Office de la Propriete Canadian CA 2618135 C 2014/10/28

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 61 8 135
Un organisme An agency of 12) BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
(13) C
(86) Date de depot PCT/PCT Filing Date: 2006/08/09 (51) Cl.Int./Int.Cl. GO6F 17/30 (2006.01),
(87) Date publication PCT/PCT Publication Date: 2007/02/15 GO6F 21/62 (2013.01)
2 1s , (72) Inventeur/Inventor:
(45) Date de delivrance/lssue Date: 2014/10/28 GOSNELL THOMAS F. CA
(85) Entree phase nationale/National Entry: 2008/02/07 L
(73) Proprietaire/Owner:
(86) N° demande PCT/PCT Application No.: CA 2006/001312 NEXSAN TECHNOLOGIES CANADA INC. CA
(87) N° publication PCT/PCT Publication No.: 200//016/87 (74) Agent: FREEDMAN & ASSOCIATES

(30) Priorite/Priority: 2005/08/09 (US60/706,425)

(54) Titre : SYSTEME D'ARCHIVAGE DE DONNEES
(54) Title: DATA ARCHIVING SYSTEM

e~
Client
FSW storage
132 154
Client Node
130

142
Asset
Storage
148a
Storage Manager
146
Asset
Storage
148b

Manifest
Engine
150

Disposition
Agent
154
Key
Manager
Customer Information 152
Service

Data Archiving System
140

y Server
156

(57) Abrege/Abstract:
An encrypted file storage solution consists of a cluster of processing nodes, external data storage, and a software agent (the "File
System Watcher”), which Is Installed on the application servers. Cluster sizes of one node up to many hundreds of nodes are

SwssvessEs

BSNRRRS O B

MRARRAANS 1 ege S\ "'.‘
-

I*I ' ¥ oo, B
C an ad a http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca OPTC B e o
OPIC - CIPO 191 SR

CA 2618135 C 2014/10/28

anen 2 618 135
(13) C

(57) Abrege(suite)/Abstract(continued):

possible. There are also remote "Key Servers” which provide various services to one or more clusters. The preceding describes a

preferred embodiment, though in some cases it may be desirable to "collapse” some of the functionality into a smaller number of
hardware devices, typically trading off cost versus security and fault-tolerance.

w0 2007/016787 A3 I D00 DAY A RO O 0

CA 02618135 2008-02-07

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization f%
International Bureau ¥

(43) International Publication Date
15 February 2007 (15.02.2007)

(51) International Patent Classification:
GO6F 17/30 (2006.01) GO6F 21/00 (2006.01)

(21) International Application Number:

PCT/CA2006/001312
(22) International Filing Date: 9 August 2006 (09.08.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/706,425 9 August 2005 (09.08.2005) US

(71) Applicant (for all designated States except US): NEXSAN
TECHNOLOGIES CANADA INC. [CA/CA];, 1405
Trans Canada, Suite 300, Dorval, Québec H9P 2V9 (CA).

(72) Inventor; and

(75) Inventor/Applicant (for US only): GOSNELL, Thomas,
F. [CA/CA]; 192 Fairhaven, P.O. Box 733, Hudson,
Québec JOP 1HO (CA).

(74) Agents: ANDRADE, Dilip, C. etal.; BORDEN LADNER
GERVAIS LLP, World Exchange Plaza, 100 Queen Street,
Suite 1100, Ottawa, Ontario K1P 1J9 (CA).

(54) Title: DATA ARCHIVING SYSTEM

Client
FSW storage
132

134

Client Node
130

142
Storage Manager
146

Manifest
Engine

150 Disposition

Agent
154

Key
Manager
Customer Information 162

Service
144

Key Server
166

Asset
Storage

148a

(10) International Publication Number

WO 2007/016787 A3

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA,
NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC,
SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ,
UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
/W), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, I,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BEF, BJ, CFE, CG, CI, CM, GA,

GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

[Continued on next page]

(57) Abstract: An encrypted file storage
solution consists of a cluster of processing
nodes, external data storage, and a software
agent (the "File System Watcher"), which is
installed on the application servers. Cluster
sizes of one node up to many hundreds of
nodes are possible. There are also remote
"Key Servers" which provide various services
to one or more clusters. The preceding
describes a preferred embodiment, though in
some cases it may be desirable to "collapse”
some of the functionality into a smaller
number of hardware devices, typically trading
off cost versus security and fault-tolerance.

Asset
Storage

148b

Data Archiving System

140

CA 02618135 2008-02-07

WO 2007/016787 A3 M VA!H FARO D00 TN 1 0 A A0 A A

— before the expiration of the time limit for amending the Fortwo-letter codes and other abbreviations, refer to the "Guid-
claims and to be republished in the event of receipt of ance Notes on Codes and Abbreviations"” appearing at the begin-
amendments ning of each regular issue of the PCT Gazette.

(88) Date of publication of the international search report:
12 April 2007

CA 02618135 2008-02-08

Apr7es gﬁoé/dd /3/2

10

15

20

25

- 11 JUNE 2607 {1-06-87

FIELD OF THE INVENTION

The present invention relates generally to file storage and management. More
particularly, the present invention relates to storage of files in a secure file system to
provide accurate date registration of files, content authentication, and immutability.
Encryption of the files can also be implemented to provide security and to allow
encryption based deletion of files.

BACKGROUND OF THE INVENTION

Many corporate and government entities collect data, and are governed by
requlations dictating how the data is to be stored and retained. Different types of data are
subject to different types of regulations. Data must often be secured against manipulation,
so that it is difficult or impossible for changes to be made to the data without the creation
of an audit trail.

Numerous financial reporting regulations require that certain types of data must be
maintained for a fixed time period for examination by regulatory bodies. Other data, such
as customer financial data or medical records, must be secured against accidental
release, and must only be maintained for a defined time period. This can create
difficulties for entities that must maintain one set of data for a first time period, and
another set of data that cannot be stored for longer than a shorter time period.

In most corporate environments, data is stored on a centralized file system.
Safeguards, such as access rights, can be implemented to allow segregated or tiered
access to the various types of data on the server. For data security, the central file
repository is typically backed-up to provide recovery ability in the event of catastrophic
data loss. Backing-up the data typically resulits in all data being stored on a single backup

10

15

20

25

30

CA 02618135 2008-02-07

WO 2007/016787 PCT/CA2006/001312

media element such as a tape. This backup must them be stored for two competing
storage times. Some of the data must be preserved, while other data should not be.

Furthermore, if court proceedings or an audit are ongoing, destruction of the
backup to allow the required deletion is not permitted. This may result in a requirement for
indefinite retention of documents associated with a particular case. It is exceedingly
difficult to search through every storage device and piece of backup media to find the
data of interest, and of course, for the duration of the order all such media must be
preserved. Failure to comply completely has resulted in the most extreme sanctions, and
In some cases may lead to criminal prosecution. On the other hand, any given piece of
backup media may have information on it relating to thousands or millions of cases
unrelated to the court order, the indefinite preservation of which leads to said unrelated
data not being destroyed when it is prudent or legally necessary to do so.

The problem is compounded by the fact that it is usually necessary to “restore” a
backup tape (i.e. copy it back to hard disk) to be able to search through its content for
information of interest. In addition to being labor-intensive and time consuming, it typically
requires a duplicate set of hardware upon which to perform the restore operation as the
system that created the data is likely to be fully utilized in the day-to-day running of the
business. Many times the deadlines for producing documents are on the order of 48
hours, which is typically insufficient to load and search every backup tape in a typical
enterprise.

The conventional data center paradigm consists of servers, external primary
storage (typically connected via a Storage Area Network), and backup tape drives
(usually in the form of a “library” which is a robotic assembly holding a few tape drives
and dozens or hundreds of tape media cassettes). This is inadequate for compliance with
many regulations for a number of reasons.

The system administrator of a storage network has sufficient access rights so that
he may covertly add, delete, or modify any business record in such a way that forensic
examination Is unlikely to reveal this activity. In a large corporation, there may be many
individuals with administrator rights, so even if it was known that tampering had taken
place, it would be impossible to determine who was responsible (or indeed, that it was a
deliberate act at all and not an accident or software malfunction). Furthermore, for the

reasons mentioned above It is not practical to accurately enforce document retention

10

15

20

25

30

CA 02618135 2008-02-07

WO 2007/016787 PCT/CA2006/001312

periods as there is no way to “surgically” delete a given record from a piece of backup
media.

Conventional data centers do not encrypt the data on the primary storage devices
nor the backup media, making them vulnerable to hackers or the loss or physical theft of
backup media as it Is In transit to the storage facility.

Attempts have been made to address these shortcomings in the conventional data
center. One commonly used approach is to store business records on so-called “"WORM’
(Write Once Read Many) media, which is perceived to be more secure than ordinary
computer media. However, the WORM approach has several serious weaknesses.
Firstly, WORM media tends to be slow and unreliable. Second, in order to have a given
document retention period, it is necessary to group documents together with similar
expiry dates on a given piece of WORM media so that it can be destroyed as a unit on
the appropriate date (e.g. by shredding or burning). The segmentation of data prior to
backup is difficult to achieve in practice. Unfortunately, if a court or regulatory order is
found to apply to a single file on the WORM media (which may be many gigabytes in size
and hold millions of files), the entire WORM media must be preserved even if it is
desirable or necessary to destroy the remaining files. Furthermore, the perceived tamper-
resistance of WORM media is largely an illusion as it is a simple technical exercise to
copy the contents of a WORM media to the perpetrator's computer, modify anything
desired on the copy, and re-write the adulterated data back to a fresh piece of WORM
media and substitute this new media for the old media. Lastly, since WORM media is
typically stored off-line (e.g. in a box in a closet), there is no automated way to audit the
data for completeness and stability. When the time comes to present the data to a court
or regulator, only then it may be discovered to be unreadable or incomplete.

To address the limitations of WORM media, a new type of storage equipment was
developed, specifically designed for the needs of fixed content data. Some variants were
subsequently developed which added additional anti-tamper technologies, said variants
commonly referred to as “compliant storage” devices.

A typical “compliant storage” device is the Centera™, manufactured by EMC
Corporation. Although it addresses some limitations of conventional storage devices,
such as providing assurance that data was not inadvertently modified or deliberately

tampered with, it does not address all the issues. Data is not encrypted while inside the

10

15

20

25

30

CA 02618135 2008-02-07

WO 2007/016787 PCT/CA2006/001312

unit, thus it would be insecure to allow the data to be backed up to tape or optical media.
Furthermore, the architecture requires integration with the proprietary Centera Application
Programming Interface (APl) which does not include an industry-standard access
mechanism for reading or writing data. Lastly, it does not provide any mechanism by
which a neutral third party can attest to the completeness or the records under
management nor the times and dates said records were created.

Another limitation of prior art “compliant storage” devices is they lack any features,
which allow the automated gathering of assets from mobile computing devices (e.qg.
laptop computers), or remote branch offices. A further limitation of these devices is that
the provide no mechanism for deletion of files on offline media such as optical platters or
tape.

It is, therefore, desirable to provide a file storage solution that provides encrypted
storage with the ability to erase expired information but without providing an opportunity

to modify data or the contents of the system without leaving a secure audit trail.

SUMMARY OF THE INVENTION

It Is an object of the present invention to obviate or mitigate at least one
disadvantage of previous encrypted file storage solutions.

In a first aspect of the present invention, there is provided a method of storing a
received file. The method comprises the steps of assembling a set of metadata and a
unique file identifier associated with the file; storing the file as an asset; and creating a
data record associating the metadata associated with the file with the stored asset.

In embodiments of the first aspect, the step of storing the file as an asset includes
creating an asset by encrypting the file, which may include obtaining a symmetrical
encryption key and uniquely associating the key with the file, and storing the asset. In
other embodiments, the method further includes the step of associating a timestamp with
the file prior to the step of encrypting in the data record. The unique file identifier can
Include a concatenation of cryptographic hashes of the file contents including such
cryptographic hashes as hashes selected from MD-5, SHA-1, SHA-224, SHA-256, SHA-
384 and SHA-512. The unique file identifier can also include a file size, while the

metadata can include a serial number associated with the file, and the encryption key

10

15

20

25

30

CA 02618135 2008-02-07

WO 2007/016787 PCT/CA2006/001312

where appropriate. The step of creating a data record can include adding an entry to a
storage manifest which includes a serialized list of assets stored in a defined time frame.
The method can also include the step of closing the storage manifest, and storing the
storage manifest as an asset which would include assembling a set of metadata
assoclated with the storage manifest; encrypting the storage manifest to create an asset:
storing the asset; and creating an entry in a new storage manifest associating the
metadata associated with the manifest with the stored asset.

In a second aspect of the present invention, there is provided a method of storing
data In an auditable data storage system. The method comprises recording, in a
manifest, data associated with files received for storage in the auditable data storage
system; closing the manifest; storing the manifest as a file in the auditable data storage
system; and creating a new manifest associated with files received for storage in the
auditable data storage system, the new manifest having as an entry the previous
manifest.

In embodiments of the second aspect of the present invention, the step of
recording can include storing a unique file identifier, a file size, a serial number
associated with the each of the files received for storage, encryption key identification
information, and retention information. The unique file identifier can be determined in
accordance with at least two cryptographic hashes of the associated file, and may be the
concatenation of at least two cryptographic hashes of the associated file. The step of
closing the manifest can be performed after a predetermined time interval from the
creation of the manifest. The step of creating the new manifest can include recording a
unique file identifier associated with the previous manifest as the first entry in the new
manifest, the unique file identifier including a concatenation of cryptographic hashes of
the closed manifest contents. The step of closing the manifest can include forwarding a
copy of the stored manifest to a trusted third party.

In a third aspect of the present invention, there is provided a data archiving
system for storing files in an auditable file system. The data archiving system comprises a
storage array, a storage manager and a manifest engine. The storage array stores
assets. The storage manager stores files received by the data archiving system as assets

In the storage array. The manifest engine receives data associated with files stored by the

10

15

20

25

30

CA 02618135 2008-02-07
WO 2007/016787 PCT/CA2006/001312

storage manager as assets and stores the received data in a manifest to create an
auditable log of assets stored in the storage array.

In embodiments of the third aspect of the present invention, the storage array is a
redundant array of independent drives and the storage manager includes an encryption
engine for encrypting at least one of received files prior to storage. The received data can
include an identification of the encryption key used by the storage manager in encrypting
the file, and the encryption engine can include a key manager for storing a cache of
encryption keys obtained from an external key server. The manifest engine can include a
manifest management unit for closing an existing manifest at a predetermine time after
creation of the manifest, for providing the closed manifest to the storage manager as a file
for storage as an asset, for creating a new manifest upon closing of the existing manifest,
and for providing a closed manifest to a trusted third party upon storage of the closed
manifest as an asset. The received data associated with files stored by the storage
manager can include at least one of a unique file identifier, a file size, a serial number a
retention policy and an identification of an encryption key associated with the asset. The
data archiving system can also include a disposition agent for creating a disposition
manifest listing assets stored in the storage array marked for deletion, and for rending
assets in the disposition manifest as inaccessible upon receipt of authorization to render
the assets inaccessible. The disposition agent can include a retention policy agent for
creating the disposition manifest in consultation with retention policies associated with
each of the stored assets. The disposition agent can also include encryption key removal
means for removing an encryption key associated with an asset listed in the disposition
manifest to render the asset inaccessible upon the receipt of authorization.

Other aspects and features of the present invention will become apparent to those
ordinarily skilled in the art upon review of the following description of specific

embodiments of the invention in conjunction with the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention will now be described, by way of example

only, with reference to the attached Figures, wherein:

Figure 1 is a flow chart illustrating a method of storing an asset;

CA 02618135 2008-02-08

S

10

19

20

25

30

P 77er 2004/09/3 /2

11 JUNE 2007 11-06-07

Figure 2 is a flow chart illustrating 2 method of encryption key scrubbing an
asset; and

Figure 3 is a block diagram illustrating a data archiving system of the
present invention.

DETAILED DESCRIPTION

Generally, the present invention provides a method and system for long term
archiving of files as digital assets.

Elements of the system described below can be implemented in a modular
fashion without departing from the present invention. Thus features can be added and
removed from the system without necessarily departing from the intended scope of the
present invention.

The system of the present invention provides the ability to have storage profiles
based on any number of criteria including the user that creates the file, a directory that
the file is placed into, and other criteria that will be apparent to those skilled in the art.

To allow data security to be addressed, the present invention makes use of data
encryption on a unique key per file basis. When a file enters the data archiving system of
the present invention, it is encrypted and stored as an asset. A unique file identifier (uFID)
is calculated from the contents of the asset, and is maintained in a database. The uFID is
preferably determined in accordance with the contents of the file so that it is unique for a
given file. A serial number is also assigned to the asset. The metadata can include a
creation date, and other information that can be used to determine the retention iength of
the file. In one embodiment of the present invention, the uFID, the serial number and
other information associated with the asset is stored in a list-formatted file called a
“manifest’.

The serialization of assets in a manifest allows an audit at a later date to ensure
that the data record is complete. The manifest itself can be stored in the file system as a
file that will be converted into an asset. Thus, listed in each manifest is the previous
manifest. The removal of a serialized entry in a manifest will be noticeable by the gap in
the numbering, while the task of renumbering all subsequent entries is made difficult by

the incorporation of each manifest into the subsequent manifest. Tampering with a

10

15

20

25

30

CA 02618135 2008-02-07
WO 2007/016787 PCT/CA2006/001312

manifest can be made more difficult if the uFID contains information about the asset. such
as a cryptographic hash of the file contents along with a file size. When this is
implemented, tampering with manifests becomes computationally complex in addition to
time consuming.

By using different encryption keys for each file, files can be individually removed
from the data archiving system by purging the database entry storing the decryption key.
So long as sufficiently secure encryption methods were used, recovery of the data in the
encrypted asset will be effectively impossible. Thus, the encrypted assets can be safely
backed up to offline media such as tape or optical. The presence of assets with different
expiry dates does not cause difficulty, as the deletion of an asset can be effectively be
achieved by deletion of the key required to decrypt the asset. This technique is referred to
as cryptographic key scrubbing.

Details of the implementation of the system of the present invention are provided
below for exemplary purposes, and the following discussion should not be considered to
be limiting in scope. Although reference is made to the use of a plurality of computer
systems, this is simply a presently preferred embodiment that can make use of redundant
elements to prevent unexpected failure. The system of the present invention could be
Implemented on a single system without departing from intended scope of protection.
Furthermore, elements such as the master Key Server which are indicated as being
iIndependent operators could be integrated with the data archiving system of the present
invention. They are illustrated as distinct entities in the following discussion and figures to
provide an additional level of data security and to provide a further safeguard against
operator tampering.

In one embodiment of the present invention, the data archiving system of the
present invention is implemented making use of a plurality of interconnected computer
systems, or "‘nodes”. The use of a plurality of computer systems allows for redundancy
and division of functionality to prevent a single point of failure. On each of the
interconnected computer systems, various software modules are installed. Data is
preferably stored on file storage systems that offer a degree of redundancy such as
Redundant Arrays of Independent Drives (RAID) arrays.

In a presently preferred embodiment, two front end nodes are connected to two

back end nodes allowing for workload distribution between the front and back end nodes,

10

15

20

25

30

CA 02618135 2008-02-07
WO 2007/016787 PCT/CA2006/001312

and to provide active redundancy. The back end nodes preferably make use of RAID
arrays for their data storage needs.

On client computer systems that connect to the data archiving system, a File
System Watcher (FSW) module is executed to watch for data that should be stored in the
data archiving system. When a file is saved that conforms to the requirements for being
stored in the data archival system, the FSW connects to the data archiving system and
transfers the file.

Connected to the data archiving system is a Key Server, which is preferably
backed up by a redundant Key Server. These Key Servers can be located in a
geographically remote location to remove the ability to tamper with the Key Servers. It
may be advantageous for the Key Servers to be hosted by a trusted third party (TTP). For
highest performance, hardware-based cryptographic accelerator chips or cards may be
Installed in some or all of the nodes of the data archiving system where encryption and
decryption are required.

As discussed above, the workload can be divided between “front end” and “back
end” nodes, with redundancy provided at both the front and back ends. The front end
nodes typically interact with the user while the back end nodes are isolated from the user.
This design allows for the operation of the back end nodes to be changed without
Impacting upon the user. With the FSW installed on user computers, the front end nodes
operate as an interface between FSW and the data archiving system. This allows the
back end nodes to manage the encryption, storage, manifesting, and metadata database
management. Communication between nodes in the data archiving system can be
effected through the use of conventional computer networking technology such as
Ethernet, token ring and other similar networking technologies. Connection of the back
end nodes to data storage devices can similarly be made using standard storage
connection technologies such as Fiber Channel.

The FSW can be implemented on a number of different computing platforms
including Microsoft Windows, Linux, Apple’s OS X. Sun’s Solaris and other common
platforms including BSD Unix. Upon receiving a connection from an FSW instance from a
connected computer, the front end node can provide a number of services iIncluding
authorization of the FSW client, a timestamping service, an administrative service, a

configuration service and a service manager application. Files received for storage as

10

15

20

25

30

CA 02618135 2008-02-07

WO 2007/016787 PCT/CA2006/001312

assets are preferably associated with a timestamp provided by the front end node so that
the clock of the computer creating the file does not have to be trusted. This timestamping
can include associating the timestamp with an XML file descriptor associated with the file.
The timestamp can also be cryptographically signed by the timestamping service to
provide authentication of the timestamp. Timestamping is a common service whose
implementation will be well understood by those skilled in the art. A user connecting to
the data archiving system may require access to an administrative panel so that settings
can be reviewed by an authorized individual. The front end nodes can provide an
interface for such modification to settings, including through the provision of a web-based
configuration tool or through the ability to accept messages passed from a standalone
application on a user node. A global configuration can also be provided so that a list of
trusted clients, servers and users can be maintained and viewed by administrators. A
services manager can also be implemented to monitor transactions between nodes or
modules. If a requested transaction is not completed within a timeout period, the services
manager can re-issue the transaction request.

The back end nodes can be implemented so that services provided by the back
end nodes include a Customer Information Service, a storage service, a Key Manager
service, a manifest service, a disposition service, an audit service, an Object File Service
(OFS) service, and a services manager. The Customer Information Service can be used
to manage the database used to track assets as they are stored. This provides a single
entity for serializing assets and caching and storing the metadata associated with the
serialized assets. The storage service provides an interface to the physical storage
devices. This provides a defined interface for the rest of the system to interact with the
storage device through, allowing a change in the design of the storage devices to be
transparent to the rest of the system. The storage service can also handle managing
redundant storage of the data on a pair of connected RAID subsystems. The Key
Manager service handles and assigns the keys used to encrypt individual assets. If keys
are generated by an external entity the Key Manager service is typically responsible for
requesting new keys when the locally cached set is sufficiently depleted. The manifest
service assembles a manifest of the assets placed into storage. In one embodiment,
manifests are created at fixed intervals, after a predetermined number of assets are
stored, or a combination of both factors. The manifest is typically a file, such as an XML

- 10 -

10

15

20

25

30

CA 02618135 2008-02-07

WO 2007/016787 PCT/CA2006/001312

formatted message, that tracks the serialized assets. When a manifest is completed, it
can be digitally signed using the Time Stamping service to ensure that it is not tampered
with, and it can be stored as an asset. By storing a manifest as an asset, the manifest
pecomes the first item recorded in the next manifest. When a series of manifests are
examined, each manifest, save for the first, will have the previous manifest as the first
entry, along with the uFID associated with the previous manifest. A manifest cannot easily
be tampered with, as that would change the uFID, which is recorded in the next manifest.
Thus, modifying a manifest would require modifying all the subsequent manifests, which
would be difficult to do without leaving a trail due to the use of a secure time stamping
process. Manifests can also be provided to the Key Server allowing a comparison of the
stored manifest with a known good copy. Thus, if an individual wished to modify an asset,
the change would be noticeable due to the fact that the asset is recorded in an manifest,
and the manifest cannot be modified without creating a trail. If an asset is removed, the
serialization of assets will reveal the removal, as a gap in the serial number sequence will
be noticeable. Thus, information such as the uFID associated with the manifest, and other
file related information to be stored in a carry forward manner. This carry forward manner
(also described as a Russian-doll storage method) encapsulates one manifest as an item
In a subsequent manifest. An audit process can easily be implemented that checks the
validity of an asset by recomputing its uFID, verifying the recomputed uFID with the uFID
stored in the manifest and then checking the uFID of the manifest. Manifests can be
checked, starting with the most recent manifest, by examining the uFID of the previous
manifest, and computing the uFID of the corresponding manifest. The check can then be
repeated recursively to ensure that the manifest chain is untampered.

A disposition service is used to check the expiry date of assets committed to
storage. A list of assets ready for deletion according to the expiry date set in the metadata
assoclated with the asset, can be created and used in the encryption key scrubbing
process. The list of files for deletion can be provided to the Key Manager, possibly after

operator approval, so that the encryption keys associated with the assets can be deleted.

The asset can also be removed from live storage. Even if the asset is available on a

backup, the removal of the encryption key from the Key Manager and Key Server will
ensure that it is not recoverable. The audit service scans the stored assets and can

compare them to information in the associated metadata to ensure that files have not

- 11 -

10

15

20

25

30

CA 02618135 2008-02-07
WO 2007/016787 PCT/CA2006/001312

been tampered with. The metadata can store information such as a cryptographic hash of
the asset, allowing for simple checking to determine if the asset has been maodified.
Stored manifests can also be checked for improper file changes. The OFS service can be
used to perform housekeeping tasks such as clearing unused temporary files, removing
unneeded transaction monitoring logs and managing online caches of assets. The
services manager, as with the front end nodes, tracks the interaction of the services both
internal to the back end node and with external nodes, ensuring that unfulfilled
transactions are re-issued after a timeout period.

As noted with reference to the back end system, encryption keys can be
generated by an external Key Server that can be hosted by a TTP. This allows the keys
to be generated en masse, and prepared as key pages that can be requested by the Key
Manager. The keys are preferably designed for single use as symmetric encryption keys,
although they can be generated as asymmetrical key pairs as well. It may be preferable
for redundancy for multiple Key Servers to be available to the data archiving system such
that at least two Key Servers are geographically far apart from each other to provide a
greater likelihood of redundancy. The Key Servers may also be connected to a time
server device, such as a Stratum 1 time server device, that provides accurate and tamper
resistant time and date values which may be stored with received manifests as an
additional verification of their timestamps. It can be appreciated that the benefit of
generating encryption keys remotely is that it ensures that keys are safely replicated in a
remote location prior to being used to encrypt files.

In a presently preferred embodiment, each of the services is designed with an
abstracted message-passing interface to other services. This includes the ability to have
a list of instances of any given service. Running multiple instances of the same service
allows operation to continue if a particular instance of a service becomes unavailable.
Furthermore, it becomes possible to implement any arbitrary number of instances of
services to scale performance with the number of nodes served by a cluster of systems
providing the storage system of the present invention. One mode of operation uses a
round-robin selection of services so that approximate load balancing is achieved.
Because the interface is abstracted, services can communicate with one another on the
same piece of server hardware, between clustered servers connected on a LAN, or even

between nodes separated by thousands of miles and connected across a WAN or the

~ 12 -

CA 02618135 2008-02-08

12/12/2007 17:57 FAX [21008/014

rcica 2006/00131 2
12 DECEMBER 2007 12 12.07

\ intemel. The ability to Spread services across an arbitrary number of nodes allows for

| easy cost/performance tradeoffs as the number of nodes and the number of éervices per
node is varied. |

In the operation of one embodiment of the present invention, the Key Server reads

5 a monthly Master Key from a CD-ROM and then decrypts and checks the integrity of its

database of keys during an initialization process. This database is generally on a local

disk drive directly connected to the server. The Key Setver is best placed in a remote site,

and normally there will be at laast two of them hostad by a neutral and {rustworthy third
party.

10 At the customer sile, when the Key Manager boots up, it also loads a Master Key
frorn a CD-ROM and performs various integrity checks, and sends a request to the Key
Server to see if any of its Code Pages need to be updated. A Code Page is an encrypted
container (the key .to which is stored in a table which in turn is encrypted by the Master
Keay), which holds a large number of individuai records, each record having a key, a serial

19 number, and other housekeeping information. Code pages can be arbitrarily large or
small, although in one embodiment, they hold 5,000 individual key records. If any keys
have expired, the Key Server sends the updated Code Pages to the Key Manager with
the expired keys deleted. The Key Manager overwrites old Code Pages with any revised
Code Pages that the Key Server has supplied.

20 Since keys are needed quickly and in large quaniities, the Key Manager can
request a. number of Code Pages, and then cache the Code Pages locally. An internal
hard drive can be used for storing Code Pages. If tha number of cached keys falls below
a threshold, the Key Manager requests another set of Code Pages from the Key Server.
This can be an asynchronous process disconnected from the process that encrypté user

25 data. At any given time there can be many tens of thousands of individual key records
sitting in the Key Manager waiting to be used, |

The File System Watcher (FSW) client monitors the user’'s computer looking for
new files that meet a set of configurable criteria. When a file meets the criteria it is treated
as an indication that the flle must be sent to the data archiving system for long term

30 storage. The criteria may be simply that the file is put in a given directory, the file has a
certain file type extension, or other criterla desired by the administrator.

-13-

F"”"’"‘ A A + e R
.ﬁ&ﬁi«:ﬁuwwhf w‘u dwoma.

10

15

20

25

30

CA 02618135 2008-02-07

WO 2007/016787 PCT/CA2006/001312

When FSW detects these files, it sends them to the web service on a front end
node. The web service sends an XML fragment containing the information sent by FSW
to the Customer Information Server, which in turn requests a time stamp from the XML
Time Stamp service , which provides a digitally signed time and date, which is then
combined with other metadata and sent to the Storage Manager by the web service. The
Storage Manager uses the unique file identifier (UFID) associated with the file as a CAS
address for storing the file. Whereas prior art data management utilities have attempted
to create unique file identifiers using a cryptographic hash, the present invention provides
a mechanism to reduce hash collisions. When a file is hashed, it is subjected to a many-
to-one mapping. The output of the hash is typically shorter than the file, and thus cannot
be considered to be unique across all file sizes. However, it is often considered that a
hash, such as the MD5 or SHA-1 hash in concert with a file size provides a sufficiently
unique identifier. In the present invention, a unique file identifier is preferably created by a
combination of known hashes. This combination of hashes decreases the likelihood of a
hash collision. Hash collisions occur when two distinct files having the same file size map
to the same hash value. Although it is likely for a sufficiently large set of files that there
will be MDS or SHA-1 collisions, the combination of hashed values exponentially
decreases the likelihood of collisions. Due to the different manner in which each algorithm
creates a hash, the likelihood that a hash collision will results for both MD5 and SHA-1 on
a pair of files is very low. The combination of hashes can be as simple as the
concatenation of the hash values. This concatenation can be made more unique by
Incorporating a file size as well.

Preferably, the Storage Manager also issues a globally unique serial number per
file. This serial number can be made up of a customer number (issued by the vendor), an
installation number (e.g. 0001 for the first cluster purchased by the customer, 0002 for the
second and so on), a user-defined department number (which is part of the FSW
configuration), and a sequential serial nhumber issued by the storage manager. Other
iInformation can be encoded into the serial number in place of these elements as desired
by the system administrator.

By creating a uFID comprised of the concatenation of the MD5 and SHA-1 hashes
of the file contents and the file size, the probability of hash collisions is reduced to a

statistically insignificant likelihood. The problems that would be associated with one of the

- 14 -

10

15

20

25

30

CA 02618135 2008-02-07

WO 2007/016787 PCT/CA2006/001312

hashing algorithms being cryptographically broken are also greatly diminished as the
probability of both hashing algorithms being compromised in the same manner are very
unlikely. By associating the sequential serial number assigned to an asset and the uFiD
of each asset, a trail is created to allow for an effective audit process by examining the
manifests to ensure that each serial number is accounted for and to ensure that a file in
the manifest matches its uFID. If an entry in the manifest is removed, it will be obvious by
the gap in the sequence, and systematically renumbering all entries in the copies of the
manifests and properly re-encrypting each file to obtain new assets is sufficiently difficult
that it will not be possible without causing a trail. This is further complicated by the fact
that a manifest is listed as an asset in the next manifest along with its uFID, which
includes a hash of the manifest data. As noted above, the likelihood of being able to
modify a manifest and maintain the hash value is statistically insignificant. A secure
access log tracking access to each of the assets can also be implemented to provide a
level of security by indicating who has accessed each asset and when the asset was
accessed. This, along with the other security features provides a sufficiently robust trail to
allow for a simplified audit process. One skilled in the art will appreciate that if two users
attempt to save the same file to the storage system, the system will assign two serial
numbers (in response to the two storage requests), but because assets can be indexed
by their uFID, only one instance of the file need be saved. The use of the uFID as a
storage index allows for a form of content addressable storage (CAS) that can be used to
avold storing duplicates of a given file.

When a FSW determines that a file is ready for entry into the Data Archiving
System (DAS), three actions can be taken: the file can remain in place while a copy is
sent to the DAS; the file can be replaced with a shortcut pointing at a copy in the DAS;
and the file can be deleted from the directory, requiring that the user next access the file
by using the DAS. The desired retention time for a file can be relayed by the FSW, as it
allows for user control and modification without requiring system reconfiguration. In an
alternate system, the FSW can forward information relating to the retention time to the
data archiving system, allowing the system to make centralized decisions based on the
forwarded information. Retention time can be determined by an implicit rule configured for
a particular directory, it can be specified by a “last modified date”, and it can be related to

a customer profile. The use of a “last modified date” is a convenient way for application

- 15 -

10

15

20

25

30

CA 02618135 2008-02-07

WO 2007/016787 PCT/CA2006/001312

software to configure the retention date on the fly. For customer profile based retention
periods, an application-defined “record locator’, such as a customer number, can be
prepended to the file name. Deletion of files can occur a programmable number of years
after a given record number is provided in a list sent by the customer to the disposition
manager. This mode is useful to comply with regulations which say that records must be
kept a certain number of years after the customer account is closed. Thus, the FSW can
provide retention information, for example as an XML fragment, to the data archiving
system.

A Web Service then receives the information from the FSW (possibly including a
uFID). This information is sent to the CIS which then assigns a serial number to the file.
The file will be stored using the uFID as an identifier allowing for content addressable
storage, but will allow retrieval based on the serial number as well, so that users storing
the same file do not need to be aware of the multiple instances of the file. The CIS can
review the retention policy to determine if the file should be encrypted or compressed
prior to storage. The CIS then sends the file and associated information to be time
stamped. The Time Stamp service can sign the XML fragment and convert it to a proper
XML document. This document is then provided to the storage manager. The Storage
Manager encrypts and compresses the file using the next available unused encryption
key obtained from the Key Manager if required. Upon encrypting the file, the Storage
Manager sends a record of the serial number of the encryption key used plus the uFID of
the file to the Key Manager, which in turn notifies the Customer Information Service so
the record can be stored. Preferably the information is stored in at least two databases. A

redundant copy can also be dispatched to the remote Key Servers so they can mark the

key as being used. This can also allow the Key Server to keep a record of the encryption
key associated with a given uFID.

A record Is constructed containing the encrypted file, its uFID, its serial number,
the time and date of creation, the desired retention policy, plus configurable customer-
supplied metadata. This then becomes an “asset”. One skilled in the art will appreciate
that when files have been migrated to the encrypted file system they become assets.

Applicant has endeavored to appropriately differentiate between files and assets through
the document.

- 16 -

CA 02618135 2008-02-08

e —

1271272007 17:57 FAX ' 2007/014

PeTicA 2006 /00131 2
L2 DECEMBER 2007 12 12.89

The Storage Manager can keep its own cache of Code Pages. When the storage
manager needs more encryption keys, it requests the code pages from the Key Manager.
The next available key and its serial number are taken from the Code Page cache, and
used to encrypt the file, at which time the file is turned into an asset for storage. This
5 asset can then be stored. In a redundant system, the asset can be stored on at least two
back-end devices, typically extemal RAID arrays or optical jukeboxeé. A manifest entry is
created for the asset which includes the uFID, the time stamp, the serial number, the
metadata, the serial number of they key used to encrypt it, and other housekeeping
information. This manifest entry is stored in a manifest by the Manifest Server, which
10 builds manifests as assets are being sent {0 the storage solution of the present invention,
At fixed intervals, such as every five minutes, the manifest holding the manifest entries
generated during the interval is sent o the Key Manager that in turn “registers” the
Manifest with the Key Servar located at the remote site. The manifest is then provided to
the Storage Manager to be stored as an asset, and forms the first entry in the next
15 manifest. |
In one embodiment, the manifest is an XML file which lists the above listed
meladata items for every file that has come into the file storage system in the last 5
minutes, or up to a defined maximum number of fg‘le listings per manifest file. When one
manifest is closed off, another new one is started. When manifests are closed, they are
20 stored back into the device just like other user files (which provides the security/integrity
features described above) and also is transmitted to the Key Server which is a remots
device.
As each file is converted to an asset for storage, it is preferably encrypted, with its
own key so as to permit encryption key scrubbing (encryptlion based file deletion) on a
25 file-by-file basis. As a file is encrypted and the corresponding asset is added to the
system, the uFlD of the asset is added to a manifest that tracks the encryption key, a
jocation of tha encryption key or a serial number associated with the encryption key. in
one embodiment, a manifest is created at either fixed intarvals, after a predetermined
number of assets have been added, or some combination of the two. The file manifest is
30 & data structure which contains the list of key containers which have been consumed, the
names assigned serial number and uFID (plus other metadata such as time at which the
file was sent to the storage system) of files added since the last

- 17 -

* . Al ey 2
-'.’;“r‘...“‘! 3' 3 e p

oo s "

3 | 8 N “ ’-.‘ it) 1 L
AT TR AN W RN TN L fe
Pl %SQL Larae o A+ L &..--'-33, %)

10

15

20

25

30

CA 02618135 2008-02-07
WO 2007/016787 PCT/CA2006/001312

manifest, and other housekeeping data. The manifest is eventually stored in the file
system as another file. By providing each file with its own key, as opposed to the prior art
use of a single key for all files, or at most a small number of keys, individual assets can
be effectively removed from the system without impacting other assets.

When a manifest is closed it can be sent to the remote Key Server, which can
then digitally sign the manifest, and store it into a central repository. Because the remote
Key Server is hosted by a TTP, which may provide similar services to a number of
different customers, it may be preferable for the remote Key Server to make use of a
storage system similar to the data archiving system to provide data security and integrity.
The Key Server can then send the signed manifest back to its file storage system as an
asset for storage. By storing the manifest in the data archiving system file system, it
ensures that the signed manifest becomes part of the next file manifest. A copy of the
manifest can be deposited with a title attorney or in another non-digital venue that
provides time and date attribution. The manifest makes reference to the consumption of
encryption key containers. This information can be recorded by the remote Key Server so
that a record of who has used particular key containers and when the key containers can
or should be deleted can be maintained by the remote Key Server.

Reference is made to the deposition of a manifest with a non-digital venue. In
addition to providing the time at which a TTP has signed the manifest, the manifest itself
can be provided to a non-digital entity. Because of the nested nature of manifests (with
each manifest having its uFID and metadata stored in a subsequent manifest), a series of
non-contiguous manifests can be provided to a title attorney, who can provide attestation
to the date at which the manifest is received. If two manifests are received by a title
attorney, and the manifest containing the metadata for a required file is stored on an
interim manifest, it can easily be established that the interim manifest was opened and
closed between the two attested dates. To prove this, all the manifests between the dates
can be examined to show the linkage between the manifests. Because a manifest is
entered onto the next manifest as an asset, it has a direct effect on the cryptographic
hash of the next manifest. This creates the “feed forward” nature referred to earlier,

which can also be thought of as a "Russian Doll" storage, where each manifest can be

opened to verify the authenticity of the previous manifest.

- 18 -

10

15

20

25

30

CA 02618135 2008-02-07
WO 2007/016787 PCT/CA2006/001312

The file manifest handling disclosed above has numerous advantages. Providing
manifests to a TTP allows the TTP to attest to time and date of file creation. Providing the
manifests to a non-digital authority, in conjunction with the nested nature of the manifests,
allows the non-digital authority to provide a book ended time frame during which a file
was provided to the storage system. A third party can also attest to the completeness of
the records based on the use of serial numbers and nested manifests. During the process
of attesting to the completeness of the records, no confidential information needs to be
transmitted to third party as the manner in which the manifests are designed and stored
provides sufficient information to base the attestation on. Third party time/date stamps
can be compared to customer time/date to indicate that the storage system is not
modifying its internal clock in an attempt to circumvent procedures. A manifest cannot be
undetectably modified without invalidating subsequent manifests as “correcting
subsequent manifests would require information which is not available at the customer
site and in any case would not match the copies kept at the Key Server. It is only
necessary to examine the most recent manifest to have confidence that the manifest
chain has not been tampered with. Because the Key Server correlates assets with the
key container used to encrypt them, the key database stored in the Key Server can be
used in emergency situations to decrypt any given asset.

When the Manifest Server stores the Manifest Container back on the cluster as if
it was a user's data asset, it is given a digitally signed timestamp, a ukFID, a serial
number, an encryption key, and is stored on the back-end storage. This means that one
of the elements of each manifest is the metadata of the most recent previous manifest.
The previous manifest is typically the first entry in the subsequent manifest. The previous
manifest in turn includes the metadata from the manifest before that and so on.

When a document’s retention period has expired, it will be handled by the
Disposition Manager. The Disposition manager can be run as a scheduled process, such
as a nightly process that checks the integrity of Manifests by confirming their contents
with the Key Server and by checking internal consistency. The Disposition Manager then
reports back to the Key Server with a list of the keys that should be deleted to allow for
document expiry. Subsequently, when the Key Manager next does an update of its key

pages, the Key Server will provide new Code Pages with the keys associated with the

- 19 -

10

195

20

25

30

CA 02618135 2008-02-07
WO 2007/016787 PCT/CA2006/001312

expired documents received. Thus, the Key Manager will lose the ability to decrypt the
expired asset.

Since the local cache of Code Pages on the Key Manager is preferably super
enciphered with the Master Key, the administrator is free to use any convenient backup
software package to backup the Key Manager server, including the Code Pages stored
on the local drive. Every month, the Master Key, typically distributed on a CD-ROM, can
be changed and the old code retired. If the administrator does not destroy or otherwise
dispose of the Master Key, the old Code Pages can be restored from a backup and then
decrypted, thus encryption key scrubbing cannot be considered to have taken effect until
the Master Key, or the media on which it is delivered, is destroyed. This can provide a
safeguard, and allows for a safety net that permits a site to destroy Master Keys once
they are considered to be safely past the deletion period. By destroying a key, the file
remains in the system, but is effectively inaccessible. By selecting a sufficiently rigorous
encryption routine such as the 256 bit Advanced Encryption Standard (AES-256), the
data can be considered to be irretrievable when the key has been destroyed.

An example of configuring FSW, creating an asset, reading it back, and deleting it
Is instructive at this point. It should be noted that the following example is provided for the
purposes of teaching one embodiment of the invention thoroughly, and should not be
considered as limiting of the scope of the present invention. In no way should this
example be considered as a sole embodiment, or as restrictive to the scope of the
present invention. For this example, it is assumed that the Key Manager has sufficient
code pages In its cache. This example is provided in concert with Figure 1 which
lllustrates the steps outlined below.

The human administrator accesses the SysAdmin configuration console using a
web browser, and selects the link for “FSW Configuration™. The console lists all instances
of FSW that exist in the network. The administrator selects “HumanResourcesServer”
from this list, and configures it to watch the directory called “PersonnelFiles”, with a 5 year
retention rule set, encryption turned on, and set to replace files with shortcuts.

The instance of FSW on HumanResourcesServer periodically queries the
SysAdmin service to see if its configuration has changed. It sees the updated
configuration file and loads it. FSW starts to monitor the PersonneiFiles directory for

- 20 -

10

15

20

25

30

CA 02618135 2008-02-07
WO 2007/016787 PCT/CA2006/001312

changes. A user of the HumanResourcesServer then stores a document called
HomeAddresses.doc info the PersonnelFiles directory.

FSW is notified by the operating system that the directory contents have changed.
The FSW queries the date, time, and size of the file. FSW puts the file information in the
queue of files to be dealt with. When the queue has reached a size which is efficient for
network communication, or when a certain amount of time has elapsed since the first
entry in the queue was stored, the contents of the queue are sent to the front end node in
the FSW configuration table. If for some reason this transmission fails, attempts are made
to send the queued files to the next front end node, and so on. If no front end node is
available, FSW continues to queue files as needed. Once a front end node become
available, the files are sent. In this way, FSW supports mobile computing platforms and
remote offices which have unreliable or periodic network connections. For this example,
however, we will assume that HomeAddresses.doc is the only entry in the queue and that
the communication with the first front end module is successful. This results in the
transfer of the file to the Data archiving system in step 100.

Upon receipt of the file at the front end node, a request to the time stamp service
Is iIssued for a timestamp to be associated with the asset. Note that the time of the
timestamp received may vary from the time stamp reported by FSW. Since the date and
time set on remote servers and workstations is not considered to be particularly reliable,
the date and time assigned by the time stamp service is the one used for caiculating
disposition. Later it will be seen that there is a step where this time stamp can be
corroborated with that on the remote Key Servers.

An asset record consisting of the file name, claimed date and time (user
provided), actual date and time (time stamp service provided), file size, retention period
rule, and customer-supplied metadata (if any) is created. This record is sent to the first
Storage Manager in a configuration list (all services have a list of all other available
Instances of services so that in the event of any service failing to respond, the operation
can be retried on one of the other instances). This record can also contain information
regarding the retention policy for this file.

The MD5 hash of HomeAddresses.doc as well as the SHA-1 hash of the file are
computed. In place of the SHA-1 hash, other hashes of the SHA family, such as SHA-2
hashes (SHA-224, SHA-256, SHA-384 and SHA-512) can be used. Other cryptographic

- 21 -

10

15

20

29

30

CA 02618135 2008-02-07
WO 2007/016787 PCT/CA2006/001312

hash algorithms may be used without departing from the scope of the invention. These
two hashes are concatenated along with the size of the file to create the uFID for the file.
In a statistical sense it is sufficiently unlikely that two files of the same size will be
provided the same uFID, so the concatenation of the hashes is considered to be unique
across all files of the same size. Because the MD-5 hash algorithm and the SHA family or
algorithms are very distinct, it is unlikely that when an MD-5 collision occurs the same two
files will have a SHA collision as well. Similarly, if, for example, someone figures out how
to adulterate a file without the MD5 hash changing, it is highly unlikely that both the file
size and SHA-1 hash will also be unchanged. However, if two files from two different
people have identical content, even if they have different file names and dates of creation,
the uFID will be the same for both files as the uFID does not typically concern itself with
the creator, creation date and file name of the file in question. Because they have the
same UFID, the storage system can store a single copy and provide Content Addressable
Storage.

The serial number is also assigned to the storage request. In contrast to the uFID,
if two identical files are sent across from FSW, even if they have the same file names and
date of creation, a new serial number will be issued. This number is used to keep track of
individual storage requests. The uFID can be provided by an external system such as the
Customer Information Service. Thus, in step 102, a timestamp is obtained, a uFID Is
created and a serial number is assigned.

The file name and contents are encrypted with the next available encryption key In
step 104. The serial number of the key used and the uFID of the file are forwarded to the
Key Manager in step 108. The Key Manager sends the information to the Customer
Information Service, which stores the information into a redundant pair of SQL databases
running on different nodes. The Customer Information Service also forwards the
information to the remote Key Servers. The remote Key Servers mark the keys as used
and the information is stored in SQL databases local to the Key Servers. One skillied in
the art will appreciate that although the step of encrypting the data provides data security,
and eventually permits individual file-by-file encryption key scrubbing, the integrity of a file
storage system can be authenticated by audit without use of an encryption system. In

some embodiments of the system, when the CIS assigns the serial number, it can also

- 22 .

10

15

20

25

30

CA 02618135 2008-02-07
WO 2007/016787 PCT/CA2006/001312

provide an indication of whether or not the file is to be encrypted in the metadata. This
indication can also include the encryption key to be used.

The Storage Manager then, in step 106, stores a copy of the encrypted
HomeAddresses.doc file, along with its associated metadata on at least two different
external RAID storage devices as an asset. The uFID is used as the asset identifier, so
this means that only one instance of a given set of file contents will be stored per RAID
device. In this way, space is not consumed by multiple copies of identical files (such as
when hundreds of identical copies of a document are distributed within an organization).
This storage capability is commonly called “Content Addressable Storage” (CAS). Once
the asset is safely stored, a completion message is sent to FSW. One skilled in the art will
appreciate that the order of certain steps, such as steps 106 and 108 need not be
performed in the illustrated or described order. During this operation, a “transaction
recovery file “ can be created and updated at various steps. This recovery file can
provided assistance if steps in the storage process fail and must be retried.

The serial number, the expiry date, the uFID, the key container number, the date
and time, and file size are put into a record and added to the currently open manifest in
step 110. Every five minutes the manifest is closed and processed, and a new one
opened.

FSW removes the file from HumanResourcesServer and replaces it with a
symbolic link that points at the Web Service in step 112. The symbolic link also contains
the serial number of the asset. FSW can be provided with an indication that the storage of
the file as an asset is complete before the file has been stored as an asset so long as the
data archiving system has received the file and possesses sufficient information to
proceed in the event of a process or hardware failure. In such an example, the
transaction recovery file can be used if the FSW has been provided with an indication of
successful storage and an error occurs in the storage process.

When a file is received at a front end node, the transaction can be tracked to
ensure that the corresponding asset is successfully stored. Upon providing the Storage
Manager with the file and corresponding metadata (including instructions pertaining to
whether or not the file should be compressed or encrypted) the front end node has
completed is portion of the storage process. However, the front end node can leave the

transaction record marked as incomplete until the storage manager provides an indication

- 23.

10

15

20

25

30

CA 02618135 2008-02-07
WO 2007/016787 PCT/CA2006/001312

that the asset has been successfully stored. This allows the front end node to monitor the
progress of each transaction and re-issue storage requests if required.

To read back the file, the user can open the symbolic link as if it was a local file
name. The Web Service sends the asset serial number to the Customer Information
Service, which in turn looks up the serial number to find the uFID of the file, which Is sent
to the Storage Manager. The Storage Manager retrieves the file and returns it to the Web
Service, which in turn returns it to HumanResourcesServer.

No mechanism is provided for the customer to delete assets on demand. Deleting
the symbolic link does not destroy the asset, nor is the user given direct access to the
RAID storage.

However, as illustrated in Figure 2, the system is designed to allow files to be
deleted once the retention period has expired. Every day, the disposition service scans
through the assets under management, in step 114. if more than 5 years have gone by
since HomeAddresses.doc was created, it will be added to a list of disposition candidates,
in step 116. The human administrator is expected to periodically review this list and
approve the disposition of the assets. At ay time prior to disposition, the administrator
may place a “hold” one or more assets, which will prevent their destruction indefinitely. A
hold is typically placed on assets which have continuing business value or which are
ordered to be retained by a court or regulatory agency.

If no hold is placed, and the administrator has approved the file destruction, the
Storage Manager will scrub the file from all RAID systems where it has been stored. This
can be accomplished by any number of known techniques including by overwriting the file
with 7 different bit patterns. The deletion of the asset, in step 118, is considered optional
as it may not be possible in WORM implementations, and as the asset will also be
encryption key scrubbed, deletion of the asset is no longer technically necessary. Once a
batch of files has been disposed of, a disposition manifest is sent to the remote Key
Servers, in step 120, instructing the remote Key Servers to remove the keys associated
with the deleted assets. The remote Key Server scrubs all local copies of the encryption
key for the file. The local Key Manager, in step 122, at fixed intervals requests updated
code pages from the remote Key Server. The updated code pages will no longer contain
the removed keys, effectively completing the encryption key scrubbing process. Once all

copies of the encryption key are destroyed, any backup copies of HomeAddresses.doc

- 24 -

10

19

20

25

CA 02618135 2008-02-07
WO 2007/016787 PCT/CA2006/001312

which may have been made from the encrypted repository on the RAID storage will
become unreadable. In this way, the document is encryption key scrubbed from any
backups, which may have been made of the encrypted repository.

A number of advantages can be realized through various implementations of the
present invention as disclosed above. The architecture above-described architecture is
believed to comply with all relevant requirements of SEC 17a, HIPAA, CFR 21 part 11
(FDA), Sarbanes Oxley, PIPEDA of Canada, the UK Data Protection Act, and other
regulations. Assets can be stored on a plurality of storage devices, each of which can
employ redundancy such as RAID technology for further reliability. Stored data is
encrypted, reducing the likelihood of accidental data release, and accordingly data on
backup media is also encrypted. Expired assets persisting on backup media are
effectively irrecoverable. Encryption key management can be fully automated. Encryption
Keys can be stored in multiple redundant geographically dispersed locations. Assets
cannot be accessed without permission, cannot be modified, deleted or inserted into the
archival system without detection. File creation time and date values can be externally
verified. A neutral third party can attest to the completeness and authenticity of the assets
without having any knowledge of the actual contents of the assets. All transactions across
the network can be monitored, and if necessary, retried until successful. Data storage
capacity requirements can be reduced by CAS technology. Remote and intermittently
connected systems can be supported.

In other embodiments, various modifications can be performed without departing
from the scope of the present invention. The following list provides a number of
modifications that should be considered to fall within the scope of the present invention.
The following list of modifications should not be taken as limiting, and it is noted that other
modifications that are not listed still fall within the scope of the present invention.

e Other interconnection technologies can be employed — for instance,

Infiniband can be used for the interconnection between nodes and/or

storage, or ISCS| could be used instead of Fibre Channel for
communication to the RAID storage.

- 25 .

10

15

20

25

30

WO 2007/016787

CA 02618135 2008-02-07

Other packaging is possible — for instance, a server case with many disk
drive bays can be used which also integrates the data storage with the
services nodes.

The system can be implemented on any number of operating systems.

FSW could also be programmed to scan the user's computer and make a
uFID for each file on it. This list would be compared to the list of assets
under management or which were supposed to be deleted after their
retention period is up, and notify either the user or the administrator that

there are “stray” or uncontrolled copies of documents in existence.

Use of WORM tape or optical in addition to RAID is another possibility,
with the tape or optical either being used in a Hierarchical Storage
Management (HSM) paradigm for less frequently accessed data, and/or
used as a journal to store copies of each new asset as it is received.
Encryption can be turned off on a per-directory basis, so in many cases
the technology can be used with no encryption at alil.

The Storage Manager node could be entirely contained inside a
conventional RAID controller, e.g. with a network addressable storage
(NAS) front-end.

The FSW technology could be licensed to be embedded in any of a large
number of devices which capture data. For example, police or insurance
photographers would take a picture of an item of evidence, and the FSW
client would make a digital signature and time stamp of the item and the
next time the camera is docked in its cradle, FSW places the assets under
management in the cluster. Thus, there is a chain of evidence to prove the
authenticity of the photo, and the completeness of the overall
photographic record. Some devices which could use the technology
iInclude:

e Digital Camera

e PDA, especially if it has an embedded camera
e Video Camcorder
e DVD recorder

- 26 -

PCT/CA2006/001312

10

15

20

25

30

CA 02618135 2008-02-07
WO 2007/016787 PCT/CA2006/001312

o Audio recorder (e.g. for interrogations)
o Traffic enforcement cameras
e (CATscan, Xray or other medical imaging cameras

e Computerized lab equipment (e.g. medical lab gear, breathalyzers,
chromatographs)

e Video Surveillance recorders
e Telephone recording device

e Handheld computers used by couriers (e.g. Fed-X, military couriers)

Figure 3 illustrates a block diagram of a system of the present invention. It will be
described here as being interconnected elements in a system, without reference to how
the elements may be divided if a distributed data archiving system is implemented. One
skilled in the art will appreciate that any number of different implementations can be
provided dividing the workload of the different processes in different ways without
departing from the scope of the present invention.

Client node 130 generates files for compliant storage. The creation and
modification of these files on client storage 134 is monitored by FSW 132. Upon
detection of creation of a file for compliant storage, FSW 132 transmits the file to Data
Archiving System 140. The file is provided to timestamp engine 142 which stamps the file
as described above to ensure accurate tracking of the file arrival time. The timestamped
file 1s then provided to Storage Manager 146 which generates the uFID, attaches a serial
number and otherwise prepares the metadata associated with the file. Storage Manager
146 then requests a key from Key Manager 152 which obtains the key from code pages
154 which are locally cached. The file is then encrypted and provided for storage in asset
storage 148a and 148b. Information about the stored asset and the related file is
provided to manifest engine 150, which adds a record to a manifest to track submissions
to the DAS 140. Storage manager 146 provide file information and identification of the
key used to CIS 144 | which can be an external element to the system 140. Upon filling a
manifest, manifest engine provides a manifest to timestamp engine 142 as a new file for

storage in DAS 140. Key Manager 152 obtains code pages 154 from Key Server 156 and
can cache them locally.

- 927 -

10

15

20

25

30

CA 02618135 2008-02-07
WO 2007/016787 PCT/CA2006/001312

As discussed above, Disposition Agent 154 monitors files in asset storage 148a
and 148b, to determine if they should be disposed of. When disposition agent instructs
files to be disposed of, the asset can be removed from asset storage, and Key Server 156
is informed of the disposition request. Key Server 156 can then remove the key
associated with the asset from the code pages. The updated code pages are then
provided to Key Manager 152 and replace cached pages 154, effectively completing the
encryption key scrubbing.

- Further operations of the system illustrated in Figure 3 will now be discussed.

Key storage is done by storing a copy of the key to multiple locations, preferably in
muitiple geographic locations. The Master Key Server 156 can be remote from the Key
Manager 152 and is responsible for managing the generation and long-term storage of
cryptographic keys. The master Key Server 156 is typically hosted by the system vendor
and is In a secure facility, although it can be implemented by a customer as well. The Key
Manager 152 preferably has a redundant encrypted key storage designed to withstand
100% loss of data in a single unit. DAS 140 preferably has one or more Key Managers
that manage the issuance and rolling of key values. Key Manager 152 stores keys in
code pages 154.

The Key Manager 152 determines that the available number of keys is below a
low water mark. A new code page 154 is then requested from Key Server 156. Each code
page 154 contains key containers that each holds a cryptographic key. The master Key
Server 156 generates code pages dynamically. Each code page is preferably stored to
three or more redundant storage locations. Code pages can be flagged for nightly backup
in ail three locations. The backups are preferably retained for two weeks on a rolling
basis.

The Key Manager 152 downloads each code page. The code page is encrypted
by the Key Server 156 with a 256-bit key and is then stored. The code page key is then
encrypted with a local RSA key and is cataloged in the CodePageHeader file, which is
encrypted with a key found in the Root Key file. The root file key is preferably stored in
removable media or a hardware key token accessible to Key Manager 152. Root file keys
are destroyed according to a fixed schedule.

The consumption of keys is now discussed in further detail. As files entered into
the system 140, storage manager 146 obtains a key that will be used when encrypting the

- 28 -

10

15

20

25

30

CA 02618135 2008-02-07
WO 2007/016787 PCT/CA2006/001312

file. Key containers can be serialized, with two components, the code page serial number
and the container serial number. A key container is associated on the first instance of the
file. It is attached to the file uFID. Each uFID is associated with all storage requests of the
same file when content addressable storage is implemented. Each storage request Is
accompanied by a signaturelD, which is itself a serial number. Each signaturelD has a life
cycle attached to it, including the expiry date. These data are stored by Customer
Information Service 144 and the Storage Manager 146 so that disposition agent 154 can
determine when files should be disposed of, and to allow file retrieval.

Every ‘n’ minutes the manifest engine 150 creates a manifest as discussed above.
The storage manifest typically includes a ManifestIlD, a signature |ID (storage request), file
ulDs associated with the storage requests, a life cycle expiry date, a time stamp of
storage and an encryption code page serial number and key containers. The manifest is
then timestamped and provided to Storage Manager 146 for storage as an asset. When
the manifest is stored as an asset, its metadata is added to the next manifest. A copy of
the manifest is sent to the master Key Server 156 for redundant storage. The manifest
information is then associated with the originally generated key containers and code
pages. This includes the expiry date of the key container, the uFID and the signaturelD.
The key container cannot be removed from the system until it has expired, however an
expired container is still active until it has been specifically disposed of.

On a daily basis, or on another similar schedule, the customer is provided with a
disposition selection manifest report by the disposition agent 154. An on-screen report
can be used to show the assets available for disposition. The customer then can approve
the assets for disposition. At a predetermined time, the disposition agent 154 goes
through a process of validating the approved disposition request. This preferably includes
a level 2 check of authenticity and integrity. Once the disposition manifest has been
validated, the assets are deleted from the system by sending a deletion request to
Storage Manager 146. On conclusion, a disposition manifest is sent to the Master Key
Server 156. The server matches up the disposition manifest to the original key container.
The key container can then be removed from the active system during the “roll” process.

Nightly, after ‘n’ minutes following the disposition manifest, the Key Manager 152
updates code pages. The master Key Server 156 regenerates code pages without the

key containers that have expired and have been disposed of. A new code page is

- 20 -

10

15

CA 02618135 2008-02-07
WO 2007/016787 PCT/CA2006/001312

generated that has a different generation humber. The new generation number is then
downloaded to the Key Manager 152. The original code pages can be maintained on the
customer system until the customer regenerates the encryption database. This is typically
aone on a monthly basis.

Once a month, the entire set of code pages 154 can be loaded from the DAS 140
and re-enciphered with the new masker key which has been loaded. The previous master
key I1s destroyed or locked away. Once the previous master key is destroyed, the
cryptographic key scrubbing is complete. The Key Manager 152 can download the
updated generation of the code pages and the system continues to operate as before.
The Key Manager 152 keeps a key cache allowing it to operate while the code pages are
regenerated without system interruption.

The above-described embodiments of the present invention are intended to be
examples only. Alterations, modifications and variations may be effected to the particular
embodiments by those of skill in the art without departing from the scope of the invention,

which Is defined solely by the claims appended hereto.

- 30 -

CA 02618135 2013-09-24

CLAIMS:

1. A computer-implemented method of auditing stored data in an auditable data
storage system, comprising:
recording, in a manifest, data associated with files received for storage In the
auditable data storage system, each of the files received for storage
having associated therewith a unique file identifier,
wherein the step of recording includes storing the unique file identifier, a
file size and a serial number associated with each of the files
received for storage, and retention information associated with
each of the files, and
wherein the unique file identifier is determined in accordance with at least
two cryptographic hashes of the associated file, and Includes a
concatenation of the at least two cryptographic hashes of the
associated file;
closing the manifest;
storing the closed manifest as a file in the auditable data storage system;
creating a new manifest associated with files received for storage In the auditable
data storage system, the new manifest recording, as a file entry, data,
including a unique file identifier, associated with the closed manifest;
examining the new manifest to verify the existence of a unique file identifier for
each file recorded in the new manifest;
determining that each file having associated data stored in the new manifest is
present in the auditable storage system, and

verifying that each file having associated data stored in the manifest present in the
system has not been altered by recomputing the unique file identifier and
comparing the computed unique file identifier to the unique file identifier

stored in the manifest.

2. The method of claim 1 wherein at least one of the files received for storage is
encrypted, and the step of recording data includes recording an encryption key container

serial number associated with an encryption key used to encrypt the at least one file.

3. The method of claim 1 wherein the step of closing the manifest is performed after

a predetermined time interval from the creation of the manifest.

_31 -

CA 02618135 2013-09-24

4. The method of claim 1 wherein the step of creating the new manifest includes
recording the unique file identifier associated with the closed manifest as the first entry In
the new manifest, the unique file identifier including a concatenation of cryptographic

hashes of the closed manifest.

5. The method of claim 1 wherein the step of closing the manifest includes

forwarding a copy of the stored manifest to an external site.

6. The method of claim 5 wherein the external site is administered by a trusted third
party.
/. A data archiving system, for auditing stored data in an auditable data storage

system according to the method of claim 1, the data archiving system comprising:

a storage array for storing assets;

a storage manager for storing the files received for storage by the data archiving
system as assets in the storage array;

a manifest engine for receiving data associated with files stored by the storage
manager as assets and for storing the received data, Including an
identification of an encryption key associated with each asset, In the
manifest to create an auditable log of assets stored in the storage array;
and

a disposition agent for creating a disposition manifest listing assets stored in the
storage array marked for deletion, and for selectively rending at least one
asset in the disposition manifest as inaccessible without rendering

inaccessible a plurality of other assets stored in the storage array.

8. The data archiving system of claim 7 wherein the storage array is a redundant

array of independent drives.

9. The data archiving system of claim 8 wherein the storage manager includes an
encryption engine for encrypting at least one of the received files, in accordance with its

respective associated encryption key, prior to storage.

10. The data archiving system of claim 9 wherein the encryption engine includes a

key manager for storing a cache of encryption keys.

-39 .

CA 02618135 2013-09-24

11. The data archiving system of claim 10 wherein the key manager includes a key

server interface for requesting a set of encryption keys to cache from an external key

Server.

12. The data archiving system of claim 7 wherein the manifest engine includes a
manifest management unit for closing an existing manifest at a predetermined time after
creation of the manifest, for providing the closed manifest to the storage manager as a file
for storage as an asset, and for creating a new manifest upon closing of the existing

manifest.

13. The data archiving system of claim 12 wherein the manifest management unit
includes means for providing a closed manifest to an external site upon storage of the

closed manifest as an asset.

14. The data archiving system of claim 13 wherein the external site is administered by

a trusted third party.

15. The data archiving system of claim 7 wherein the received data associated with
files stored by the storage manager includes at least one of a unique file identifier, a file

size, a serial number, and a retention policy.

16. The data archiving system of claim 7 wherein the disposition agent includes
means for obtaining authorization to render the assets inaccessible prior to rendering the

at least one asset inaccessible.

17. The data archiving system of claim 7 wherein the disposition agent includes a
retention policy agent for creating the disposition manifest in consultation with retention

policies associated with each of the stored assets.

18. The data archiving system of claim 7 wherein the disposition agent includes
encryption key removal means for removing an encryption key associated with an asset

isted in the disposition manifest to render the asset inaccessible.

19. The data archiving system of claim 7 further including a file system watcher for
obtaining files for storage in the auditable file system from a client computer and for

transmitting the obtained files to the storage manager for storage in the auditable file

system.

- 33 -

CA 02618135 2013-09-24

20. The data archiving system of claim 19 wherein the file system watcher includes a
file attribute engine for determining the data associated with obtained files and for

transmitting the data associated with the obtained files to the manifest engine.

21. The data archiving system of claim 20 wherein the file attribute engine Includes
means for determining a unique file identifier associated with each obtained file In

accordance with at least two cryptographic hashes of the obtained file.

22. The data archiving system of claim 20 further including a transaction verification
engine for providing verification to the file system watcher that each file transmitted to the

storage manager has been received and verified in accordance with the unique file

identifier.

23. The data archiving system of claim 20 wherein the file attribute engine includes
retention policy determining means for determining a retention policy to be associated

with each obtained file in accordance with the location of the obtained file.

24. The data archiving system of claim 23 wherein the location of the obtained file Is
selected from a list including a department in which a computer storing the obtained file is

located, the computer storing the obtained file, and a directory on a computer that the

obtained file is stored on.

25. The data archiving system of claim 19 further including a linking engine for
replacing the obtained file with one of a symbolic link and a shortcut after transmitting the

file to the storage manager.

26. The data archiving system of claim 25 wherein the symbolic link includes a serial

number associated with the obtained file.

- 34 -

CA 02618135 2008-02-07
WO 2007/016787 PCT/CA2006/001312

1/2

File provided to data 100 Disposition scan 114
archiving system P
Obtain timestamp, create 107
uFID and assign serial Create candidate list
number

Encrypt file NM I.— Remove asset -'/\/1 16

I—— ———'

116

106 Instruct Key Server to 120
Store Asset remove key associated
with asset
Provide uFID and key to 108 Key Manager requests and 122
CIS receives updated code

page

Update manifest 110
l-:deate file link to asset -l’-\J 12

Figure 2

Figure 1

CA 02618135 2008-02-07
WO 2007/016787 PCT/CA2006/001312

212
Client
FSW storage
132 134
Client Node
130

142

Storage Manager

Asset
Storage
148a

Asset
Storage
148b

Manifest
Engine
150

Disposition
Agent
154

Key
Manager
Customer Information 162

Service
144

Key Server
166

Data Archiving System
140

Figure 3

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings

