（12）发明专利

（10）授权公告号 CN 101447406 B
（45）授权公告日 2013.07.24

（21）申请号 200810178496.6
（22）申请日 2008.12.01
（30）优先权数据
11/998,528 2007.11.30 US

（73）专利权人 诸发系统有限公司
地址 美国加利福尼亚州

（72）发明人 克里斯·盖尔 肖恩·汉密尔顿
谢尔登·坦普尔顿 凯特·伍德
戴蒙·格内蒂

（74）专利代理机构 北京律盟知识产权代理有限责任公司 11287
代理人 王允方

（51）Int. Cl.
H01L 21/00 (2006.01)
H01L 21/677 (2006.01)
C23C 16/54 (2006.01)

（56）对比文件
US 6228438 B1, 2001.05.08,
US 6860965 B1, 2005.03.01,

（54）发明名称
负载锁设计及其使用方法

（57）摘要
本发明提供经揭示用于晶片处理的设备的方法。特定实施例包括将晶片从存储盒转移到处理模块并返回的双晶片处置系统及其各方面。本发明提供堆叠式独立负载锁，其允许排气和抽气操作并行工作且可经优化以减少微粒。本发明还提供环形设计以在负载锁排气和抽气期间产生径向上下流动。
1. 一种用于在大气环境与真空转移模块之间转移衬底的堆叠式负载锁组合件，其包含：

下部负载锁，其具有一个以上腔室，每一腔室具有衬底支撑件和可密封门，所述可密封门可选择性地打开以用于在所述腔室与转移模块机械手之间转移衬底；

上部负载锁，其位置在所述下部负载锁上方，所述上部负载锁具有一个以上腔室，每一腔室具有衬底支撑件和可密封门，所述可密封门可选择性地打开以用于在所述腔室与转移模块机械手之间转移衬片；

其中所述上部负载锁与所述下部负载锁隔离开，且所述上部与下部衬底转移平面之间的垂直距离不大于 100mm。

2. 根据权利要求 1 所述的堆叠式负载锁组合件，其中从所述下部负载锁腔室的底部测量到所述上部负载锁腔室的顶部，所述堆叠式负载锁组合件的高度不大于 10 英寸。

3. 根据权利要求 1 所述的堆叠式负载锁组合件，其中腔室容积介于 3 与 20L 之间。

4. 根据权利要求 1 所述的堆叠式负载锁组合件，其中每一负载锁具有双衬底腔室。

5. 根据权利要求 1 所述的堆叠式负载锁组合件，其中至少一个负载锁经配置以进行径向抽气。

6. 根据权利要求 1 所述的堆叠式负载锁组合件，其中至少一个负载锁经配置以进行径向排气。

7. 根据权利要求 1 所述的堆叠式负载锁组合件，其中每一负载锁经配置以进行径向抽气和径向排气中的至少一者，且其中所述负载锁组合件不具有中心抽气或排气端口。

8. 一种用于将衬底从第一环境转移到第二环境的堆叠式负载锁组合件，其包含：

上部负载锁，其包含一个以上衬底腔室；

下部负载锁，其包含一个以上衬底腔室；

每一上部负载锁衬底腔室安置在下部负载锁衬底腔室上方；以及

一个以上中心板，其用于使每一下部负载锁衬底腔室与上覆的上部负载锁衬底腔室隔离，其中每一中心板界定所述上覆的上部负载锁衬底腔室的底板和下方的下部负载锁衬底腔室的顶板，其中每一中心板包含第一和第二环形凹槽，所述第一环形凹槽至少部分界定用于将气体从所述上覆的上部负载锁衬底腔室中抽出的流动路径，且所述第二环形凹槽至少部分界定用于将气体排入所述下部的下部负载锁腔室中的流动路径。

9. 根据权利要求 8 所述的堆叠式负载锁组合件，其进一步包含用于将衬底转移进入和 / 或离开所述上部负载锁的至少一个上部孔并和用于将衬底转移进入和 / 或离开所述下部负载锁的至少一个下部孔并。

其中所述至少一个上部孔并与所述至少一个下部孔并分开不大于 100mm 的垂直距离。

10. 根据权利要求 8 所述的堆叠式负载锁组合件，其中所述组合件的高度不大于 10 英寸腔室高度。

11. 根据权利要求 8 所述的堆叠式负载锁组合件，其进一步包含一个以上上部负载锁盖以用于覆盖所述一个以上上部负载锁腔室，其中每一盖包含环形凹槽，所述环形凹槽至少部分界定用于将气体排入所述下部负载锁腔室的流动路径。

12. 一种使用负载锁设备在大气环境与真空环境之间转移衬底的方法，所述负载锁设备
备包含：下部负载锁，其具有一个以上腔室，每一腔室具有衬底支撑件和可密封门，所述可密封门可选择性地打开以用于在所述腔室与转移模块机械手之间的转移衬底；上部负载锁，其安置在所述下部负载锁上方，所述上部负载锁具有一个以上腔室，每一腔室具有衬底支撑件和可密封门，所述可密封门可选择性地打开以用于在所述腔室与转移模块机械手之间的转移衬晶体，所述方法包含：

在上部负载锁衬底水平转移平面上在所述大气环境与所述一个以上上部负载锁腔室之间转移一个以上衬底；

在下部负载锁衬底水平转移平面上在所述真空环境与所述一个以上下部负载锁腔室之间转移一个以上衬底；

所述上部负载锁与所述下部负载锁隔离开，且所述上部与下部衬底水平转移平面之间的垂直距离不大于 100mm。

13. 根据权利要求 8 所述的堆叠式负载锁组合件，进一步包含：衬底支撑件，其位于所述衬底腔室中；侧入口端口，所述侧入口端口开放以位于所述衬底腔室上方的环形腔室中，所述环形腔室连接到环形阶梯式通道以平行于所述衬底支撑件而引导流动。

14. 根据权利要求 13 所述的堆叠式负载锁组合件，其进一步包含负载锁外壳，所述负载锁外壳界定所述侧入口端口。

15. 根据权利要求 13 所述的堆叠式负载锁组合件，其进一步包含负载锁外壳，其中所述环形阶梯式通道由所述负载锁外壳和所述中心板的凹入部分界定。

16. 根据权利要求 15 所述的堆叠式负载锁组合件，其中所述中心板和所述负载锁外壳的环形区段为阶梯式的，所述中心板的所述阶梯式区段的外径小于所述负载锁外壳的所述阶梯式区段的内径以进而界定所述环形阶梯式通道。

17. 根据权利要求 13 所述的堆叠式负载锁组合件，其中所述环形阶梯式通道的宽度介于 0.005 到 0.050 英寸之间。

18. 根据权利要求 13 所述的堆叠式负载锁组合件，其中所述环形阶梯式通道包含平行于衬底支撑件表面的外部区段、垂直区段和内部平行区段。

19. 根据权利要求 13 所述的堆叠式负载锁组合件，其中所述环形腔室的矩形横截面的尺寸在 0.25 到 1.5 英寸的范围内。

20. 根据权利要求 13 所述的堆叠式负载锁组合件，其中所述侧入口端口、所述环形腔室和环形阶梯式通道界定用于将气体排入所述负载锁腔室的流动路径。

21. 根据权利要求 20 所述的堆叠式负载锁组合件，其中所述环形阶梯式通道扼制排放的气体流动。

22. 根据权利要求 8 所述的堆叠式负载锁组合件，进一步包含：衬底支撑件，其位于所述衬底腔室中；侧出口端口，其开放到环形腔室中，所述环形腔室位于所述衬底支撑件下方；环形通道，其将所述衬底腔室连接到所述环形腔室以用于将流体引导到所述环形腔室中，其中所述环形通道的内径大于所述衬底支撑件外径。

23. 根据权利要求 22 所述的堆叠式负载锁组合件，其进一步包含负载锁外壳，所述负载锁外壳界定所述侧出口端口。

24. 根据权利要求 22 所述的堆叠式负载锁组合件，其进一步包含负载锁外壳，其中所述环形通道由所述负载锁外壳和所述中心板的部分界定。
25. 根据权利要求24所述的叠合式负载锁组合件，其中所述中心板的外径小于所述负载锁外壳的内径以界定所述环形通道。

26. 根据权利要求22所述的叠合式负载锁组合件，其中所述环形通道的宽度介于0.005到0.050英寸之间。

27. 根据权利要求22所述的叠合式负载锁组合件，其中所述环形腔室的矩形横截面的尺寸在0.25到1.5英寸的范围内。

28. 根据权利要求8所述的叠合式负载锁组合件，进一步包含：
下部负载锁衬底支撑件，其位于所述下部负载锁的衬底腔室内；
侧入口端口，所述侧入口端口开放位于所述下部负载锁的衬底腔室上方的第一环形腔腔室中；
所述第一环形腔室连接到环形阶梯式通道以平行于所述下部负载锁衬底支撑件而引导流动；以及
上部负载锁衬底支撑件，其位于所述上部负载锁的衬底腔室内；
侧出口端口，所述侧出口端口开放到所述上部负载锁衬底支撑件下方的第二环形腔腔室中；
环形通道将所述上部负载锁衬底腔室连接到所述第二环形腔室以用于将流动引导到所述第二环形腔腔室中，所述环形通道的内径大于所述上部负载锁衬底支撑件的直径。
负载锁设计及其使用方法

技术领域
[0001] 无

背景技术
[0002] 使用不同类型的工具来在半导体装置制造期间执行数百种处理操作。这些操作大多数在非常低的压力下在真空腔室中执行。用以机械方式偶合到处理腔室的晶片转移系统将晶片引入到处理腔室。晶片处理系统将晶片从工厂地面转移到处理腔室。这些系统包括用以将晶片从大气条件带到非常低的压力条件并返回的负载锁，以及用以将晶片转移到各种位置的机械手。处理量——某一时段中所处理的晶片的数目——受处理时间、某一时间所处理的晶片的数目以及用以将晶片引入到真空处理腔室中的步骤的定时影响。需要增加处理量的改进的方法和设备。

发明内容
[0003] 本文所揭示的设备和方法关于晶片的并行处理。特定实施例包括将晶片从存储盒转移到处理模块并返回的双晶片转移系统及其各方面。提供堆叠式独立负载锁，其允许排气和抽气操作并行工作且可经优化以减少微粒。还提供环形设计以在负载锁排气和抽气期间产生径向上下流动。
[0004] 本发明的一个方面涉及一种用于在大气环境与真空转移模块之间转移衬底的堆叠式负载锁组合件。所述组合件包括：下部负载锁，其具有一个或一个以上腔室，每一腔室具有衬底支撑件和可密封门，所述可密封门可选择性地打开以用于在腔室与转移模块机械手之间转移衬底；以及上部负载锁，其安置在所述下部负载锁上方，所述上部负载锁具有一个或一个以上腔室，每一腔室具有衬底支撑件和可密封门，所述可密封门可选择性地打开以用于在腔室与转移模块机械手之间转移晶片。上部负载锁与下部负载锁隔离开，且上部与下部衬底转移平面之间的垂直距离不大于 100mm，并且在某些实施例中，不大于 70mm。在某些实施例中，从下部负载锁腔室的底部测量到上部负载锁腔室的顶部，堆叠式负载锁组合件的高度不大于 10”。腔室容积通常在约 3L 到约 20L 的范围内。在某些实施例中，堆叠式负载锁组合件中的每一负载锁具有双衬底腔室。
[0005] 在某些实施例中，堆叠式负载锁组合件中的至少一个负载锁经配置以进行径向排气和/或径向抽气。在某些实施例中，上部负载锁经配置以进行径向抽气，且下部负载锁经配置以进行径向排气。而且，在某些实施例中，每一负载锁经配置以进行径向抽气和径向排气中的至少一者。在某些实施例中，负载锁组合件不具有中心抽气或排气端口。
[0006] 本发明的另一方面涉及一种用于将衬底从第一环境转移到第二环境的堆叠式负载锁组合件，所述组合件包括：上部负载锁，其包含一个或一个以上衬底腔室；下部负载锁，其包含一个或一个以上衬底腔室，每一上部负载锁衬底腔室安置在下部负载锁衬底腔室上方；以及一个或一个以上中心板，其用于使每一下部负载锁衬底腔室与上覆的上部负载锁衬底腔室隔离，其中每一中心板界定上部负载锁衬底腔室的底板和下部负载锁衬底腔室的顶板。
在某些实施例中，每一中心板具有数个环形凹槽，其中一个环形凹槽至少部分界定用于将气体从上部负载导管腔室中抽出的流动路径，且另一环形凹槽至少部分界定用于将气体排入下部负载锁腔室中的流动路径。

在某些实施例中，堆叠式负载锁组合件具有用于将衬底转移进出和／或离开上部负载锁的至少一个上部孔径和用于将衬底转移进入／离开下部负载锁的至少一个下部孔径。所述至少一个上部孔径与所述至少一个下部孔径分离开不大于约 100mm 的垂直距离。在某些实施例中，组合件的高度不大于 10 " 腔室高度。而且，在某些实施例中，堆叠式负载锁组合件具有一个或一个以上上部负载锁盖以用于覆盖所述一个或一个以上上部负载锁腔室，其中每一盖具有至少部分界定用于将气体排入下部负载锁腔室的流动路径的环形凹槽。

本发明的另一方面涉及一种使用负载锁设备在大气环境与真空环境之间转移衬底的方法，所述负载锁设备根据各种实施例可具有以下特征中的一者或一者以上：下部负载锁，其具有一个或一个以上腔室，每一腔室具有衬底支撑件和可密封门，所述可密封门可选择性地打开以用于在腔室与转移模块机械手之间转移衬底；上部负载锁，其安置在所述下部负载锁上方，所述上部负载锁具有一个或一个以上腔室，每一腔室具有衬底支撑件和可密封门，所述可密封门可选择性地打开以用于在腔室与转移模块机械手之间转移衬片。所述方法包括在上部负载锁衬底水平转移平面上在大气环境与所述一个或一个以上上部负载锁腔室之间转移一个或一个以上衬底；在下部负载锁衬底水平转移平面上在真空环境与所述一个或一个以上负载锁腔室之间转移一个或一个以上衬底；其中上部负载锁与下部负载锁隔离开，且上部与下部衬底水平转移平面上的垂直距离不大于 100mm。

本发明的另一方面涉及一种用于对含有晶片的负载锁腔室进行径向排气的负载锁设备。所述设备包括：晶片支撑件，其位于所述负载锁腔室中；侧入口端口，所述侧入口端口开放到位于所述负载锁腔室上方的环形腔室中，所述环形腔室连接到环形阶梯式窄通道以平行于支撑件上的晶片而引导流动。根据各种实施例，负载锁设备可包括以下特征中的一者或一者以上：负载锁外壳，其界定所述侧入口端口；以及上部板，其界定负载锁腔室和负载锁外壳的顶板，其中所述环形通道由负载锁外壳和所述上部板的凹入部分界定。在某些实施例中，上部板和负载锁外壳的环形区段为阶梯式的，其中所述板的阶梯式区段的外径小于负载锁外壳的阶梯式区段的内径以进一步界定环形阶梯式通道。在某些实施例中，环形阶梯式窄通道的宽度介于约 0.005 到 0.050 英寸之间。阶梯式通道可包平行于晶片表面的外部区段、垂直区段和内部平行区段。在某些实施例中，环形腔室的矩形截面的尺寸在约 0.25 到 1.5 英寸的范围内。而且，在某些实施例中，侧入口端口、环形腔室和环形阶梯式窄通道界定用于将气体排入负载锁腔室的流动路径。在某些实施例中，环形阶梯式窄通道扼制排放的气体流动。

本发明的另一方面涉及用于对含有晶片的负载锁腔室进行径向抽气的负载锁设备。所述设备包括：晶片支撑件，其位于所述负载锁腔室中；侧出口端口，其开放到环形腔室中，所述环形腔室位于所述晶片支撑件下方；窄环形通道，其将负载锁腔室连接到环形腔室以将流动引导到环形腔室中。环形通道的内径大于晶片支撑件直径。负载锁设备还可包括界定侧出口端口的负载锁外壳。在某些实施例中，所述设备包括下部板，其界定负载锁腔室和负载锁外壳的底板，其中环形通道由负载锁外壳和下部板的凹入部分界定。所述设备
还可包括负载锁外壳，其中所述板的区段的外径小于负载锁外壳的区段的内径以供进而界定环形通道。在某些实施例中，环形通道的宽度在0.055到0.500英寸之间，且环形腔室的矩形横截面的尺寸在约0.25到1.5英寸的范围内。

【0012】本发明的另一方面涉及一种堆叠式负载锁设备，所述堆叠式负载锁设备包括：下部负载腔室，其具有位于所述下部负载腔室中的晶片支撑件、侧开口端口，所述侧开口端口开放位于所述下部负载腔室上方的上部环形腔室中，所述环形腔室连接到环形阶梯式窄通道以平行于支撑件上的晶片而引导流动；以及上部负载腔室，其包含位于所述上部负载腔室中的晶片支撑件、开放到环形腔室中的侧开口端口、位于所述晶片支撑件下方的环形腔室、窄环形通道，所述窄环形通道将负载腔室连接到环形腔室以将流动引导到环形腔室中，环形通道的内径大于晶片支撑件直径。

【0013】本发明的另一方面涉及一种对含有晶片的负载锁腔室进行排气的方法，所述负载锁腔室包含：晶片支撑件、其位于所述负载锁腔室中；侧开口端口，所述侧开口端口开放位于所述负载锁腔室上方的环形腔室中，所述环形腔室连接到环形阶梯式窄通道以平行于支撑件上的晶片而引导流动。所述方法可包括使气体穿过环形腔室进入，使得气体流动到环形阶梯式窄通道中以进而平行于晶片将气体的径向流动引导到负载锁腔室中。

【0014】一种对含有晶片的负载锁腔室进行抽气的方法，所述负载锁腔室包含：晶片支撑件、其位于所述负载锁腔室中；侧开口端口，其开放到环形腔室中，所述环形腔室位于所述晶片支撑件下方；窄环形通道，其将负载锁腔室连接到环形腔室以将流动引导到环形腔室中。所述方法可包括通过穿过侧出口端口抽吸气体来从晶片中心径向向外抽吸气体，使得通过环形通道抑制气体进入环形腔室。

【0015】在以下具体实施方式中描述本发明的这些和其它方面及优点。

附图说明

【0016】图1是根据各种实施例双晶片处理设备及其组件的外观的示意图。

【0017】图2a和2b是根据各种实施例双晶片处理设备的示意图，其展示大气环境和转移模块的内部视图。

【0018】图3a到3e是展示根据某些实施例执行将一对晶片从存储盒输送到晶片转移模块并返回的双晶片输送中的某些操作的双晶片输送设备的俯视图的图形表示。

【0019】图3f展示根据本文所描述的方法和设备的某些实施例一对晶片可能在处理模块中经历的动作序列的实例。

【0020】图3g展示两臂双端操作器转移模块机械手的示意图，其中一个双端操作器臂处于延伸位置且另一双端操作器臂处于缩回位置。

【0021】图4a和4b是根据某些实施例堆叠式负载锁的示意图。

【0022】图5a和5b是根据某些实施例堆叠式负载锁的示意图。

【0023】图6a和6b是说明根据某些实施例用于上部负载锁的抽气和排气装置的示意图。

【0024】图7a和7b是说明根据某些实施例用于下部负载锁的抽气和排气装置的示意图。

具体实施方式

【0025】概述
图1展示根据本发明各方面的双晶片处理设备及其组件的外观。图1所示的设备可用于将晶片从大气环境（例如，进入和离开存储单元）转移到一个或一个以上处理腔室（例如，PECVD腔室）并再次返回。图1所示的设备具有三个主要组件：大气环境102、负载锁104和转移模块106。图中展示了存储单元（例如，前开式后集箱或FOUP）和处理腔室。大气环境102通常处于大气压力下且可与FOUP和/或外部设施的零件交互。转移模块106通常处于亚大气压力下且可与负载锁和经常在真空或低压力下运行的各种处理腔室连通。将晶片放置在负载锁104中以当在大气环境与亚大气环境之间转变时进行抽气或排气操作。

大气环境102（也称为“小型环境”）含有大气机械手（未图示），其中将晶片转移进入和离开FOUP及负载锁104。箱装载器108接纳并支撑FOUP，使得其可由大气机械手接取。大气环境102通常含有上置式扇形过滤器单元（例如，HEPA过滤器单元）以防止污染物进入大气环境。图1展示所述扇形过滤器单元的空气入口110。大气或小型环境的下部边界可以是假底板，例如图1中在112处描绘的。

负载锁104接纳来自大气环境102的待转移到处理腔室的入站（未经处理）晶片以及来自转移模块106的待转移回到FOUP的出站（经处理）晶片。负载锁可为双向的（保持入站晶片和出站晶片）或单向的（仅保持入站晶片或出站晶片）。在某些实施例中，负载锁是单向的。入站晶片在本文中也称为传入或未经处理的晶片；出站晶片在本文中也称为传出或经处理的晶片。

在图1中，存在两个独立负载锁：上部负载锁，其堆叠在下部负载锁之上，每一负载锁具有两个连接的腔室。在某些实施例中，上部负载锁是入站负载锁，且下部负载锁是出站负载锁。板114是入站负载锁的盖，每一板覆盖所述两个连接的腔室中的一者。负载锁真空泵116用于在操作期间视需要对负载锁进行抽气。

大气阀门118提供从大气环境102到负载锁的入接。在所展示的实施例中，使用外部安装到小型环境的四门缝压，但可使用任何类型的门或阀，其中包括闸阀、滑动门、旋转门等。

转移模块经配置以附接到一个或一个以上处理模块（例如，单工作台或多工作台PECVD腔室、UV固化腔室等）。处理模块可在转移模块的多个界面位置/侧处附接到转移模块106。缝压122提供从转移模块到处理模块的入接。可使用任何恰当的阀或门系统。在图1中，每侧具有两个阀——允许在负载锁与处理模块之间（例如，在负载锁的两个腔室与处理模块的两个邻近工作台之间）或在两个处理模块之间转移两个晶片。转移模块提升组合件120用于升高和降低转移模块的盖罩128。在图1中，盖罩128降下（即，图中未展示转移模块的内部）。真空转移机械手位于转移模块的内部以在负载锁与处理模块之间或在处理模块之间转移晶片。

转移模块106维持在亚大气压力下，且在本文中有时称为真空转移模块。转移模块压力通常介于760至1毫米之间，但在某些实施例中，所述工具可用于更低的压力范围。一旦入站晶片在负载锁中处于恰当位置，便使用负载锁真空泵116将负载锁抽气到亚大气压力，使得可随后将晶片转移到真空转移模块。负载锁缝压130提供从转移模块106到负载锁的入接。转移模块真空泵124连同气体质量流量控制器（MFC）、节流阀和压力计一起用于获得并维持转移模块的所需压力。一般来说，工具上或工具外真空泵均可用于转
移模块。此项技术中已知的，存在各种用于控制转移模块中的压力的方法。在一个实例中，MFC 将恒定流量的 N₂ 气体提供到转移腔体中。压力计提供关于转移模块腔体的压力的反馈。真空泵每单位时间移除恒定体积的气体，以每分钟立方米为单位进行测量。节流阀通过使用闭路控制系统而主动地维持压力设定点。节流阀读取压力计的压力反馈，且基于来自阀的控制系统的命令，调节有效孔对真空泵的开关。

接入板 126 提供对电子器件机架的接入，所述电子器件机架含有控制系统以控制晶片处理操作，其中包括机械手移动、压力、定时等。控制系统还可控制处理模块中所执行的处理的一些或全部操作。根据各种实施例，控制器、开关或其它相关电子硬件可位于其它地方。

图 2a 和 2b 是双晶片处理设备的额外示意图，其展示大气环境 102 和转移模块 106 的内部视图。图 2a 和 2b 所示的设备大致类似于图 1 所示的设备，不同之处只是图 2a 和 2b 的设备的转移模块的形状为梯形的，以便允许较大接入 238 区域服务于转移模块。图 2a 中未展示转移模块提升组合件和盖以及大气环境机壳的一部分。

大气环境或小型环境 102 含有大气机械手 232。转移模块 106 含有真空机械手 236。图 2a 所描绘的实施例中，大气机械手 232 具有一个臂，其具有两个铰接腕，每一铰接腕具有能够携带晶片的叶板或其它端操纵器。真空转移机械手 236 具有两个臂，其每一臂具有两个能够携带晶片的叶板。大气机械手能够同时处置两个晶片，且真空机械手可同时携带多达四个晶片。（本文所描述的设备和方法不限于这些特定机械手设计，但一般来说，所述机械手中的每一者能够同时处置和 / 或转移和 / 或交换至少两个晶片。）

图 2a 还提供从歧管通向真空泵 116 的导管 244（也称为负载锁泵前级管线）的局部视图。双真空泵 116 协作工作且用于对两个负载锁进行抽气。根据各种实施例，双泵可充当单个泵资源或可专用于特定负载锁以进行并行抽气。图 2b 从相反侧展示图 2a 所示的设备的示意图。在右上位置中展示转移模块提升组合件 120 和转移模块盖 128。

图 3a 到 3f 是展示将一对晶片从 FOUN 输送到晶片转移模块并返回的双晶片输送中的某些操作的图形表示。图 3a 展示具有转移模块 106、上部（入站）负载锁 104a、下部（出站）负载锁 104b 和大气环境 102 的设备。还展示了处理模块 330a 和 330b。此时，在晶片进入大气环境 102 之前，晶片位于例如 FOUN334 中，所述 FOUN334 与大气环境 102 介接。大气环境 102 含有大气机械手 332；转移模块 106 含有真空机械手 336。

如上文所述，所述设备能够并行输送和处理两个晶片。大气机械手和转移模块真空机械手两者能够同时处置至少两个晶片。

大气机械手 332 具有一个臂，其具有两个铰接腕，每一铰接腕具有能够携带晶片的抓爪或叶片。真空转移机械手 336 具有两个臂，其每一者具有两个能够携带晶片的叶片或抓爪。

大气机械手从 FOUN 中取出两个晶片。（机械手从例如 FOUN、负载锁或处理工作台等位置取出晶片的动作在本文中有时称为“拾取”动作，而机械手将晶片放置到某一位置的动作在本文中有时称为“放置”动作。这些动作在本文中也分别称为“取”和“放”动作。）依据机械手以及 FOUN 或其它晶片存储装置的布置而定，所述两个晶片可同时或逐个取出。在图 3a 所描绘的实施例中，举例来说，大气机械手具有一个带有两个铰接腕的臂，且能够同时转移两个堆叠晶片，例如同时从 FOUN 拾取两个堆叠晶片。图 3b 展示在从 FOUN 转移到
说明书

上部负载锁 104a 期间的具有两个晶片 335' 和 335 " 的大气机械手 332。大气机械手接着将所述晶片放置到上部负载锁 104a 中供减压。这在图 3c 中展示。每一腔室中具有一个晶片。一旦将晶片放置在上部负载锁中，便关闭上部负载锁的大气门 118a 并对负载锁进行抽气。当达到所需压力时，转移模块侧上的上部负载锁门 120a 打开且转移模块机械手 106 从上部负载锁拾取晶片。图 3d 展示具有晶片 335' 和 335 " 的转移模块机械手 106。图 3a 到图 3e 中所描绘的转移模块机械手具有两个臂（每一者具有两个端操纵器）且能够同时保持四个晶片。在所展示的实施例中，上部负载锁没有被动晶片居中，每一晶片的负载锁中也不存在独立的 z 驱动。在某些实施例中，真空机械手同时拾取晶片，且如果在传入负载锁中存在两个晶片，那么无法选择性地拾取一个晶片。然而，依据机械手和系统而定，转移模块机械手可同时或连续拾取每一晶片。而且，依据机械手和系统而定，机械手可使用一个带有两个端操纵器的臂来拾取两个晶片，或每一晶片可由不同臂拾取。在从入站负载锁中拾取未经处理的晶片之后，转移模块机械手通过旋转晶片并将其放置在处理模块中而将晶片转移到处理模块，即处理模块 330a 或处理模块 330b。虽然图 3a 到图 3e 中未描绘，但还可存在第三处理模块，其连接到转移模块。所述晶片接着在处理模块中经受处理。图 3f 展示晶片可能在处理模块 330a 中经受的动作序列的示例。首先，将晶片 335' 放置在处理模块 330a 的工作站 338 中，且将晶片 335 " 放置在处理模块 330a 的工作站 340 中。晶片接着在这些工作站处经受处理。晶片 335' 从工作站 340 移动到工作站 344，且晶片 335 " 从工作站 338 移动到工作站 342" 以供进一步处理。晶片接着返回到其原始工作站以由转移模块机械手拾取以供转移到出站负载锁或转移到处理模块 330b 以供进一步处理。为了清楚起见，当工作站未被晶片 335' 和 335 " 占据时，图中将工作站描绘为“空”的，在操作中，所有工作站通常由晶片填充。图 3f 中说明的序列仅仅是可与本文所描述的设备一起使用的可能序列的实例。转移模块机械手拾取两个晶片以供同时转移到负载锁，拾取动作可同时或连续发生。机械手接着旋转以将经处理的晶片放置在负载锁中。同样，根据各种实施例，这些动作可同时或连续发生。图 3g 展示经由下部负载锁门 120b 而放置在出站（下部）负载锁 104b 中的经受处理的晶片 335' 和 335 "。在放置到那里之后，关闭所有负载锁阀或门且将出站负载锁排气（增压）到大气压力。晶片也可在此处冷却。接着打开出站负载锁的大气门 118b，且大气机械手拾取经处理的晶片并将其转移到 FOWP 中的恰当位置。

【0041】应注意，本文中论述的具有多个处理腔室的双晶片处理设备和方法可用于进行并行或循序处理。在并行处理方案中，一组晶片在一个处理模块中进行处理且接着返回到 FOWP，同时其它组晶片并行地在其它处理模块中进行处理。在循序处理方案中，一组晶片在一个处理模块中进行处理，且接着转移到另一处理模块以供在返回到大气条件之前进行进一步处理。混合的并行/循序序列也是可能的，例如其中使用两个处理模块 (PM1 和 PM2) 来进行并行处理且接着将来自这些处理模块的所有晶片转移到第三处理模块 (PM3) 以供进一步处理。同样，第一处理模块可处理所有晶片，所述晶片接着被传送到第二或第三模块以供并行处理。

【0042】单向流动

【0043】在某些实施例中，在单向操作模式下使用负载锁。以下表 1 中给出单向流动方案中的入站和出站负载锁、大气机械手和转移模块机械手动作的实例。

【0044】表 1：单向流动操作中的机械手和负载锁动作
<table>
<thead>
<tr>
<th>ATUM 机械手</th>
<th>传入 LL (上部)</th>
<th>传出 LL (下部)</th>
<th>TM 机械手</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOUF 拾取 (1)</td>
<td>排气 (空)</td>
<td>TM 机械手</td>
<td>下部 LL 放置 (臂 2)</td>
</tr>
<tr>
<td>上部 LL 放置 (2)</td>
<td>ATUM 机械手 (2)</td>
<td>排气 / 冷却 (晶片)</td>
<td>PM 拾取 (臂 2)</td>
</tr>
<tr>
<td>下部 LL 拾取</td>
<td>抽气 (晶片) (3)</td>
<td>ATUM 机械手</td>
<td>PM 放置 (臂 1)</td>
</tr>
<tr>
<td>FOUF 放置</td>
<td>TM 机械手 (4)</td>
<td>抽气 (空)</td>
<td>上部 LL 拾取 (臂 1) (4)</td>
</tr>
<tr>
<td>FOUF 拾取</td>
<td>排气 (空)</td>
<td>TM 机械手</td>
<td>下部 LL 放置 (臂 2)</td>
</tr>
<tr>
<td>上部 LL 放置</td>
<td>ATUM 机械手</td>
<td>排气 / 冷却 (晶片)</td>
<td>PM 拾取 (臂 2) (1)</td>
</tr>
<tr>
<td>下部 LL 拾取</td>
<td>抽气 (晶片)</td>
<td>ATUM 机械手</td>
<td>PM 放置 (臂 1) (5)</td>
</tr>
<tr>
<td>FOUF 放置</td>
<td>TM 机械手</td>
<td>抽气 (空)</td>
<td>上部 LL 拾取 (臂 1)</td>
</tr>
<tr>
<td>FOUF 拾取</td>
<td>排气 (空)</td>
<td>TM 机械手</td>
<td>下部 LL 放置 (臂 2) (2)</td>
</tr>
<tr>
<td>上部 LL 放置</td>
<td>ATUM 机械手</td>
<td>排气 / 冷却 (晶片) (3')</td>
<td>PM 拾取 (臂 2)</td>
</tr>
<tr>
<td>下部 LL 拾取 (4')</td>
<td>抽气 (晶片)</td>
<td>ATUM 机械手 (4')</td>
<td>PM 放置 (臂 1)</td>
</tr>
<tr>
<td>FOUF 放置 (5')</td>
<td>TM 机械手</td>
<td>抽气 (空)</td>
<td>上部 LL 拾取 (臂 1)</td>
</tr>
</tbody>
</table>

表 1 呈现单向操作模式的序列的实例，其中转移模块机械手移动序列传入模块 (晶片交换) → 传出负载锁 (放置处理的晶片) → 传入负载锁 (拾取未经处理的晶片)。这是一个可能序列的实例，且其它序列也可与本文描述的双晶片处理装置一起使用。在特定实例中，转移模块机械手移动序列传入模块 (晶片交换) → 传入负载锁 (拾取未经处理的晶片) → 传出负载锁 (放置处理的晶片)。

各行可看作大致同时发生或重叠的操作，各列展示机械手或负载锁执行的操作序列。当然，在任何系统中，这些操作不能完全重叠，且所述模块中的一者或一个以上可闲置或者稍后开始或结束。另外，应注意，未展示某些操作。未展示机械手必须执行以到达箱、负载锁和处理模块的旋转和平移动作。描述“TM 机械手”或“ATUM 机械手”可指代负载锁经受的动作——打开和关闭恰当的门——以及准许机械手端操纵器拾取或放置晶片。

在所述表中步骤 1 到 5 中追踪一对未经处理的晶片从 FOUF 通往处理模块的路径。

1. ATUM 机械手 FOUF 拾取
2. ATUM 机械手 (上部) 负载锁放置
3. 上部 LL 抽气 (见图 3c)
4. TM 机械手 (上部) 拾取
5. TM 机械手 (下部) 拾取

在所述表中步骤 1' 到 5' 中追踪一对经处理的晶片从处理模块通往 FOUF 的路径。

1'. TM 机械手处理模块拾取
2'. TM 机械手 (下部) LL 放置
3'. 下部 LL 排气 / 冷却 (见图 3e)
4'. ATUM 机械手 (下部) LL 拾取
5'. ATUM 机械手 FOUF 放置

如从表 1 中可见，举例来说，一旦将传出晶片移交到大气机械手，便接着可将负载锁进行抽气——其不必等到大气机械手完成其任务才进行抽气。这区别于双向操作，在双向操作中，当大气机械手将经处理的晶片放置在 FOUF 或其它盒中并从盒中取出两个未经处理的晶片以供放置到负载锁中时，负载锁是闲置的。下文描述根据某些实施例各种机械手和负载锁动作。
[0061] 传入 LL

[0062] 抽气 : 使上部负载锁中的压力从大气压力降低到预定的亚大气压力。如下文参看图 6a 和 6b 描述，通过穿过基座周围的狭隙吸出气体来对负载锁进行抽气。将气体抽吸到基座下方的较大横截面环中，且接着将其从侧面抽出。这保持流动从晶片向外（从晶片中心径向流动）和向下 —— 以避免将任何微粒向上吸走到晶片上。此抽气操作是快速的。

[0063] 排气 : 将上部负载锁从亚大气压力排气到大气压力。不存在任何晶片。如下文参看图 6a 描述，可快速地对上部负载锁进行排气。如同抽气操作，排气操作是非常快速的。

[0064] 传入 LL 动作的定时的实例（秒）：

[0065] 打开 / 关闭 VAT 闸（通往大气环境的闸）: 0.5

[0066] 打开 / 关闭缝闸（通往转移模块的闸）: 0.5

[0067] 检验缝闸是否关闭、排气、检验是否处于大气压力：若干秒

[0068] 检验 VAT 门是否关闭、抽气和转移模块压力匹配 : 若干秒

[0069] 传入 LL

[0070] 排气 / 冷却 : 将下部负载锁从亚大气压力排气到大气压力。排气是通过使例如氮气和 / 或氧气等气体流动到腔室中来进行的。氮气穿过晶片上方的 8 英寸直径的环形间隙进入。流动在晶片上方从上到下且向向向外以避免将微粒向上吸走到晶片上。晶片进入下部负载锁，其需要从处理冷却。在一个实施例中，首先将氮气作为热量转移气体排入腔室内到达中间压力。接着当晶片冷却时停止气体流动。接着使氮气流动以便压力上升到大气压力。

[0071] 抽气 : 将下部负载锁从大气压力抽气到预定的亚大气压力。腔室为空的。

[0072] 传入 LL 动作的定时的实例（秒）：

[0073] 打开 / 关闭 VAT 闸（通往大气环境的闸）: 0.5

[0074] 打开 / 关闭缝闸（通往转移模块的闸）: 0.5

[0075] 检验缝闸是否关闭、He 排气、检验是否处于大气压力 : 若干秒

[0076] 检验 VAT 门是否关闭、抽气和转移模块压力匹配 : 若干秒

[0077] ATM 机械手

[0078] FOUA 拾取 : 大气机械手从 FOUA 或其它拾取两个堆叠的未经处理的晶片。在一个实施例中，端操纵器以一者在另一者顶部的方式堆叠且同时拾取堆叠的晶片。在拾取晶片之后，端操纵器相对于彼此旋转，且臂旋转以将晶片放置在上部负载锁中（见图 3b，其展示保持两个晶片准备就绪以将其放置到上部负载锁中的单臂双端操纵器机械手）。

[0079] 上部 LL 放置：大气机械手将晶片放置到上部负载锁腔室中。在某些实施例中，第一二端操纵器延伸到上部负载锁的腔室中且将晶片下降到支架上。所述端操纵器接着从负载锁缩回，且第二端操纵器延伸到上部负载锁的另一腔室中且将晶片下降到支架上。机械手因此以任何次序连续放置左晶片和右晶片。

[0080] 下部 LL 拾取：大气机械手从下部负载锁腔室拾取晶片。在某些实施例中，第一二端操纵器延伸到下部负载锁的腔室中且从基座拾取晶片。所述端操纵器接着从负载锁缩回，且第二端操纵器延伸到下部负载锁的另一腔室中且从基座拾取晶片。机械手因此以任何次序连续拾取左晶片和右晶片。在某些实施例中，机械手使用关于下部负载锁中每一晶片的放置的信息来在拾取动作期间校正晶片位置。接着旋转大气机械手臂以将晶片放置在 FOUA 中。
说明 书

F0UP 放置：大气机械手将晶片在 F0UP 中放置到堆叠位置中。在一个实施例中，同时放置两个晶片。

ATM 机械手动作的定时的实例（秒）：
从转入 LL 转到转出 LL :0.5
从转出 LL 取出晶片 :5.9
从转出 LL 转到盒 :1
将晶片放入盒中 :3
缩回并在 Z 方向上移动以准备从盒中“取出” :0.3
从盒中取出晶片 :2.5
从盒中转到转入 LL :1.3
将晶片放入转入 LL 中 :6.5
转移模块机械手

上部 LL 拾取：转移模块机械手将一个双端操作机器臂延伸到上部负载锁中且将晶片从支架提升到端操作机上。在某些实施例中，当一个臂延伸到负载锁中时，另一个臂移动到缩回位置。图 3g 展示双臂双端操作机器手中其中一个臂延伸（例如，到负载锁或处理模块中以进行拾取或放置动作）且一个臂缩回。在表 1 所示的方案中，一个臂专用于从上部负载锁取出未经处理的晶片并将其放置在处理模块中（臂 1），且另一臂专用于从处理模块取出经处理的晶片并将其放置在下部负载锁中（臂 2）。在其它实施例中，两个臂均用于经处理和未经处理的晶片。在表 1 所示的方案中，在上部负载锁拾取动作之后，臂 1 缩回
且臂 2 延伸到下部负载锁中以将经处理的晶片放置在那里。

下部 LL 放置：转移模块机械手将臂 2——在每一端操作机上具有一处理晶片——延伸到下部负载锁中并将晶片放置在那里。在某些实施例中，这同时进行。可测量每一晶片负载锁的位置信息并将其进行存储以供大气机械手在拾取晶片时使用。接着定位机械手以进行处理模块拾取动作。

处理模块拾取：转移模块机械手将臂 2 延伸到处理模块中且拾取两个经处理的晶片。在某些实施例中，这同时进行。在表 1 所示的方案中，在处理模块拾取之后，转移模块

机械手将未经处理的晶片放置到处理模块中。

处理模块放置：转移模块机械手将臂 1——具有两个未经处理的晶片——延伸到处理模块中且通过使晶片下降到工作台上或通过工作台中的晶片支撑件将晶片提高端操作
机而将晶片放置在工作台处（如图 4 中）。在某些实施例中，循序进行放置动作以允许在
每一放置动作中进行位置校正。

各种转移模块机械手动作的定时的实例（秒）：
从转出 LL 转到转入 LL :1.2
从 LL 转到腔室 1（处理模块）且转到 LL (90°) :1.8
从 LL 转到腔室 2 且转到 LL (180°) :2.8
转入 LL “取出”（拾取）:4.3
转入 LL “放入”（放置）:4.3
晶片交换（在处理模块或腔室处将经处理的换成未经处理的）:8.5
图 1 到 3g 和相关联论述提供对本文论述的双晶片处理设备和方法的广泛概述。根
堆叠式负载锁

在某些实施例中，提供堆叠式独立负载锁。这些负载锁可在所描述的双晶片处理系统中使用。具有多个负载锁的单晶片处理器可并排放置负载锁，从而允许负载锁上方和下方的空间用于多种效用和技术。双晶片处理器通常使用一个具有多个加载的负载锁。这限制了系统的处理量，因为排气、冷却、抽气和机械手交换对于所有传入和传出晶片均必须依次发生。系统的整个负载锁必须等到在真空和大气两者下完成多个晶片交换才能进入下一个操作。举例来说，通过使用单个具有多个加载的负载锁，在排气/冷却之后具有出站晶片时：

1. 大气门打开
2. 大气机械手从负载锁拾取两个出站晶片
3. 大气机械手将出站晶片移动到存储盒
4. 大气机械手将出站晶片放置在存储盒中
5. 大气机械手从存储盒拾取两个入站晶片
6. 大气机械手将入站晶片移动到负载锁
7. 大气机械手将入站晶片放置在负载锁中
8. 大气门关闭并抽气

在以上序列期间，当大气机械手执行晶片转移步骤2到7时，负载锁闲置。负载锁在真空侧进行晶片交换期间也必须闲置。多支架负载锁还在抽气和排气/冷却期间使传入和传出晶片暴露于交叉污染。一些负载锁设计要求分度器上下移动晶片，从而增加复杂性。

根据某些实施例的晶片处置设备包括堆叠式独立负载锁。图3a到3e中的负载锁104a和104b是堆叠式独立负载锁。通过以一者在另一者顶部的方式堆叠独立负载锁，系统操作（例如，抽气、排气/冷却、晶片交换）得以去耦，允许并行执行各种操作，进而允许增加处理量。

因为常规的负载锁在负载锁腔室上方和下方具有多种效用和机制，所以将需要较大的垂直空间来堆叠常规的独立负载锁。这将需要较大的z方向转移模块机械手，以及较大型的整体转移模块和负载锁。堆叠式独立负载锁设计紧凑地隔离上部负载锁和下部负载锁，并经配置以用于抽气和排气。根据各种实施例，堆叠式独立负载锁与一负载锁转移平面具有较小距离，例如大约65mm。这允许一转移模块机械手臂（或两个转移模块机械手臂，如果存在两个的话）到达上部和下部负载锁两者。

根据各种实施例，本文描述的堆叠式负载锁组合件具有以下特征中的一者或一者以上：

双晶片容量：负载锁可保持双晶片（并排）容量。因此对于双处理量很重要，因为两个晶片并排经历晶片处置和处理。（见图3a到3f）。

独立循环的堆叠式负载锁：上部负载锁与下部负载锁彼此隔离，且在必要时独立循环（例如，上部负载锁处于真空条件下，而下部负载锁处于大气条件下）。紧凑型设计：负载锁组合件经紧凑设计，从而与常规的多负载锁系统相比降低了
高度。另外，移动平面之间的距离较小，从而不需要具有较大 z 方向自由度的机械手。腔室容积也可较小，使得可使用小泵。例如来说，在组合负载锁的两个腔室的情况下，上部和下部负载锁容积可为约 6.0 到 10L。在一个实例中，上部负载锁容积为 6.5L，且下部负载锁容积为约 7.3L。

[0121] 单个中心板；堆叠的腔室由单个中心板分隔开。在双晶片含量负载锁中，上左负载锁腔室与左下负载锁腔室由单个板分隔开，右上腔室与右下腔室也是如此。在某些实施例中，除了隔离腔室以外，单个中心板还可具有额外的功能性，包括提供用于径向抽气和排气的环带。

[0122] 针对单向流动而优化：单向负载锁设置仅在一个方向上移动的晶片——入站（大气环境到转移模块）或出站（转移模块到大气环境）。入站负载锁的机械设计则针对抽气而优化，且出站负载锁的机械设计针对排气和冷却而优化。在某些实施例中，上部负载锁针对入站晶片而优化，且下部腔室针对出站晶片而优化。

[0123] 径向抽气和/或排气：负载锁采用径向抽气和/或排气来减少微粒污染。在某些实施例中，入站负载锁抽气流动方向从晶片中心处流向且均匀发出。类似地，出站负载锁排气流动方向从晶片中心处流向且均匀发出。因为所述流动从晶片中心处发出，所以外来物质不会从负载锁腔室的其它区域输送到晶片。如果用于单向流动，那么晶片的微粒污染只需在入站负载锁中进行抽气期间和在出站负载锁中进行排气期间考虑。在某些实施例中，负载锁组合件具有环形凹槽以通过抑制抽气或排气流动来促进径向抽气或排气。

[0124] 图 4a 和 4b 展示具有堆叠式独立负载锁的负载锁组合件的实例。在图 4a 和 4b 中，负载锁组合件的转移模块侧面向前方。如上文所描述，每一负载锁具有两个连接的腔室。盖 114 每一者覆盖上部负载锁的一个腔室。缝宽 120 展示允许在负载锁的左侧从负载锁接入转移模块的阀。图中未展示位于右侧的阀以提供外壳 450 和位于外壳 450 中的负载锁组合件开口 452 的视图。在某些实施例中，缝宽可独立控制，但以气动方式系在一起。通常负载锁的隔离歧管 454 用于均衡和抽气操作。侧端口 456 允许观看到负载锁的内部。下部负载锁提升机制 458 用于将晶片从冷却板处升高和降低，以允许机械手端操纵器穿过空腔拾取和放置晶片。这允许冷却板不对端操纵器切割出较大空隙。

[0125] 整个堆叠式独立负载锁组合件是紧凑的——对于腔室具有约 5 英寸的高度，其中间致动器高于所描绘的实施例。开口 452 充分地靠近在一起，使得不需要具有较大 z 方向自由度的机械手。晶片移动平面是机械手从负载锁拾取衬底或将衬底放置到负载锁中所在的平面。上部与下部移动平面之间的距离是重要的，因为其界定将晶片转移到达或离开上部和下部负载锁两者的机械手臂必须具有的垂直自由度的最小量。

[0126] 图 5a 展示根据某些实施例的堆叠式负载锁组合件的正视图。上部负载锁具有两个腔室 502a 和 502b，且下部负载锁具有两个腔室 504a 和 504b。负载锁外壳 505 提供用于界定负载锁的顶板和底板的板的框架或支撑件。外壳还具有用于供晶片进出的开口。在图 5a 描绘的实施例中，外壳还界定上部和下部负载锁两侧的侧壁并且含有用于两个负载锁的排气和抽气通道。外壳可为单片式或多片式。上部负载锁腔室 502a 通过中心板 506a 与下部负载锁腔室 504a 分隔开；负载锁腔室 502b 通过中心板 506b 与下部负载锁腔室 504b 分隔开。除了分隔上部与下部真空腔室之外，中心板还经设计以用于两侧上的真空和大气压力在两个方向上循环。
单个中心板（即，一个中心板分隔右侧上的上部与下部腔室且另一个中心板分隔左侧上的上部与下部腔室）。除了分隔上部与下部腔室之外，中心板还是上部负载锁的晶片基座。图 5b展示上部板 514、中心板 506、下部板 516 和外壳 505 的分解图。使用单个中心板允许晶片移交换平面之间的距离较小——在图 5a 描绘的实施例中，移交换平面之间的距离为约 65mm。

在图 5a 描绘的实施例中，中心板为单个整体式可移除板，其配制以允许下文描述的抽气和排气。然而，在其它实施例中，多个薄板可用于隔离上部与下部负载锁。上部板或盖 514a 和 514b 覆盖上部腔室，且底部板 515a 和 515b 形成下部腔室的底板。底部板 515a 和 515b 还可具有冷却机制。上部腔室 502a 和 502b 是流体连通的，下部腔室 504a 和 504b 也是如此。

通道 508a 和 508b 是用于上部负载锁腔室的排气通道。气体通过入口 512 引入，并通过这些通道排入上部负载锁腔室中。通道 510a 和 510b 是用于上部负载锁腔室的抽气通道。气体通过负载锁真空泵（末显示）抽吸并通过歧管 514 离开到达出口 516。根据某些实施例的抽气和排气设计在下文中进一步描述。用于下部负载锁的抽气和排气位于上部负载锁通道后，上未在图 5a 中展示，但在下文进一步描述。图 5a 还展示提升机制 518 和真空阀外壳 520。

如上文所述，堆叠式负载锁组合件是紧凑的。组合件的大小可由以下各项中的一者或一者以上表征：高度（上部负载锁板的底部到上部负载锁板的顶部）；上部与下部负载锁晶片移交换平面之间的距离；上部与下部负载锁开口之间的中心到中心距离；腔室容积；左腔室与右腔室之间的中心到中心距离；板直径孔；以及腔室的总深度。在图 5a 描绘的实施例中，尺寸如下：

- 高度：6.2 英寸
- 上部与负载锁移交换平面之间的距离：65mm
- 上部与下部负载锁开口之间的中心到中心距离：2.4 英寸
- 腔室容积：6.5L
- 上部负载锁（两个腔室）：7.3L
- 下部负载锁：
- 左腔室与右腔室之间的中心到中心距离：19 英寸
- 所有板的直径孔：13.2 英寸
- 腔室的总深度：14.75 英寸
- 根据各种实施例，这些尺寸的范围如下：
- 高度：约 4 到 10 英寸
- 上部与下部负载锁移交换平面之间的距离：约 30mm 到 100mm
- 上部与下部负载锁开口之间的中心到中心距离：约 30mm 到 100mm
- 腔室容积：约 3.0L 到 20.0L
- 左腔室与右腔室之间的中心到中心距离：约 12 到 30 英寸
- 所有板的直径孔：约 12 到 15 英寸
- 腔室的总深度：约 12 到 20 英寸

在某些实施例中，所述双晶片负载锁中的一者或一者以上没有活动零件。举例来说，在某些实施例中，通过或上部负载锁没有活动零件，而只有用于使机械手将晶片设置在上面的支架，其中在支架下方具有用于端操纵器的间隙。在图 5a 描绘的实施例中，下部负载锁具有提升机制，其实现较好的冷却性能。然而，根据各种实施例，如果在移动穿过传
负载锁之前或之后在负载锁外部进行冷却或者如果不必要进行冷却，那么传出负载锁将不需要活动零件。

[0146] 在某些实施例中，所述负载锁的一侧或两侧的固定支撑件是一对支架。支架的大部分下方的空间允许机械手臂在下方滑动以拾取或放置晶片。下部负载锁中的提升机制形成此支架获得机械手空隙，同时还允许通过到达晶片的较小间隙将晶片放置在冷却板上。

[0147] 用于径向均匀上下流动的环形设计

[0148] 在常规的负载锁系统中，负载锁上方和下方的空间通常用于多种效用和机制——多个独立负载锁可并排放置，或需要具有较大z方向运动的机械手以拾取和放置晶片，或垂直平移的负载锁。所期望的是，对于机械手（但尤其对于转移模块机械手）不要求具有较大z方向自由度。

[0149] 每一负载锁需要用于抽气（以在开放到转移模块之前降低压力）和排气（以在开放到大气环境之前升高压力）的机制。快速抽气可产生穿过负载锁腔室的高速度湍流。如果未谨慎管理流动方向，那么可能在抽气期间将外来物质输送到晶片表面。类似地，排气可产生高度湍流，其可能会将微粒输送到晶片表面。常规的负载锁经常具有用以对负载锁腔室进行抽气的中心抽气端口和/或用以对负载锁腔室进行排气的中心排气端口。常规的负载锁还可使用在腔室上由烧结金属制成的排气扩散器。

[0150] 根据各种实施例，本文描述的负载锁每一侧具有排气和抽气端口以及准许紧凑型设计的流动通道。值得注意的是，根据各种实施例，所述设计不需要单独的抽气/排气端口来确保径向流动。根据各种实施例，负载锁组件具有用于在抽气期间提供均匀的径向上下流动的抽气环带和/或用于在排气期间提供均匀的径向上下流动的排气环带。流动向量经管理以使得流动均匀地从晶片中心发出。流动也是从上向下的，使得在抽气期间向下输送任何微粒并离开腔室。图6a到7b展示用于如图4a到5a所示的堆叠式负载锁组件件的抽气和排气设计，其中图6a和6b用于上部负载锁的抽气和排气设计，且图7a和7b展示用于下部负载锁的抽气和排气设计。

[0151] 图6a和6b说明用于负载锁的抽气环形设计。在图6a和6b描绘的实施例中，所述抽气环带设计是用于上部负载锁的。如上文所描述，上部负载锁腔室602通过中心板606而与下部负载锁腔室604分隔开。在抽气期间，穿过晶片位置的外侧边缘周围（在此情况下在中心板606与负载锁外壳605之间）的环形间隙664（也称为环形通道）抽吸气体。在气体下方，还展示环形腔室660和出口端口610，其中环形腔室660在腔室周围延伸。环形腔室由中心板606中的环形凹槽形成。出口端口610通过堆叠式组件件下方的歧管。中心板606与负载锁外壳605之间的抽气环带和出口端口的间隙664是紧密的。通过穿过此紧密间隙抽气，把握流动传导性以迫使在晶片周围的所有径向点处形成平稳抽气。虚线箭头展示从晶片中心径向向外延伸到环带且接着到达出口端口的流动路径。下文在图7a和7b中论述的下部负载锁流动通道在图6a中不可见。

[0152] 图6b展示抽气环形间隙和环形腔室的近视图，其中包括上部负载锁腔室602、中心板606、环形间隙或通道664和环形腔室660。还展示0形环676。环形间隙的高度和宽度在环带周围是均匀的且经优化。环形间隙的尺寸取决于包括流动速率、腔室容积、腔室直径等的因素。在图6b描绘的实施例中，宽度为约0.03英寸，且高度为约0.25英寸。使
用紧密环隙间隙来限制流动迫使流动为径向的。间隙下方的环形空腔提供用于维持均匀且平稳的流动的缓冲区。在特定实施例中，环形间隙位于晶片表面下方，使得抽气流动为从上向下的，以便提高微粒控制。

【0153】紧密环形间隙的宽度足够小以迫使流动为均匀且径向的，同时保持间隙上的压降处于制造容差内。如果间隙过大，那么所有气体在最靠近抽气端口的那侧向下流动。非常小的间隙（例如，大约5到10密耳）可形成可能难以管理的压降。在某些实施例中，间隙的大小应设计以使得流动为径向的且向下朝不同移动，从而降低或最小化微粒风险（如果不足小以达到完全均匀的话）。

【0154】回到图6a，上部板614中的环形空腔668用于对上部负载锁进行排气——来自入口端口608的气体从环形空腔668穿过环形间隙674且到达上部负载锁空腔602中。环形空腔和环形间隙促进径向排气。环形间隙控制流动，从而促使气体穿过环形空腔并径向排放到腔室中。在仅入站负载锁（如单向流动中所使用）中，径向排气并不存在径向抽气那么关键，因为在排气期间在负载锁中没有晶片，但仍可能有利的是，当ATM门打开时，向水蒸汽提供均匀的流动幕帘。在排气期间，在传入负载锁中没有晶片，因此较少需要流动控制。然而，当传入负载锁ATM门打开时，气体流动接通到负载锁，其在门处形成幕帘以防止空气传入。小型环境中的空气相对较清洁，但含有氧气、水和可能在负载锁（在排气期间）、转移模块和处理腔室中不需的其它成分。通过提供清洁性气体（例如氮气或氯气）的幕帘，防止大气中不良气体进入负载锁。因为当ATM机械手将晶片放置在负载锁中时晶片穿过此幕帘，所以如所描述可将此幕帘的流动向量意味着一股气流并不直接指向晶片。在其它实施例中，入站负载锁排气流动并不是径向的。

【0155】在某些实施例中，环形间隙宽度在约0.005到0.050英寸的范围内。在某些实施例中，环形空腔的矩形横截面可具有介于约0.25到1.5英寸之间的尺寸。举例来说，在特定实施例中，环形空腔具有1.5×0.5英寸的矩形横截面。

【0156】图7a和7b说明用于负载锁，特别是用于图7a和7b描绘的实施例中的上部负载锁的排气扩散器设计。上部负载锁腔702通过中心板706而与下部负载锁腔704分离。中心板706含有上文描述用于对上部负载锁腔702进行抽气的环形凹槽。气体供应端口711位于负载锁的侧面上。气体穿过环形空腔784排放且接着穿过位于负载锁腔室的顶板周围的间隙786（也称为环形通道）引入到下部负载锁腔704。此间隙的几何形状将流体向量从顶板引入并使其朝向晶片中心。在晶片中心处所述气体向量向下朝向晶片的顶部表面弯曲。这些流动向量在图中通过虚线指示。通过穿过紧密间隙进行排气，控制流动传导性以在晶片顶部周围的径向点处形成平滑气流。流动从晶片顶部发出，从而将微粒或其它外来物质推离晶片并防止将外来物质从负载锁腔室的其它区域输送至晶片。在上文论述的上部负载锁入口和出口端口在图7a中不可见。

【0157】图7b中展示间隙和环形空腔的近景图，其中虚线箭头指示流动向量。排放的气体从供应或入口端口711进入并穿过通道713引导到环形空腔784。接着穿过环形间隙786将气体引入到负载锁。间隙是阶梯式的，使得流平行于晶片进入腔室，所得的流动向量在图7a中展示。因为紧密间隙控制流动，从而用排放的气体填充环形空腔784，所以在晶片上方径向并均匀地引入气体。间隙可在晶片上方延伸，使得气体进入腔室的进入点在晶片的边缘与中心之间。在一个实例中，对于300mm晶片来说，进入点处于约8英寸（～200mm）直
径。
[0158] 在图7b描绘的实施例中，下部负载锁针对单向流动中的出站晶片而优化。在出口端口780处从侧面对下部负载锁进行抽气——因为所述负载锁针对出站晶片而优化，所以通常在抽气操作期间不存在晶片且因而流动向量对于管理污染并不是关键的。
[0159] 在以上各图描绘的堆叠式负载锁组合件中，如上文论述的单个中心板用于分隔上部与下部腔室。此板还形成上部负载锁抽气环带和下部负载锁排气环带的环形体积。中心板还形成用于抽气流动控制的间隙且充当排放气体流动控制路径和机械扩散器。
[0160] 上文已经对具有针对入站晶片而优化的上部负载锁和针对出站晶片而优化的下部负载锁的堆叠式负载锁组合件的上下文中描述了在抽气和排气期间用于均匀径向流动的环形设计。根据各种实施例，在其它类型的负载锁组合件中使用排气和/or抽气的环形设计。举例来说，单个堆叠式或非堆叠式负载锁可具有两个环形间隙和腔室来在抽气和排气期间管理流动向量（一个此类实施例如上文在图6a中展示，其具有抽气环带和排气环带）。所属领域的技术人员还将从以上描述中了解到如何针对出站晶片而优化堆叠式负载锁组合件的上部负载锁和针对入站晶片而优化下部负载锁。
[0161] 为了形成上下流动以将微粒推离晶片，环形间隙通常位于晶片支撑件下方以用于抽气，且环形气隙通常位于晶片支撑件上方以用于排气。然而，在某些实施例中，环形气隙可由其它方式放置（例如，由于其它设计考虑因素的缘故）。在另一实施例中，在某些实施例中，负载锁可具有环形间隙和腔室以供应用于另一操作的中心端口组合进行抽气。所述设计可与单向负载锁和双向负载锁两者一起使用。
[0162] 在以上各图中，环形间隙由板和负载锁外壳或侧壁界定；图6a和6b中的上部负载锁抽气间隙664由中心板和外壳或侧壁界定；图7a和7b中的下部负载锁排气间隙786也由中心板和侧壁界定，且图6a中的上部负载锁排气间隙674由上部板和外壳或侧壁界定。环形腔室由中心板或上部板中的环形凹槽形成。根据各种实施例，环形间隙和腔室可由任何恰当结构（例如，负载锁外壳中的环形凹槽）形成，所述结构可用于形成如上文描述的流动路径。可使用任何抑制穿过环形间隙的流动的结构。
[0163] 在某些实施例中，环形间隙（环形通道宽度）在约0.005到0.050英寸的范围内。在某些实施例中，环形腔室的矩形横截面可具有介于约0.25到1.5英寸之间的尺寸。举例来说，对定实施例中，环形腔室具有0.5×0.5英寸的矩形横截面。
图 2A
图 2B
图 3B
来自负载锁

图 3F
拾取或放置动作

臂1 向前

臂2 缩回

图 3G
图 6B