Title: RETENTION ELEMENT AND SPACER PLANE OF A PIPE BUNDLE

Abstract:
The invention relates to a retaining element (5) for a spacer plane (2) of a tube bundle (RB). The aim of the invention is to enable providing large connected free surfaces of the spacer plane with a simplified assembly of the spacer plane. This is achieved in that two guiding elements (7) are provided, each of which receives a tube (1) of the tube bundle (RB), and a distancing element (6) lies between the guiding elements (7), and in that an opening (9) is provided for the feedthrough of a rod-shaped support (4).
Abstract

A retention element (5) for a spacer plane (2) of a pipe bundle (RB) is illustrated and described. In order to be able to provide large coherent free faces of the spacer plane with simplified assembly of the spacer plane, it is proposed that two guide elements (7) each for receiving a pipe (1) of the pipe bundle (RB) and a spacing element (6) which is arranged between the guide elements (7) be provided and that an opening (9) for the passage of a rod-like support (4) be provided between the guide elements (7).
Retention element and spacer plane of a pipe bundle

The invention relates to a retention element for a spacer plane of a pipe bundle. The invention further relates to a spacer plane of a pipe bundle of a heat exchanger.

There are known various constructions of heat exchangers which have pipe bundles and which are used for various applications. The heat exchangers may be used, for example, for cooling or heating exhaust gases of a power station. In this case, the heat exchange is carried out between a liquid in the pipes and a gas between the pipes. However, heat exchangers with pipe bundles for heat exchange between two gases or two liquids are also known. In particular, pipe bundles for heating or cooling exhaust gases are subjected to flow perpendicularly relative to the pipes.

The pipes may be produced substantially in accordance with the corrosive properties of the media involved comprising metals or plastics materials and may optionally further be coated. Plastics pipes are often constructed in a flexible manner. The pipe bundles may further be composed of straight pipes or U-shaped pipes, the pipes extending substantially parallel with each other over large extents of the pipe bundle.

So that the mutual spacing of the pipes, that is to say, the so-called pitch of the pipe bundle, is permanently ensured and excessive oscillations of the pipes can be prevented, so-called spacer planes are provided in the pipe bundle. In these planes, which typically extend perpendicularly
relative to the pipes, each pipe of the pipe bundle is retained in a predetermined position by means of corresponding retention elements.

DE 42 17 923 A1 discloses a retention element and a spacer plane which have a frame which extends around the pipe bundle. In this frame, a series of rods are braced parallel with each other. There are fitted onto each rod a plurality of sleeves which are connected to each other and to adjacent sleeves to form a retention element. A pipe of the pipe bundle is clamped and consequently positioned between each of the sleeves. Owing to the identical nature of the sleeves and the rods, a modular retention element of the spacer plane is produced. However, the disadvantage of the known retention element and the known spacer plane is the complex production thereof. Furthermore, the free cross-section surface-area of the spacer plane is composed of a plurality of small, non-coherent free faces.

An object of the invention is therefore to configure and develop the spacer plane and the retention element of the known type which is described in greater detail in the introduction in such a manner that large coherent free faces of the spacer plane can be provided, with the assembly of the spacer plane being simplified.

This object is achieved with a retention element according to the preamble of claim 1 in that there are provided two guide elements each for receiving a pipe of the pipe bundle and a spacing element which is arranged between the guide elements, and in that an opening for the passage of a rod-like support is provided between the guide elements.
This object is further achieved by a spacer plane according to the preamble of claim 8 in that each retention element has two guide elements and a spacing element which is provided between the guide elements, and in that a pipe is retained in each guide element at mutually opposing sides of the support.

The retention elements according to the invention enable a modular construction of a spacer plane by means of identical retention elements. To this end, in a spacer plane there is associated with two pipe rows a rod-like support, onto which a plurality of retention elements are fitted, respectively. The number of retention elements preferably corresponds to the number of pipes of a pipe row. A pipe is in each case guided by the two guide elements of each retention element and thereby positioned in the spacer plane. The two pipes retained by a retention element are part of adjacent pipe rows which are arranged at opposing sides of the rod-like support. For the sake of simplicity, the supports and the pipe rows of a spacer plane preferably extend substantially parallel to each other.

The spacing of two pipe rows which are retained by means of a support is determined by means of the spacing elements which are arranged between the guide elements. In contrast, the spacing of two pairs of pipe rows which are associated with adjacent supports can be selected independently of the retention element used. It is thus readily possible to provide different gap widths between adjacent pipe rows of a pipe bundle.
The mutual spacing of the pipes of a pipe row is further produced in accordance with the spacings of the retention elements which are arranged along the support. In order to fix the retention elements along the support, the retention elements may be fitted onto the corresponding support in a positive-locking, frictionally engaging and/or non-positive-locking manner. In spite of the use of identical retention elements, a high level of flexibility in the configuration of a spacer plane is thus ensured. That is to say, different spacer planes can still be constructed, even using identically prefabricated retention elements.

Since the retention elements are constructed in a structurally simple manner and may have small dimensions, the retention elements are very simple, quick and cost-effective to produce. Furthermore, however, the retention elements also enable very simple, rapid and cost-effective assembly of a spacer plane in the manner described above.

The retention elements can readily be prefabricated with various standardised dimensions. In order to construct a specific spacer plane, retention elements with a standard size can then be selected. Since, owing to the selection of the retention elements, only individual dimensions of the spacer plane can be determined, many different spacer planes can be constructed with a small number of different, standardised retention elements.

The spacer planes constructed using the retention elements described further have large coherent free faces. Large coherent free faces reduce the danger of particles being deposited on the spacer planes and gradually blocking or
clogging individual portions of the pipe bundle. In particular the condition that a support must be provided only in every other gap between the pipe rows of a pipe bundle and adjacent pairs of pipe bundles do not have to be connected to each other by means of additional retention elements has a positive effect on the size of the coherent free faces.

Owing to the described structure of the spacer planes using the retention elements which have also been described, particle-like deposits can further readily be cleaned away, both from the spacer plane and from the pipes between two spacer planes.

Furthermore, the spacer plane may be arranged in a fixed manner or so as to be able to be displaced along the pipe bundle. A fixed arrangement of the spacer plane is advantageous when the pipes are guided in the guide elements in a displaceable manner. A displaceable arrangement may, however, be advantageous when the thermal expansion of the pipes to be anticipated is significant but the pipes are securely retained in the guide elements. The spacer plane is then retained itself by the pipe bundle and, depending on the longitudinal expansions of the pipes, displaced longitudinally with respect to the pipe bundle in order to prevent damage to the pipes owing to longitudinal expansion.

In a first embodiment of the retention element, the opening for the passage of a rod-like support is provided in the spacing element. This enables structurally simple construction of the retention elements. Regardless of this, it is expedient for the opening for the passage of the rod-
like support to be provided substantially centrally between the two guide elements of the retention element in order to prevent any tilting moments.

Alternatively or in addition, there may be provision for the guide elements to be constructed in a sleeve-like manner. The guide elements are then preferably constructed so as to be substantially longer than the diameter of the guide elements. In this manner, the pipes are retained and guided in the guide elements over a relatively great length so that the danger of damage to the pipes and/or the retention elements owing to abrasion locations between the pipes and the guide elements is reduced. In order to keep the contact faces between pipes and guide elements small, they may in principle have angular cross-sections, the number of corners being determined in particular by the production complexity.

In order to construct the contact faces between the pipes and the guide elements so as to be as large as possible so that non-uniform wear of the pipes is prevented, the guide elements may be constructed in a tubular manner. In this context, circular cross-sections of the guide elements which preferably substantially correspond to the outer diameter of the guided pipes are particularly favourable. The cross-section diameter of the guide elements is greater than the outer diameter of the pipes when they are intended only to be guided into the guide elements but not to be retained.

The production of the retention elements and/or the spacer planes can be simplified when the retention elements are constructed in an integral manner.
In order to keep the production costs of the retention elements low and to improve the corrosion resistance of the retention elements, there is provision in another embodiment for the retention element to be formed from plastics material. It is particularly preferable in this regard, not only with respect to the material costs, for the retention elements to be injection moulded or extruded.

In order to ensure that the pipes of a pipe row are arranged uniformly and with a predetermined spacing from each other, the retention element may be provided with a spacer. The spacer may be constructed in such a manner that two subsequent retention elements which are fitted onto the support are in mutual abutment when the corresponding pipes assume the predetermined spacing with respect to each other. From a structural viewpoint, it may be preferable for the spacer to be fitted to the spacing element. A spacer may also be provided at each side of the spacing element.

So that successive retention elements are spaced neither too close to nor too far from each other, it is advantageous for the spacer to have a securing portion. The securing portion then preferably serves to secure identical retention elements to each other longitudinally relative to the rod-like support.

A retention element may serve to assemble another component of the pipe bundle if a recess in the form of a receiving member is provided at one end of the retention element. A sound-proofing plate may be inserted if necessary into such a recess. The recess may be constructed, for example, substantially in the form of a groove in the spacing
element. This recess may alternatively also be formed, on the one hand, by the spacing element and, on the other hand, by the guide elements. In the case of a groove-like recess, the spacing element may then form the groove base, whilst the guide elements form the groove sides of the receiving member.

In a first embodiment of the spacer plane, two adjacent pipe rows of the pipe bundle are retained by a support. A support is then preferably provided in each alternate intermediate space between the pipe rows of the pipe bundle. In this regard, the support extends in the direction of the pipe rows. In this manner, the number of supports required is reduced and the coherent free face is enlarged.

In order to be able to clean away deposits of solid material, there are introduced into the pipe bundle so-called spray hoses, from which a cleaning fluid can then be dispensed into the intermediate space between the pipes of the pipe bundle. This is structurally possible in a particularly simple manner if at least individual spacing elements of the retention elements of a spacer plane each have an opening for the passage of a spray hose. Corresponding retention elements then retain both mutually adjacent pipes and a spray hose.

In order to prevent adjacent pipes of a pipe row from assuming an excessively small spacing from each other, there may be provision for two adjacent retention elements to be spaced apart from each other by means of a spacer. This spacer may be a separate component which is fitted if necessary between two retention elements on the rod-like
support. In order to simplify the assembly of a spacer plane and in order to reduce the components required for this, however, it may be advantageous for each retention element to have at least one spacer. The retention element is then preferably constructed in one piece with the spacer. Depending on the type of production of the retention elements, however, it may be expedient for the retention elements to be constructed integrally with the spacer.

10 The spacer may in particular contribute to the stabilisation of the entire spacer plane if the spacer is constructed in a sleeve-like manner and is arranged around the opening for the passage of the support. In this instance, the support is guided through the spacer so that it can be supported on the support, if necessary. It is particularly preferable in this context for the spacer to be constructed concentrically relative to the opening for the passage of the support. This contributes not only to a more simple and cost-effective production of the retention elements, but also better support of the spacers on the support.

Alternatively or additionally, the stability of the spacer plane and the assembly can be improved by a plurality of retention elements being connected to each other in the longitudinal direction of the support to form a retention device. This can also have a positive effect on the precise positioning of the pipes of a pair of pipe rows which are retained by means of a support. In this instance, a plurality of retention elements form a retention device for positioning a plurality of pipes, which extends in the direction of the support and is retained thereby.
The mutual connection of the retention elements is preferably carried out in a positive-locking, non-positive-locking and/or frictionally engaging manner. In this manner, a spacer plane can be produced in a rapid and cost-effective manner in spite of the retention elements being connected to each other.

If the retention elements are connected to each other, it is advantageous for a spacer of a retention element to be connected to a spacing element of the adjacent retention element. Alternatively, a spacer may also be connected to a spacer of the adjacent retention element. To this end, it is advantageous for each retention element to have a spacer at both sides of the spacing element. In both cases, owing to the mutual connection of the retention elements, a predetermined mutual spacing of the pipes of a pipe row is ensured at the same time.

In the spacer plane, if necessary, there may exclusively be provided retention elements having a recess in the form of a receiving member, even when only the recesses of specific retention elements are used as a receiving member, for instance, for a sound-proofing plate. However, it may also be sufficient for only the retention members carried by specific rod-like supports to be provided with a corresponding recess. Sound-proofing plates are preferably provided only between specific pipe rows of the pipe bundle. Sound-proofing plates must also not only extend over the entire length of the pipe rows so that, in the case of terminal retention elements which do not co-operate with a sound-proofing plate, a recess can be dispensed with. The retention elements which have a recess are preferably
arranged, if necessary in groups, parallel with adjacent pipe rows one behind the other.

In order to provide the required space for the recess, the opening for the passage of a support may be arranged in an eccentric manner. The opening for the passage of a support is then preferably displaced towards the end of the spacing element facing away from the recess.

In another preferred embodiment, retention elements of a spacer plane have recesses at the upper ends thereof, whilst retention elements of the spacer plane which is located above have recesses at the lower ends thereof. In such a case, sound-proofing plates may readily be assembled with the lower and the upper edge thereof in retention elements of two adjacent spacer planes. The retention elements which co-operate with a sound-proofing plate are preferably associated with the same pipe rows of the pipe bundle.

The invention is explained in greater detail below with reference to drawings which simply illustrate exemplary embodiments and in which:

Figure 1 is a schematic illustration of a heat exchanger having a pipe bundle,

Figure 2 is a sectioned view of a spacer plane of the pipe bundle from Figure 1 along the plane II-II from Figure 1,

Figure 3 shows a retention element of the spacer plane from Figure 2,

Figure 4 shows another retention element of the spacer plane from Figure 2,
Figures 5a, 5b show a third exemplary embodiment of the retention element according to the invention.
Figure 6 shows a fourth exemplary embodiment of the retention element according to the invention.
Figure 7 shows a retention device which is composed of a plurality of retention elements according to Figure 6,
Figure 8 shows an alternative retention device, and
Figure 9 shows a fifth exemplary embodiment of the retention element according to the invention.

Figure 1 illustrates a heat exchanger W for heating or cooling exhaust gases RG. The heat exchanger W has a pipe bundle RB comprising a plurality of separate pipes 1. The pipes 1 are constructed in a U-shaped manner and suspended from above in the heat-exchanger W so that the heat carrier fluid flowing through the pipes 1 is supplied and discharged again by means of connections A at the upper side of the heat exchanger W.

The pipes 1 of the pipe bundle RB are orientated parallel with each other over large extents thereof. The flow direction of the exhaust gas RG is perpendicular relative to the longitudinal extent of the pipe bundle RB. The pipes 1 of the pipe bundle RB are positioned relative to each other by means of a plurality of spacer planes 2.

The structure of a spacer plane 2 is illustrated in Figure 2 in a sectioned view of the pipe bundle RB. The spacer plane 2 has a frame 3 which is arranged outside the pipe bundle RB and to which rod-like supports 4 are fitted. The rod-like supports 4 extend within the spacer plane 2 in the
intermediate space between two adjacent pipe rows RR. A plurality of retention elements 5, 5' are successively fitted to the supports 4.

The retention elements 5, 5' have a spacing element 6, 6' through which the support 4 extends and which spaces apart two guide elements 7, 7' with respect to each other. The guide elements 7, 7' are constructed in a sleeve-like manner and arranged at opposing sides of the support 4. A pipe 1 of the pipe bundle RB is received in each guide element 7, 7'. In the exemplary embodiment illustrated and preferred in this respect, the guide elements 7, 7' are constructed in the form of pipe pieces.

Between the retention elements 5, 5' which are assembled on a support 4, there are provided tubular spacers 8 which are fitted to the support 4. These spacers 8 prevent a minimum spacing between the retention elements 5, 5' and consequently the pipes 1 of a pipe row RR from being fallen below by the spacers 8 moving into abutment at both ends thereof with the adjacent retention elements 5, 5'.

Owing to an appropriate alternating arrangement between retention elements 5, 5' and spacers 8 over the entire length of the respective supports 4, it is further ensured that the spacing between the pipes 1 of a pipe row RR also cannot become excessively large. Consequently, all the pipes 1 of the pipe bundle RB are positioned in the spacer plane 2 with predetermined spacing relative to each other. Whilst the mutual spacing of adjacent pipe rows RR is determined by the width of the spacing element 5, 6', the spacing between the pipes 1 of a pipe row RR is determined by the length of
the spacers 8 and the spacing between two pairs RP of pipe rows is determined by the spacing of the supports 4.

In the exemplary embodiment illustrated and preferred in this respect, the inner diameter of the guide elements 7, 7′ is slightly larger than the outer diameter of the pipes 1 of the pipe bundle RB. In this manner, a length change of the pipes 1 owing to the thermal expansion thereof is readily possible, without the frame 3 of the spacer plane 2 having to be assembled in a height-adjustable manner in the heat exchanger W.

In the spacer plane 2 illustrated in Figure 2, two different types of retention elements 5, 5′ are provided. As illustrated in particular in Figures 3 and 4, there is provided in both retention elements 5, 5′ of the spacer plane 2 an opening 9 for the passage of the support 4 in the spacing element 6, 6′ arranged between the guide elements 7, 7′. The spacing element 6, 6′ is constructed in the embodiment illustrated and preferred in this respect as a web in the region of the smallest spacing between the guide elements 7, 7′. The guide elements 7, 7′ are constructed in a sleeve-like manner with a circular cross-section. The opening 9 for the passage of the support 4 is provided in the same manner as the support 4 itself with a circular cross-section. Therefore, the retention element 5, 5′ can readily rotate slightly about the support 4.

The width of the retention element 5, 5′ is produced from the diameter of the guide elements 7, 7′ and the width of the web-like spacing element 6, 6′. In the exemplary embodiment illustrated and preferred in this respect, the
height of the retention element 5, 5' is many times greater than the diameter of the guide elements 7, 7' and the opening 9 for the passage of the support 4 is arranged offset in an eccentric manner with respect to an edge of the spacing element 6, 6'.

As illustrated in particular in Figure 4, individual retention elements 5' of the spacer plane 2 are constructed so as to be longer than the majority of the remaining retention elements 5. Furthermore, these retention elements 5' also have, in addition to an opening 9 for the passage of the support 4, an opening 10 for the passage of a spray hose 11. The opening 10 for the passage of the spray hose 11 is provided in the exemplary embodiment illustrated and preferred in this respect in the lower region of the spacer plane 2. However, it would be conceivable in principle to arrange the passage 10 for the spray hose 11 in the upper region of the spacer plane 2 in order to also clean away particles on the spacer plane 2.

In an alternative configuration of the retention element 5'' according to the invention which is illustrated in Figure 5a, the guide elements 7'' are constructed in a sleeve-like manner with an angular cross-section. In the exemplary embodiment illustrated and preferred in this respect, the cross-section is constructed in a hexagonal manner.

As illustrated in Figure 5b, the spacing element 6''' may also be arranged in an eccentric manner between the two guide elements 7'''. The spacing element 6''' illustrated in Figure 5b is also constructed in a web-like manner. Furthermore, the guide elements 7''' have an angular
internal cross-section and a round external cross-section. In the exemplary embodiment illustrated and preferred in this respect, the internal cross-section of the guide elements 7′′′ is constructed in an octagonal manner.

5 The retention element 5′′′ illustrated in Figure 6 resembles in terms of the structure thereof in principle the retention element 5 illustrated in Figure 3. In contrast to this retention element, however, the retention element 5′′′ illustrated in Figure 6 further comprises at least one spacer 12 which is constructed as a tubular sleeve concentrically with respect to the opening 9 for the passage of the support 4 of the spacer plane 2.

10 The retention element 5′′′ is injection moulded in an integral manner together with the at least one spacer 12. The spacer 12 has a connection portion 13 at the outer end thereof. In the exemplary embodiment illustrated and preferred in this respect, the outer diameter in the connection portion 13 is tapered so that the connection portion 13 can be inserted into the spacing element 6 of an adjacent retention element 5′′′ and retained at that location, for example, in a frictionally engaging and/or positive-locking manner.

15 In this manner, a retention device 14 can be produced from individual retention elements 5′′′, as illustrated in Figure 7. The individual retention elements 5′′′ are arranged in alignment with each other, the spacer 12 of one retention element 5′′′ being connected in each case to the spacing element 6 of the adjacent retention element 5′′′.
Figure 8 illustrates an alternative configuration of the retention device 15. In this configuration, the retention elements 5V have spacers 12' at both sides of the spacing element 6VI. A spacer 12' of a retention element 5V is connected to a spacer 12' of an adjacent retention element 5V in order to form a retention device 15.

Figure 9 illustrates an exemplary embodiment of a retention element 5VII having a recess 16 in the form of a receiving member, for instance, for introducing a sound-proofing plate of a pipe bundle (not illustrated). The recess 16 is constructed in a rectangular manner in the form of a groove which is introduced into the spacing element 6VII. In the illustrated and preferred retention element 5VII, the spacing element 6VII forms both the groove sides 17 at both sides and the groove base 18. The opening 9 for the passage of a support is arranged eccentrically with respect to the retention element 5VII owing to the recess 16. The retention element 5VII illustrated has no spacer. Alternatively, however, at least one spacer of the previously described type could also be provided.
CLAIMS:

1. A retention element for a spacer plane of a pipe bundle, comprising:
 two guide elements each for receiving a pipe of the pipe bundle, said guide elements being constructed in a sleeve-like manner;
 a spacing element arranged between the guide elements;
 an opening for the passage of a rod-like support provided between the guide elements;
 wherein said spacing element carries at least one spacer;
 wherein the retention element is constructed in an integral manner; and
 wherein the spacer is constructed in a sleeve-like manner and is arranged around the opening for the passage of a rod-like support.

2. The retention element according to claim 1, wherein the opening for the passage of a rod-like support is provided in the spacing element.

3. The retention element according to claim 1 or 2, wherein the guide elements are constructed in a tubular manner.

4. The retention element according to any one of claims 1 to 3, wherein the retention element is made from plastic.

5. The retention element according to claim 4, wherein the retention element is injection moulded or extruded.

6. The retention element according to any one of claims 1 to 5, further comprising a recess in the form of a receiving member, provided at one end of the retention element.

7. A spacer plane of a pipe bundle of a heat exchanger, comprising:
a plurality of pipe rows and a plurality of rod-like supports, each rod-like support carrying a plurality of retention elements, wherein each retention element has two guide elements and a spacing element which is provided between the guide elements, wherein the spacing element carries a spacer; and

a pipe retained in each guide element at mutually opposing sides of the supports;

wherein each retention element is constructed in an integral manner;

wherein the spacer is constructed in a sleeve-like manner and is arranged around the opening for the passage of a rod-like support; and

wherein the guide elements are constructed in a sleeve-like manner.

8. The spacer plane of claim 7, wherein the retention elements are each as defined in any one of claims 1 to 6.

9. The spacer plane according to claim 7 or 8, wherein two pipe rows are retained in each case by a support.

10. The spacer plane according to claim 7, 8, or 9, wherein at least one spacing element has an opening for the passage of a spray hose.

11. The spacer plane of claim 10, wherein each spacing element has an opening for the passage of a spray hose.

12. The spacer plane according to any one of claims 7 to 11, wherein two adjacent retention elements are spaced apart from each other by means of the spacer.

13. The spacer plane of claim 12, wherein the spacer is not connected to the retention elements.

14. The spacer plane according to any one of claims 7 to 13, wherein a plurality of the retention elements are
connected to each other in the longitudinal direction of the support to form a retention device.

15. The spacer plane according to claim 14, wherein the connection is formed in a positive-locking manner, non-positive-locking manner, a frictionally engaging manner, or a combination thereof.

16. The spacer plane according to claim 14 or 15, wherein the spacer and the spacing element are connected to each other.

17. The spacer plane according to any one of claims 7 to 16, wherein at least one retention element has a recess in the form of a receiving member.