to certain functional units, while being gated with
respect to other functional units. Such an arrangement is described within the
context of a single threaded microprocessor in U.S. patent no. 5,655,127.

The method 800 illustrated in Figure 18, in one embodiment, may be
performed by clock control logic 35 that is incorporated within the bus interface
unit 32 of the processor 30. In alternative embodiments, the clock control logic
35 may of course be located elsewhere from the processor 30. Figures 19A and
19B are block and schematic diagrams respectively illustrating further details
regarding exemplary clock control logic 35.

Turning first to Figure 19A, the clock control logic 35 is shown to receive
three primary inputs, namely (1) active bits 820 (e.g., TO_ACTIVE and
T1_ACTIVE) as outputted via the active thread state machine 174; (2) the event
detected signals 211, outputted by the event detector 188, and (3) a snoop control
signal 822 outputted by the bus interface unit 32, which detects a snoopable
access on the bus and asserts the signal 882. The clock control logic 35 utilizes
these inputs to generate a stop clock signal 826 that in turn suppresses or inhibits
the clocking of certain functional units within the processor 30.

Figure 19B is a schematic diagram illustrating exemplary combinational
logic that utilizes the inputs 211, 820 and 822 to output the stop clock signal 826.
Specifically, the event detector signals 211 provide input to an OR gate 822, that
in turn provides input into a further OR gate 824. The active bits 820 and the

~ snoop control signal 822 also provide input into the NOR gate 824, which OR's
these inputs to output the stop clock signal 826.

Turning specifically to Figure 18, the method 800 commences at decision
box 802, with a determination as to whether any threads (e.g., a first and a
second thread) are active within the multithreaded processor 30. This
determination is reflected by the outputting of the active bits 820 to the OR gate
824 in Figure 19B. While the exemplary embodiment illustrates determination
may be met with respect to two threads, it will readily be appreciated that this
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determination being made with respect to any number of threads supported
within a multi-threaded processor.

Following a negative determination at decision box 802, the method 800
proceeds to decision box 804, where a determination is made as to whether any
events, that are not inhibited, are pending for any threads supported within the
multithreaded processor. Again, in the exemplary embodiment, this comprises
determining whether any events are pending for a first or a second thread. This
determination is represented by the input of the event detected signals 211 into
the OR gate 822, shown in Figure 19B.

Following a negative determination at decision box 804, a further
determination is made at decision box 806 whether any snoops (e.g., bus snoops,
SNC snoops or other snoops) are being processed by the processor bus. In the
exemplary embodiment of the present invention, this determination is
implemented by the input of the snoop control signal 822 into the OR gate 824.

Following a negative determination at decision box 806, the method 800
proceeds to block 808, where internal clock signals to selected functional units
are stopped or suppressed. Specifically, the clock signals to bus pending logic
and bus access logic is not suspended or stopped, as this allows the bus interface
unit 32 to detect BREAK events or snoops originating on the system bus (e.g.,
pin events) and to restart the clocks to functional units responsive to such
BREAK events. The suppressing of the internal clock signals to functional units
is implemented by the assertion of the stop clock signal 826, which has the effect
of gating the clock signal to predetermined functional units.

Following completion of block 808, the method 800 loops back to decision
box 802. After the determinations at decision box 802, 804 and 806 may be
looped through a continual basis. |

Following a positive determination at any one of the decision boxes 802,
804 and 806, the method 800 branches to block 810, where, if clock signals to
certain functional units have been gated, these internal clock signals are then
again activated. Alternatively, if clock signals are already active, these clock
signals are maintained in an active state.

Where block 810 is executed responsive to a break event. (e.g., following a
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positive determination at decision box 804), functional units within the
microprocessor may be actively partitioned, in the manner described above,
based on the number of active threads, at the assertion of the nuke signal. For
example, in a multithread processor 30 having two or more threads, some of
these threads may be inactive, in which case the functional units will not be
partitioned to accommodate the inactive threads.

Upon completion of block 810, the method 800 again loops back to
decision box 802, and begins another iteration of the decisions represented by
decision boxes 802, 804 and 806.

Thus, method and apparatus for entering and exiting multiple threads
within a multithreaded processor have been described. Although the present has
been described with reference to specific exemplary embodiments, it will be
evident that various modifications and changes may be made to these
embodiments without departing from the broader scope and spirit of the
invention. Accordingly, the specification and drawings are to be regarded in an

illustrative rather than a restrictive sense.
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CLAIMS

What is claimed is:
1. A method including:

maintaining a state machine to provide a multi-bit output, each bit of the
multi-bit output indicating a respective status of an associated thread of

multiple threads being executed with a multithreaded processor;

detecting a change of status for a first thread within the multithreaded

processor; and

configuring a functional unit within the multithreaded processor in

accordance with the multi-bit output of the state machine.

2. The method of claim 1 wherein each bit of the multi-bit output indicates

the status of the associated thread as being active or inactive.

3. The method of claim 2 wherein the configuring of the functional unit
comprises partitioning the functional unit to service both the first thread and a
second thread within the multithreaded processor when the change of status for

the first thread comprises a transition from an inactive state to an active state.

4. The method of claim 2 wherein the configuring of the functional unit
comprises un-partitioning the functional unit to service a second thread, but not
the first thread, within the multithreaded processor when the change of the
status of the first thread comprises a transition from an active state to an inactive

state.
5. The method of claim 1 wherein the detecting of the change in the status of
the first thread comprises detecting the occurrence of an event for the first

thread.
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6. The method of claim 5 including asserting a first signal responsive to the
occurrence of the event for the first thread, and evaluating the state machine

during the assertion of the first signal.

7. The method of claim 6 wherein the functional unit within the
multithreaded processor is configured, in accordance with the multi-bit output

of the state machine, on the de-assertion of the first signal.

8. The method of claim 1 wherein the detecting of the change in the status of
the first thread comprises detecting the occurrence of a sleep event for the first

thread that transitions the first thread from an active state to a sleep state.

9. The method of claim 8 including, responsive to the detection of the
occurrence of the sleep event, setting an inhibit register to inhibit an event that is

not a break event for the sleep state of the first thread.

10.  The method of claim 1 wherein the configuring of the functional unit
within the multithreaded processor comprises saving and deallocating state

within the multithreaded processor for the first thread.

11.  The method of claim 10 wherein the saving and deallocating of the state
within the multithreaded processor for the first thread comprises recording the

state for the first thread within a memory resource.

12.  The method of claim 1 wherein the configuring of the functional unit
within the multithreaded processor comprises making registers, within a register
file of the multithreaded processor, available to a second thread within the
multithreaded processor.

13.  The method of claim 1 wherein the functional unit comprises any one of

the group of functional units including a memory order buffer, a store buffer, a
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translation lookaside buffer, a reorder buffer, a register alias table, and a free list

manager.

14.  The method of claim 1 wherein the configuring of the functional unit
includes inserting a fence instruction into an instruction stream for the first
thread at a location proximate a front-end of the multithreaded processor, the
fence instruction defining an event boundary within the instruction stream that

assumes all memory accesses have drained from the processor.

15.  The method of claim 1 wherein the configuring of the functional unit

includes restoring state within the multithreaded processor.

16.  The method of claim 1 wherein the detecting of the change in the status of
the first thread comprises detecting the occurrence of a break event for the first

thread that transitions the first thread from a sleep state to an active state.

17.  The method of claim 16 including detecting a third event for the first
thread that does not constitute a break event, and logging the third event within

a pending register associated with the first thread.

18.  Apparatus comprising:
a state machine to provide a multi-bit output, each bit of the multi-output
indicating a respective status of an associated thread of multiple threads
being executed within a multithreaded processor, and to detect a change
of status for a first thread within the multithreaded processor; and
configuration logic to configure a functional unit within the
multithreaded processor in accordance with the multi-bit output of the
state machine.

19.  The apparatus of claim 18 wherein each bit of the multi-bit output
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indicates the status of the associated thread as being active or inactive.

20.  The apparatus of claim 19 wherein the configuration logic partitions the
functional unit to service both the first thread and a second thread within the
multithreaded processor when the change of status for the first thread comprises
a transition from an inactive state to an active state and the second thread is in

an active state.

21.  The apparatus of claim 19 wherein the configuration logic un-partitions
the functional unit to service a second thread, but not the first thread, within the
multithreaded processor when the change of the status of the first thread
comprises a transition from an active state to an inactive state and the second

thread is in an active state.

22.  The apparatus of claim 18 wherein the state machine detects the change in
the status of the first thread by detecting the occurrence of an event for the first

thread.

23.  The apparatus of claim 22 including an event detector that asserts a
clearing signal responsive to the occurrence of the event for the first thread, and

wherein the state machine is evaluated during the assertion of the first signal.

24.  The apparatus of claim 23 wherein the configuration logic configures the
functional unit within the multithreaded processor in accordance with the multi-

bit output of the state machine on the de-assertion of the clearing signal.

25.  The apparatus of claim 18 wherein the state machine, to detect the change
in the status of the first thread, detects the occurrence of a sleep event for the

first thread that transitions the first thread from an active state to a sleep state.

26.  The apparatus of claim 25 including a microcode sequencer that,

responsive to the detection of the occurrence of the sleep event, issues a

-50-



WO 01/41530 PCT/US00/28422

microinstruction to set an inhibit register to inhibit an event that is not a break

event for the sleep state of the first thread.

27.  The apparatus of claim 18 wherein the configuration logic saves,
deallocates and restores state within an associated functional unit for the first

thread.

28.  The apparatus of claim 27 wherein the configuration logic associated with
the functional unit records state information for the first thread within a memory
resource to save and deallocate state, and restores state information for the first

thread to functional unit from the memory resource to restore state.

29.  The apparatus of claim 27 wherein the configuration logic associated with
the functional unit makes registers, within a register file of the multithreaded
processor, allocated to the first thread available to a second thread within the
multithreaded processor if the first thread exits and makes registers, within the
register file of the multithreaded processor, allocated to the second thread
available to the first thread within the multithreaded processor if the second

thread exits.

30.  The apparatus of claim 18 wherein the functional unit comprises any one
of the group of functional units including a memory order buffer, a store buffer,
a translation lookaside buffer, a reorder buffer, a register alias table, and a free

list manager.

31.  The apparatus of claim 18 including a microcode sequencer that
introduces a fence instruction into an instruction stream for the first thread at a
location proximate a front-end of the multithreaded processor, the fence
instruction defining an event boundary within the instruction stream to ensure

that all memory accesses drain from the processor.
32.  The apparatus of claim 18 wherein the configuring of the functional unit
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includes restoring state within the multithreaded processor.

33.  The apparatus of claim 23 wherein the event detector detects the change
in the status of the first thread by detecting the occurrence of a break event for
the first thread that transitions the first thread from a sleep state to an active

state.

34.  The apparatus of claim 23 wherein the event detector detects a third event
for the first thread that does not constitute a break event, and logs the

third event within a pending register associated with the first thread.

35.  Apparatus comprising;:
first means for providing a multi-bit output, each bit of the multi-output
indicating a respective status of an associated thread of multiple threads

being executed within a multithreaded processor, and to detect a change

of status for a first thread within the multithreaded processor; and

second means for configuring a functional unit within the multithreaded

processor in accordance with the multi-bit output of the state machine.

36. A machine-readable medium including a sequence of instructions that,

when executed by a machine, cause the machine to:
maintain a state machine to provide a multi-bit output, each bit of the
multi-bit output indicating a respective status of an associated thread of

multiple threads being executed with a multithreaded processor;

detect a change of status for a first thread within the multithreaded

processor; and

configure a functional unit within the multithreaded processor in
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accordance with the multi-bit output of the state machine.
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