ABSTRACT: A molded plastic cushion pad for insertion between respective heavy panels such as precast concrete, architectural slabs used in building construction. A typical plastic pad is molded from polyethylene about the size of a small book and is rectangular in formation with a flat, smooth backside and a front side substantially covered with large protruding bumps, and in a pertinent location near one end of the pad there is molded integrally with a pad a short, stubby hanger that extends alongside the panel when the pad is in place. The bumps have spaces between them so that air may circulate.
CUSHION PAD INSERTABLE BETWEEN HEAVY PANELS

BACKGROUND OF THE INVENTION

1 Field of the Invention

Stack-separating means and devices, pads and special supports.

2 Prior Art Discussion

Basically it is well known in the art to broadly separate stacks of heavy concrete panels or the like by means of pads made of rubber or plastic. Usually such pads are flat on both sides and made of a spongy or cushioned material. On certain types of architectural panels, uncured concrete or colored panels, such pads can cause discoloration or faulty curing where the pads come into contact with the material. Furthermore, simple flat pads cannot be inserted or removed unless the heavy panels are separated, and this is sometimes a difficult task. The present pad being flat on one side makes a firm engagement with the bottom of one panel and being provided with bumps on the other side leaves openings and spacings through which air can circulate as well as utilizing the material in the bumps for cushioning. Very significant is the simple and inexpensive production of the whole pad in one unitary molding operation from polyethylene plastic or similar material and the inclusion of a member in the form of a small stump which is a hanger protruding from a pertinent spot near one edge of the pad and hanging outside of the heavy stack so that the pad hangs on the hanger on the edge of one inclined panel and remains in place until another inclined panel is positioned against the pad which is then compressed in place. The same pad arrangement may be used for stacking of the panels horizontally mainly to avoid manufacture and stocking of pads of more than one form.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a typical pad made in accordance with the present invention.

FIG. 2 is a side elevation view of the pad shown in FIG. 1.

FIG. 3 is a side elevation view showing three heavy concrete, architectural panels separated by means of the present pad.

FIG. 4 shows the three panels in FIG. 3 stacked vertically one on another utilizing the present pads.

SUMMARY OF THE INVENTION

For use with a plurality of closely associated, heavy architectural panels such as precast concrete slabs arranged so that the weight of one panel would at least partially apply to a next panel, a cushioned pad molded in one piece from polyethylene plastic and the like having a substantially flat surface on one side and the other side having a plurality of integrally molded solid, spaced bumps, each with an accurate periphery, and there being a short stump integrally molded on said pad and protruding therefrom, then from a pertinent location close to one end of the pad whereby said stump is outside of the stack of panels and extends to be grasped for removal.

DISCUSSION OF A PREFERRED EMBODIMENT

The cushion pad, which may be referred to either as a pad or a cushion, is designated generally by reference numeral 10 and is molded integrally in one piece by a conventional molding operation from typical curing, such as polyethylene plastic. The pad generally is rectangular in formation and has a backside 12 and a front side 14 both of which are basically flat and whereas the backside 12 is substantially smooth and uneven, the front side 14 has molded integrally thereon a plurality of bumps 16 which are solidly constructed simultaneously with the integral molding of the entire pad 10 and from the same material. Each bump 16 in the present form is substantially hemispherical in shape but his is not a mandatory shape since other shapes or bumps may be used such as a section of any solid curvature.

Also, while approximately half of a sphere has been molded in the present form this is not a critical dimension as the bumps may be larger or smaller in protrusion as may fit the molding operation and the desired spacing between the panels. One of the bumps 16 has molded integrally there with a hanger 18 which is a short stump of material molded on the top of that particular bump 16.

As seen in FIG. 3 an arrangement of a heavy plurality of heavy, architectural precast concrete panels designated generally by reference numeral 20 has each panel 20 inclined against the next one for purposes of curving. The present pads 10 are positioned between respective, successive panels 20 with the hanger 18 lying against the top edge 22 of the intermediate panels between the top and the bottom and the bumps with the pad 10 are compressed between the respective panels 20. Pads 10 hang by hangers 18 in place on one panel 10 until the next successive panel 20 is positioned in place as shown in FIG. 3.

As shown in FIG. 4, the panels 20 can be stacked vertically one of them on top of the other with the pads 10 there between and with the small hanger 18 lying against the end 22. There is a minimum amount of contact between the bumps 16 and the surface of the panel 20 against which particular bumps lie which makes it easy to slide bumps 16 along said surface and since the material such as polyethylene plastic and the like are smooth and have some amount of built in direction it is not too difficult to grasp of the hanger 18 and pull the pad from between the respective panels 20. Air can circulate readily along the grooves 26 between the bumps 16 to prevent curing stains. Also, damage to the panels 20 is reduced both during storage as well as during movement and also the load support reduces some of the crushing effect of the weight of the concrete pads.

The pads are provided with holes 28 in opposite corners which can be used to nail the pads to wood frames whenever necessary or for any other use when it would be necessary to penetrate the pads 10.

While I have shown and described a particular form of the pad together with certain shapes, and while the particular pad contains a certain number of bumps 16 various alterations, changes, deviations, eliminations, modifications, substitutions and alterations may be made in the particular form depicted and described.

I claim:

1. In a cushioned pad to be positioned between respective, successive heavy panels such as precast, concrete architectural panels:
 a. a unitary, molded pad constructed from polyethylene and the like, and having a substantially flat back and a plurality of spaced, protruding bumps on the front arranged in spaced relationship along and across said pad.
 b. and a short hanger member molded on said pad and formed integrally therewith at a pertinent position adjacent the end, said pad being located to receive the weight of one panel against the other and said hanger being outside of said panel.

2. The pad in claim 1:
 said hanger being molded integrally on top of one of the bumps.

3. The pad in claim 1:
 said hanger being cylindrical in formation.

4. The pad in claim 1:
 said bumps being portions of spheres.

5. The pad in claim 1:
 said hanger being molded with said bumps and extending outwardly from the top of one of said bumps.