June 23, 1953

R. FUNK

LINE-SPACING COPYHOLDER

2,642,841

Filed July 7, 1950

2 Sheets-Sheet 2
This invention relates to line-spacing copyholders.

Copy holders of the general type here involved have become well established in the typewriting art as an aid and facilitator of copying, line-for-line, material mounted on the copy holder. However, the only known commercial embodiments thereof have been possessed of numerous defects and disadvantages and have been unduly expensive. As hitherto provided they have generally comprised permanently mounted devices, anchored on the desk behind and extending above the typewriter, thus requiring wide and largely unused copy-holding area; the holder has generally been completely vertical so that the lighting and therefore reading of the copy have been trying on the eyes of the operator; they have conventionally been operated by a small extension treadle comprising a long lever with a small flat striking area connected to the copy holder at one end and disposed on one side of and beside the typewriter, requiring one hand use through a necessary long stroke; it has been difficult to have the copy held and read close to the top of the copy holder or to extend above the top, if desired, owing to the limiting nature of the paper clamp used; and the working mechanisms have been exposed to an undesirably degree.

It is among the objects of this invention to improve the art of line-spacing copy holders, both in general and in specific details; to provide an improved line-spacing copy holder of simplicity, beauty, and cheap manufacturing costs, which has high utility and adaptability to change of size of copy held and of the line spacing utilized; to provide a copy holder operated with a treadle or foot member extending completely across the copy holder so as to be operable with ease with either hand; to provide an efficient line-spacing copy holder in which the operating mechanism in large measure is behind the holder to preserve the superficial simplicity of the holder; to provide a copy holder with a line spacer which is automatically adjustable to various thicknesses of copy without disturbance of its line-spacing functions; to provide a line-spacing copy holder formed of stampings so as to be cheap and simple to construct; to provide a line-spacing copy holder which is strong and rigid in use but which is portable and small enough to be placed in the drawer when not in use, to permit the associated typewriter element to be folded away with the closing of the desk; to accommodate either single or double spaced copy work or any increment thereof; to provide adjustment of angle of board at operators discretion; and other objects and advantages will become more apparent as the description proceeds.

In the accompanying drawings forming part of this description:

Fig. 1 represents a perspective of the copy holder of this invention in its operative open case mounting as placed, for instance, on a desk beside or behind a typewriter for easy operation.

Fig. 2 represents a front elevation of the copy holder according to a preferred embodiment thereof.

Fig. 3 represents a side elevation of the copy holder of Fig. 2 partially broken away to show the mounting of the rear support.

Fig. 4 represents a top plan, partially broken away, of the device as illustrated in Fig. 2 omitting the lower flange of the treadle for clarity.

Fig. 5 represents a fragmentary broken section through one side of the copy holder plate, with the overlying line-spacing member shown with the extension thereof in horizontal extension beyond the plate.

Fig. 6 represents a broken rear elevation of the assembly disclosing the operating portions thereof.

Fig. 7 represents a fragmentary side elevation, partially broken away, showing the relation of the operating elements to the plane of the front plate of the copy holder, and the carriage in its mounting on the side edge gauge rail, also showing in full lines the adjusted position of the treadle control with the associated cam set for single line spacing, showing the movement of the treadle-operated bell crank in dotted lines, and also showing by a second dotted line position the treadle position when used for double spacing as when the associated cam is so set as in Fig. 8.

Fig. 8 represents a fragmentary section of the treadle and its associated cam in its adjusted position for permitting double spacing.

Fig. 9 represents a fragmentary top plan showing the relation of the carriage to the side guide rail.

The basic structural unit comprises a frame 10, preferably a stamping, comprising the planar sheet 11, having the upper rearwardly extending flange 12, the rearwardly extending side flanges 13 and 14, and, at the lower end, the forwardly extending paper or foot rest flange 15, bent over upon itself to form the forward paper-retaining ridge 16. The plate, as apertured with various openings in the flanges, to be described, is a simple punching or stamping as a finished
entity. To the rear of the plate 11, close to the lower end thereof, a rearward downwardly inclined bracket 17 is rigidly attached, as by spot welding or the like. The bracket 17 comprises an upper planar portion 18, superimposed against the rear face of the plate 11, and having the downwardly and rearwardly angularly divergent planar portion 20 merging into the angular terminal foot flange or extension 21. The latter is suitably provided with desk-contacting elements, such as the rubber or like feet 22, at opposite ends of the terminal flange 21 transversely of the plate 11. The bracket 17 carries laterally spaced ears suitably bent out of the plane of the flat portion 18 to form two parallel rearwardly projecting supporting arms 23 and 24. Arms 23 and 24 form pivotal supports for the treadle bell crank levers 25 and 26. As these are identical except in one small regard which will be pointed out, each bears identical reference character. Each bell crank lever has a central pivot arm 27 connected to fixed support arm 23 or 24 by a pivot pin 30, or the like, suitably disposed relative to the respective juxtaposed arm to permit the tilting of the respective bell crank levers on pins 30 as common coaxial pivots. Each bell crank has a free upper end 31 or an arm 29, and carries a roller or similar cushioning stop or stud 32 presenting toward the rear face of the plate 11. Each bell crank has a lower end comprised of a forwardly projecting arm 33 having an inward foot 34 fitting into and secured to the bottom of the median plane between the flanges of the angled foot treadle cross piece member 35, extending completely across, below and in front of the copy holder plate 11. The treadle assembly thus described has the upper outer exposed face of the angle member 35 disposed just beneath and in front of the copy or paper foot rest flange 15, at the lower end of the plate 11. The bell crank and angle members form a rigid pivoted unit. The treadle is biased toward an upper position from which it is deflected by the fingers of the operator by means of a vertical rack bar 36 for actuating the carriage, to be described, pivoted to bell crank lever 26 by a horizontal pivot pin 37 passing through a pivot aperture 38 formed in the bell crank lever 26. The rack bar comprises a metal or plastic rod of any desired profile and construction, but which is preferably substantially oblong in cross section, and has a series of downwardly sloping teeth 40 presenting rearwardly of the rear face of the plate 11, to which plate the rack is juxtaposed in substantial parallelism. The upper end of the rack, as at 41, is reduced in size, while establishing or maintaining angularity of cross section, and passes through a correspondingly angular guide hole 42 punched or stamped in the upper rearward flange 12. The rack 36 is disposed inwardly of and generally parallel to the side flange 12 of the plate 11 beyond which, and the superposed guide rail, to be described, is substantially concealed. To impress an upward bias on the rack, a suitable tension spring 43 is provided, anchored to the flange 12, as by being threaded through one or more apertures 44 thereof beside guide aperture 42 therein. The lower end of spring 43 is secured on a pin 45 rigidly projected horizontally laterally of the rack 36 so that the tension of the spring is substantially parallel to the rack and urges the latter upwardly relative to its guide aperture 42 in which it is held and guided against change of angular positioning. The upward pull on the rack from spring 43 effective on the bell crank 26 to which it is pivoted pulls the treads to an operative position, from which it is subject to being depressed by the fingers of the operator. Obviously, through the connections shown, the depression of the treads by the operator causes a proportional axial downward movement of the rack against the urge or bias of the spring 43. A particularly attractive feature of the invention lies in the provision of a side guide rail by which the carriage to be described is guided and which also serves as a lateral aligning shoulder or edge for the plate 11 by which copy can be aligned on the plate 11. The guide rail comprises the flat elongated plate 50 generally rectangular in cross section, rigidly affixed to the side flange 13 of the plate 11 and forming front and rear parallel edges 51 and 52, extending the full length of the copy holder, from an upper edge substantially coincident with the upper flange 12, to a lower termination well beyond the termination of the side flange 13, for a supporting purpose to be described. It will be noted that the forwardly presenting edge 51 extends forward of and beyond the plane of the plate 11 to form a side edge guide for the copy provided by the flat portion 53 of the rail 50 extending forwardly beyond the plate. A traveling line-spacing carriage 54 is provided comprising apertured side plate 55, carrying four studs 56, journaling four guide rollers 57, and each having a peripheral groove within which the edges 51 and 52 respectively are received. The rollers are disposed in vertically spaced pairs to engage the opposite edges 51 and 52 of the guide rail. The rollers and guide rail are so disposed that the carriage 54 has positively guided but free sliding engagement with the guide rail, subject to frictional restraint from the bowed flat spring 39, the ends of which are in apertures 49 of the side plate, so that the bowed center frictionally engages the side of the guide rail 56 to hold the carriage 54 in place whenever it is set, while permitting restrained motion thereof whenever the rack is axially moved downwardly, as will be explained. The plate 55, toward the front of the assembly, is bent angularly to form a concealing panel 60, terminating in the in-bent flange 51, forming the upper exposed portion of the carriage. The plate 55 is prolonged at the top and bottom of the carriage in the horizontal ears 62 and 63, within each of which is formed elongated slots 64, the long axis of which is parallel generally with the planar extent of the side plate 55. The ear 62 is continued forwardly in a fingerpiece 65. A bell crank lever 68 is pivotally mounted on horizontal pin 67 externally of and upon the side plate 55 of the carriage 54. Bell crank 68 at the forward end terminates in a finger piece 70 juxtaposed to the fixed fingerpiece 65 of the bell crank lever by mounting aperture 79 therein with a stud 89 on the side plate 55 to bias the end 72 of the bell crank into engagement with the rack teeth. The juxtaposition of the fixed fingerpiece 65 and the fingerpiece 70 of the bell crank lever 68 is such that by gripping same with the thumb...
and forefinger, the operator can withdraw pawl 71 from the teeth to release the carriage 54 for manual adjustment vertically of the plate 11 against the action of spring device 38.

The line-spacing element of the assembly comprises an elongated strip of more or less heavy sheet metal or "plastic" material or the like 78, having a free end carrying an extension to be described, and having an anchored pivoted end forming an integral extension 76, carrying a pair of parallel spaced ears 77 relative to which preferably the spacer 75 is asymmetrical, being close to the lower ear 77. The ear spacing is just sufficient to permit the ears 77 to slide easily between the ears 62 and 63 on the carriage, with aligned pins 78 of the element mounted on the ears 77 disposed in the respective slots 64. This permits free pivotal motion relative to plate 11 for inserting or removing copy and also effects variable clearances for the copy. With no paper or only a thin paper or like "copy" on the panel 11, with the ear tilted rearwardly, the pins 78 move inwardly gravitationally in the elongated slots to bring the rear face of the strip 75 against and in parallelism with the front face of the plate 11 and the thin copy thereon. With additional thickness of copy material the entire strip 75 and its mounting ears move forwardly parallel to the plate 11 by pin movement in the slots 64, until it rests gravitationally against the outer face of the thicker copy material. To utilize the line spacing for work or copy of greater width than the plate 11, an extension is provided for the relatively heavy strip 75. To this end strip 75 carries the pivoted, relatively short, and relatively thin extension strip 82, anchored to the strip 75, as by a rivet 83 close to the free end of strip 75. The thin strip 82 normally is concealed behind strip 75 and is in an impermanent position by friction. When desired, the extension 82 is swung outwardly about rivet 83 to aligned position with the upper edge of strip 75 to overhang laterally beyond the plate 11, so as to be able to carry the line spacing to work larger than would register with the plate 11, as will be clear.

In order to support the plate 11 at an angle to the vertical and to permit the variable ear effects to be realized efficiently and expeditiously, two angle pieces, respectively 93 and 91 are provided, each having a flat portion for contacting the rear surface of the plate 11, to which they are rigidly secured as by spot welding or the like, each having an upstanding flange 82 perpendicular to the plate 11. Preferably each flange is provided with a series of apertures 93, with the apertures in horizontally spaced pairs in respective horizontal alignment transversely of the flanges 92. A resilient rod is bent into U shape to provide legs 95 disposed in two obtusely angular integral courses having a lower cross connect 96, and the rubber or like bumpers 97, at the end of courses 98, and the latter terminate in short obtusely divergent foot courses 99. The outer sides of the legs carry two studs, respectively 100 adjacent the bend between the courses closer to the cross connection, and 101 outwardly therefrom, for engaging in the courses of two sets of studs, which, mounted in aperture 93, permit the supporting rod to be swung from a position with the cross piece closer to the rear surface of the plate 11, as in the shipping and storage condition of the assembly, while the outer studs 101 are pivoted so as to be capable of being resiliently snapped into related apertures 93, spaced above that pair in which the studs 100 are pivotally mounted. It will be seen that by forcing the legs resiliently toward each other the studs 100 and 101 can be withdrawn from two pairs of transversely aligned apertures 93, and disposed opposite to another pair into which they respectively enter upon expansion of the legs. The rounded studs 101 snap into and out of the locking aperture to hold the legs out during manual manipulation of the copy holder, while permitting the supporting legs to be collapsed for shipping and storage. The short leg courses 99 are parallel to plate 11, while the longer courses 98 extend angularly away and downwardly from plate 11. Thus, the angle of tilt of the copy holder can be easily changed, while securing rigidity in the selected disposition.

As an aid to holding and folding legs against the plate 11 during shipping or storage, it is preferred to have the rubber buttons 32 so disposed and of such diameter as to lie in the path of collapse of the folding legs and as frictionally to hold the legs inwardly against the plate 11. If desired, this can be accomplished by having the ears 31 extend far enough as to intersect the folding legs and past which the folding legs can snap in either direction, under gentle manual urging. The rigid support of the tilted plate 11 through the rubber bumpers 91, and 22, resting in spaced relation on a flat surface such as a desk.

A further important feature of the invention lies in the simplicity and effectiveness of the copy clamp, by which, when desired, the copy material or work can be held against the plate 11, while permitting free movement of the carriage relative to the work. The clamp preferably utilizes a uniquely shaped piece of bent rod 110. At the right hand side of the assembly, looking from the front of the copy holder, (as the left of Fig. 6), the rod 110 is formed with a straight end 111 and is provided with an axial slot 112. This straight end is inserted parallel to the plate 11 through an aperture formed in the side flange 14 at 113. This end 111 is thus behind the plate 11. The rod is then bent at right angles in a downwardly extending course 114, and leads through a right-angled bend into the clamping portion 115 overlying and parallel with the front surface of the plate 11.

The clamping portion 115 carries rubber bumpers or friction devices 116 and terminates close to but spaced from the side guide rail 50, at which point it bends through a right angle into the vertical forwardly inclined course 117 leading well above the plate 11. At this upper level the rod is again bent in a right angled turn into a finger or thumb piece 120, generally parallel to the plate 11 and in front of the plane thereof. The thumb portion through a further right angled bend leads into a downwardly and rearwardly extending extension 121, outwardly beyond the guide rail 50. Finally, the latter course of the rod leads through a still further right angled turn into the horizontally extending relative short extension comprising a pivot piece 122 coaxial with the pivot piece 111 and extending through an aperture 123 in the guide plate 50 and the side flange 13. By inserting the longer pivot end 111 into the short course 114, the last mentioned end 122 can be sprung into position by bending the rod against its inherent resilience.

In order to impose a clamping bias on the clamp, which is symmetrical on both sides, it is preferred to provide the torsion spring 130 enclosing the longer pivot end 111, with one end of the spring anchored in the slot 112, while the
outer end of the spring abuts and bears against the inner surface of the plate 11, as indicated at 131. Any desired mode of limiting the inward axial motion of the cam element 11 may be re-

sorted to, as by upsetting or swaging the rod out-

wardly of the flange, as at 132. To properly bias the other end of the clamp a torsion spring 133 has one end anchored in an aperture in the side rail 50 and side flange 13, and has a terminal extending engaging against one side of the rod extension 121.

It will be seen that by the construction of clamp just described, instantaneous release of the grip of the clamp is secured by rearward pressure on the thumb piece 126 above the upper edge of the plate 11, so that one handed operation is attained, leaving the other hand free to adjust the paper on the work surface 11. At the same time, it is to be observed that the formation at the left hand edge of the copy holder is such with the two vertical legs 117 and 121 connected by the elevated cross piece 120, that a generally rectangular space is defined into which the upper end of the carriage can freely move, in order to have the line-spacing element 75 start its spacing functions close to the upper edge of the plate 11 immediately adjacent to the clamp 145. This is an advantageous feature of applicant's structure which is not attainable with any other known device for the same purpose. This is obtained without sacrificing adequate gripping and clamping of the copy work on the work-holding surface of plate 11. As the clamp goes on so readily as described, so also can the left hand side thereof at least be freely released and moved out of the way if for any reason it is desired to slide the carriage vertically off the end of the side guide plate 50, as for inspection, repair or lubrication or the like.

It will be seen that as so far described the operation of the device is simple and expeditious. With the work in place and superposed, regardless of thickness, by the overlying spacing bar 75, and with the carriage provided with a suitable friction preventing it from unrestrained slid-

ing on the track 50, each downward motion of the treadle is accompanied by a downward pull on the rack. As the carriage is coupled to the rack by means of the biased pawl 71, the car-

riage will move downward so far as the rack moves, thus sliding the space bar 75 downwardly relative to the work. At the lower end of the downward stroke of the treadle, when the rack stops, the carriage is frictionally held against the side rail 50 so that release of the treadle permits the upward retraction of the rack under the influence of its spring, which slides the rack relative to the carriage by causing the pawl 71 to slide over the sloping teeth surface until the rack attains its upward normally biased posi-

tion. This will be repeated as often as the treadle is depressed and then released. Owing to the width of the treadle, as noted, it will be observed that it may be manipulated anywhere along its width, or toward either end thereof.

In most cases it will be preferred that the treadle motion be arranged for selective limita-

tion so that one or two lines or more may be quickly predetermined and the mechanism changed to secure the desired result. To this end a modification is made of the bell crank lever 22, to provide a lateral offset stop or abutment 26 extending outwardly toward the guide rail 50. A fingerpiece 141 is journaled on a pivotal pin 146, mounted in the lower extension of the side 75

guide rail 50 for operation by a finger of the operator. The fingerpiece 141 has the lateral offset 142 for facilitation of engagement by the operator and a cam element 143, journaled on pin 140. The cam is made of suit-

able cushioning material, if desired, although it may be a plastic device having little cushioning and has a short rise 144 arranged to abut the rear surface of the plate 11 adjacent to the work rest flange 15 on one angular position, while extending a longer cam element 145 at such a point as to be abutted by and to the upward motion of the stop 26 and thus to limit the motion of the bell crank 26 in one direction in said one angular setting. The disposition is then as shown in Fig. 7 with a single spacing of the carriage for each complete depression of the treadle. This is ac-

complished by moving the fingerpiece 142 to the rear limited by the abutment of the short cam portion 144 against the plate 11. To double the length of permitted treadle travel, the finger-

piece 142 is moved forwardly to bring the side 145 of the long cam portion against the lower surface of the rest 15 as a stop, while bringing a surface 146 into position to be abutted by the stop 26. The change is facile and quick, and is from the front of the device, and establishes a quick change of spacing from single to double space, or greater spacings if so desired. Generally this change from single to double spacing is sufficient, although it will be understood that with certain modifications of the cam that a greater range of spacings can be effected.

It will be understood as preferable that the teeth of the rack terminate at the bottom of the rack preferably at a point precluding lowering the carriage far enough to contact paper ledger 15. The ruggedness, simplicity and extreme econ-

omy of the invention will be manifest.

Having thus described my invention, I claim:

1. A line-spacing copy holder comprising a plate, means for supporting the plate, a guide rail mounted on the plate perpendicular to the plane thereof and having parallel guide edges each projecting and located beyond the plane of the plate, a line-spacing carriage comprising a frame, peripherally grooved rollers on the frame for guided rolling contact with the said guide edges said rollers being plural spaced pairs respectively engaging opposite edges of said rail, means establishing friction laterally between the carriage and the plate to restrain the guided motion of the carriage, means for moving the carriage step by step downwardly, and a spacing bar pivotally mounted on the carriage and overlying the plate.

2. In line-spacing copy holders, a plate, a guide rail having parallel front and rear guide edges, means mounting said guide rail on the plate per-

pendicular to the plane of the plate, a carriage comprising a supporting frame, rollers mounted on the frame to straddle and roll on the respec-

tive guide edges of the guide rail, said frame having spaced apertures, and a bowed spring element having ends and an intermediate portion, said ends being mounted in the respective apertures and said intermediate portion bearing laterally against said guide rail as a friction device to limit the sliding motion of the carriage relative to the plate by the linearly extending face of said rail.

3. In line-spacing copy holders, a plate, a guide rail having parallel guide edges, means mounting the rail on the plate at one side of and normal to the plate with the guide edges substantially parallel to the plate with one of said edges spaced
forwardly of the plate to dispose the rail as a lateral work guide, means for supporting the plate at an angle on a support, a treadle pivoted to the plate and a rack bar pivotally disposed for movement across the plate at the lower end thereof operable by pressure on any part thereof, a line-spacing mechanism comprising a carriage slidably on said rail spaced plateewardly of and in the plane of the rail from the plate so as to facilitate use of the rail as a work guide and a generally flat bar, means pivotally connecting said bar to the carriage on an axis spaced from said plate and from the flat bar parallel to said guide rail, whereby the bar is movable from a position overlying and in substantial contact with said plate, to a position generally normal to the plate to permit the insertion of papers and the use of said rail as a lateral work guide therefor, and means connecting the treadle with the mechanism to move the mechanism in a step-by-step progress downwardly across the plate in response to actuation by the treadle.

4. In line-spacing copy holders, a frame comprising a substantially planar plate with upper and side flanges extending rearwardly of the plate, a guide rail having parallel front and rear guide edges, means mounting the rail on a side flange of the frame and extending forwardly of the plane of the plate to form a side guide edge for copy on the plate, a treadle comprising a pair of bell crank levers and a connecting treadle bar, means mounting the treadle system on and for oscillation relative to the plate, a carriage and overlying the plate, a rack disposed behind the plate, an angular opening being formed in said upper flange through which an end of said rack extends for guided non-rotative motion relative thereto, means pivotally mounting the other end of the rack to the treadle system, said rack having downwardly sloping teeth, a bell crank lever pivotally and longitudinally mounted on the carriage of which lever one end forms a fingerpiece and the other end forms a pawl engaging said teeth of said rack and disposed for disengagement upon actuation of the fingerpiece for disengaging the carriage from the rack for manual setting of the carriage on the rail, means for biasing the rack upwardly and thus holding the treadle system in operative finger-engaging and depressing position.

5. In line-spacing copy holders, a frame comprising a plate for receiving copy, a treadle device pivoted to the frame and movable in a restricted path, a rack bar pivoted to the treadle device and having teeth, means mounting the rack bar for guided movement relative to the frame, a guide rail mounted on the frame, a carriage slidably on the guide rail, a bell crank lever pivoted to the carriage, one arm of which comprises a pawl for engaging the teeth of said rack bar, means biasing the bell crank lever to urge the pawl against the teeth, another arm of said bell crank comprising manual means on the bell crank for moving said bell crank against its bias to release the pawl from the teeth for manual sliding of the carriage on said guide rail, said carriage comprising a plate, spaced sets of rollers journaled on the plate and straddling the guide bar, a fingerpiece formed on the plate in juxtaposition to said manual means on the bell crank for receiving digits of an operator and by relative compressing action thereof to release said pawl by moving said bell crank to permit movement of the carriage.

6. In line-spacing copy holders, a frame comprising a plate for receiving copy and a forward flange at the bottom edge of the plate, a treadle device pivoted to the frame and movable in a restricted path, means forming stops for limiting the path of movement of the treadle, one of said means being adjustable to establish a different limit for the path of the treadle, comprising a pivoted cam, a fingerpiece mounted for pivotal movement with the cam, means on the cam engaging the plate in one cam position, means on the cam for engaging the flange in a second cam position, means on the cam forming a first stop for the treadle in said one cam position, and other means on the cam forming a second stop for the treadle in said second position of said cam, a rack bar pivoted at one end to the treadle device behind said plate, and having teeth, means mounting the other end of the rack bar for guided longitudinal axial movement of the rack bar generally parallel to the plate, means for biasing the rack bar upwardly to pull the treadle against one of its limits in position to be actuated by an operator, a carriage, means forming a lateral guide on said plate mounting the carriage for guided movement relative to the plate, means mounted movably on the carriage for engaging the said teeth, means biasing the movably mounted means toward engagement of said teeth, and a line-spacing member mounted pivotally on the carrier.

7. In line-spacing copy holders, a supporting frame comprising a plate having parallel edges and an exposed side face, guide means on the plate, a carriage comprising a second frame, peripherally grooved rollers mounted rotatably on the second frame and straddling the guide means engaging the respective edges for guiding the slidable movement of the carriage relative to said plate, apertures in the second frame, a bowed spring mounted in the apertures and bearing laterally against said side face of said guide means substantially parallel to said guide means to frictionally restrain sliding movement of the carriage relative to the plate, and means for positively moving the carriage downwardly in a step-by-step movement.

8. In line-spacing copy holders, a frame comprising a plate, carriage guide means mounted on the plate, a carriage mounted on said guide means for sliding movement thereon relative to said plate, said carriage comprising spaced parallel ears normal to said plate, a line-spacing member comprising a rod having a guide edge, a connection extending generally perpendicular to said edge, spaced parallel ears mounted on the connection for parallel juxtaposition to the respective first mentioned ears, complementary means on the respective pairs of juxtaposed ears comprising a pivot pin and an elongated slot the long axis of which is normal to said plate, providing a lost motion for adjustment to various thicknesses of copy on said plate, said second mentioned spaced ears and said connection being asymmetrical of the rod edge so that the rod edge is closer to one ear than to the other, and a clamping device pivoted to the frame and overlying the plate, said asymmetry permitting the carriage to start from a position close to the upper edge of said plate while the spacing member edge is aligned with and disposed just below the said clamping means.

RUDOLPH FUNK.

(References on following page)
References Cited in the file of this patent

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>601,112</td>
<td>Woodruff</td>
<td>Mar. 22, 1898</td>
</tr>
<tr>
<td>678,541</td>
<td>Coffee</td>
<td>July 16, 1901</td>
</tr>
<tr>
<td>679,302</td>
<td>Edwards</td>
<td>July 30, 1901</td>
</tr>
<tr>
<td>1,580,344</td>
<td>Stillians</td>
<td>Apr. 13, 1926</td>
</tr>
<tr>
<td>1,709,188</td>
<td>Ostediek et al.</td>
<td>Apr. 16, 1929</td>
</tr>
<tr>
<td>1,719,422</td>
<td>Brietenback</td>
<td>July 2, 1929</td>
</tr>
<tr>
<td>2,115,331</td>
<td>Ford</td>
<td>Apr. 20, 1938</td>
</tr>
<tr>
<td>2,183,276</td>
<td>Collin et al.</td>
<td>Dec. 12, 1939</td>
</tr>
</tbody>
</table>

FOREIGN PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,206,961</td>
<td>Israel</td>
<td>July 9, 1940</td>
</tr>
<tr>
<td>2,217,127</td>
<td>Metcalf</td>
<td>Oct. 8, 1940</td>
</tr>
<tr>
<td>2,273,584</td>
<td>Moore</td>
<td>Feb. 17, 1942</td>
</tr>
<tr>
<td>2,447,460</td>
<td>Forsyth</td>
<td>Aug. 17, 1948</td>
</tr>
<tr>
<td>2,448,580</td>
<td>Crosby</td>
<td>Sept. 7, 1948</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Country</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>246,575</td>
<td>Germany</td>
<td>May 7, 1912</td>
</tr>
<tr>
<td>880,722</td>
<td>France</td>
<td>Jan. 6, 1943</td>
</tr>
</tbody>
</table>