160 A2 |00 DO O 0

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

4 March 2004 (04.03.2004)

(10) International Publication Number

WO 2004/019160 A2

(51) International Patent Classification’: GO6F
(21) International Application Number:
PCT/US2003/025581

(22) International Filing Date: 14 August 2003 (14.08.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/405,511 23 August 2002 (23.08.2002) US

(71) Applicant: JWAY GROUP, INC. [US/US]; 4125 Black-
ford Avenue, Suite 128, San Jose, CA 95117-1704 (US).

(72) Inventor: INANORIA, Angelo; 4125 Blackford Avenue,
Suite 128, San Jose, CA 95117-1704 (US).

(74) Agent: CHONG, Leighton, K.; Ostrager Chong & Fla-
herty, Suite 1200, 841 Bishop Street, Honolulu, HI 96813
(Us).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP,KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC,
SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, 7ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: EXTENSIBLE USER INTERFACE (XUI) FRAMEWORK AND DEVELOPMENT ENVIRONMENT

. user Xmi tragment;
from LDAP in OSML format)

Controller

(3) Controller gets invoked
by the JSP file and acts
accordingly based the

N
Valias passed inough the \

—Gul

(4) Transtormation

/ ‘Skins Manager

e ‘Camponant Manager
Pa) cvemusansger
[—
(]
Layout Manager
[—
Losslzed Contank Manager
(— Labels, Icons,
1

components, JS, CSS,
Leyout Manager, and other
supporting tesources.

Images, and other
media.

usiness Layer
J2EE Application Layer

{5) Transformed document

{6) HTTP Response
Page Is sent back 1o
raquesting cllant

(HTML) is produced with necessary
scriptand styleshect files.
assauiated with ft

(57) Abstract: A web application development environment and method employs an extensible user interface (XUI) Framework
@\ for creating GUI-managing components written in a declarative format for handling GUI components in a web application. The
= GUI-managing components are coordinated in a view presentation layer by a Controller in an Extended-Model-View-Controller
= (XMVC) pattern in conjunction with the business logic layer. The Controller is invoked by a user request for a web page and in turn
¥ invokes the GUI-managing components to parse information contained in a corresponding web application file for the requested web
S page in order to determine the templates and sub-templates to be invoked for handling the GUI components. Each template has a
mode value which is set by mode information contained in the web application file for the requested web page. The XUI Framework
has the ability to handle a rich set of GUI components without having to implement web applications development technologies.
Instead, the declarativeformatted GUI components can be created and processed using lightweight technologies for client-side and
server-side processing. The XUI Framework allows for the efficient authoring and processing of GUI components for a wide range

of web applications.

10

15

20

25

30

35

WO 2004/019160 PCT/US2003/025581
-1-

EXTENSIBLE USER INTERFACE (XUl) FRAMEWORK
AND DEVELOPMENT ENVIRONMENT

SPECIFICATION

FIELD OF INVENTION

This invention pertains generally to tools for creating a graphical user interface (GUI) for web
applications, and more particularly, but not limited to, a structural framework for and authoring,
processing and rendering of modular and extensible web browser GUIs providing rich, visual interfaces

normally found and experienced in desktop software applications.

BACKGROUND OF THE INVENTION

When creating a web application, it has become a necessity to employ a flexible framework for
building and displaying a graphical user interface (GUI), and it has also become a necessity to create rich
sets of GUI elements and components to deliver an engaging user experience for a given web
application. Desktop application software with rich GUIs are desired in terms of usability and user
experience promoted by an advanced user interaction mode! where components support a vast array of

dynamic controls and event handling through the user’s input.

Desktop application software have become standardized around certain well-recognized “look-
and-feel” appearances that allow users to intuitively learn the GUI controls for different applications, even
when encountering a new application. In order for web applications to appeal to a broad base of users, it
is necessary to have a development environment that supports the creation of GUI components that
provide a consistent appearance in the user interface to users by emulating the look-and-feel of standard
windowing environments such as, but not limited to, Microsoft Windows(TM), Motif(TM), and Apple
Macintosh(TM).

On the other hand, the user interface for web applications having a set of hypermedia documents
as its primary asset is commonly designed to be “destination-oriented” where each of these documents
are linked via hyper-linking, and users can navigate from one page to another until he or she has found
the desired page. This is in sharp contrast with the conventional desktop applications where the user
interface is designed to be “task-oriented” where users click on buttons to open dialog boxes or click the
menubar to see other parts of the application or to perform another or different task, etc. In recent years,
the limitations of current web application development environments, in terms of delivering rich GUIs that

10

15

20

25

30

35

WO 2004/019160 PCT/US2003/025581

-2

can be intuitively interacted with by users, has proven to be the biggest business and technical issue for

anyone wishing to implement a web application.

With the standard web browser as the main tool to access hypermedia documents and other
remote assets on the Internet, it has become desirable to deliver complex web applications with a
standard look and feel, as has been the case with stand-alone, “shrink-wrapped” software programs.
However, conventional development environments for websites are weighted toward the web
application’s business logic and assets residing on the server-side, rather than on the user interface on
the client-side. The lack of a consistent and standardized process in building user interfaces for web
applications contributes to the lack of consistency between different applications, in contrast to the
standardized look-and-feel of GUIs normally employed in desktop applications. Thus, conventional
development environments for creating and implementing user interfaces for web applications have
proven largely ineffective in delivering consistent and easily usable interfaces for users regardless of the

application’s complexity.

A conventional approach to delivering rich GUIs for web applications is through the use of
comprehensive (heavyweight) development environments such as Java Swing(TM) for Sun
Microsystems’ Java environment, AWT(TM), or the Microsoft environment for creating ActiveX(TM)
components. This approach has proven to be ineffective as well since it takes away from the natural
ability of the Web to deliver content and other media to a variety of clients having different protocols,
processing capabilities, or policies from supporting such heavyweight technologies. There have also
been numerous known issues in creating GUIs in Java applets. Some ISPs and vendors even ban the

use of GUIs written as Java applets.

The typical process of creating GUI components for a web page is done through HTML,
JavaScript, CSS, etc. separately, and then importing them into a developed application through typical
“include” statements or linking mechanisms. GUI data is normally bound or coupled with the GUI logic
which normally makes the reuse of these GUI objects very difficult especially when working with muilti-
behavioral or multi-modal pages. One attempt to overcome these issues is disclosed, for example, in
published U.S. Patent Application No. 2002/0085020, of Carroll, Thomas J. Jr., entitied “XML-based
Graphical User Interface Application Development Toolkit”, which describes an approach to segregate
the development of the user interface from the development of the underlying application logic (“business
model”). The application’s graphical user interface is specified using an XML document as an application
interface file. At the application’s compile time, this application interface file is parsed, and the
specifications therein are used to retrieve graphical screen components from an interface library to create
the user interface (“view”). This approach of separating the development of then later processing
interface generation in coordination with the business logic is commonly referred to as the MVC (Model-

View-Controller) approach. However, the MVC approach has shortcomings in that developers are limited

10

15

20

25

30

35

WO 2004/019160 PCT/US2003/025581
-3-

in composing Ul components per request, and can exhibit polymorphic behavior with only limited

flexibility.

SUMMARY OF THE INVENTION

The present invention seeks to overcome the issues, inefficiencies, and limitations mentioned
above, as well as to enhance the development environment for web application GUIs and the usability of
web applications and user experience for end users. In particular, the present invention seeks to provide
a development environment for web applications that can utilize standards-based lightweight
technologies, rather than heavyweight GUI processing technologies.

1. In accordance with the present invention, a web applications development environment
and method employs an extensible user interface (XUI) framework for developing modular and extensible
GUI-managing components residing in a view presentation layer separate from a business logic layer for
a given web application, wherein the GUI-managing components are written in simple declarative format
referencing predefined templates to be invoked for handling GUI components to be incorporated in a
view of a requested web page. The functions of the GUI-managing components are coordinated in the
view presentation layer by an XMVC Controller in an Extended-Model-View-Controller (XMVC) pattern of
operation in conjunction with application data provided by the business logic layer. The GUI-managing
components parse information contained in a corresponding web application file for the requested web
page in order to determine the templates and sub-templates thereof to be invoked for handling GUI
components in the view presentation layer. The Controller invokes the GUI-managing components by
importing respective templates and sub-templates thereof, wherein each template has a mode value
which is set by mode information contained in the web application file for the requested web page.

The XUl framework employs reusable and extendable or extensible user interface (Ul) content
objects that can be invoked by the GUI-managing components to exhibit polymorphic behavior. The
GUI-managing components are formulated in simple XML, XSL, DHTML, XHTML, and HTML statements,
which can readily be handled by JavaScript and CSS for client-side processing, and XML technologies
and Java Technologies for server-side processing.

The XUl framework avoids using heavyweight technologies such as Java Swing and AWT to
render GUI components due to the inherent nature of these to use up large amount of computing
resources, particularly memory. For Java to render an applet window, it needs to make use of a Java
Virtual Machine (JVM) loaded in the user"s machine. This also means that the web application running
as an applet may also run outside of the web browser realm. Although use of Java applets has become
prevalent, it remains an issue when applets need to be used for a given web application, and security is
still in question when running Java applets. On the other hand, web applications using technologies

-3-

10

15

20

25

30

35

WO 2004/019160 PCT/US2003/025581

-4-

native to web browsers tend to be a more welcomed alternative. For instance, native HTML, JavaScript,
CSS have proven themselves to be “harmless” when running in the client’s browser and relatively simple
to deploy in comparison to Java applets. Although the inherent capabilities of such mentioned
technologies are very limited for creating rich GUls, the present invention extends the capabilities of such
lightweight technologies to be used for rich GUIs even in complex web applications.

In a preferred embodiment, the present invention includes systems, methods, and conventions
which allow the creation of GUIs that have a “deliberate kinship” to or consistency with existing GUI
development environments and tools such as Java Swing and AWT. In order to bring consistency
between the development of the web application's user interface and the traditional software user
interface, and so that the same efficiency, flexibility and ease of development is achieved, “deliberate
kinship” is applied to emulate the techniques, patterns, conventions and standards found in the
conventional development environment for Java Swing and AWT components. Deliberate kinship means
the present invention and its preferred embodiment closely mimic and emulate, for example, the creation
of a Swing Menu Tree component in Java or the creation of MFC Windows components of Microsoft.
The present invention’s extensible GUI components thus include familiar windows, split-pane windows,
menu bars, tree menus and toolbars, etc., as used in standard windowing systems. This gives the ability
for the given web application to be rendered with the look-and-feel familiar to a broad base of users.

The preferred embodiment provides for creating a XUl framework using XML with Object
Oriented (OO) behavior. Traditionally, XML is designed to be a declarative and procedural language. By
way of organizing the pattern of communication between XML documents, schemas or DTDs, and XSL
templates in a hierarchical form, OO behavior is achieved, thus producing a more robust architecture and

framework with modular and reusable elements.

The present invention allows rich GUIs to be efficiently and readily developed to produce a
similar user experience as found in conventional client or desktop applications, while providing a huge
improvement in performance, flexibility, scalability and manageability of the web application, as well as

large savings in development cost.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a representation of an extensible user interface (XUI) framework for a web application

development environment according to the principles of the present invention.

FIG. 2 is a representation of the traditional Model-View-Controller (MVC) pattern.

10

15

20

25

30

35

WO 2004/019160 PCT/US2003/025581
-5-

FIG. 3 is a representation of Extended-Model-View-Controller (XMVC) approach as implemented

in the XUI framework in the present invention.

FIG. 4 is a representation of the interaction in the XMVC pattern between the super class and

subclasses of templates to produce a polymorphism effect.

FIG. 5 illustrates how the Layout Manager delegates control (through polymorphism) to its sub-

templates to execute the layout algorithm.

FIG. 6 illustrates how the Component Manager delegates control (through polymorphism) to its

sub-templates to execute the layout algorithm.

FIG. 7 illustrates how the Look-and-Feel Manager delegates control (through polymorphism) to

its sub-templates to execute the layout algorithm.

FIG. 8 represents the hierarchical relationship between the XFrame (topmost container of
content objects) to the XContentPanel (sole child of the XFrame) and XPanels having content objects
embedded in them.

FIG. 9 illustrates the communication of web page parameters by XUIOs to the XMVC Controller
for the rendering of Ul content objects in accordance with the Layout Manager executing a desired layout

algorithm.

FIGS. 10A to 10D illustrate examples of different look-and-feels for GUIs implemented in the XUI

framework.

FIG. 11 is a diagram illustrating the logic flow to invoke the Layout Manager.

FIG. 12 is a diagram illustrating the logic flow to invoke the Component Manager.

FIG. 13 is a diagram illustrating the logic flow to invoke the Localized Content Manager.

FIG. 14 is a diagram illustrating the logic flow to invoke the Look-and-Feel Manager.

FIG. 15 is a diagram illustrating an example of a BorderLayout algorithm for layout presentation
regions of a web page as applied by the Layout Manager.

10

15

20

25

30

35

WO 2004/019160 PCT/US2003/025581
-6-

DETAILED DESCRIPTION OF THE INVENTION

The following detailed description describes a preferred embodiment of the present invention for
implementing for an Extensible User Interface (XUl) Framework for a web application development
environment. The described embodiment makes use of a specific set of GUI components, which are
pre-defined and pre-built using lightweight markup languages such as HTML, XHTML, XML and scripting
languages such as JavaScript or JScript and stylesheet language such as CSS. It also makes use of
native GUI components of web browsers such as buttons and various form fields so that it is not
necessary to recreate GUI components that are already available within the given web browser. The
“server-side” calls for parsing and processing XML documents, XSL templates for Transformations and
Formatting Objects, XPath, XQuery, XLink and XPointer expressions, and compiling and running Java
code in the form of JavaServer Pages or Servlets. The “client-side” pertains generally to a remote client
wherein a standard web browser is the requesting agent which is capable of parsing and processing XML
documents and XSL templates for Transformations and Formatting Objects, and is capable of running
script code written in JavaScript or Jscript, and is capable of rendering style as defined inside a
Cascading Style Sheet (CSS) document, and is capable of rendering XHTML or HTML. However, it is to
be understood that many other modifications and variations may be made thereto within the spirit and

scope of the disclosed principles of the present invention.

Since the beginning of the Web era, the development of an effective and scalable set of GUI has
been and remains a challenge. Despite the advancement of web technology, standards, browsers and
the proliferation of application frameworks and template engines, the problems and issues inherent to
web GUIs continue to plague most web site and web applications development. These inherent issues
tend to fall into two fundamental areas: the creation, deployment and management of GU! assets for a

heterogeneous client environment; and usability and user experience

Since website GUIs are open to design, there are no specific standards as to how GUI elements
should be constructed except for the built-in HTML form elements which are rendered based on the
browser’s implementation. Even so, a developer may change the appearance of a form element by using
CSS. For instance, a button can be made to appear in any available RGB color instead of the default
gray color. As an example, to produce an input field for an HTML page, one would code a standard tag

such as:

<input type="text’ name="foo” value="bar” size="25">

The preceding code produces the default form text field output as rendered by a standard
browser which is sufficient for building simple Ul controls and components. But if one has to create a
GUI component such as a multi-leveled Menu Bar having drop-down menus and different sets of icons,
one has to create an elaborate set of complex code possibly written in JavaScript or JScript. This

-6-

10

15

20

25

30

35

WO 2004/019160 PCT/US2003/025581
-7-

approach obviously is not suitable for building applications where GUI components should be reusable
and extendable. One possible approach is to pre-build these Ul components and make them part of
standard libraries where one can use them through “include” mechanisms. For example, to include a

JavaScript file, the HTML code could be written as:

<script language="javascript” src="myscript.js”>

Once included, the developer can then call a particular function from that file and send that
function particular parameters to contro! the desired output or behavior. This had been the traditional
way of creating and reusing Ul components for the web, especially any components that are in DHTML
which is a combination of JavaScript and CSS. Despite its effectiveness, this approach has proven to be
very limited when attempting to have modular and flexible framework for Ul components. With this
approach, Ul data such as labels for a Menu Bar are usually embedded within the scripting language
itself, possibly loaded into an Array, and cannot be re-used across a heterogeneous set of client having
different implementations of scripting languages depending on the browser version.

One popular and standard approach to creating a scalable application architecture is through the
use of the Model-View-Controller (MVC) pattern. The premise of this design is to cleanly separate data,
presentation, and business logic. Most application frameworks implement this pattern. In recent years,
Object Oriented (O0) programming for web applications has become a staple with the popularity of
programming languages such as Java from Sun Microsystems. MVC was originally designed for
Smalitalk-80™ where the user interface was created around such framework. Over time, this has been
applied as a classic pattern and has gained popularity in web applications architectures. Some of the
benefits have a direct impact to the most common non-functional requirements found today in web
applications development such as scalability, maintainability of code, and flexibility in integration. But
despite the robustness and the efficiency gained in web development when and where this pattern is

applied, some limitations, and even deficiencies, have surfaced.

The conventional MVC pattern as illustrated in FIG. 2 is split into three components, i.e., a
Model, a View and a Controller object. The separation of data and presentation logic allows the retrieval
of application data to be isolated from the view presentation or the user interface, so that changes can be
made to the visual appearance of the user interface without disturbing the underlying business logic or
data. It is very difficult to manage applications where data and presentation are mixed in one piece of
code. In the MVC, the Model represents the application data, which is normally retrieved from an existing
database or generated on the fly through some application logic. The View represents the GUI
components of the application, which are responsible for displaying visual information to the user. The

Controller is responsible for coordination between the Model and the View.

10

15

20

25

30

35

WO 2004/019160 PCT/US2003/025581

-8-

However, the MVC has the following shortcomings when it comes to lower-level GUI design and
implementation. When creating views, developers are limited to compose only one Ul component per
request, which is the whole page itself or “view” (usually the whole HTML page). This one page is
normally written in a language such as JSP and employs “includes” to reuse other pre-composed Ul
components. In OO paradigm, this is considered as composition — one page is composed of many
components. Without further control of included Ul components, the “view” cannot extend these
components to behave differently or to have extended or different set of data when rendered. To add
behavior or data to any of the included Ul components, the developers need to change the presentation
logic inside the Ul component’s code, possibly using “if-else” or “switch-case” statements. Thus, in MVC,
the View component does not support polymorphism. Polymorphism in OOP means an object can have
many (“poly”) forms (“morphism”). In Ul development, a Ul component should have the ability to be
rendered in many forms when and if desired. This is accomplished through the use “if-else” or “switch-

case” statements in traditional programming which offer only limited flexibility.

Referring to FIG. 1, the present invention provides an extension to overcome the limitations of
the conventional MVC (Model-View-Controller) pattern by using an Extended Model-View-Controller
(XMVC) pattern with a more fine-grained division of GUI-managing components. The GUI-managing
components invoke predefined templates which are written in simple declarative format to enable the use
of lightweight technologies for the development environment. The templates are structured in
hierarchical form so that polymorphism is exhibited in the handling of Ul content objects. As shown in the
figure, when an HTTP request to a given web application is sent by a client user and received on the
server side, the requested web page is invoked and processed by the Controller. For example, the
requested page may be in the form of a JSP Page (Java Server Page) which is embedded with instances
of Ul Objects written in XUI API using JSTL, XTags, or other custom tags for application data requested
by the user. The application data is retrieved from the business logic (“Business Layer”), for example, it
may be user information contained in an LDAP directory in DSML format. The parameters for the view of
the requested web page are passed to the XMVC Controller which then delegates generation of the web
page view to the GUI-managing components of the XMVC pattern. The application data is incorporated
and the responsive web page is sent to the client user where it is finally rendered.

The XMVC Controller coordinates the presentation of a web page view of the application data
from the Business Layer with the View to be generated by the GUI-managing components residing in a
“GUI Factory”. As illustrated in FIG. 3, the GUI Factory may be composed of the following independent
but interacting GUI-managing components:

The Layout Manager is responsible for rendering a view of a web page according to a selected
layout algorithm and has its primary responsibility in the positioning and shaping of Ul content objects
contained in its associated “container”. It is to be understood that the Layout Manager is only responsible

for the positioning of the Ul component and not its look-and-feel.

-8-

10

15

20

25

30

35

WO 2004/019160 PCT/US2003/025581

The Component Manager is responsible for the organization of different XSL templates for each
corresponding supported Ul component such as menubars, menutrees, tabbedpanes, etc. The
Component Manager is also responsible for the organization of script files and stylesheet files used by

each component’s XSL template.

The Localized Content Manager (LCM) is responsible for managing and rendering localized

content such as labels and images from a database of internationalized labels and images.

The Look-and-Feel Manager is responsible for managing and organizing a pluggable and
customizable look-and-feel appearance for a view of a web page. It is also responsible for binding the
appropriate stylesheets and scripts that are “plugged” into the final hypermedia document delivered to the

requesting client.

The Event Manager is responsible for binding events to the appropriate event handler, methods,
and functions as defined by the developer.

XUI Polymorphism

As depicted in FIG. 4, the XU| framework takes advantage of a hierarchical interaction of super
class and subclasses of templates to exhibit polymorphism in hypermedia documents and pages with a
number of modalities. Polymorphism is the ability for classes to provide different implementations of
methods that are called by the same name. Polymorphism allows a method of a class to be called
without regard to what specific implementation it provides. For example, a class named Road may call
the Drive method of an additional class. The Car class may be SportsCar, or SmallCar, but both would
provide the Drive method. Though the implementation of the Drive method would be different between
the classes, the Road class would still be able to call it, and it would provide results that would be usable
and interpretable by the Road class. With XUI, polymorphism is achieved by leveraging the “mode”
attribute in the <xsl:template> element where it can receive and respond depending on what parameters

are passed to it.

Multiple classes may implement the same interface (interface polymorphism), and a single class
may implement one or more interfaces. Interfaces are essentially definitions of how a class needs to
respond. An interface describes the methods, properties, and events that a class needs to implement,
and the type of parameters each member needs to receive and return, but leaves the specific

implementation of these members up to the implementing class.

Multiple classes may inherit from a single base class (inheritance polymorphism). By inheriting,
a class receives all of the methods, properties, and events of the base class in the same implementation
as the base class. Additional members can then be implemented as needed, and base members can be

-9.

10

15

20

25

30

35

WO 2004/019160 PCT/US2003/025581
-10 -

overridden to provide different implementations. Note that an inherited class may also implement

interfaces — the techniques are not mutually exclusive.

Abstract classes provide elements of both inheritance and interfaces (abstract class
polymorphism). An abstract class is a class that cannot be instantiated itself; it must be inherited. Some
or all members of the class might be unimplemented, and it is up to the inheriting class to provide that
implementation. Members that are implemented might still be overridden, and the inheriting class can

still implement addition interfaces or other functionality.

Although the types of polymorphism above apply to OO languages such as Java, XUI's
polymorphism falls under the third type. In XUI, the decision as to what template, action, label, or any
other component to be invoked is achieved by dynamically loading a value to the “mode” attribute of the
xsl:apply-templates element in XSL. Through this dynamic loading, the effect of polymorphism is
achieved. The end result is that a particular template will be invoked depending on the value of the
“mode” attribute of the xsl:apply-templates element.

XUI Framework

The XUI framework contains pre-built components that facilitate the rapid development of GUI
components for web applications by using extensible lightweight widgets. One of the goals of XUl is to
provide an environment and development process in implementing these GUI components. The
preferred embodiment is intended to work with a client/server environment particularly a web
environment where communication is facilitated through a request-respond model utilizing existing
communication protocols such as HTTP, HTTPS, FTP, SMTP or even RMI (Remote Method Invocation).
It also includes the use of Web Services wherein data and other information that may affect the behavior
of the GUI components can come directly from another system outside of the current system. Although
the primary target for rendering the rich GUI widgets are web browsers found in desktop computers, the
present invention may also be applied to other devices such as Personal Digital Assistants (PDAs) and

other portable devices such as a tablet computer capable of running a web browser.

The preferred system is developed in a hybrid format using XML and Java technologies for
server side processing and creation of rich GUI components for web-based applications. XML
technologies include XML documents, XSLT, XSL-FO, XPath, XQuery, XLink and XPointer. The Java
programming language, developed by Sun Microsystems of Mountain View, CA, is used in the present
invention to enhance and support any areas of the framework that needs programming logic where XSL

may not be able to handle.

The Extensible Stylesheet Language for Transformation (XSLT, or simply XSL), although
powerful, is designed for the efficient transformation of XML documents with the use of the XML Path
Language (XPath). XSL is known as a declarative language that carries “no side effects”, meaning that

-10 -

10

15

20

25

30

35

WO 2004/019160 PCT/US2003/025581
-11 -

XSL does not employ any mechanism to affect and change the state of different areas of a stylesheet
through assignment operations. XSL does not have assignment operations where variables can change
values through the logic process. Thus, XSL at times can be limiting when a certain effect needs to be
achieved within the system. This is where the Java programming language is used with its strong Object

Oriented programming capabilities.

Server-side processing includes the handling of the client request and then properly creating the
final hypermedia document in the form of an HTML page embedded with the appropriate JavaScript,
XML fragment and CSS files to be returned to the requesting client. The client, which is mainly a web
browser, then takes the processed HTML, JavaScript, XML and CSS files and renders the document to

be viewed by the end user.

The XUI framework is designed to facilitate the creation and delivery of hypermedia documents
for web applications with rich familiar GUI components such as menubars, toolbars, combo boxes, etc.
that are typically found in traditional desktop applications. It pertains generally to a web application
wherein the graphical user interface (GUI) have the ability to emulate the look-and-feel of standard
windowing environments without using heavyweight technologies such as Motif, Microsoft MFC, Java
Swing or AWT, but rather using standards-based lightweight technologies such as DHTML, HTML,
JavaScript and CSS. XML technologies including XPath and XSL both can be used for server-side and
client-side parsing. This feature of the present invention sharply contrasts with the approach represented
in the conventional approach, for example, as described in U.S. Patent Application No. 2002/0085020, of
Carroll, Thomas J. Jr., entitled “XML-based Graphical User Interface Application Development Toolkit".

The XUI framework does not rely on any packages, classes or interfaces provided by Java’s
AWT, Swing, Microsoft Foundation Classes, Motif and other windowing libraries for the creation of rich
GUI components but rather employs its own pre-defined and pre-built GUI components by using
lightweight markup languages such as HTML, XHTML, XML and scripting languages such as JavaScript
or JScript and stylesheet language such as CSS.

Referring again to FIG 1, the XUl framework is used to create GUI-managing components
maintained in the GUI Factory which are used to generate views in the form of hypermedia documents in
response to client requests in a web environment with the request-response model. The GUI factory,
working with the Controller, contains several parts having their own different tasks in parsing, processing,
transforming, and rendering of Ul components. These interacting parts are the Layout Manager,
Component Manager, Localized Content Manager, Event Manager, and Look-and-Feel Manager.

The XUl framework provides a set of declarative application programming interfaces (APIs)
known as Simple API for XUl (SAXUI) to be used as the main programming interface for a developer
wishing to create web GUI components using the XUl framework. The current invention provides a set of

-11 -

10

15

20

25

30

35

WO 2004/019160 PCT/US2003/025581

-12-

generalized tags or elements that can be used to create and render rich GUI widgets without requiring
the developer to create complex programs using Java or other heavyweight programming language.
Pages, or more appropriately, screens are created without concern for platform-specific windowing
issues. As mentioned, these GUI widgets are designed to emulate the look-and-feel of GUIs as typically
found in desktop applications. The XUl framework facilitates the rapid development of rich GUIs for web
applications with a set of consistent and pluggable look-and-feel types typically found in desktop
applications. It is also to be understood that the XUl framework is not intended to work solely with a
specific platform but can be implemented in any development environment given that the underlying

technologies used herein are portable and can be used in any environment.

Although the XUl framework can sit on top of practically any J2EE framework, it is to be
understood that the invention is not limited to platforms specifically designed for J2EE framework. For
instance, the invention may be similarly used for developing web applications developed in the .NET
environment developed by Microsoft Corp. Since the XUI framework resides in the presentation layer, it

does not matter what application logic is used in the business layer.

A typical web page is created by putting together predefined HTML tags to achieve the desired
look-and-fee! of the page. There are also pre-built HTML form components for the creation of input
fields, buttons, combo boxes, radio buttons, checkboxes, etc. These components are put together by
organizing each one inside the “body” tag and may also be further organized by creating HTML tables
where components can reside inside Table Data (TD) cells. When viewed in a browser, the layout of
each HTML components heavily depends on the how they are written in the HTML document. By
default, tags that are written one after another will be rendered from left to right.

With CSS, additional control is provided by strategically positioning such HTML components by
manipulating their x and y coordinates in relation to the whole document. Positioning of these
components can be controlled by using the “position” property which can be set to either “static”,

“absolute”, “relative” and “fixed”. Positioning can then further be manipulated by setting the “left” and

“top” properties which takes values in the form of pixel amount.

With all the predefined HTML tags and possible CSS styles and positioning capabilities available,
the capability to create sophisticated and rich GUI clients for web applications is still lacking. When a
menu bar with dynamic drop-down menu is needed for a web page, developers will normally create one

from scratch or re-use a pre-coded script possibly written in JavaScript, Jscript or VBScript.
The XUI framework with its pre-built extensible containers, components, and Layout Manager

employing different layout algorithms, attempts to close this gap. To create a web application window
with embedded widgets, the developer takes the following steps:

-12-

10

15

20

25

30

35

WO 2004/019160 PCT/US2003/025581

-13-

1. The developer creates a JSP file that will contain the code to call the XUl APls.

2. When an XUI API, also know as SAXUI, is declared inside the JSP, in context this becomes an XUI
Object (XUIO) since when the APl is declared, the class of such APl is instantiated.

3. The developer creates containers, panels and different GUI components by using SAXUI.

4. The developer only needs to use SAXUI instead of coding in Java or JavaScript to achieve the look-
and-feel and behavior of the desired component.

5. The underlying Layout Manager is also utilized by defining the layout algorithm for a selected
component namely “xpanel”. Each layout algorithm is encapsulated in each of these defining
components.

6. The JSP file is then saved inside the appropriate folder for the web application which is exposed to
incoming requests from users’ web browsers.

Screens in XUl are created by putting together containers and GUI components to be used by
the built-in Layout Manager. This is done by creating a document definition inside a JSP file using XUl
APls (SAXUI). The GUI components come to life by declaring XUIOs (XUl Objects) written in SAXUI that
work in conjunction with the Controller. XUIOs act as the intercepting agents that communicate with the
Controller, which then delegates rendering control to the Layout Manager. Every component AP| has an
XML Schema document associated with it to provide the rules as to how these elements are to be
created. This ensures that developers will be guided as to how a tag should be declared. This ensures
consistency between each reusable components and each page and consistency throughout the whole
application. In the preferred embodiment, the W3C XML Schema Recommendation 2001 Version 1.0 is
used.

A container is a type of component which can contain other components. Using a container,
related components can be grouped and treated as a unit having one parent container. A container can
be nested with other containers which may also contain other containers and components. Containers
are simple components which have limited attributes and have the primary job of holding other
components. Each container is given a name by setting a value inside the “name” attribute. By giving a
name, each component within that container can now refer to its parent through the given name. A style
maybe set at the level of a container that can affect the visual attributes of components it contains. For
instance, a background color or pattern maybe set at this level which ultimately affects the visual
representation of components within it. An event handler can also be set within a container so that event
listeners are able to respond when an even such as mouse over or mouse click is fired within the

container.

GUI components include menus, combo box, trees, and so on. In Java, User Interface controls
such as buttons, scrollbars, menus, text fields and so on are generally referred to as “components”. As
with Java Swing, containers and panels are also of type component. In XUI, the XHTMLFragment is

-13 -

10

15

20

25

30

35

WO 2004/019160 PCT/US2003/025581
-14 -

another component which can hold native HTML or XHTML code. Another type of component is the
XScript component that can hold custom scripting code written in JavaScript, Jscript or VBScript. Any
contents of XHTMLFragment or XScript components are relegated to the client browser for the actual

rendering or actual execution of any scripts.

Each container has access to the Layout Manager that is responsible for positioning and
organizing the components inside the container. When the page being requested by the client browser is
created, the Layout Manager is called upon by the Controller to properly layout the components that
reside in the container. Essentially, containers, through the Controller, delegate the job of laying out their
components to the Layout Manager. The XUl Layout Manager implements different algorithms for
organizing and laying out the components. The developer will decide as to what type of layout is
necessary to achieve the desired look of the screen. These settings are then passed to the Layout
Manager for further processing. This technique of defining a family of layout algorithms which can be
encapsulated within each container is known in Object Orient programming as “Strategy Pattern” (ref.
Gamma, Helm, Johnson, Vlissides, Design Patterns, p. 135. Addison-Wesley). XUl employs the same
pattern but not through an object oriented programming language such as Java but instead through XML
transformation using XSL.

The Layout Manager’s main responsibility is to determine the layout of components contained in
a container. It can also determine the positioning of a container relative to the top-left corner of the
screen or the position of the container in relation to the position of its parent container. Positioning is
achieved through the default left-to-right relative positioning or through CSS positioning by determining
the x and y coordinates of the component relative to its parent container (relative positioning) or absolute
positioning where the x and y coordinates are related to the top-left corner of the screen.

Using predefined GUI components through a declarative API accelerates the development of rich
GUI clients for web applications. Instead of creating these widgets from the ground up, APls enable
developers to re-use predefined GUI components and have the ability to repurpose their visual behavior
by setting different attributes of each element. These predefined GUI components are written in native
XML, XSL with XPath, JavaScript, and CSS. Thus, these predefined GUI components are known to be
lightweight since they are not written in Java Swing or AWT to achieve the look-and-feel of an Applet.

These predefined GUI components can be referred to as component “classes” wherein they can
be instantiated through the declaration of an XUl component tag and providing the name of the
component of choice by setting the “class” attribute of the tag. For example, developers can instantiate a
menubar class by declaring <xui:component class="menubar’/>. Attributes and other properties for each
instance of these classes are encapsulated within each instance. Thus, with encapsulation, each of
these components can be reused, extended, and shared within a screen without concern for conflict.

-14 -

10

15

20

25

30

35

WO 2004/019160 PCT/US2003/025581
-15 -

As mentioned earlier, the present invention is built with “deliberate kinship” to existing
development patterns and standards, such as J2EE or MFC, in order to bring familiarity, ease, and agility
in the development of good and effective Ul. Deliberate kinship means XUl development closely mimics
how one software engineer may approach, for example, the creation of Swing components in Java or the
creation of MFC Windows components from Microsoft. XUI's extensible GUI components include
familiar windows, split-pane windows, menu bars, tree menus and toolbars. These include, but are not

limited to, the following pre-defined components:
XFrame — Top-most container that produces the window. Java Swing component equivalent: JFrame.

XContentPane - A content pane is a basic container that can be used to group contents or other

component within one area of the page, which is similar to SPAN or DIV tags.

XPanel — A Panel is a type of a container that can contain other containers and components. A layout
algorithm is declared at this level by setting its “layout” attribute. A panel has the ability to control its own
Ul behavior such as background color and image, borders, etc.

XIFrame — This is the Internal Frame component which is similar to the Frame component; but this
component can only appear inside the main Frame component and cannot float outside of it.

XComponent — This component is the top-most class for components and is extended by each

component that is instantiated.

XMenubar - Menu bars are dropdown menus with the root items listed from left to right. A menu bar is

mostly rendered along the upper edge of the windowpane.
XToolbar - Tool bars are similar to Menu bars. The main difference is that a tool bar generally holds
icons or pushbuttons instead of text. This is commonly used to display frequently used tools and is

usually rendered underneath the menu bar.

XMenutree - The menu tree is a component used to create expanding and collapsing vertical menus.
Each menu node can be clickable and linked to an appropriate target page.

XTabbedPane - A tabbed pane displays a group of components where one component is displayed when
one of the pane’s tabs is selected.

XSplitPane - A split pane physically separates contents or Ul components that are positioned in it. At this

time, this container can only contain two components.

-15-

10

15

20

25

30

35

40

WO 2004/019160 PCT/US2003/025581
-16 -

XToolTip - The Tool Tip enables authors to add a ToolTip to any element on the page. Authors may
control the placement and duration of the ToolTip.

XButton - Unlike the built-in button in an HTML form, the XUl button is capable of rendering images and
text within the button. It supports different behaviors of borders such as raised, depressed, or flat.

Xlcon - A dynamic icon is a simple component that renders an icon that can change Ul state based on

events such as mouse over or mouse click.

Creating an XU| Screen

The first step in creating a screen with XUl containers and components is to create the main
window. The present invention uses the JavaServer Pages (language) as the “wrapper” language to
execute the XUl APIs known as SAXUI. Itis however to be understood that using SAXUI can be done
with other languages such as ASP. JavaServer Pages perform the same tasks as Java Servlets, but
uses different programming paradigm. Java Servlets are created using pure Java programming where
syntax follows the Object Oriented Programming paradigm. On the other hand JSPs are created using a
declarative syntax similar to coding HTML. JSPs are then converted by the server into servlets and
compiled to Java classes automatically. Below is an example of a simple JSP:

<html|>
<head><title>My JSP</title></head>

<body>

<%= new String(“Hello World”) %>
</body>
</html>

As shown in the preceding example, the JSP code, identifiable with the opening “<%” and closing
“%>" can be seamlessly integrated with HTML code. This makes JSP ideal for creating dynamic
hypermedia documents. Servlets on the other hand are ideal for creating highly programmatic content
and business logic. In the manner as described above, JSP is the ideal programming wrapper for

executing SAXUIs. An example below shows how creating a simple empty frame with JSP and SAXUI.

<%@ taglib uri="http://www jway.com/xui-1.0" prefix="xui" %>

<xui:style outputMethod="HTML">
<xframe name="main" lookandfeel="MSWindows">
<xcontentpane>

</xcontentpane>

</xframe>
</xui:style>

-16 -

10

15

20

25

30

35

40

WO 2004/019160 PCT/US2003/025581
-17 -

In the example above, the xui:style tag is a custom tag with an underlying Java code that
contains the logic that makes it possible to pass the contained XML fragment to the default Controller file
or another controller file defined and declared by the developer. The XUl code embedded within this tag

is passed to Controller for further parsing and transformation.

The Controller file is written in XSL. It does not necessarily parse and transform the passed XML
fragment to it, but acts as an intercepting agent so that the appropriate XSL template can be called for a
particular transformation need. For example, the XSL template for processing the element named
“xframe” will be passed by the Controller to the appropriate template by using the <xsl:apply-template>
element. In this particular example, since “xframe” element is always the top-most container for an XUI
screen, then the following template call will be applied first:

<xsl:apply-templates match="/xframe” />

Furthermore, the XUl framework applies the polymorphism behavior wherein the process of
calling the appropriate template to apply the desired modality is achieved by calling templates with the
same “match” attribute value but having a particular value for the “mode” attribute of the <xsl:apply-
templates> element; a particular template from a plurality of templates with the same match value will be
applied based on the “mode” value. The value of the “mode” attribute comes from the “lookandfeel”

attribute value of the “xframe” element from the XML fragment being parsed.

A dynamic mode value is passed to a template wherein the dynamic value is either created
through an XSL variable or created by using Java extensions in XSL where the value is either pulled from
a session variable residing in cache or parsed from the XML fragment being passed to the Controller.
The following are examples of how polymorphic behavior is achieved through the use of the dynamic
mode:

Example 1: This is calling a JSP file embedded with SAXUIs where xframe's lookandfeel attribute
has a value of “MSWindows”. This value will be passed through the Controller file and to the Look-and-
Feel Manager. Full control is delegated to the Look-and-Feel Manager by the Controller for the final
rendering of the desired look-and-feel.

<%@ taglib uri="http://www jway.com/xui-1.0" prefix="xui" %>

<xui:style outputMethod="HTML">
<xframe name="main” lookandfeel="MSWindows">
...more code here
</xframe>
</xui:style>

Example 2: This is the Controller XSL being invoked by the JSP file showing that the xui-
lookandfeel.xsl is being imported; once this file is imported, the template with the match value of
“Ixframe” and mode value of “setLookandFeel” can be called from the Controller. In this instance, the

-17 -

10

15

20

25

30

35

40

45

50

55

WO 2004/019160 PCT/US2003/025581
-18 -

template having the mode value of “setLookandFeel” resides inside the “xui-lookandfeel.xsl” file. Each of
these templates have a unique mode value so that when the xsl:apply-templates element is executed, it
will search through the present templates including all imported templates and invoke the template
having the desired mode value. Once this template is called, the rest of the processing is fully delegated
to the Look-and-Feel Manager represented by the template having the “setLookandFeel” mode residing
inside the file xui-lookandfeel.xsl. The ability of the xsl:apply-templates element to search through the
present template and all imported templates is inherent to XSL.
<?xml version="1.0" encoding="UTF-8"?>
<xs!:stylesheet version="1.0"
xmins:xsl="http://www.w3.0rg/1999/XSL/Transform" xmIns:fo="http://www.w3.0rg/1999/XSL/Format">
<xsl:import href="xui-lookandfeel.xsl" />
... more xsl imports here
<xsl:template match="/">

<xsl:apply-templates match="/xframe” mode="setLookandFeel"/>

... more xsl code here
</xsl:template>
</xsl:stylesheet>
Example 3: This is the Look-and-Feel Manager which is a separate XSL file named xui-
lookandfeel.xsl imported by the Controller XSL (note that once this file is imported into another template,
all templates herein are exposed to and can be called by the importing template). In this example, the
value of the attribute “lookandfeel”, represented by the XPath expression “/xframe/@Ilookandfeel”, of the
“xframe” element found inside the source document is assigned to the variable named “lookandfeel”.
This variable is then passed to the “mode” attribute of the apply-templates element which in turn will call
the appropriate template based on the desired mode. If the desired mode is not found, a null-pointer will
be returned since the desired resource is not found:;
<?xml version="1.0" encoding="UTF-8"7>
<xsl:stylesheet version="1.0"
xmins:xsl="http://www.w3.0rg/1999/XSL/Transform" xmins:fo="http://www.w3.org/1999/XSL/Format">
<xsl:template match="/">

<xsl:variable name="lookandfeel" select="/xframe/@lookandfeel"/>
<xsl:apply-templates select="node()" mode="{$lookandfeel}" />

</xsl:template>
<xsl:template match="node()" mode="MSWindows">
</xsl:terr.1-p'>late>
<xsl:template match="node()" mode="Metal">
</xs|:terr.1';')late>
<xsl:template match="node()" mode="Motif">
</xs|:tem.blate>

<xsl:template match="node()" mode="Macintosh">

- 18 -

10

15

20

25

30

35

WO 2004/019160 PCT/US2003/025581

-19-

</xsl:template>
... more templates here for other look-and-feel

</xsl:stylesheet>

The passing of a “mode” attribute is similar to calling a particular function or method in other
programming languages. The difference here is that it is not a named template that is being called and
the manner by which the call is made is not through the typical manner of using an “if-else” or “switch-
case” programming control; rather, it is done by simply calling the same matched template but

dynamically passing a “mode” attribute to it.

In the example above, the appropriate template will be called based on the value of the
“lookandfeel” attribute of the “xframe” element represented in the XPath expression
“Ixframe/@lookandfeel”. Note that the value is being passed to this template from the calling XML
fragment. This value is stored into a variable with the same name for consistency purposes named
“lookandfeel”. This variable is then used inside the “mode” attribute of the xsl:apply-templates element
by using the expression {$lookandfeel} and will process the call based on that value. The end effect is
that the appropriate template where its mode value is the same as the mode value of the xsl:apply-

templates element will be called.

The Look-and-Feel of screens can also be set to “Auto” wherein the proper “skin” will be
rendered by way of checking the platform or environment of the requesting client. In this manner, the
GUI will still be consistent across heterogeneous clients, but will have a certain level of customization by
rendering a Look-and-Feel consistent to native Look-and-Feel of the given platform. For example, the
Look-and-Feel of buttons is different between Microsoft Windows and Macintosh platforms. It will be
appropriate if the proper Look-and-Feel of a button will be rendered consistent with the native Look-and-

Feel of a button for the given platform.

Checking the properties of the requesting client is done by reading the headers of the given
request. When a server receives a request from a browser, certain properties of the browser with certain
values are available for the server in the form of a header variable. One of the most important headers
that are helpful in determining the platform is the USER-AGENT header which contains the browser
version information and the Operating System being used by the client. For example, the USER-AGENT
header may contain the string: “compatible; MSIE 6.0; Windows NT 5.0” which can then be parsed by the
system to determine that the client is using Microsoft Internet Explorer Version 6.0 running on Windows
NT version 5.0. With this information, the Look-and-Feel Manager can then acts accordingly and bind

-19-

10

15

20

25

30

35

40

45

50

WO 2004/019160 PCT/US2003/025581
=20 -

the proper set of stylesheets to achieve the desired Look-and-Feel. Examples of web pages rendered to
different standards of look-and-feel are shown in FIGS. 10A to 10D.

The following example illustrates how this scenario may work. Notice that the lookandfeel
attribute of the xframe element is set to “Auto”. The xframe element also now contains an immediate
child element named properties which contains a child element named user-agent. The user-agent
element is dynamically loaded with information by using an embedded Java statement that retrieves the
User Agent information by using the “request.getHeader()” method. The combination of the value of the
attribute lookandfeel and the value of the user-agent element is then passed to the Look-and-Feel

Manager for further parsing and processing.

<%@ taglib uri="http://www jway.com/xui-1.0" prefix="xui" %>

<xui:style outputMethod="HTML">
<xframe name="main" lookandfeel="Auto”>
<properties>
<user-agent>
<%= request.getHeader("User-Agent") %>
</user-agent>
</properties>

...more code here
</xframe>
</xui:style>

Given the calling JSP page above, the Look-and-Feel manager will then act based on the
combined value of the attribute lookandfeel and the value of the user-agent element. Since a
polymorphism pattern is implemented in selecting and executing the proper template, we only need to
add another template with the mode value set to “Auto”.

<?xm! version="1.0" encoding="UTF-8"7>
<xsl:stylesheet version="1.0"
xmins:xsl="http://www.w3.0rg/1999/XSL/Transform" xmins:fo="http://www.w3.0rg/1999/XSL/Format">

<xsl:template match="/">
<xsl:variable name="lookandfeel" select="/xframe/@lookandfeel"/>
<xsl:apply-templates select="node()" mode="{$lookandfeel}" />
</xsl:template>

<xsl:template match="node()" mode="Auto">
<xsl:.choose>
<xsl:when test="">
</xsl:when>
</xsl:choose>
</xsl:template>

<xsl:template match="node()" mode="MSWindows">

</xsl:template>

-20 -

10

15

20

25

30

35

40

WO 2004/019160 PCT/US2003/025581
221 -

<xsl:template match="node()" mode="Metal">
</xs|:tenl1hpl)!ate>

<xsl:template match="node()" mode="Motif">
</xsl:ten'1';-)late> |
<xsl:template match="node()" mode="Macintosh">
</xs|:terﬁ.blate>

... more templates here for other look-and-feel

</xsl:stylesheet>

All XUl screens start with a Frame as the top-most container. A Frame is a type of a container
that functions as the main window for any web pages that use XUl components. XUl Frames have
attributes such as a title, border, lookandfeel and the default icon of a given web browser and default
buttons for maximizing, minimizing and closing the frame. It also supports the usual attributes of a
browser window such as: Width, Height, Scrollbars, and Resizable. XUl XFrame also has the additional

attributes such as isCentered, Absolute, and isModal.

An XUI Frame or window is created by extending the XUl class XFrame. Since web pages are
invoked and loaded within a web browser by accessing a specific URL, an XFrame window is usually
created by a predefined script invoked by clicking a link from a loaded page or through some other page
event such as “ONLOAD”. From this invocation is where the attributes of XFrame is applied. For
example, the width and height of the frame can be set to certain values measured in pixels; the position
of the XFrame window can be set to “centered” relative to the four corners of the screen and the center of

the XFrame or by x and y coordinates relative to the top left corner of the screen.

As shown in FIG. 8, a frame contains one type of container, the XContentPane. XContentPane
is a top-level container which contains containers called XPanels. XPanels can be nested and can
contain other XPanels or they can contain components called XComponents. The ability to nest
containers within containers is crucial and a necessity to design screens of much complexity in user

interface.

Rendering the Screen

The process in the creation and rendition of the XUl screen begins when a client browser
requests a particular address from the server where the web application is residing. The request is
intercepted by a web server; and through the typical MIME Type mapping, the request is delegated to
another server application which is able to handle a JavaServer Page request. A portion of the Controller
is responsible for determining if the requested page should be recreated and delivered to the client or a

-21-

10

15

20

25

30°

35

40

WO 2004/019160 PCT/US2003/025581
-22-

pre-built page with the same components, look-and-feel, etc. can be retrieved from cache and delivered
to the client. Each of the main documents that produce a screen is created in JSP embedded with
predefined XUI custom tags. Custom tags are tags created to be part of code library to facilitate the rapid
creation of JSP pages without coding in Java. A tag library allows programmers to reuse Java code by
reusing tags from the code library. Once built, the code library provides a simple set of custom tags than

even non-Java programmers can use.

However, it is to be understood the not all XU| elements and APls are written as custom tags.
From the surface, XUl elements resemble any custom tags and any other declarative languages. XUl
elements are pure XML elements which as passed to corresponding XSL templates for processing and
transformation. The present invention includes one important tag, the xui:style. This custom tag is used
to embed the XUl API elements within it.

<%@ taglib uri="http://www .jway.com/xui-1.0" prefix="xui" %>
<xui:style outputMethod="HTML">

</xui:style>

In the preceding example, by creating and using a custom tag named xui:style, any elements
within the opening and closing tags will be passed to the XUI Controller for further processing. The
xui:style custom tag is written in Java and is invoked whenever the tag is embedded within a JSP page.
This custom tag and any other custom tags within of the XUI framework tag library, including all other
elements are bound to the namespace: http://www.jway.com/xui-1.0.

The xui:style tag can contain an additional attribute to over-ride the delegation of processing to
the default controller file. When the xui:style custom tag’s attribute named xsl is not present, the
underlying Java code delegates the processing to the default Controller file found inside <APP-
HOME>/XUI-INF/conf/ folder. The name of the file is “controller.xsl”. A developer may decide delegate
the processing to another controller by simply adding a value to the xsl attribute of this custom tag. For

example:
<%@ taglib uri="http://www .jway.com/xui-1.0" prefix="xui" %>
<xui:style xsl="mycontroller.xsl” outputMethod="HTML">
</xui:style>
XUl Controller
The XUl Controller is the intercepting agent which controls the communication within XMVC and

sends different parameters and delegates actions to the GUI Factory which contains different
communicating parts having distinct responsibilities in rendering the desired GUI. The Controller

-2

10

15

20

25

30

35

WO 2004/019160 PCT/US2003/025581

-23-

delegates control to GUI-managing components such as the Layout Manager, the Component Manager,
the Localized Content Manager, the Look-and-Feel Manager, the Event Manager, and other resources

such as repositories and databases.

FIG. 9 illustrates how four distinct user interface objects (XUIOs) in the JSP page correspond to
different components or services of the web application model and are used to communicate with the
Controller. The Controller delegates rendering the appropriate components and communicates with the
Layout Manager for executing a selected layout algorithm for the response. The Controller also handles
rendering decisions based on the communicated information. The XUIOs can be as course-grained or as
fine-grained as needed. They can be as big as a whole page or as small as a single Ul component such
as a button or textbox. They can be embedded within each other or can be independently controlled by

multiple controliers.

The Controller uses one of the strongest attributes of an Object Oriented programming language
wherein the pattern of polymorphism is applied. In a typical web application, the process of applying
dynamic-ness to pages is achieved by creating importable code components and templates and thereby
swapping these components and templates depending on the nature of the request. This is achieved
through the use of programming controls such as If-Else and Switch-Case. The invention applies a
different approach in creating dynamic screens for dynamic web applications. The preferred method is
achieved through the application of polymorphic behavior in XSL without the use of heavyweight
programming language such as Java. It passes a dynamic mode value to an XSL template wherein the
dynamic value is either created through an XSL variable or created by using Java extensions in XSL
where the value is either pulled from a session variable residing in cache or parsed from the XML
fragment being passed to the Controller. In the manner described above, the polymorphic approach in
delegating control to the proper component template provides a robust and highly flexible system. This
type of system facilitates the ease of management of such components and the ability to scale without

revising or re-architecting the current system.

Layout Manager
As shown in FIG. 5, the Layout Manager package consists of a master template (xui-layout.xsl)

and a plurality of templates for each supported layout algorithm. The master template is exposed to the
Controller as the xui-layout.xsl template; all of its contents by default are exposed to the Controlier by
way of importation through the xsl:import element. The xui-layout.xsl template contains other templates
that are responsible for executing the different layout algorithms.

For example, the XUI Layout Manager supports the following layout algorithms:

FlowLayout (default) — lays out the components inside a container from left to right as they are defined
hierarchically within the document.

-23 -

10

15

20

25

30

35

40

WO 2004/019160 PCT/US2003/025581
-24 -

BorderlLayout — Defines five specific containers which are given distinct geographic identifiers such as
NORTH, SOUTH, WEST, EAST, and CENTER. Each of these containers can container other containers
and component by declaring their positions through such geographic identifiers. For instance, a button
component can appear inside the NORTH container by setting its “layout” attribute to “NORTH”. An
example of these BorderLayout containers is shown in FIG. 15.

The Layout Manager uses the same polymorphic pattern wherein it determines which layout
algorithm template is to be used by parsing the “layout” attribute within the “xpanel” element. The value
of the “layout” attribute is then passed to the “mode” attribute of the apply-templates element within the
XSL so that the appropriate layout algorithm can be called.

In FIG. 11, the logic flow for invoking the Layout Manager is illustrated. Upon receiving the HTTP
request from the client user, the JSP file is invoked and a custom tag written in the file invokes the
Controller. The Controlier imports the template for and delegates control to the Layout Manager to parse
and transform the markup information contained in the JSP file. The Layout Manager then delegates
control to the appropriate sub-template for the execution of the selected layout algorithm, which can then
import the encapsulated CSS or JavaScript components. The Layout Manager uses one of the strongest
attributes of an Object Oriented programming language wherein the pattern of polymorphism is applied.
In a typical web application, the process of applying dynamic-ness to pages is achieved by creating
importable scripts, stylesheets and templates and thereby swapping these resources and templates
depending on the nature of the request. This is achieved through the use of less flexible programming
controls such as If-Else and Switch-Case. In the invention, a more flexible and powerful approach is
used to obtain polymorphic behavior in the XSL without the use of heavyweight programming languages

such as Java.

The following are examples of how the pattern of polymorphism is achieved by manipulating the
“layout” attribute of the component. Whatever the value of this attribute is, it is ultimately passed to the
Layout Manager for the proper positioning of the components. Hence, the execution of the layout
algorithm is fully delegated to the Layout Manager by manipulating the contents of the “layout” attribute.

Example 1: The following “xpanel” is to have the default “flowLayout” algorithm with the absence of
the “layout” attribute:

<xpanel opaque="true" name="standard">
Example 2: The following “xpanel” is to have the default “flowlLayout” algorithm with the existence of
the “layout” attribute, but the value is left blank:

<xpanel opaque="true" name="standard" layout="">

-24 -

10

15

20

25

30

35

40

45

50

WO 2004/019160 PCT/US2003/025581
-25-

Example 3: The following “xpanel” is to have the default “flowLayout” algorithm with the existence of
the “layout” attribute, but the value is an unrecognized value:

<xpanel opaque="true" name="standard" layout="foo">

Example 4: The following “xpanel” is to have default “flowLayout” layout algorithm through an explicit
declaration of the desired layout.

<xpanel opaque="true" name="standard" layout="flowLayout">

Example 5: The following “xpanel” is to have the “borderLayout” layout algorithm as explicitly
declared in the “layout” attribute:

<xpanel opaque="true" name="standard" layout="borderLayout">

As mentioned, the effect of polymorphism is achieved by the Layout Manager wherein only
template call is made instead of the lengthy and non-flexible approach of using if-else or choose-when
statements. In the manner described above, the polymorphic approach in delegating control to the
proper component template provides a robust and highly flexible system. This type of system facilitates
the ease of management of such components and the ability to scale without revising or re-architecting
the current system. The following examples further illustrate how polymorphism is used to apply different

modalities by creating one template call.

Example 1: The following example illustrates how custom tags written in SAXUI are structured and
organized within a JSP file. In this example, there are two panels defined where in “panel_1" is to be laid
out using the default “flowLayout” layout algorithm; whereas “panel_2” is to be laid out using the
“BorderLayout” layout algorithm:

<%@ taglib uri="http://www jway.com/xui-1.0" prefix="xui" %>

<xui:style outputMethod="HTML">
<xframe name="main” lookandfeel="MSWindows”>
<xcontentpane>
<xpanel name="panel_1" layout="flowLayout”>
...more code here
</xpanel>

<xpanel name="panel_2" layout="borderLayout">
...more code here
</xpanel>
</xcontentpane>
</xframe>
</xui:style>

Example 2; The following exampile illustrates how the Controller, which is being invoked by the JSP
file, shows that the xui-layout.xsl is being imported; once this file is imported, the template with the match
value of “//xpanel” and mode value of “setLayout” can be called from the Controller. Once this template
is called, the rest of the processing is fully delegated to the Layout Manager represented by the file xui-
layout.xsl:

-25-

WO 2004/019160 PCT/US2003/025581
-26-
<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmins:xs|="http://www.w3.0rg/1999/XSL/Transform"
xmins:fo="http://www.w3.0rg/1999/XSL/Format">

5 <xslimport href="xui-layout.xsl|” />
... more xsl imports here

<xsl:template match="/">
10
<xsi:apply-templates match="//xpanel” mode="setLayout"/>

... more xsl code here
15 </xslitemplate>

</xsl:stylesheet>

20 Example 3: This is the Layout Manager which is a separate XSL file named xui-layout.xsl imported
by the Controller XSL (note that once this file is imported into another template, all templates herein are
exposed to and can be called by the importing template). In this example, the value of the attribute
“layout”, represented by the XPath expression “self::node()/@layout’, of any “xpanel” element found
inside the source document is assigned to the variable named “layout”. This variable is then passed to

25 the “mode” attribute so that the apply-templates element will call the appropriate template based on the
desired mode. If the desired mode is not found, the default layout algorithm is applied:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmins:xsl="http://www.w3.0rg/1999/XSL/Transform"
30 xmins:fo="http://www.w3.0rg/1999/XSL/Format">

<xsl:template match="//xpanel” mode="setLayout”>
<xsl:variable name="layout” value="self::node()/@layout” />
<xsl.apply-templates match="node()” mode="{$layout}" />
35 </xsltemplate>

<xsl:template match="node()" mode="flowLayout">
</xsl :terﬁ'blate>

40
<xsl:template match="node()" mode="borderLayout">
</xs|:terﬁ.f>late>

45 ... more templates here for other layout algorithms

</xsl:stylesheet>

50 Component Manager
The Component Manager determines which XSL component templates are to be used to

generate the desired GUI component. Each corresponding template for each component is ultimately

responsible for rendering the component. They are also responsible for binding the appropriate scripts

and stylesheets for the given component. As shown in FIG. 6, the Component Manager is invoked by the
55 Controller and in turn delegates control to the appropriate sub-template for the rendering of the specified

-26 -

10

15

20

25

30

35

WO 2004/019160 PCT/US2003/025581
-27-

GUI components. As described previously, the Component Manager uses the attributes of the Object

Oriented programming language to obtain polymorphic behavior in the GUI components.

As mentioned earlier, each GUI component is of class type “XComponent’. Instead of creating
muitiple, named XSL templates for each component, an abstract template is created having the same
value in the “match” attribute but different mode values. For example, the following declaration is

intended to render a menutree:
<xcomponent name="mymenutree” class="XMenutree"/>

The following declaration is intended to render a tabbed pane:
<xcomponent name="mytabbedpane” class="XTabbedPane"/>

Both of the elements above use the same element named “xcomponent”; both will be handled
the same by the Controller but will be delegated to a particular XSL template based on the value of the
class as defined above. When this information is passed to the Controller, the Controller takes the literal
string contained in the “class” attribute and then passing it to the “mode” attribute of the <xsl:apply-
templates> element creating a dynamic template application without the use of the typical programming
controls such as if-else or switch-case statements. Thus, the effect of swapping templates through

polymorphism is achieved within a declarative language such as XSL. For example:

<xsl:variable name="componentClass” value="self::node()/@class”/>
<xsl:apply-templates match="node()” mode="{$componentClass}” />

The preceding example shows how the effect of polymorphism can be achieved in XSL. In the
first line, the value of the attribute “class”, represented by the XPath expression “self::node()/@class” of
the “xcomponent” element is assigned to the variable named “componentClass”. This variable is then
passed to the “mode” attribute so that the apply-templates element will call the appropriate template
based on the desired mode. If the desired mode is not found, a null-pointer will be returned since the
desired resource is not found. In the manner described above, the polymorphic approach in delegating
control to the proper component template provides a robust and highly flexible system. This type of
system facilitates the ease of management of such components and the ability to scale without revising
or re-architecting the current system.

A more complete version of the example above is as follows. This is the calling JSP file
embedded with SAXUls where there are two components are defined inside to different panels. The first
component named “menu_1" is to be instantiated from the XMenubar class; the second component

named “tabbedpane_1" is to be instantiated from the XTabbedPane class:

-27 -

5

10

15

20

25

30

35

40

45

50

WO 2004/019160 PCT/US2003/025581
_28-

<%@ taglib uri="http://www jway.com/xui-1.0" prefix="xui" %>

<xui:style outputMethod="HTML">
<xframe name="main” lookandfeel="MSWindows">
<xcontentpane>
<xpanel name="panel_1">
<xcomponent name="menu_1" class="XMenubar” />
</xpanel>

<xpanel name="panel_2">
<xcomponent name="tabbedpane_1" class="XTabbedPane” />
</xpanel>
</xcontentpane>
</xframe>
</xui:style>

This is the Controller XSL being invoked by the JSP file showing that the xui-layout.xsl is being
imported; once this file is imported, the template with the match value of “//xpanel” and mode value of
“setLayout’ can be called from the Controller. Once this template is called, the rest of the processing is

fully delegated to the Layout Manager represented by the file xui-layout.xsl:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmins:xs|="http://www.w3.0rg/1999/XSL/Transform" xmins:fo="http://www.w3.0org/1999/XSL/Format">

<xsl:import href="xui-components.xs!” />
... more xsl imports here

<xsl:template match="/">
<xsl:apply-templates match="//xcomponent” mode="getComponents” />
... more xsl processing here

</xsl:template>

</xsl:stylesheet>

In FIG. 12, the logic flow for invoking the Layout Manager is illustrated. Upon receiving the HTTP
request from the client user, the JSP file is invoked and a custom tag written in the file invokes the
Controller. The Controller invokes the template for the Component Manager to parse and transform the
markup information contained in the JSP file. The Component Manager is a separate XSL file named
xui-components.xsl imported by the Controller XSL (note that once this file is imported into another
template, all templates herein are exposed to and can be called by the importing template). Through the
polymorphic pattern, the desired template is invoked by passing a dynamic mode in the xsl-apply-
template element of the XSL file. The Component Manager also determines if Business Model data or Ul
data is referenced in the markup information. The Component Manager retrieves the Model or Ul data
through the 1/0 process and passes it to the GUI component sub-templates where it will appear.

-28-

10

15

20

25

30

35

40

45

WO 2004/019160 PCT/US2003/025581
-29 .

In the following example, the value of the attribute “class”, represented by the XPath expression
“self::node()/@class”, of any “xcomponent” element found inside the source document is assigned to the
variable named “componentClass”. This variable is then passed to the “mode” attribute so that the apply-
templates element will call the appropriate template based on the desired mode. If the desired mode is
not found, a null-pointer will be returned since the desired resource is not found:

<?xm! version="1.0" encoding="UTF-8"7>
<xsl:stylesheet version="1.0" xmins:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmins:fo="http://www.w3.0rg/1999/XSL/Format">
<xsl:template match="//component” mode="setLayout”>
<xsl:variable name="componentClass” value="self::node()/@class” />
<xsl:apply-templates match="node()" mode="{$componentClass}” />
</xsl:template>
<xsl:template match="node()" mode="XMenu">
</xsl:tem.plate>
<xsl:template match="node()" mode="XMenubar">
</xsltemplate>
<xsl:template match="node()" mode="XToolbar">
</xsl:template>
<xsl:template match="node()" mode="XTabbedPane">
</xsl:template>

... more xsl templates here for other components

</xsl:stylesheet>

Application (Model or XUl) Data
The Model or XUl Data pertains to any data used for processing containers, components, and

other resources within the XUl framework. Most of XUl Data is used in with components as they need
data to be used as labels for example. Data can come as different forms. For example, some XU!I data
are preformatted in a structured XML document with an associated XML schema document which
formally describes the grammar as to how the document should be structured. It uses embeddable data
sets wherein data to be used by GUI components can be created in a separate file which can then be
embedded by URI reference inside component declarations. By the same token, structured data sets,
conforming with the same schema can be literally and physically embedded inside the <xcomponent>
opening and closing tags and then passed to the controller and GUI Factory for further parsing and

processing.

-29.

10

15

20

25

30

35

40

45

50

WO 2004/019160 PCT/US2003/025581
-30-

The following example illustrates how Ul data can either be embedded by reference or can be
embedded by manner of hard-coding the actual structure data set. The first xcomponent named
“menu_1" will use an external data file as referenced in the “xuidata” attribute. This structured data set
will then be passed to the Controller and the GUI Factory for parsing and processing. The second
xcomponent named “tabbedpane_1" contains a physically embedded structure data set. The same effect
will occur wherein this data set will be passed to the Controller and the GUI Factory for parsing and

processing.

<%@ taglib uri="http://www jway.com/xui-1.0" prefix="xui" %>

<xui:style outputMethod="HTML">
<xframe name="main” lookandfeel="MSWindows">
<xcontentpane>
<xpanel name="panel_1">
<xcomponent name="menu_1" class="XMenubar” xuidata="menu_1.xml” />
</xpanel>

<xpanel name="panel_2">
<xcomponent name="tabbedpane_1”" class="XTabbedPane”>
<xtab name="tab_1" label="General” >
... more content here
</xtab>

<xtab name="tab_2” label="Properties” >
... more content here
</xtab>

<xtab name="tab_3" label="Notes” >
... more content here
</xtab>

</xcomponent>
</xpanel>
</xcontentpane>
</xframe>
</xui:style>

The following is an example of the external data file as referenced by the xcomponent named
“menu_1". This file is named “menu_1.xml” which is a well-formed XML document. It is also a valid XML
document as it conforms and validated by the XML schema document name “menu.xsd” as defined in the

“xsi:noNamespaceSchemalocation” attribute of the root element named “xui-data”:

<?xml version="1.0" encoding="UTF-8"?>
<xui-data xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="menu.xsd">

<menu label="File">

<menu-item label="Open” />
<menu-item label="Save” />

-30 -

10

15

20

25

30

35

40

WO 2004/019160 PCT/US2003/025581
-31-

<menu-item label="Exit” />
</menu>

<menu label="Edit">
<menu-item label="Cut” />
<menu-item label="Copy" />
<menu-item label="Paste” />
</menu>

</xui-data>

Localized Content Manager (LCM)

The XUl Framework also includes a Localized Content Manager (LCM) wherein its primary goal
is to organize and manage the rendering of internationalized assets such as labels and images by
utilizing a markup language such as XML for the storage and definition of such assets. It also provides a
web-based interface for the management of such assets. From this interface, a user with the proper
privileges can view, add (upload), delete, and update a given asset. Localized assets also include CSS

files, Script files and other locale specific configuration or descriptor files.

A few of the major assets that the LCM handles are localized Ul data (labels), transactional or
business data, and images. For Ul data or labels, the actual assets are stored in XML files where the
structure conforms to industry standards such as TMX or XLIFF. Storing internationalized labels in XML
format facilitates the ease of use and management for multi-lingual characters specially double-byte
characters for Asian languages since XML’s native encoding is Unicode which can handle double-byte
characters by using UTF-16 encoding. The present invention does not rely on the internationalization
and localization feature inherently found in the Java language itself. By doing so, the portability of the
framework is well kept wherein an implementation within a J2EE environment can be ported to another
environment such as .NET from Microsoft Corp. without rebuilding the internationalization feature of the

system.

For images and other media, descriptors of such assets are stored in XML files called MMX
(Multi Media Exchange) format. The actual media assets can be stored in the file system or a relational
database with physical addresses described within the MMX descriptor file.

Referring to FIG. 13, the LCM is invoked by the Controller which imports xui-lcm.xsl to parse and
transform the markup information contained in the JSP file. This immediately exposes all sub-templates
within it to be used for processing and transformation. Through the polymorphic pattern, the desired
template is invoked by passing a dynamic mode in the xsl-apply-templates element of the XSL file. The
LCM also determines if label tokens passed through the markup information reference localized content
to be retrieved from the repository of localized content. The LCM is responsible for rendering these
localized assets if requested by any of the components. When a component encounters an XUI
Localized Content (XLC) prefix from a XUIDataset identified by the prefix x/c, the rendering is delegated

-31-

10

15

20

25

30

35

40

WO 2004/019160 PCT/US2003/025581
-32-

to the LCM by passing to it the requested internationalized asset identifier and the preferred locale or
language in the form of language-territory combination such as “en_US” for English-United States or
“ja_JP” for Japanese-Japan. The xIc prefix is bound to the namespace: http.//www.jway.com/xui-

1.0/i18n. For example, the controller may encounter an LCM token such as x/c:title as shown below:

<menu-item label="xlc:title” />

Control is delegated to the LCM to find the localized version of this identifier by sorting through
the assets and displaying the proper asset depending on the selected locale or language. This manner
of handling internationalization from the component level gives the fine-grain control as to which labels
should be or can be displayed with internationalized label. If a certain label does not have an equivalent
internationalized label, the developer has two choices in terms of handling the situation. First, the
developer has the choice of embedding the actual label as the value of the “label” attribute of the
component. With the absence of the x/c prefix, the LCM will render the label as a literal string. For
example, the developer can code the following to render the literal string “Title”:

<xui:menu-item label="Title" />

The following is another example of how an XUI data set may look like with mixed content where
some labels are internationalized and some are not. The first set of “menu” data set contains elements
with values in the label attributes intended to be rendered in locale-specific manner given the fact that
they have the x/c prefix before their names. The second “menu” data set's labels will be rendered as
they are written given the absence of the x/c prefix before their names:

<xui-data xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="menu.xsd"
xmins:xIs="http://www.jway.com/xui-1.0/i18n">

<menu label="xlc:File">
<menu-item label="xlc:Open” />
<menu-item label="xlc:Save” />
<menu-item label="xlc:Exit" />
</menu>

<menu label="Edit">
<menu-item label="Cut” />
<menu-item label="Copy” />
<menu-item label="Paste” />
</menu>

Rendering behavior of each component is changed through information communicated by the Ul

data elements and other environmental variables that is passed to all resources coming all the way from

the top-most container. In this case, the root container has communicated to the controller that the

-32-

10

15

20

25

30

35

WO 2004/019160 PCT/US2003/025581
-33.-

preferred language is Japanese. The Controller then goes into action by shifting the encoding
information, which is then inherited by each corresponding views. If for some instance the developer
mistakenly enters an identifier without real internationalized label stored in the repository that can support
the rendering, then a null pointer will be returned since the resource that is being requested is not

available.

Look-and-Feel Manager
The XUI Framework includes a Look-and-Feel Manager to apply a selected look-and-feel type to
the view presentation. As shown in FIG. 7, the Look-and-Feel Manager is invoked by the Controller and

delegates control (through polymorphism) to its look-and-feel sub-templates to execute the layout

algorithm.

Fig. 14 illustrates the logic flow to invoke the Look-and-Feel Manager. Upon receipt of the HTTP
request, the Controller XSL is invoked by the JSP file which imports xui-lookandfeel.xsl to parse and
transform the markup information contained in the JSP file. This immediately exposes all sub-templates
within it to be used for processing and transformation. The template having the mode value of
“setLookandFeel” resides inside the “xui-lookandfeel.xsl” file. Each of these templates have a unique
mode value so that when the xsl:apply-templates element is executed, it will search through the present
templates including all imported templates and invoke the template having the desired mode value.
Once this template is called, the rest of the processing is fully delegated to the Layout Manager
represented by the template having the “setLookandFeel” mode residing inside the file xui-
lookandfeel.xsl. The ability of the xsl:apply-templates element to search through the present template

and all imported templates is inherent to XSL

The following example illustrates how a specific template having a look-and-feel emulating the
Microsoft Windows(TM) environment is invoked dynamically. A variable named “lookandfeel” is created
by using the built-in xsl:variable element and loading it with the value of “MSWindows”. In the
subsequent parts of the code, there are several templates having a similar “match” attribute but having
distinct values in the “mode” attribute. Having the same “match” value is similar to having the same
method name. In this instance, by executing the xsl:apply-templates having similar value for its “select”
attribute as it is with the value of the “match” attribute of each templates, each of these templates are
“targets” for template execution. But having a particular value for the “mode” attribute of the xsl:apply-
templates element, it will selectively execute the template having the same value in the “mode” attribute.
In this instance, the template having the “MSWindows” value for its “mode” attribute will be invoked.
Different datasets can then be passed to these templates so that they can be used accordingly. The
business data from the Business Layer can thus be passed to a particular template without regard to the
look-and-feel that will be used to render the view of the data. A code version for this example is as

follows:

-33-

10

15

20

25

30

35

40

45

WO 2004/019160 PCT/US2003/025581
-34 -
<?xml version="1.0" encoding="UTF-8"7>

<xsl:stylesheet version="1.0"
xmins:xsl="http://www.w3.0rg/1999/XSL/Transform" xmins:fo="http://www.w3.0rg/1999/XSL/Format">

<xsl:template match="/">
<xsl:variable name="lookandfeel" select="MSWindows"/>
<xsl.apply-templates select="node()" mode="{$lookandfeel}" />
</xsl:template>
<xsl:template match="node()" mode="MSWindows">
</xsl:template>
<xsl:template match="node()" mode="Metal">
</xs|:temblate>
<xsl:template match="node()" mode="Motif">
</xsl:template>
<xsl:template match="node()" mode="Macintosh">
</xsl:template>

... more templates here for other look-and-feel

</xsl:stylesheet>

Event Manager
GUIs written in any language such as Java Swing or MFC are typically event driven. They sit

idle and dormant until an event occurs. An event handler then goes to work and responds to the event.
In XUI, events can occur in the component level or the container level. It is important to understand that
events are not programmatically created activities but rather typical, natural and expected occurrences
within the screen. Without events, the application screen will not do anything and will remain idle until a
certain event happens. It is also typical to fire an event by determining if the screen has been idle for a
certain period of time. For example, a window can automatically refresh after 1 minute of idleness which
triggers the load event. Some examples of events are clicking the mouse, moving the cursor over a
component, opening a window, loading a page within a window, scrolling the scrollbar, etc.

By default, events that occur from the component level are propagated to its parents and
ancestor containers, and all the way to the top-level container. An event can be propagated up to a
certain level of container or it can be handled entirely within the affected component. Event propagation
is determined by setting the handle-event attribute of the component. For example:

handle-event="self’ — Handles the event entirely within the component

handle-event="parent” — Handles the event within the component and propagated up to the parent
component.

-34 -

10

15

20

25

30

WO 2004/019160 PCT/US2003/025581

-35-

handle-event="ancestor” — Handles the event within the component and propagated to its parent and its
ancestors all the way to the top-level container.

Canceling the propagation of an event is delegated to the client browser by invoking the

cancelBubble() method in Javascript.

INDUSTRIAL APPLICABILITY

In summary, the present invention provides a method for web application development that
enables rich GUIs to be built using the XUl Framework for creating a number of complementary,
interacting GUI-managing components written in simple declarative format and coordinating their
functions through a Controller in the Extended-Model-View-Controller approach. The XUl Framework
employs reusable and extendable or extensible user interface (Ul) content objects exhibiting polymorphic
behavior. The view management components can be formulated in simple XML, XSL, DHTML, XHTML,
and HTML statements, which can readily be handled by JavaScript and CSS for client-side processing,
and XML. technologies and Java Technologies for server-side processing, thereby avoiding the use of
heavyweight technologies such as Java Swing and AWT. The GUI-managing components are designed
to create GUIs that have a “deliberate kinship” to existing GUI development environments in order to
emulate the techniques, patterns, conventions and standards familiar to a broad base of users. Web
applications can be developed with a set of rich GUIs that naturally produces a similar user experience
as found in conventional client or desktop applications, while providing a huge improvement in
performance, flexibility, scalability and manageability of the web application, and large savings in

development cost.
While certain preferred embodiments of the invention have been described, it is intended that all

embodiments, variations, and modifications thereof within the spirit and scope of the disclosed principles
be deemed included within the present invention, as defined in the appended claims.

-35-

10

15

20

25

30

35

WO 2004/019160 PCT/US2003/025581
-36-

CLAIMS:

1. A method for web application development comprising:

providing an extensible user interface (XUI) framework for developing modular and extensible
GUI-managing components residing in a view presentation layer separate from a business logic layer for
a given web application, wherein the GUI-managing components are written in simple declarative format
referencing predefined templates to be invoked for handling GUI components to be incorporated in a
view of a requested web page, and

using an Extended-Model-View-Controller (XMVC) pattern of operation of the view presentation
layer wherein an XMVC Controller coordinates the functions of the GUIl-managing components by
invoking the referenced templates for handling the GUI components in the view presentation layer and
generating a view of the requested web page in conjunction with application data provided by the

business logic layer.

2. A method according to Claim 1, wherein the XMVC Controller is invoked by a user request for a
web page and in turn invokes the GUI-managing components to parse information contained in a
corresponding web application file for the requested web page in order to determine the templates and
sub-templates thereof to be invoked for handling GUI components in the view presentation layer.

3. A method according to Claim 1, wherein the XMVC Controller invokes the GUI-managing
components by importing respective templates and sub-templates thereof, wherein each template has a
mode value which is set by mode information contained in the web application file for the requested web

page.

4, A method according to Claim 1, wherein a Layout Manager is a component of the GUI-managing

components and has the responsibility of positioning and shaping GUI components in a view of a web

page.

5. A method according to Claim 1, wherein a Component Manager is a component of the GUI-
managing components and has the responsibility of organizing and invoking each desired GUI

component to be included in a view of a web page.
6. A method according to Claim 1, wherein a Localized Content Manager is a component of the

GUI-managing components and has the responsibility of organizing and rendering localized labels and
images for GUI components to be included in a view of a web page.

-36-

10

15

20

25

30

35

WO 2004/019160 PCT/US2003/025581
-37-

7. A method according to Claim 1, wherein a Look-and-Feel Manager is a component of the GUI-
managing components and has the responsibility of organizing and rendering a desired look-and-feel

format for presenting GUI components in a view of a web page.

8. A method according to Claim 1, wherein an Event Manager is a component of the GUI-managing
components and has the responsibility for determining and handling events for each desired GUI

component in a view of a web page.

9. A method according to Claim 2, wherein the GUI components are rendered by the GUI-managing
components to exhibit polymorphic behavior through a hierarchical form of organization of the referenced

templates and sub-templates.

10. A method according to Claim 4, wherein the Layout Manager includes sub-templates for selected

layout algorithms for positioning and shaping GUI components in a view of a web page.

11. A method according to Claim 5, wherein the Component Manager includes sub-templates for

stylesheets, scripts, and other GUI components in a view of a web page..

12. A method according to Claim 6, wherein the Localized Content Manager includes sub-templates

for localized images and labels to be used for GUI components in a view of a web page.

13. A method according to Claim 7, wherein the Look and Feel Manager includes sub-templates for
different look-and-feel formats to be used for GUI components in a view of a web page..

14. A method according to Claim 8, wherein the Event Manager includes sub-templates for different
event handlers for GUI components in a view of a web page.

15. A method according to Claim 1, wherein said templates incorporate pre-defined GUI components
designed to create “deliberate kinship” by emulating techniques, patterns, conventions and standards of

conventional windowing environments.

16. An environment for web application development comprising:

an extensible user interface (XUI) framework for developing a number of modular and extensible
GUIl-managing components residing in a view presentation layer separate from a business logic layer for
a given web application, wherein the GUI-managing components are written in simple declarative format
referencing predefined templates to be invoked for handling GUI components to be incorporated in a
view of a requested web page, and

an XMVC Controller for coordinating the functions of the GUl-managing components in an

Extended-Model-View-Controller (XMVC) pattern of operation by invoking the referenced templates of

-37-

10

15

20

25

WO 2004/019160 PCT/US2003/025581
-38-

the of the GUI-managing components and delegating control to the respective GUl-managing
components for managing their respective functions for handling GUI components in the view
presentation layer and generating a view of the requested web page in conjunction with application data

provided by the business logic layer.

17. A web application development environment according to Claim 16, wherein the XMVC
Controller is invoked by a user request for a web page and in turn invokes the GUl-managing
components to parse information contained in a corresponding web application file for the requested web
page in order to determine the templates and sub-templates thereof to be invoked for handling GUI

components in the view presentation layer.

18. A web application development environment according to Claim 16, wherein the XMVC
Controller invokes the GUI-managing components by importing respective templates and sub-templates
thereof, and wherein each template has a mode value which is set by mode information contained in the

web application file for the requested web page.

19. A web application development environment according to Claim 16, wherein the GUI-managing
components include a Layout Manager for positioning and shaping GUI components in a view of a web
page, a Component Manager for organizing and invoking each desired GUI component to be included in
a view of a web page, a Localized Content Manager for organizing and rendering localized labels and
images for GUI components to be included in a view of a web page, a Look-and-Feel Manager for
organizing and rendering a desired look-and-feel format for presenting GUI components in a view of a
web page, and an Event Manager for determining and handling events for each desired GUI component

in a view of a web page.
20. A web application development environment according to Claim 16, wherein the GUI

components are rendered by the GUl-managing components to exhibit polymorphic behavior through a

hierarchical form of organization of the referenced templates and sub-templates.

-38 -

PCT/US2003/025581

WO 2004/019160

1/15

I Uim pajeroosse

sajly 19aysalfys pue jduos
Asessaoau yym paosnpoid st (IW1H)
wiawnoop pawiojsuel] (g)

sl Bugsanba)
0} oeq juas s| abed

asuodsay d11H (9)

‘elpaw
Jayjo pue ‘salbew)

'suog| ‘s|jaqen)

ey o

‘saolnosas Buiuoddns
Jayjo pue ‘Jabeuepy JnoAe]
‘SSO ‘Sr ‘siuauodwod

1N Uum diom sajeiduay
ISX Jsljonuod ey}

Aq payoaul se 3iom o} saob
saje|dway 1S X :suaddey
uoneuuojsuel) (p)

- JeBeUBY JUBIIOD PaZiEo0T] m /

JoBeuepy 1noke

Jabeuepy JuaAg

Jebeuep usuodwo)]

—)
Jabeuely sung
]

Kiojyaeg Ino—~

Jafe uoneoyddy 3321
JakeT] ssauisng

‘JuawBeyy jwx

au} ybnouy) passed sanjea
8y} paseq ABuipioooe

SoB pue 8l dST 8y Aq
pavoaul s1eb sajionuod (g)

13|jou0D

(Yeuuo; INSQA Ul dva woy
ojuy Jasn "5-8) o160} ssauisnq
woyy sisjswesed Jayio pue
{apow Aiessaoau s|ind ‘sbej x
Jo 11Sr Buisn (s)iausisy ypm
pappaqwae abed dsr :pajoaul
sjo6 abed pajsanbay (Z)

B |

A

I "OId

\j

1sanbay

AN

diiH (1)

(1esmoig)
AN3IND

WO 2004/019160 PCT/US2003/025581

2/15

FIG. 2

PCT/US2003/025581

WO 2004/019160

3/15

eleq INX jo sedh
Juasayip syuasaidal

wium japon (g)

‘BIpaW
Jayjo pue ‘sebeury
‘suo9) ‘sjaqe]
-4 = sabeuEly JUSUOD PazieooT]
<
]
1abeuep 1nokey
]
L]
sabeuep woagy
]
Jsebeuep weauodwod)
$80IN0S81 JUBIBYIP [RIBABS 1
SurED Yoiym Aloped IND Jabeueiy suns -
auy o} sureyad (s)meIn (Z)

Kioyoey IN9—

-

Y

Jajj05U0D)

Juswbely jwx

oY) ybnosy) passed sanjea
ey} peseq A|Buipioode

sjoe pue ajy dSr 8yl Aq
pajoaul 5196 seionuo) (5

€ °"OId

PCT/US2003/025581

WO 2004/019160

4/15

‘sjusuodwios yduogeaer
pue 539 jo sjas umo as,4ay) Buiney
Aq Apuspuadapur joe osje ued Aay 1

"SSe|D Jadns ay} jo senqupe Aue
Wayur Ajjesnjeu Aay; 'sassep-gns
ase Asy) @ouUIS "1ISX Ul USHUM
Os|e aIe sasse|)-qng ay) Amv

. sjusuodwion
\duosener/sso

L) (L]

sjusuodwo)
lduogener/sso

ajeldwa In
ZSse) ang

LGS

sjuauodwo)
yduosener/Sso

? "OIda

"Joineyaq 1o Jndjno pasisap ay)
Gutonpoud paxoau) aq ued ssep-gns
Jejnoued e ‘Juswsjs saje|dwsa)
-Aidde, u1 aynquiie ,apow,

8y jo asn sy ybnosy) “1ISX

Ut usylim st ssep) Jadng ayy ANV

L)

‘13us)sl

2y} Jo ajnqupe uonoe sy
uo paseq ajejdws} 1SX
palisap sjed ‘ejepejow

uo paseq Ajbuipioooe

sjoe pue abed 4gr ayy Aq
payoAu! 5136 Jajjouod (1)

BEY ¢
Jajjonuod

sjedws In cod
o | €sse0ang _ IN ssg|p Jadng <
ajeidwa) N \ /
n! | SSBID ang
4 "Blpaw
sjusuodwo) Jayjo pue 'safew
A_ iduogener/sso) ‘suo9| ‘sjage]

PCT/US2003/025581

WO 2004/019160

5/15

‘sjusuodwoo jdiogeaer
pue §SD JO S)as umo 31,4ay) buiney
Aq Apuapuadapul joe osfe ued £sy)

'sseyo Jadns ayj jo ssinquye Aue
Jrayut Aleanjeu Aay) 'sassep-gns
ale Aay) 80UIS "1ISX Ul USPUM
osfe ase sajejdwal-ans ayL (g)

S °"DId

"JOIABY2q

Jo ndjno pasisap ay} Bupnpoud
pa)oAut aq ued alejdwsl-qns
Jejnoiued e ‘uswaje satejdwa)
-Aidde, ui sinquye .spow,

ayy jo asn ayy ybnosy “LISX ut
uaum si Jabeuey 1noke sy ANV

(Isx'jnoke-inx)
Jabeuep

sysuodwo)
Jduogener/sSso
wypoBiy
BUIo
sjyuauodwo)
duoserer/sso
wuyoBly
v _ e »_ | IN0AB1BpIOq
// /,
sjuauodwo?
1duogener/Sso
wyiuoBly
P Jnofemoly

‘Wawbesy

Jwx 8y} ybnolyy passed
sanjea ay) paseq A|Buipioooe
sjoe pue 3[y dSr 8y} Ag
paxoau s}ab sajjonuog (1)

asX
Jaj|04u0)

> ;nokeq <

PCT/US2003/025581

WO 2004/019160

6/15

‘siusuodwod ydiogeaer
pue §SD Jo s)as umo a1, fay) Buiney
Aq Apuspuadapul joe osfe ued Aay |,

'ssed Jadns ay) jo sajnqupe Aue
1ayul Ajleinjeu Asy) ‘sassed-qns
aJe Aay) aouIS "1 SX Ul USRUM
os|e ase sajeidwal-ans auy (g)

sjuauodwo)
lduogener/sso

sse|n
1eQI00IX

9 °*DId4

‘Jo1ABY3q
Jo Indino pasisap ay) Guionpoud
paxoaut aq ued ajejdwsa)-qns
Jejnojyed e Juswaje saje|dwa)
-Aidde, uy ainquye ,apows,

ay} Jo esn ayy ybnosyy “1ISX Ul
uajum si ssbeuepy Inoke ayy ANV

sjusuodwo)
duogeaer/Sso
SSE|D
m e a| 931NUBNYX
N\ ,/
syuauodwo)
duogeae
JAUISBABT/SSD N
Jeqnuaiyx

LG

(1sx-sjusuodwod
-Inx) 18X
Jabeuepy Jajlonuod
> 5 E—
juauodwon

‘Juswbely

jwx ay) ybnoiy) passed
sanfeA ay) paseq A|Guipjoooe
Sioe pue 3|y 4Sr 3y Aq
paxoaul §136 sajjonu0) (1)

PCT/US2003/025581

WO 2004/019160

7/15

‘sjuauodwiod (duogener
pue $S9 Jo S18s umo a1 Akau Buiney
kq Apuapuadapui joe osje ued Aay

'ssep Jadns ayj jo sanquipe Aue
Jwayul Ajleanjeu Aay} ‘sasseo-gns
ale fay) aduUIg “[SX Ul USNUM
osie ase sajeidwsal-gns ayy (¢)

sjuauodwo)
Jduogener/Sso

T

syuauodwon
duogener/sso

e1aN

SMOPUMSW

syusuodwon)
\duagener/Sso

Y

L *OId

“J01ABYSq
1o ndino pausisap ay) Bunpoud
paxoAut aq ued ajejdwal-qns
Jejnoiped e ‘uaws)p sajejdws)
-Aidde, ui s;nquye .spow,

auy jo asn ayj ybnosyl “LISX

Ul UalUM SI JaBeuRp SUNS YL ANV

(1sx"suys-nx)
Jabeuepy sung

JIoN

A

‘Juawbely

jwx ay) ybnouyy passed
sanjeA ay) paseq A|buipiodoe
sioe pue ajy 4Sf 8y} 4q
paxoaul s}ab Jajjonu0) A _‘v

asx
Jajjosuo)

WO 2004/019160 PCT/US2003/025581

8/15

B

XFrame
XComponent(s)

XContentPane

XPanel

XPanel

FIG. 8

PCT/US2003/025581

WO 2004/019160

9/15
. S rting Dat.
Model (Transactional Data) (Resource File:.pggsl.nsgcri;:, Images, etc)
Y
A
y
¢ dspMenubar menubarView
+ dspP13NServices o P13NServicesView]
B R = D
+ dspMainServices | B - % N L MainServicesView
+ dspAgreement | ‘ AgreementView l
Root Pane XSL Templates
JSP Page Layout Manager

/
i
!
!
!

FIG. 9

WO 2004/019160 PCT/US2003/025581

10/15

FIG. 10A
. -Editor Options .
: * -Display* §-Color’ 'java-Srmcwre“g'
% Keymap: { Macintosh FIG. 10B
:‘gglo‘ck indent: 2
FIG. 10C
FIG. 10D

PCT/US2003/025581

WO 2004/019160

11/15

‘sjusuodwod

1duogeaer pue §S9 JO 5)8s umo
a1,Aay) Buiaey Aq Ajpuapuadapu)
108 ued Aay; se pajeinsdeaus

A eJe sasse|d-qns asey) Jo

yoe3 ‘ssejo sedns ay) Jo sejngupe
Aue Jueyuy Alesmeu Aoy ‘sassepd
-qns aJe Aoy) 8ouUls “TSY Ul US| UM
os|e aue sejeidwsal-qns ay| AUV

T~ Jnoke

‘uoneuUojSUR
pue Buissesoid

10} pesn aq 0}

) wyum seje|dwal-gns
Iie sasodxa ajeipawus
Yalym 8 J9jjonued
o0} papodwil si aly ISX
JaBeuey noke (g)

‘8l JST

8y} u pauleluo dnyJew
ay) uuojsuey) pue esred

0} pasn 8q || yoipm
JAsxinoAep-nx, syoduy

KjajeipawuiL) pue payoAauy

$186 sejionuo) ()

(i1sx'1noAey-Inx)
Jabeuepy

sjuauodwo) (ored
dusgener/sso aedws
SS 5%)
-] WUwOBY
@ -~ YO
sjuavodwo)
)dusgener/sso (eieidwiay
asx)
@l | Wuioby
@ i noke-papioq
o N //
sjuauodwo) (ored
duosener/ss Mt
S o 8%)
| WUIIOGHY
nokemol

LIS

S

asx
18fj0U0D

N

AN

)

‘Buisssooud

Ol psepueys Aq
Jejjonuos ety o juas
s dmyew aiy 1SX
UR S| YoIym Jajlanuo)
oy} s||es Ajajeipewi
pue paxoAul

sjaB Bey wojsny Anv

8pa0 BARP
Buikpspun

AN

yum -

“J9]|0AUOD B YIm

dSr siy Yy paulejuod
dnyew ay) Burpuiq Joy
sjqisuodsal s Bey woisn
SIyl ‘peyoAul 5| qiBey
dSr wojsnd e se pakojdep
PUB BAE[pJepue}s

ul uenum Be) woisno

e ‘ajl} 4Sr siy Bujsseooe
£g 19V INX 3y) ul uapum
dnysew surejuod ey 4Sr
siyt paoaus 5198 dsr (Z)

B

6e] woisny

S

LL °DId

TN

usmif e Buissaooe Aq
d11H yBnouy) 1senbas
B Sa)ew Jasmoig Jual|D

asenbay d11H (|)

(1asmaig)

NI

ANIND

PCT/US2003/025581

WO 2004/019160

12/15

wudsenser pue 5§93 jo sjes
umo o3, Aay) Suiaey Aq Apuapuadapu)

Pe ues Aoy se

Aun} ase sessejpp-gns esay) jo
yde3 ‘ssep Jadns ey) jo seinquye

Aue yiayu) Ajesmeu

‘sajejdwey-qns ay; o)

¥ sassed pue sseoosd Q)
yBnouy; ajy ey) sareuie)
lebeuew Jusuodwon
By} ‘dmyew ey} apisu;

11 Buippaque jo peasuy
uaAb s sseippe woeyshs
ajy e Buueew pacuaieje:

st19p0n (yg)

‘sjusuodwiod

8fy geq IN
10 j3poy aAsIey

pajejnsdeaus

Aoy ‘sesse|a

>
-qns ese Aey) eouis peyoAl

s11i se uoos se 15y Jebeueyy

D oy} ojut Aazep]
papodw) aje pue ygx u uspum
osje ase sajejdwalqns ay) va

\\ N
sajeidwe)y
ansojeiegin le—< ¢PRUBNSY

‘oly dSI BY} U} pauelUDD
dnysew oy wiojsuesn
pue essed o} pasn aq

M Yoym gsx jusuodwos

-inx, suodwy

Aaietpawun pue paxoau)

sjab sajoquon avu

asx
Jayonuon

syuauodwog Pappaqws passed N / 13pow S|
wussener/ss: (oeydway
s 882 sx) .
- > dwop .
- »Ro
N S //.l_
Sweuoduind (Isx'syiauodwos
duogener/sso (orerdway -inx)
- o 2 o Jebeuenw
IR i
RN .
syuauodwon
duogeaer/gso ?ﬁ_aﬁu.—
as
weuodwon ‘Pasn aq o} 3|y ejep IN By} Jo Ssaippe walsAs oy

Iy

iegnuapy e Buiaas) Aq pasualajai s 1o dnysew oYy} ybnouyy
passed s| e1eQ In JO 13pOiA BY) §| SaulULBEP

N osje Ja6euep Juauodwon ajy ISY By} jo
Juaweja sajeiduwal-Adde-1sx oy) uj apow spueukp

e Guissed Aq payoau) sy elejdwa) pesjsep ey)
‘urayed opydiowAjod e ybnosyy ‘uogewsojsuel;
pue Buyssaooid Joj pesn 8q o) ulynm sajejdway

-ans j1e sasodxe Aj@ieIpawiw] Yoym 18X J9qonu0g

01 payodu sy ajy SX 1e6euep Jusuodwon (9)

‘Buissanosd

Ol prepue)s Aq
19]]0J3U0D ay) 0} juas
st dmpe jery 18X
UE S Y31ym Jajjonuo)
8y sjjes Aayepawuwy

s30nue) sy yym

dST SiUl Yum pauiejuoo
dnyiew ay) Buipuiq o)
ejqisuodsat sy Bej wojsno
SINL "Pedoau si qpibey
dSr wojsno e se pakojdep
Pue eaer piepuejs

ut ueum 63 woysno

e '3|y dSr siy) Buissasoe
»m ‘IdV INX oy) u) uayum

pue payoauy
)36 Bey woysny —nv

2p0d eARp
Bukpapun

s -,

2] oy dsr
sl ‘paxoau) 5136 dsr (Z)

&=

Be} woisny

N

‘D14

N

uaalb e Buissaaoe Aq
d11H yBnouy 1sanbaz
& sayew Iasmoig JusyD
asenbay diiH (1)

(s98m01g)

<J

AN3D

PCT/US2003/025581

WO 2004/019160

13/15

ana ()

‘pafeldsip

8q 0} peajsul Buus
pappaqwa ay) asf)

‘Ae|dsip Joj yusjuo0/6uwys pazijeso|
asn 'punoy § “Jowsa Aeidsip ‘punoy >
Jou ji ‘Kioysodas ay) woJy punoy st

UBU0Y PIZIIBD0T Jt BuILLSEg Avv

1013 puBS £punoj uatuo) /
¢ N uwn__moo._ s| \

., \

L

Aojisoday
woJj juajuon
pazi|ed0T] aAsUle Y

2N
\ //

pappaqwa ay; asM N ™ L umn__woﬂ S|

\

JUloD
pazieoo| Aejdsip 0}
PaJisap st 1)l suluus)sp
'pasn aq o} Juauod

Jo |age| yoea Jo4 va

‘pakeydsip ~ ¢pakedsip
2q 0]} peajsul mCEm aq 0} uauo)d \‘||I| -

JUSIU0D paziedo|
Jo Lionsodas ay) wolj pansw}al aq UBD YdIym
1U3JU0D pazi|edo| B se padualajal aq ued dnyew
ay) ybnosy passed usyoj jage) j saulwIalap OS|e
WO 8UL '3l ISX 8ut jo Juawe|a sajedwa)-A|dde
-Isx ayy uy spows olweukp e Buissed Aq paxoaul

! ajejdwa) pasisap auyy ‘ussyed swydiowhjod

e ybnoiy} -uonewlojsuen pue Buissasosd

40} pasn aq o})l UIYIm sajeidwal-qns ||e sasodxs
Alzieipawiw YoM 1SX Jaljosuo) o) papodw

s1 a1y ISX (WD) saBeuen uajuod pazieso ()

S X Jebeuep sjuo)

‘8l dSI
ay)} ul pauizjuod dnyuew
ay) wioysues; pue assed

O} pasn aq |IIMm wIym
JSX wol-inx, spodwit
A|21B1paWIW] pue PaXyoAU]
5106 J3||08U0D A :

paz|jea0] 8%0AU|

€L °OIdJ

IS X JBHO0U0T) BHOAUY

PCT/US2003/025581

WO 2004/019160

14/15

‘sjusuodwod

dudsseaer pue SS9 JO §19S UMO
a1, key Buiney Aq Kpuapuadapu)
1€ ued Aoy se pajeinsdesua

Kiing aJe sasse|s-qns asay) jo

uoe3 ‘ssejo Jadns ay} Jo sanquye
Aue Juayu) Ajfesnjeu Koy ‘sassep
-gns ase Aay) 32U “ISX U) UBRUM
oste ase sajeidwai-ans ayy (g)

‘uonewJojsuen
pue Buissaooud Joy pasn
2q 0) }} UM sajedway

‘8ly dSr
8y} Ul pautejuoo dnyew
oLy uuojsuesn pue sssed

0} Pasn 8q ||M YdIym |sx"
|a8}puenoot-InX,, suodu)
Ajsielpawi) pue paxoaul
5136 J9)j0nU0D) A.vv

asx
13jj00u0D

sjuauodwo) -qns ||e sasodxa
ydussener/sso (areydway SBIP3LUI YIAUM ISX
IsX%) 19)j1053u09 0} pauodu)
- _onwu.u_.m s1 8} ISX Jabeue
o7 Bwo 1994-pue-3007 (g)
AN _
N\ \, N
sjuauodwon (arerdway (Isx"[@9puexoo|
duwseAer/sso 1s%) ~inx)
1934 Jabeuepy
-— " o apy
.._mscuo e |29 4-pue-3001
~N <] //
N\ //
N
sjusuodwo) (ajeiduia).
1dudsEARr/SSO 18%)
1994
. - - -pue-)001
SMOPUIM SIW
N N N

Y

N

‘Buissanoid

Ol psepuess £q
J3ljo1uca ay; o} Juss
st dnyrey tepy 1SX
UE S) YDIUMm Ja|joNjuoD
8y} sijeo Ajsiespatuiw)
PUE paxoAul

5186 6e} woisny (g)

9pod eaer
Buihpspun
i

1A

"19(I0AU0D 8L Yum
dSr S Yim pautejucd
dmuew sy Buipuiq Joy
siqisuodsas s) Bey woysno
SIL ‘pajoAuy s qiey
dSr wojsnd e se pakojdap
puUe BAEB[piepue)s

u) uayum bey woysno

e 's|y 4ST sy Buissasoe
48 "Idv INX Y} U uapum
dmyew suruoo apy dsr
S ‘paxoaul siab dsr (Z)

=

6e) woisny

N

*OIdg

qdN

uaalb e Buissaooe Aq
d11H ybnosy 1senbas
B Sayeuwl Jasmolg jusD

4senbay diiH (L)

(s3smoug)

N

AN3ITD

WO 2004/019160 PCT/US2003/025581
15/15
NORTH
WEST CENTER EAST
 SOUTH

FIG. 15

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

