
(12) STANDARD PATENT
(19) AUSTRALIAN PATENT 0

(11) Application
FFICE

No. AU 2016276687 B2

(54) Title
Grouping palette bypass bins for video coding

(51) International Patent Classification(s)
H04N 19/176 (2014.01) H04N 19/91 (2014.01)
H04N 19/186 (2014.01)
H04N 19/70 (2014.01)

H04N 19/93(2014.01)

(21) Application No: 2016276687 (22) Date of Filing: 2016.06.09

(87) WIPO No: WO16/201032

(30) Priority Data

(31) Number (32) Date (33) Country
15/177,201 2016.06.08 US
62/175,137 2015.06.12 US

(43) Publication Date: 2016.12.15
(44) Accepted Journal Date: 2019.12.12

(71) Applicant(s)
Qualcomm Incorporated

(72) Inventor(s)
Joshi, Rajan Laxman;Seregin, Vadim;Pu, Wei;Zou, Feng;Karczewicz, Marta

(74) Agent / Attorney
Madderns Pty Ltd, GPO Box 2752, Adelaide, SA, 5001, AU

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

Organization
International Bureau

(43) International Publication Date
15 December 2016 (15.12.2016) WIPO I PCT

lll^

(10) International Publication Number
WO 2016/201032 Al

(51) International Patent Classification:
H04N19/176 (2014.01) H04N19/186 (2014.01)
H04N19/70 (2014.01) H04N19/93 (2014.01)
H04N19/91 (2014.01)

(21) International Application Number:
PCT/US2016/036572

(22) International Filing Date:
9 June 2016 (09.06.2016)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
62/175,137 12 June 2015 (12.06.2015) US
15/177,201 8 June 2016 (08.06.2016) US

(71) Applicant: QUAUCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

(72) Inventors: JOSHI, Rajan Uaxman; 5775 Morehouse
Drive, San Diego, California 92121-1714 (US). SERE­
GIN, Vadim; 5775 Morehouse Drive, San Diego, Califor­
nia 92121-1714 (US). PU, Wei; 5565 Wellesley Avenue,
Apartment 5, Pittsburgh, Pennsylvania 15206 (US). ZOU,
Feng; 5775 Morehouse Drive, San Diego, California
92121-1714 (US). KARCZEWICZ, Marta; 5775 More­
house Drive, San Diego, California 55125 (US).

(74) Agent: ROSENBERG, Brian M.; Shumaker & Sieffert,
P.A., 1625 Radio Drive, Suite 300, Woodbury, Minnesota
55125 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,

[Continued on next page]

(54) Title: GROUPING PALETTE BYPASS BINS FOR VIDEO CODING

w
o

20
16

/2
01

03
2 A

l IIII
III

III
III

III
III

III
III

III
III

III
III

III
III

III
IIH

FIG. 6

(57) Abstract: An example method of coding video data includes
coding, from a coded video bitstream, a syntax element that indic­
ates whether a transpose process is applied to palette indices of a
palette for a current block of video data; decoding, from the coded
video bitstream and at a positon in the coded video bitstream that is
after the syntax element that indicates whether the transpose pro­
cess is applied to palette indices of the palette for the current block
of video data, one or more syntax elements related to delta quantiz­
ation parameter (QP) and/or chroma QP offsets for the current
block of video data; and decoding the current block of video data
based on the palette for the current block of video data and the one
or more syntax elements related to delta QP and/or chroma QP off­
sets for the current block of video data.

wo 2016/201032 Al IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE,
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

WO 2016/201032 PCT/US2016/036572
1

GROUPING PALETTE BYPASS BINS FOR VIDEO CODING

[0001] This application claims the benefit of U.S. Provisional Application No.

62/175,137 filed June 12, 2015, the entire content of which is incorporated herein by

reference.

TECHNICAL FIELD

[0002] This disclosure relates to video encoding and decoding.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,

including digital televisions, digital direct broadcast systems, wireless broadcast

systems, personal digital assistants (PDAs), laptop or desktop computers, tablet

computers, e-book readers, digital cameras, digital recording devices, digital media

players, video gaming devices, video game consoles, cellular or satellite radio

telephones, so-called “smart phones,” video teleconferencing devices, video streaming

devices, and the like. Digital video devices implement video compression techniques,

such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263,

ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), ITU-T-H.265, the

High Efficiency Video Coding (HEVC) standard, and extensions of such standards. The

video devices may transmit, receive, encode, decode, and/or store digital video

information more efficiently by implementing such video compression techniques.

[0004] Video compression techniques perform spatial (intra-picture) prediction and/or

temporal (inter-picture) prediction to reduce or remove redundancy inherent in video

sequences. For block-based video coding, a video slice (i.e., a video frame or a portion

of a video frame) may be partitioned into video blocks. Video blocks in an intra-coded

(I) slice of a picture are encoded using spatial prediction with respect to reference

samples in neighboring blocks in the same picture. Video blocks in an inter-coded (P or

B) slice of a picture may use spatial prediction with respect to reference samples in

neighboring blocks in the same picture or temporal prediction with respect to reference

samples in other reference pictures. Pictures may be referred to as frames, and

reference pictures may be referred to a reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be

coded. Residual data represents pixel differences between the original block to be

coded and the predictive block. An inter-coded block is encoded according to a motion

1414-118WO01

WO 2016/201032 PCT/US2016/036572
2

vector that points to a block of reference samples forming the predictive block, and the

residual data indicates the difference between the coded block and the predictive block.

An intra-coded block is encoded according to an intra-coding mode and the residual

data. For further compression, the residual data may be transformed from the pixel

domain to a transform domain, resulting in residual coefficients, which then may be

quantized. The quantized coefficients, initially arranged in a two-dimensional array,

may be scanned in order to produce a one-dimensional vector of coefficients, and

entropy coding may be applied to achieve even more compression.

SUMMARY

[0006] In one example, a method of decoding video data includes decoding, from a

coded video bitstream, a syntax element that indicates whether a transpose process is

applied to palette indices of a palette for a current block of video data; decoding, from

the coded video bitstream and at a positon in the coded video bitstream that is after the

syntax element that indicates whether the transpose process is applied to palette indices

of the palette for the current block of video data, one or more syntax elements related to

delta quantization parameter (QP) and/or chroma QP offsets for the current block of

video data; and decoding the current block of video data based on the palette for the

current block of video data and the one or more syntax elements related to delta QP

and/or chroma QP offsets for the current block of video data.

[0007] In another example, a method of encoding video data includes encoding, in a

coded video bitstream, a syntax element that indicates whether a transpose process is

applied to palette indices of a palette for a current block of video data; encoding, in the

coded video bitstream and at a positon in the coded video bitstream that is after the

syntax element that indicates whether the transpose process is applied to palette indices

of the palette for the current block of video data, one or more syntax elements related to

delta QP and/or chroma QP offsets for the current block of video data; and encoding the

current block of video data based on the palette for the current block of video data and

the one or more syntax elements related to delta QP and/or chroma QP offsets for the

current block of video data.

[0008] In another example, a device for coding video data includes a memory

configured to store video data and one or more processors. In this example, the one or

more processors are configured to: code, in a coded video bitstream, a syntax element

1414-118WO01

WO 2016/201032 PCT/US2016/036572
3

that indicates whether a transpose process is applied to palette indices of a palette for a

current block of video data; code, in the coded video bitstream and at a positon in the

coded video bitstream that is after the syntax element that indicates whether the

transpose process is applied to palette indices of the palette for the current block of

video data, one or more syntax elements related to delta QP and/or chroma QP offsets

for the current block of video data; and code the current block of video data based on

the palette for the current block of video data and the one or more syntax elements

related to delta QP and/or chroma QP offsets for the current block of video data

[0009] In another example, a device for coding video data includes means for coding, in

a coded video bitstream, a syntax element that indicates whether a transpose process is

applied to palette indices of a palette for a current block of video data; means for

coding, in the coded video bitstream and at a positon in the coded video bitstream that is

after the syntax element that indicates whether the transpose process is applied to palette

indices of the palette for the current block of video data, one or more syntax elements

related to delta QP and/or chroma QP offsets for the current block of video data; and

means for coding the current block of video data based on the palette for the current

block of video data and the one or more syntax elements related to delta QP and/or

chroma QP offsets for the current block of video data.

[0010] In another example, a computer-readable storage medium stores instructions

that, when executed, cause one or more processors of a video coding device to: code, in

a coded video bitstream, a syntax element that indicates whether a transpose process is

applied to palette indices of a palette for a current block of video data; code, in the

coded video bitstream and at a positon in the coded video bitstream that is after the

syntax element that indicates whether the transpose process is applied to palette indices

of the palette for the current block of video data, one or more syntax elements related to

delta QP and/or chroma QP offsets for the current block of video data; and code the

current block of video data based on the palette for the current block of video data and

the one or more syntax elements related to delta QP and/or chroma QP offsets for the

current block of video data.

[0011] In another example, a computer-readable storage medium stores at least a

portion of a coded video bitstream that, when processed by a video decoding device,

cause one or more processors of the video decoding device to: determine whether a

transpose process is applied to palette indices of a palette for a current block of video

data; and decode the current block of the video data based on the palette for the current

1414-118WO01

4

20
16

27
66

87
 20 No

v
20

19 block of video data and a delta QP and one or more chroma QP offsets for the current

block of video data, wherein one or more syntax elements related to the delta QP and

one or more syntax elements related to the one or more chroma QP offsets for the

current block of video data are located at a position in the coded video bitstream that is

after a syntax element that indicates whether the transpose process is applied to palette

indices of the palette for the current block of video data.

[0011a] In one aspect, the present disclosure provides a method and a device for

carrying out a method of decoding video data, the method comprising: decoding, from a

coded video bitstream and using context adaptive binary arithmetic coding (CABAC)

with a context, a syntax element, palette transpose flag, that indicates whether a

transpose process is applied to palette indices of a palette for a current block of video

data; decoding, from the coded video bitstream, using CABAC with a context and at a

position in the coded video bitstream that is directly after the palette transpose flag,

one or more syntax elements related to delta quantization parameter (QP) and/or chroma

QP offsets for the current block of video data in order to improve CABAC throughput;

decoding, from the coded video bitstream, a group of consecutive syntax elements using

Bypass mode, wherein the group comprises: one or more syntax elements that indicate a

number of zeros that precede a non-zero entry in an array that indicates whether entries

from a predictor palette are reused in the current palette; a syntax element that indicates

a number of entries in the current palette that are explicitly signalled; one or more

syntax elements that each indicate a value of a component in an entry in the current

palette; a syntax element that indicates whether the current block of video data includes

at least one escape coded sample; a syntax element that indicates a number of indices in

the current palette that are explicitly signalled or inferred; and one or more syntax

elements that indicate indices in an array of current palette entries; and decoding the

current block of video data based on the palette for the current block of video data, the

group of syntax elements, and the one or more syntax elements related to delta QP

and/or chroma QP offsets for the current block of video data.

[0011b] In another aspect, the present disclosure provides a method and a device for

carrying out a method of encoding video data, the method comprising: encoding, in a

coded video bitstream and using context adaptive binary arithmetic coding (CABAC)

with a context, a syntax element, a palette transpose flag, that indicates whether a

transpose process is applied to palette indices of a palette for a current block of video

data; encoding, in the coded video bitstream, using CABAC with a context and at a

4a

20
16

27
66

87
 20 No

v
20

19 position in the coded video bitstream that is directly after the palette transpose flag,

one or more syntax elements related to delta quantization parameter (QP) and/or chroma

QP offsets for the current block of video data; encoding, in the coded video bitstream, a

group of consecutive syntax elements using Bypass mode, wherein the group comprises:

one or more syntax elements that indicate a number of zeros that precede a non-zero

entry in an array that indicates whether entries from a predictor palette are reused in the

current palette; a syntax element that indicates a number of entries in the current palette

that are explicitly signalled; one or more syntax elements that each indicate a value of a

component in an entry in the current palette; a syntax element that indicates whether the

current block of video data includes at least one escape coded sample; a syntax element

that indicates a number of indices in the current palette that are explicitly signalled or

inferred; and one or more syntax elements that indicate indices in an array of current

palette entries; and encoding the current block of video data based on the palette for the

current block of video data, the group of syntax elements, and the one or more syntax

elements related to delta QP and/or chroma QP offsets for the current block of video

data.

[0012] The details of one or more examples are set forth in the accompanying drawings

and the description below. Other features, objects, and advantages will be apparent

from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0013] FIG. 1 is a block diagram illustrating an example video coding system that may

utilize the techniques described in this disclosure.

[0014] FIG. 2 is a block diagram illustrating an example video encoder that may

implement the techniques described in this disclosure.

[0015] FIG. 3 is a block diagram illustrating an example video decoder that may

implement the techniques described in this disclosure.

[0016] FIG. 4 is a conceptual diagram illustrating an example of determining a palette

for coding video data, consistent with techniques of this disclosure.

[0017] FIG. 5 is a conceptual diagram illustrating an example of determining indices to

a palette for a block of pixels, consistent with techniques of this disclosure.

4b

20
16

27
66

87
 20 No

v
20

19 [0018] FIG. 6 is a flowchart illustrating an example process for decoding a block of

video data using palette mode, in accordance with one or more techniques of this

disclosure.

[0019] FIG. 7 is a flowchart illustrating an example process for encoding a block of

video data using palette mode, in accordance with one or more techniques of this

disclosure.

DETAILED DESCRIPTION

[0020] This disclosure describes techniques for video coding and compression. In

particular, this disclosure describes techniques for palette-based coding of video data.

WO 2016/201032 PCT/US2016/036572
5

especially screen content with palette coding, such as techniques for improved palette

index binarization, and techniques for signaling for palette coding.

[0021] In traditional video coding, images are assumed to be continuous-tone and

spatially smooth. Based on these assumptions, various tools have been developed such

as block-based transform, filtering, etc., and such tools have shown good performance

for natural content videos.

[0022] However, in applications like remote desktop, collaborative work and wireless

display, computer generated screen content may be the dominant content to be

compressed. This type of content tends to have discrete-tone and feature sharp lines,

and high contrast object boundaries. The assumption of continuous-tone and

smoothness may no longer apply and thus traditional video coding techniques may not

be efficient ways to compress.

[0023] Based on the characteristics of screen content video, palette coding is introduced

to improve screen content coding (SCC) efficiency as proposed in Guo et al., “Palette

Mode for Screen Content Coding,” Joint Collaborative Team on Video Coding (JCT-

VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 13th Meeting: Incheon,

KR, 18-26 Apr. 2013, Document: JCTVC-M0323, available at http://phenix.it-

sudparis.eu/jct/doc_end_user/documents/13_Incheon/wgll/JCTVC-M0323-v3.zip,

(hereinafter “JCTVC-M0323”). Specifically, palette coding introduces a lookup table,

i.e., a color palette, to compress repetitive pixel values based on the fact that in SCC,

colors within one CU usually concentrate on a few peak values. Given a palette for a

specific CU, pixels within the CU are mapped to palette indices. In the second stage, an

effective copy from left run length method is proposed to effectively compress the index

block’s repetitive pattern. In some examples, the palette index coding mode may be

generalized to both copy from left and copy from above with run length coding. Note

that, in some examples, no transformation process may be invoked for palette coding to

avoid blurring sharp edges which can have a huge negative impact on visual quality of

screen contents.

[0024] As discussed above, this disclosure describes palette-based coding, which may

be particularly suitable for screen generated content coding. For example, assume a

particular area of video data has a relatively small number of colors. A video coder (a

video encoder or video decoder) may code a so-called “palette” as a table of colors for

representing the video data of the particular area (e.g., a given block). Each pixel may

be associated with an entry in the palette that represents the color of the pixel. For

1414-118WO01

http://phenix.it-sudparis.eu/jct/doc_end_user/documents/13_Incheon/wgll/JCTVC-M0323-v3.zip

WO 2016/201032 PCT/US2016/036572
6

example, the video coder may code an index that maps the pixel value to the appropriate

value in the palette.

[0025] In the example above, a video encoder may encode a block of video data by

determining a palette for the block, locating an entry in the palette to represent the color

value of each pixel, and encoding the palette with index values for the pixels mapping

the pixel value to the palette. A video decoder may obtain, from an encoded bitstream,

a palette for a block, as well as index values for the pixels of the block. The video

decoder may map the index values of the pixels to entries of the palette to reconstruct

the luma and chroma pixel values of the block.

[0026] The example above is intended to provide a general description of palette-based

coding. In various examples, the techniques described in this disclosure may include

techniques for various combinations of one or more of signaling palette-based coding

modes, transmitting palettes, predicting palettes, deriving palettes, and transmitting

palette-based coding maps and other syntax elements. Such techniques may improve

video coding efficiency, e.g., requiring fewer bits to represent screen generated content.

[0027] For example, according to aspects of this disclosure, a video coder (video

encoder or video decoder) may code one or more syntax elements for each block that is

coded using a palette coding mode. For example, the video coder may code a

palettemodeflag to indicate whether a palette-based coding mode is to be used for

coding a particular block. In this example, a video encoder may encode a

palettemodeflag with a value that is equal to one to specify that the block currently

being encoded (“current block”) is encoded using a palette mode. In this case, a video

decoder may obtain the palette_mode_flag from the encoded bitstream and apply the

palette-based coding mode to decode the block. In instances in which there is more than

one palette-based coding mode available (e.g., there is more than one palette-based

technique available for coding), one or more syntax elements may indicate one of a

plurality of different palette modes for the block.

[0028] In some instances, the video encoder may encode a palette_mode_flag with a

value that is equal to zero to specify that the current block is not encoded using a palette

mode. In such instances, the video encoder may encode the block using any of a variety

of inter-predictive, intra-predictive, or other coding modes. When the

palette_mode_flag is equal to zero, the video encoder may encode additional

information (e.g., syntax elements) to indicate the specific mode that is used for

encoding the respective block. In some examples, as described below, the mode may be

1414-118WO01

WO 2016/201032 PCT/US2016/036572
7

an HEVC coding mode. The use of the palettemodeflag is described for purposes of

example. In other examples, other syntax elements such as multi-bit codes may be used

to indicate whether the palette-based coding mode is to be used for one or more blocks,

or to indicate which of a plurality of modes are to be used.

[0029] When a palette-based coding mode is used, a palette may be transmitted by an

encoder in the encoded video data bitstream for use by a decoder. A palette may be

transmitted for each block or may be shared among a number of blocks in a picture or

slice. The palette may refer to a number of pixel values that are dominant and/or

representative for the block, including, e.g., a luma value and two chroma values.

[0030] In some examples, a syntax element, such as a transpose flag, may be coded to

indicate whether a transpose process is applied to palette indices of a current palette. If

transpose flag is zero, the palette indices for samples may be coded in a horizontal

traverse scan. Similarly, if the transpose flag is one, the palette indices for samples may

be coded in a vertical traverse scan. This can be thought of as decoding the index

values assuming horizontal traverse scan and then transposing the block (rows to

columns).

[0031] Aspects of this disclosure include techniques for coding the palette. For

example, according to aspects of this disclosure, a video encoder may encode one or

more syntax elements to define a palette. Some example syntax elements which a video

encoder may encode to define a current palette for a current block of video data include,

but are not limited to, a syntax element that indicates whether a transpose process is

applied to palette indices of the current palette (e.g., palettetransposeflag) (i.e.,

whether the , one or more syntax elements related to delta quantization parameter (QP)

(e g., cu qp delta palette abs, cu qp delta palette sign flag,

cuchromaqppaletteoffsetflag, and/or cu chroma qp palette offset idx), one

or more syntax elements related to chroma QP offsets for the current block of video

data, one or more syntax elements that indicate a number of zeros that precede a non­

zero entry in an array that indicates whether entries from a predictor palette are reused

in the current palette (e.g., palette_predictor_run), one or more syntax elements that

indicate a number of entries in the current palette that are explicitly signalled (e.g.,

num_signalled_palette_entries), one or more syntax elements that indicate a value of a

component in a palette entry in the current palette (e.g., palette_entry), one or more

syntax elements that indicate whether the current block of video data includes at least

one escape coded sample (e.g., palette_escape_val_present_flag), one or more syntax

1414-118WO01

WO 2016/201032 PCT/US2016/036572
8

elements that indicate a number of entries in the current palette that are explicitly

signalled or inferred (e.g., num_palette_indices_idc), and one or more syntax elements

that indicate indices in an array of current palette entries (e.g., palette_index_idc). For

example, when operating in accordance with the HEVC Screen Content Coding (SCC)

Draft 3 (Joshi et al., “High Efficiency Video Coding (HEVC) Screen Content Coding:

Draft 3,” Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3

and ISO/IEC JTC 1/SC 29/WG 11, 20th Meeting: Geneva, CH, 10 February - 17

February 2015, Document: JCTVC-T1005, available at http://phenix.int-

evry.fr/jct/doc_end_user/documents/20_Geneva/wgll/JCTVC-T1005-v2.zip,

(hereinafter “HEVC SCC Draft 3”), a video coder may signal the syntax elements listed

in palette_coding() syntax table (section 7.3.8.8 of HEVC SCC Draft 3), reproduced

below as Table 1.

palette coding(xO, yO, nCbS) { Descriptor
palettePredictionFinished = 0
NumPredictedPaletteEntries = 0
for(i = 0; i < PredictorPaletteSize && !palettePredictionFinished &&

NumPredictedPaletteEntries < palette max size; i++) {
palette predictor run ue(v)
if(palette predictor run != 1){

if(palette predictor run > 1)
i += palette predictor run - 1

PalcttcPrcdictorEntryRcuscFlagl i] = 1
NumPredictedPaletteEntries++

} else
palettePredictionFinished = 1

}
if(NumPredictedPaletteEntries < palette max size)

numsignalledpaletteentries ue(v)
numComps = (ChromaArrayType = = 0)71:3
for(cldx = 0; cldx < numComps; cldx++)

for(i = 0; i < num signalled palette entries; i++)
paletteentry ae(v)

if(CurrentPaletteSize != 0)
palette escape val present flag ae(v)

if(palette_escape_val_present_flag) {

if(cu qp delta enabled flag && ! IsCuQpDeltaCoded) {

cuqpdeltapaletteabs ae(v)

if(cu_qp_delta_palette_abs)

cuqpdcltapalcttcsigntlag ae(v)

}

1414-118WO01

http://phenix.int-evry.fr/jct/doc_end_user/documents/20_Geneva/wgll/JCTVC-T1005-v2.zip

WO 2016/201032 PCT/US2016/036572
9

if(cu chroma qp offset enabled flag && !IsCuChromaQpOffsetCoded) {

cu chroma qp palette offset flag ae(v)

if(cu chroma qp offset flag && chroma qp offset list len minusl >

0)

cuchromaqppaletteoffsetidx ae(v)

}

}

if(MaxPalettelndex > 0) {
palettetransposeflag ae(v)
num palette indices idc ae(v)
for(i=0; i < NumPalettelndices; i++) {

paletteindexidc ae(v)
Palettelndexldc[i] = paletteindexidc

}
lastpaletteruntypeflag ae(v)

}
CurrNumlndices = 0
PaletteScanPos = 0
while/ PaletteScanPos < nCbS * nCbS) {

xC = xO + travScan[PaletteScanPos] [0]
yC = yO + travScan[PaletteScanPos][1]
if(PaletteScanPos > 0) {

xcPrev = xO + travScan[PaletteScanPos - 1][0]
ycPrev = yO + travScan[PaletteScanPos - 1][1]

}
PaletteRun = nCbS * nCbS - PaletteScanPos - 1
if(MaxPalettelndex > 0 && CurrNumlndices < NumPalettelndices) {

if(PaletteScanPos >= nCbS && palette_run_type_flag[xcPrev][ycPrev]
!= COPY ABOVE MODE && PaletteScanPos < nCbS * nCbS - 1) {
palette run type flag[xC] [yC] ae(v)

}
readindex = 0
if(palette_run_type_flag[xC] [yC] = = COPY INDEX MODE &&

AdjustedMaxPalettelndex > 0)
readindex = 1

maxPaletteRun = nCbS * nCbS - PaletteScanPos - 1
if(AdjustedMaxPalettelndex > 0 &&

((CurrNumlndices + readindex) < NumPalettelndices
palette run type flag[xC][yC] != last palette run type flag))
if(maxPaletteRun > 0) {

paletterunmsbidplusl ae(v)
if(palette run msb id plusl > 1)

paletterunrefinementbits ae(v)
}

CurrNumlndices + = readindex

1414-118WO01

WO 2016/201032 PCT/US2016/036572
10

Table 1

}
runPos = 0
while (runPos < = paletteRun) {

xR = xO + travScan[PaletteScanPos][0]
yR = yO + travScan[PaletteScanPos] [1]
if(palette_run_type_flag[xC][yC] == COPYJNDEXMODE) {

Palette SampleMode[xR][yR] = COPYJNDEXMODE
Pale tic Index Ma p| xR][yR] = CurrPalettelndex

} else {
Palette SampleMode[xR][yR] = COPY_ABOVE_MODE
PalcttcIndcxMapI xR] [yR] = PaletteIndexMap[xR] [yR - 1]

}
runPos++
PaletteScanPos++

}
}
if(palette_escape_val_present flag) {

sPos = 0
while) sPos < nCbS * nCbS) {

xC = xO + travScan[sPos] [0]
yC = yO + travScan[sPos][1]
if(PalcttcIndcxMapI xC][yC] = = MaxPalettelndex) {

for(cldx = 0; cldx < numComps; cldx++)
if(cldx = = 0

(xR % 2 = = 0 && yR % 2 = = 0 && ChromaArrayType = =1)
(xR % 2 = = 0 && ChromaArrayType = = 2)
ChromaArrayType = = 3) {

paletteescapeval ae(v)
PaletteEscapeVal[cldx][xC][yC] = paletteescapeval

}
}
sPos++

}
}

}

[0032] In addition to providing an order in which the syntax elements are included in a

bitstream, Table 1 also provides a descriptor for each of the syntax elements that

indicates an encoding type for each syntax element. As one example, a video encoder

may encode syntax elements with the ue(v) descriptor using unsigned integer O-th order

Exp-Golomb-codes with the left bit first. As another example, a video encoder may

encode syntax elements with the ae(v) descriptor using context-adaptive arithmetic

entropy-codes (CAB AC). When bins of a syntax element are encoded use CAB AC, a

video encoder may encode one or more of the bins using a context and/or may encode

1414-118WO01

WO 2016/201032 PCT/US2016/036572
11

one or more of the bins without a context. Encoding a bin using CAB AC without a

context may be referred to as bypass mode. HEVC SCC Draft 3 further provides a table

(Table 9-47 of the HEVC SCC Draft 3), partially reproduced below as Table 2, that

indicates which bins of the syntax elements listed in Table 1 are coded with contexts

(i.e., as indicated by context “0” and context “1”) and which bins are coded in bypass

mode.

Syntax element
binldx

0 1 2 3 4 >= 5

palette predictor run bypass bypass bypass bypass bypass bypass

num signalled palette entries bypass bypass bypass bypass bypass bypass

palette entry bypass bypass bypass bypass bypass bypass

palette escape val present flag bypass na na na na na

cu qp delta palette abs 0 1 1 1 1 bypass

cu qp delta palette sign flag bypass na na na na na

cu chroma qp palette offset flag 0 na na na na na

cu chroma qp palette offset idx 0 0 0 0 0 na

palette transpose flag 0 na na na na na

num palette indices ide bypass bypass bypass bypass bypass bypass

last palette run type flag 0 na na na na na

palette mn type flag 0 na Na na na na

palette index ide bypass bypass bypass bypass bypass bypass

palette mn msb id plusl (clause 9.3.4.2.8)

palette run refinement bits bypass bypass bypass bypass bypass bypass

paletteescapeval bypass bypass bypass bypass bypass bypass
Table 2

[0033] A comparison of Tablel and Table 2 shows that HEVC SCC Draft 3 prescribes

that all the syntax elements before cu_qp_delta_palette_abs (i.e.,

numsignalledpaletteentries, palette entry, and palette escape val present flag)

are bypass-coded. Similarly, syntax elements after palette_transpose_flag and before

last palette run type flag (i.e., num palette indices idc and palette index idc)

are also bypass coded.

[0034] When encoding a bin using CAB AC with a context, a video encoder may load

the context from storage into memory. In some examples, a video encoder may have

limited memory resources available and/or it may be time consuming to load a context

into memory. As such, it may be desirable for a video encoder to minimize the amount

1414-118WO01

WO 2016/201032 PCT/US2016/036572
12

of times contexts are loaded into memory. In some examples, grouping bypass bins

together may reduce the amount of times contexts are loaded into memory, which may

increase CABAC throughput.

[0035] In Ye et al., “CEl-related: Palette Mode Context and Codeword Simplification,”

Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and

ISO/IEC JTC 1/SC 29/WG 11, 21st Meeting: Warsaw, PL, 19-26 June 2015,

Document: JCTVC-U0090, available at http://phenix.it-

sudparis.eu/jct/doc_end_user/documents/21_Warsaw/wgll/JCTVC-U0090-vl.zip

(hereinafter, “JCTVC-U0090”), it was proposed that the palettetransposeflag be

signalled after the lastpaletteruntypeflag. Specifically, JCTVC-U0090 proposes

modifying the palette_coding() syntax table as shown below in Table 3 (where text in

italics is inserted and text in [[double bracket italics]] is deleted).

Table 3

if(MaxPalettelndex > 0) {
[[palettejtransposeJlag]] [[ae(v)]]
num palette indices idc ae(v)
for(i=0; i < NumPalettelndices; i++) {

paletteindexidc ae(v)
Palettelndexldc[i] = paletteindexidc

I
lastpaletteruntypeflag ae(v)
palettejtransposeflag ae(v)

I

[0036] However, in some examples, the arrangement of syntax elements proposed by

JCTVC-U0090 may not be optimal. For instance, when syntax elements related to delta

QP (i.e., cu qp delta palette abs and cu qp delta palette sign flag) and chroma

QP offset (i.e., cu chroma qp palette offset flag and

cu_chroma_qp_palette_offset_idx) are present, the arrangement of syntax elements

proposed by JCTVC-U0090 may not result in grouping of any additional bypass bins.

[0037] In accordance with one or more techniques of this disclosure, a video encoder

may encode the syntax elements used to define a current palette such that syntax

elements that are encoded using bypass mode are consecutively encoded. For instance,

as opposed to encoding one or more syntax elements related to delta quantization

parameter (QP) and/or chroma QP offsets for a current block of video data before a

syntax element that indicates whether a transpose process is applied to palette indices of

a palette for the current block of video data, a video encoder may encode the one or

1414-118WO01

http://phenix.it-sudparis.eu/jct/doc_end_user/documents/21_Warsaw/wgll/JCTVC-U0090-vl.zip

WO 2016/201032 PCT/US2016/036572
13

more syntax elements related to delta QP and/or chroma QP offsets for the current block

of video data after the syntax element that indicates whether a transpose process is

applied to the palette indices of the palette for the current block of video data.

[0038] One example of how the palette_coding() syntax table may be modified to move

the signalling of the syntax elements related to delta QP and chroma QP offsets after the

palette transpose flag is shown below in Table 4 (where text in italics is inserted and

text in [[double bracket italics]] is deleted relative to a previous version of Table 4 in

HEVC SCC Draft 3).

palette coding(xO, yO, nCbS) { Descriptor
palettePredictionFinished = 0
NumPredictedPaletteEntries = 0
for(i = 0; i < PredictorPaletteSize && !palettePredictionFinished &&

NumPredictedPaletteEntries < palette max size; i++) {
palette predictor run ue(v)
if(palette predictor run != 1){

if(palette predictor run > 1)
i += palette predictor run - 1

PalettePredictorEntryReuseFlagl i] = 1
NumPredictedPaletteEntries++

} else
palettePredictionFinished = 1

}
if(NumPredictedPaletteEntries < palette max size)

numsignalledpaletteentries ue(v)
numComps = (ChromaArrayType = = 0)71:3
for(cldx = 0; cldx < numComps; cldx++)

for(i = 0; i < num signalled palette entries; i++)
paletteentry ae(v)

if(CurrentPaletteSize != 0)
palette escape val present flag ae(v)

/[i](palette escape val presentJlag){]]
[[if(cu qp delta enabledJlag&& UsCuQpDeltaCoded) {]]
[[cuqpdelta palette abs]] [[ae(v)]]
[[if(cu qp delta palette abs)]]

[[cuqpdelta palette sign Jlag]] [[ae(v)]]
[[}]]
[[if(cuchromaqpoffsetenabledJlag && UsCuChromaQpOffsetCoded) {]]
[[cuchromaqp palette offset flag]] [[ae(v)]]
[[if(cuchromaqpoffsetJlag && chroma qp offset list len minusl > 0)]]

[[cuchromaqp palette offset idx]] [[ae(v)]]

[[}]]
[[}]]

1414-118WO01

WO 2016/201032 PCT/US2016/036572
14

Table 4

if(MaxPalettelndex > 0) {
[[palettejtranspose jlag]] [[ae(v)]]
num palette indices idc ae(v)
for(i=0; i < NumPalettelndices; i++) {

paletteindexidc ae(v)
Palettelndexldc[i] = paletteindexidc

}
last palette run type flag ae(v)
palette transposeflag ae(v)

}
if(palette escape val presentJag) {

if(cu qp delta enabledJlag && HsCuQpDeltaCoded) {
cu qp delta palette abs ae(v)
if(cuqpdelta palette abs)

cuqpdelta palette signJlag ae(v)
}
if(cuchromaqpoffsetenabled Jag && UsCuChromaQpOffsetCoded) {
cuchromaqp palette offsetJlag ae(v)
if(cu chroma qp offset Jag && chroma qp offset list len minusl > 0)

cuchromaqp palette offsetidx ae(v)
}

}
CurrNumlndices = 0
PaletteScanPos = 0

[0039] By moving the one or more syntax elements related to delta QP and/or chroma

QP offsets for the current block of video data after the syntax element that indicates

whether a transpose process is applied to the palette indices of the palette for the current

block of video data, the video encoder may group together (i.e., consecutively encode) a

larger number of syntax elements that are coded using bypass mode. For example, by

moving the one or more syntax elements related to delta QP and/or chroma QP offsets

for the current block of video data after the syntax element that indicates whether a

transpose process is applied to the palette indices of the palette for the current block of

video data, the video encoder may group together one or more syntax elements that

indicate a number of entries in the current palette that are explicitly signalled or inferred

(e.g., num_palette_indices_idc) and one or more syntax elements that entriesindices in

an array of current palette entries (e.g., palette_index_idc) with one or more syntax

elements related to chroma QP offsets for the current block of video data, one or more

syntax elements that indicate a number of zeros that precede a non-zero entry in an array

1414-118WO01

WO 2016/201032 PCT/US2016/036572
15

that indicates whether entries from a predictor palette are reused in the current palette

(e.g., palette_predictor_run), one or more syntax elements that indicate a number of

entries in the current palette that are explicitly signalled (e.g.,

numsignalledpaletteentries), one or more syntax elements that indicate a value of a

component in a palette entry in the current palette (e.g., palette_entry), and one or more

syntax elements that indicate whether the current block of video data includes at least

one escape coded sample (e.g., palette escape val present flag). In this way, the

techniques of this disclosure may increase CABAC throughput, which may reduce the

time needed to encode video data using palette mode encoding. For instance, by

grouping together the bypass coded syntax elements, a video coder may sequentially

encode the grouped syntax elements using without starting, stopping, restarting,

reloading, and resetting a CABAC coding engine

[0040] Table 4 is only one example of how the syntax elements may be arranged. In

some examples, the syntax elements related to delta QP and chroma QP offset may be

moved further down the syntax table. For example, the syntax elements related to delta

QP and chroma QP offset could be placed just before the component values for escape

samples (i.e., palette_escape_val). One example of how the syntax elements related to

delta QP and chroma QP offset could be placed just before the component values for

escape samples is shown below in Table 5 (where text in italics is inserted and text in

[[double bracket italics]] is deleted relative to HEVC SCC Draft 3).

palette coding(xO, yO, nCbS) { Descriptor
palettePredictionFinished = 0
NumPredictedPaletteEntries = 0
for(i = 0; i < PredictorPaletteSize && !palettePredictionFinished &&

NumPredictedPaletteEntries < palette max size; i++) {
palette predictor run ue(v)
if(palette predictor run != 1) {

if(palette predictor run > 1)
i += palette predictor run - 1

PalettePredictorEntryReuseFlagf i] = 1
NumPredictedPaletteEntries++

} else
palettePredictionFinished = 1

}
if(NumPredictedPaletteEntries < palette max size)

numsignalledpaletteentries ue(v)
numComps = (ChromaArrayType = = 0)71:3
for(cldx = 0; cldx < numComps; cldx++)

for(i = 0; i < numsignalledpaletteentries: i++)

1414-118WO01

WO 2016/201032 PCT/US2016/036572
16

paletteentry ae(v)
if(CurrentPaletteSize != 0)

palette escape val present flag ae(v)
[J(palette escape val presentJag){]]

[[if(cu qp delta enabledJlag&& UsCuQpDeltaCoded) {]]
[[cuqpdelta palette abs]] [[ae(v)]]
[[if(cu qp delta palette abs)]]

[[cuqpdelta palette sign Jlag]] [[ae(v)]]
[[}]]
[[if(cuchromaqpoffsetenabledJlag && UsCuChromaQpOffsetCoded) {]]
[[cuchromaqp palette offset flag]] [[ae(v)]]
[[if(cuchromaqpoffsetJlag && chroma qp offset list len minusl > 0)]]

[[cuchromaqp palette offsetidx]] [[ae(v)]]

[[}]]
[[}]]
if(MaxPalettelndex > 0) {

------ [ίpalettetransposeJlag]] [[ae(v)J
num palette indices idc ae(v)
for(i=0; i < NumPalettelndices; i++) {

paletteindexidc ae(v)
Palettelndexldc[i] = paletteindexidc

}
lastpaletteruntypeflag ae(v)
palettetransposeJlag ae(v)

}
CurrNumlndices = 0
PaletteScanPos = 0
while/ PaletteScanPos < nCbS * nCbS) {

xC = xO + travScan[PaletteScanPos] [0]
yC = yO + travScan[PaletteScanPos][1]
if(PaletteScanPos > 0) {

xcPrev = xO + travScan[PaletteScanPos - 1][0]
ycPrev = yO + travScan[PaletteScanPos - 1][1]

}
PaletteRun = nCbS * nCbS - PaletteScanPos - 1
if(MaxPalettelndex > 0 && CurrNumlndices < NumPalettelndices) {

if(PaletteScanPos >= nCbS && palette_run_type_flag[xcPrev][ycPrev]
!= COPY ABOVE MODE && PaletteScanPos < nCbS * nCbS - 1) {
palette run type flag[xC] [yC] ae(v)

}
readindex = 0
if(palette_run_type_flag[xC] [yC] = = COPY INDEX MODE &&

AdjustedMaxPalettelndex > 0)
readindex = 1

maxPaletteRun = nCbS * nCbS - PaletteScanPos - 1

1414-118WO01

WO 2016/201032 PCT/US2016/036572
17

if(AdjustedMaxPalettelndex > 0 &&
((CurrNumlndices + readindex) < NumPalettelndices
palette run type flag[xC][yC] != last palette run type flag))
if(maxPaletteRun > 0) {

palette run msb id plusl ae(v)
if(palette run msb id plusl > 1)

paletterunrefinementbits ae(v)
}

CurrNumlndices + = readindex
}
runPos = 0
while (runPos < = paletteRun) {

xR = xO + travScan[PaletteScanPos][0]
yR = yO + travScan[PaletteScanPos] [1]
if(palette_run_type_flag[xC][yC] == COPYJNDEXMODE) {

Palette SampleMode[xR][yR] = COPYJNDEXMODE
PaletteIndexMap[xR][yR] = CurrPalettelndex

} else {
Palette SampleMode[xR][yR] = COPY_ABOVE_MODE
PaletteIndexMap[xR] [yR] = PaletteIndexMap[xR] [yR - 1]

}
runPos++
PaletteScanPos++

}
}
if(palette_escape_val_present flag) {

if(cu qp delta enabledJlag && UsCuQpDeltaCoded) {
cuqpdelta palette abs ae(v)
if(cuqpdelta palette abs)

cuqpdelta palette signJlag ae(v)
}
if(cuchromaqpoffsetenabledJlag && UsCuChromaQpOffsetCoded) {
cuchromaqp palette offsetJlag ae(v)
if(cu chroma qp offset Jlag && chroma qp offset list len minusl > 0)

cuchromaqp palette offsetidx ae(v)
}

sPos = 0
while/ sPos < nCbS * nCbS) {

xC = xO + travScan[sPos] [0]
yC = yO + travScan[sPos][1]
if(PaletteIndexMap[xC] [yC] = = MaxPalettelndex) {

for(cldx = 0; cldx < numComps; cldx++)
if(cldx = = 0

(xR % 2 = = 0 && yR % 2 = = 0 && ChromaArrayType = =1)
(xR % 2 = = 0 && ChromaArrayType = = 2)
ChromaArrayType = = 3) {

paletteescapeval ae(v)

1414-118WO01

WO 2016/201032 PCT/US2016/036572
18

Table 5

PaletteEscapeVal[cldx][xC][yC] = paletteescapeval
}

}
sPos++

}
}

}

[0041] The techniques for palette-based coding of video data may be used with one or

more other coding techniques, such as techniques for inter- or intra-predictive coding.

For example, as described in greater detail below, an encoder or decoder, or combined

encoder-decoder (codec), may be configured to perform inter- and intra-predictive

coding, as well as palette-based coding.

[0042] In some examples, the palette-based coding techniques may be configured for

use with one or more video coding standards. Some example video coding standards

include, but are not limited to, ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T H.262 or

ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264

(also known as ISO/IEC MPEG-4 AVC), including its Scalable Video Coding (SVC)

and Multiview Video Coding (MVC) extensions.

[0043] Recently, the design of a new video coding standard, namely High-Efficiency

Video Coding (HEVC), has been finalized by the Joint Collaboration Team on Video

Coding (JCT-VC) of ITU-T Video Coding Experts Group (VCEG) and ISO/IEC

Motion Picture Experts Group (MPEG). A copy of the finalized HEVC standard (i.e.,

ITU-T H.265, Series H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS

Infrastructure of audiovisual services - Coding of moving video, April, 2015) is

available at https://www.itu.int/rec/T-REC-H.265-201504-I/en, (hereinafter the “HEVC

Standard”.

[0044] A Range Extension to HEVC, namely HEVC Screen Content Coding (SCC), is

also being developed by the JCT-VC. A recent draft of HEVC SCC (Joshi et al., “High

Efficiency Video Coding (HEVC) Screen Content Coding: Draft 4,” Joint Collaborative

Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC

29/WG 11, 21st Meeting: Warsaw, PL, 19 June - 16 June 2015, is available from

http://phenix.it- sudparis.eu/jct/doc_end_user/documents/21_Warsaw/wgl 1/JCTVC-

U1005-v2.zip, (hereinafter “HEVC SCC Draft 4”).

[0045] With respect to the HEVC framework, as an example, the palette-based coding

techniques may be configured to be used as a coding unit (CU) mode. In other

1414-118WO01

https://www.itu.int/rec/T-REC-H.265-201504-I/en
http://phenix.it-

WO 2016/201032 PCT/US2016/036572
19

examples, the palette-based coding techniques may be configured to be used as a

prediction unit (PU) mode in the framework of HEVC. Accordingly, all of the

following disclosed processes described in the context of a CU mode may, additionally

or alternatively, apply to PU. However, these HEVC-based examples should not be

considered a restriction or limitation of the palette-based coding techniques described

herein, as such techniques may be applied to work independently or as part of other

existing or yet to be developed systems/standards. In these cases, the unit for palette

coding can be square blocks, rectangular blocks, or even regions of non-rectangular

shape.

[0046] FIG. 1 is a block diagram illustrating an example video coding system 10 that

may utilize the techniques of this disclosure. As used herein, the term “video coder”

refers generically to both video encoders and video decoders. In this disclosure, the

terms “video coding” or “coding” may refer generically to video encoding or video

decoding. Video encoder 20 and video decoder 30 of video coding system 10 represent

examples of devices that may be configured to perform techniques for palette-based

video coding in accordance with various examples described in this disclosure. For

example, video encoder 20 and video decoder 30 may be configured to selectively code

various blocks of video data, such as CU’s or PU’s in HEVC coding, using either

palette-based coding or non-palette based coding. Non-palette based coding modes may

refer to various inter-predictive temporal coding modes or intra-predictive spatial

coding modes, such as the various coding modes specified by the HEVC Standard.

[0047] As shown in FIG. 1, video coding system 10 includes a source device 12 and a

destination device 14. Source device 12 generates encoded video data. Accordingly,

source device 12 may be referred to as a video encoding device or a video encoding

apparatus. Destination device 14 may decode the encoded video data generated by

source device 12. Accordingly, destination device 14 may be referred to as a video

decoding device or a video decoding apparatus. Source device 12 and destination

device 14 may be examples of video coding devices or video coding apparatuses.

[0048] Source device 12 and destination device 14 may comprise a wide range of

devices, including desktop computers, mobile computing devices, notebook (e.g.,

laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called

“smart” phones, televisions, cameras, display devices, digital media players, video

gaming consoles, in-car computers, or the like.

1414-118WO01

WO 2016/201032 PCT/US2016/036572
20

[0049] Destination device 14 may receive encoded video data from source device 12 via

a channel 16. Channel 16 may comprise one or more media or devices capable of

moving the encoded video data from source device 12 to destination device 14. In one

example, channel 16 may comprise one or more communication media that enable

source device 12 to transmit encoded video data directly to destination device 14 in real­

time. In this example, source device 12 may modulate the encoded video data

according to a communication standard, such as a wireless communication protocol, and

may transmit the modulated video data to destination device 14. The one or more

communication media may include wireless and/or wired communication media, such

as a radio frequency (RF) spectrum or one or more physical transmission lines. The one

or more communication media may form part of a packet-based network, such as a local

area network, a wide-area network, or a global network (e.g., the Internet). The one or

more communication media may include routers, switches, base stations, or other

equipment that facilitate communication from source device 12 to destination device 14.

[0050] In another example, channel 16 may include a storage medium that stores

encoded video data generated by source device 12. In this example, destination device

14 may access the storage medium via disk access or card access. The storage medium

may include a variety of locally-accessed data storage media such as Blu-ray discs,

DVDs, CD-ROMs, flash memory, or other suitable digital storage media for storing

encoded video data.

[0051] In a further example, channel 16 may include a file server or another

intermediate storage device that stores encoded video data generated by source device

12. In this example, destination device 14 may access encoded video data stored at the

file server or other intermediate storage device via streaming or download. The file

server may be a type of server capable of storing encoded video data and transmitting

the encoded video data to destination device 14. Example file servers include web

servers (e.g., for a website), file transfer protocol (FTP) servers, network attached

storage (NAS) devices, and local disk drives.

[0052] Destination device 14 may access the encoded video data through a standard

data connection, such as an Internet connection. Example types of data connections

may include wireless channels (e.g., Wi-Fi connections), wired connections (e.g., DSL,

cable modem, etc.), or combinations of both that are suitable for accessing encoded

video data stored on a file server. The transmission of encoded video data from the file

1414-118WO01

WO 2016/201032 PCT/US2016/036572
21

server may be a streaming transmission, a download transmission, or a combination of

both.

[0053] The techniques of this disclosure are not limited to wireless applications or

settings. The techniques may be applied to video coding in support of a variety of

multimedia applications, such as over-the-air television broadcasts, cable television

transmissions, satellite television transmissions, streaming video transmissions, e.g., via

the Internet, encoding of video data for storage on a data storage medium, decoding of

video data stored on a data storage medium, or other applications. In some examples,

video coding system 10 may be configured to support one-way or two-way video

transmission to support applications such as video streaming, video playback, video

broadcasting, and/or video telephony.

[0054] FIG. 1 is merely an example and the techniques of this disclosure may apply to

video coding settings (e.g., video encoding or video decoding) that do not necessarily

include any data communication between the encoding and decoding devices. In other

examples, data is retrieved from a local memory, streamed over a network, or the like.

A video encoding device may encode and store data to memory, and/or a video decoding

device may retrieve and decode data from memory. In many examples, the encoding

and decoding is performed by devices that do not communicate with one another, but

simply encode data to memory and/or retrieve and decode data from memory. Source

device 12 and destination device 14 may comprise any of a wide range of devices,

including desktop computers, notebook (i.e., laptop) computers, tablet computers, set­

top boxes, appliances, telephone handsets such as so-called “smart” phones, so-called

“smart” pads, televisions, cameras, display devices, digital media players, video gaming

consoles, video streaming device, or the like. In some cases, source device 12 and

destination device 14 may be equipped for wireless communication.

[0055] Destination device 14 may receive the encoded video data to be decoded via a

link 16. Link 16 may comprise any type of medium or device capable of moving the

encoded video data from source device 12 to destination device 14. In one example,

link 16 may comprise a communication medium to enable source device 12 to transmit

encoded video data directly to destination device 14 in real-time. The encoded video

data may be modulated according to a communication standard, such as a wireless

communication protocol, and transmitted to destination device 14. The communication

medium may comprise any wireless or wired communication medium, such as a radio

frequency (RF) spectrum or one or more physical transmission lines. The

1414-118WO01

WO 2016/201032 PCT/US2016/036572
22

communication medium may form part of a packet-based network, such as a local area

network, a wide-area network, or a global network such as the Internet. The

communication medium may include routers, switches, base stations, or any other

equipment that may be useful to facilitate communication from source device 12 to

destination device 14.

[0056] Alternatively, encoded data may be output from output interface 22 to a storage

device 19. Similarly, encoded data may be accessed from storage device 19 by input

interface. Storage device 19 may include any of a variety of distributed or locally

accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,

flash memory, volatile or non-volatile memory, or any other suitable digital storage

media for storing encoded video data. In a further example, storage device 19 may

correspond to a file server or another intermediate storage device that may hold the

encoded video generated by source device 12. Destination device 14 may access stored

video data from storage device 19 via streaming or download. The file server may be

any type of server capable of storing encoded video data and transmitting that encoded

video data to the destination device 14. Example file servers include a web server (e.g.,

for a website), an FTP server, network attached storage (NAS) devices, or a local disk

drive. Destination device 14 may access the encoded video data through any standard

data connection, including an Internet connection. This may include a wireless channel

(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a

combination of both that is suitable for accessing encoded video data stored on a file

server. The transmission of encoded video data from storage device 19 may be a

streaming transmission, a download transmission, or a combination of both.

[0057] The techniques of this disclosure are not necessarily limited to wireless

applications or settings. The techniques may be applied to video coding in support of

any of a variety of multimedia applications, such as over-the-air television broadcasts,

cable television transmissions, satellite television transmissions, streaming video

transmissions, e.g., via the Internet, encoding of digital video for storage on a data

storage medium, decoding of digital video stored on a data storage medium, or other

applications. In some examples, system 10 may be configured to support one-way or

two-way video transmission to support applications such as video streaming, video

playback, video broadcasting, and/or video telephony.

[0058] In the example of FIG. 1, source device 12 includes a video source 18, video

encoder 20 and an output interface 22. In some cases, output interface 22 may include a

1414-118WO01

WO 2016/201032 PCT/US2016/036572
23

modulator/demodulator (modem) and/or a transmitter. In source device 12, video

source 18 may include a source such as a video capture device, e.g., a video camera, a

video archive containing previously captured video, a video feed interface to receive

video from a video content provider, and/or a computer graphics system for generating

computer graphics data as the source video, or a combination of such sources. As one

example, if video source 18 is a video camera, source device 12 and destination device

14 may form so-called camera phones or video phones. However, the techniques

described in this disclosure may be applicable to video coding in general, and may be

applied to wireless and/or wired applications.

[0059] The captured, pre-captured, or computer-generated video may be encoded by

video encoder 20. The encoded video data may be transmitted directly to destination

device 14 via output interface 22 of source device 12. The encoded video data may also

(or alternatively) be stored onto storage device 19 for later access by destination device

14 or other devices, for decoding and/or playback.

[0060] Destination device 14 includes an input interface 28, a video decoder 30, and a

display device 32. In some cases, input interface 28 may include a receiver and/or a

modem. Input interface 28 of destination device 14 receives the encoded video data

over link 16. The encoded video data communicated over link 16, or provided on

storage device 19, may include a variety of syntax elements generated by video encoder

20 for use by a video decoder, such as video decoder 30, in decoding the video data.

Such syntax elements may be included with the encoded video data transmitted on a

communication medium, stored on a storage medium, or stored a file server.

[0061] Display device 32 may be integrated with, or external to, destination device 14.

In some examples, destination device 14 may include an integrated display device and

also be configured to interface with an external display device. In other examples,

destination device 14 may be a display device. In general, display device 32 displays

the decoded video data to a user, and may comprise any of a variety of display devices

such as a liquid crystal display (LCD), a plasma display, an organic light emitting diode

(OLED) display, or another type of display device.

[0062] Video encoder 20 and video decoder 30 may operate according to a video

compression standard, such as the recently finalized HEVC standard (and various

extensions thereof presently under development). Alternatively, video encoder 20 and

video decoder 30 may operate according to other proprietary or industry standards, such

as the ITU-T H.264 standard, alternatively referred to as MPEG-4, Part 10, Advanced

1414-118WO01

WO 2016/201032 PCT/US2016/036572
24

Video Coding (AVC), or extensions of such standards. The techniques of this

disclosure, however, are not limited to any particular coding standard. Other examples

of video compression standards include VP8, and VP9.

[0063] Although not shown in FIG. 1, in some aspects, video encoder 20 and video

decoder 30 may each be integrated with an audio encoder and decoder, and may include

appropriate MUX-DEMUX units, or other hardware and software, to handle encoding

of both audio and video in a common data stream or separate data streams. If

applicable, in some examples, MUX-DEMUX units may conform to the ITU H.223

multiplexer protocol, or other protocols such as the user datagram protocol (UDP).

[0064] Video encoder 20 and video decoder 30 each may be implemented as any of a

variety of suitable encoder circuitry, such as one or more integrated circuits including

microprocessors, digital signal processors (DSPs), application specific integrated

circuits (ASICs), field programmable gate arrays (FPGAs), discrete logic, software,

hardware, firmware, or any combinations thereof. When the techniques are

implemented partially in software, a device may store instructions for the software in a

suitable, non-transitory computer-readable medium and execute the instructions in

hardware such as integrated circuitry using one or more processors to perform the

techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be

included in one or more encoders or decoders, either of which may be integrated as part

of a combined encoder/decoder (CODEC) in a respective device.

[0065] As introduced above, the JCT-VC has recently finalized development of the

HEVC standard. The HEVC standardization efforts were based on an evolving model

of a video coding device referred to as the HEVC Test Model (HM). The HM presumes

several additional capabilities of video coding devices relative to existing devices

according to, e.g., ITU-T H.264/AVC. For example, whereas H.264 provides nine intra­

prediction encoding modes, the HM may provide as many as thirty-five intra-prediction

encoding modes.

[0066] In HEVC and other video coding specifications, a video sequence typically

includes a series of pictures. Pictures may also be referred to as “frames.” A picture

may include three sample arrays, denoted Sl, Scb, and Sq· Sl is a two-dimensional

array (i.e., a block) of luma samples. Scb is a two-dimensional array of Cb chrominance

samples. Sq is a two-dimensional array of Cr chrominance samples. Chrominance

samples may also be referred to herein as “chroma” samples. In other instances, a

picture may be monochrome and may only include an array of luma samples.

1414-118WO01

WO 2016/201032 PCT/US2016/036572
25

[0067] To generate an encoded representation of a picture, video encoder 20 may

generate a set of coding tree units (CTUs). Each of the CTUs may comprise a coding

tree block of luma samples, two corresponding coding tree blocks of chroma samples,

and syntax structures used to code the samples of the coding tree blocks. In

monochrome pictures or pictures having three separate color planes, a CTU may

comprise a single coding tree block and syntax structures used to code the samples of

the coding tree block. A coding tree block may be an NxN block of samples. A CTU

may also be referred to as a “tree block” or a LCU. The CTUs of HEVC may be

broadly analogous to the macroblocks of other standards, such as H.264/AVC.

However, a CTU is not necessarily limited to a particular size and may include one or

more coding units (CUs). A slice may include an integer number of CTUs ordered

consecutively in a raster scan order.

[0068] To generate a coded CTU, video encoder 20 may recursively perform quad-tree

partitioning on the coding tree blocks of a CTU to divide the coding tree blocks into

coding blocks, hence the name “coding tree units.” A coding block may be an NxN

block of samples. A CU may comprise a coding block of luma samples and two

corresponding coding blocks of chroma samples of a picture that has a luma sample

array, a Cb sample array, and a Cr sample array, and syntax structures used to code the

samples of the coding blocks. In monochrome pictures or pictures having three separate

color planes, a CU may comprise a single coding block and syntax structures used to

code the samples of the coding block.

[0069] Video encoder 20 may partition a coding block of a CU into one or more

prediction blocks. A prediction block is a rectangular (i.e., square or non-square) block

of samples on which the same prediction is applied. A prediction unit (PU) of a CU

may comprise a prediction block of luma samples, two corresponding prediction blocks

of chroma samples, and syntax structures used to predict the prediction blocks. In

monochrome pictures or pictures having three separate color planes, a PU may comprise

a single prediction block and syntax structures used to predict the prediction block.

Video encoder 20 may generate predictive luma, Cb, and Cr blocks for luma, Cb, and Cr

prediction blocks of each PU of the CU.

[0070] Video encoder 20 may use intra prediction or inter prediction to generate the

predictive blocks for a PU. If video encoder 20 uses intra prediction to generate the

predictive blocks of a PU, video encoder 20 may generate the predictive blocks of the

PU based on decoded samples of the picture associated with the PU. If video encoder

1414-118WO01

WO 2016/201032 PCT/US2016/036572
26

20 uses inter prediction to generate the predictive blocks of a PU, video encoder 20 may

generate the predictive blocks of the PU based on decoded samples of one or more

pictures other than the picture associated with the PU.

[0071] After video encoder 20 generates predictive luma, Cb, and Cr blocks for one or

more PUs of a CU, video encoder 20 may generate a luma residual block for the CU.

Each sample in the CU’s luma residual block indicates a difference between a luma

sample in one of the CU’s predictive luma blocks and a corresponding sample in the

CU’s original luma coding block. In addition, video encoder 20 may generate a Cb

residual block for the CU. Each sample in the CU’s Cb residual block may indicate a

difference between a Cb sample in one of the CU’s predictive Cb blocks and a

corresponding sample in the CU’s original Cb coding block. Video encoder 20 may

also generate a Cr residual block for the CU. Each sample in the CU’s Cr residual block

may indicate a difference between a Cr sample in one of the CU’s predictive Cr blocks

and a corresponding sample in the CU’s original Cr coding block.

[0072] Furthermore, video encoder 20 may use quad-tree partitioning to decompose the

luma, Cb, and Cr residual blocks of a CU into one or more luma, Cb, and Cr transform

blocks. A transform block is a rectangular (e.g., square or non-square) block of samples

on which the same transform is applied. A transform unit (TU) of a CU may comprise a

transform block of luma samples, two corresponding transform blocks of chroma

samples, and syntax structures used to transform the transform block samples. Thus,

each TU of a CU may be associated with a luma transform block, a Cb transform block,

and a Cr transform block. The luma transform block associated with the TU may be a

sub-block of the CU’s luma residual block. The Cb transform block may be a sub-block

of the CU’s Cb residual block. The Cr transform block may be a sub-block of the CU’s

Cr residual block. In monochrome pictures or pictures having three separate color

planes, a TU may comprise a single transform block and syntax structures used to

transform the samples of the transform block.

[0073] Video encoder 20 may apply one or more transforms to a luma transform block

of a TU to generate a luma coefficient block for the TU. A coefficient block may be a

two-dimensional array of transform coefficients. A transform coefficient may be a

scalar quantity. Video encoder 20 may apply one or more transforms to a Cb transform

block of a TU to generate a Cb coefficient block for the TU. Video encoder 20 may

apply one or more transforms to a Cr transform block of a TU to generate a Cr

coefficient block for the TU.

1414-118WO01

WO 2016/201032 PCT/US2016/036572
27

[0074] After generating a coefficient block (e.g., a luma coefficient block, a Cb

coefficient block or a Cr coefficient block), video encoder 20 may quantize the

coefficient block. Quantization generally refers to a process in which transform

coefficients are quantized to possibly reduce the amount of data used to represent the

transform coefficients, providing further compression. After video encoder 20 quantizes

a coefficient block, video encoder 20 may entropy encode syntax elements indicating

the quantized transform coefficients. For example, video encoder 20 may perform

Context-Adaptive Binary Arithmetic Coding (CABAC) on the syntax elements

indicating the quantized transform coefficients.

[0075] Video encoder 20 may output a bitstream that includes a sequence of bits that

forms a representation of coded pictures and associated data. The bitstream may

comprise a sequence of NAL units. A NAL unit is a syntax structure containing an

indication of the type of data in the NAL unit and bytes containing that data in the form

of a RBSP interspersed as necessary with emulation prevention bits. Each of the NAL

units includes a NAL unit header and encapsulates a RBSP. The NAL unit header may

include a syntax element that indicates a NAL unit type code. The NAL unit type code

specified by the NAL unit header of a NAL unit indicates the type of the NAL unit. A

RBSP may be a syntax structure containing an integer number of bytes that is

encapsulated within a NAL unit. In some instances, an RBSP includes zero bits.

[0076] Different types of NAL units may encapsulate different types of RBSPs. For

example, a first type of NAL unit may encapsulate an RBSP for a PPS, a second type of

NAL unit may encapsulate an RBSP for a coded slice, a third type of NAL unit may

encapsulate an RBSP for SEI messages, and so on. NAL units that encapsulate RBSPs

for video coding data (as opposed to RBSPs for parameter sets and SEI messages) may

be referred to as VCL NAL units.

[0077] Video decoder 30 may receive a bitstream generated by video encoder 20. In

addition, video decoder 30 may parse the bitstream to obtain syntax elements from the

bitstream. Video decoder 30 may reconstruct the pictures of the video data based at

least in part on the syntax elements obtained from the bitstream. The process to

reconstruct the video data may be generally reciprocal to the process performed by

video encoder 20. In addition, video decoder 30 may inverse quantize coefficient

blocks associated with TUs of a current CU. Video decoder 30 may perform inverse

transforms on the coefficient blocks to reconstruct transform blocks associated with the

TUs of the current CU. Video decoder 30 may reconstruct the coding blocks of the

1414-118WO01

WO 2016/201032 PCT/US2016/036572
28

current CU by adding the samples of the predictive blocks for PUs of the current CU to

corresponding samples of the transform blocks of the TUs of the current CU. By

reconstructing the coding blocks for each CU of a picture, video decoder 30 may

reconstruct the picture.

[0078] In some examples, video encoder 20 and video decoder 30 may be configured to

perform palette-based coding. For example, in palette based coding, rather than

performing the intra-predictive or inter-predictive coding techniques described above,

video encoder 20 and video decoder 30 may code a so-called palette as a table of color

values for representing the video data of the particular area (e.g., a given block). Each

pixel may be associated with an entry in the palette that represents the color of the pixel,

e.g., with a luma (Y) value and chroma (Cb and Cr) values. For example, video encoder

20 and video decoder 30 may code an index that relates the pixel value to the

appropriate value in the palette.

[0079] In the example above, video encoder 20 may encode a block of video data by

determining a palette for the block, locating an entry in the palette to represent the value

of each pixel, and encoding the palette with index values for the pixels relating the pixel

value to the palette. Video decoder 30 may obtain, from an encoded bitstream, a palette

for a block, as well as index values for the pixels of the block. Video decoder 30 may

relate the index values of the pixels to entries of the palette to reconstruct the pixel

values of the block.

[0080] Aspects of this disclosure are directed to palette derivation, which may occur at

the encoder and at the decoder. As one example, video encoder 20 may derive a palette

for a current block by deriving a histogram of the pixels in the current block. In some

examples, the histogram may be expressed as H = {(Vp/i), i = {0,1,2, ··· ,M]j where

M+l is the number of different pixel values in the current block, v, is pixel value, and f

is the number of occurrence of v, (i.e., how many pixels in the current block have pixel

value v;). In such examples, the histogram generally represents a number of times that a

pixel value occurs in the current block.

[0081] Video encoder 20 may initialize one or more variables when deriving the

histogram. As one example, video encoder 20 may initialize a palette index idx to 0,

(i.e., set idx=G). As another example, video encoder 20 may initialize the palette P to be

empty (i.e., P = 0, set j = 0.).

[0082] Video encoder 20 may sort the histogram, e.g., in descending order, such that

pixels having more occurrences are placed near the front of a list of values. For

1414-118WO01

WO 2016/201032 PCT/US2016/036572
29

instance, video encoder 20 may sort H according to the descending order off and the

ordered list may be expressed as Ho = {(u^fi), i = {0,1,2, — ,M}, fa > fa+1}. In this

example, the ordered list includes the most frequently occurring pixel values at the front

(top) of the list and the least frequently occurring pixel values at the back (bottom) of

the list.

[0083] Video encoder 20 may copy one or more entries from the histogram into the

palette. As one example, video encoder 20 may insert the entry in the histogram with

the greatest frequency into the palette. For instance, video encoder 20 may insert (j, Uj)

into the palette P (i.e., P = P U {(idx, ity)}). In some examples, after inserting the

entry into the palette, video encoder 20 may evaluate the entry in the histogram with the

next greatest frequency for insertion into the palette. For instance, video encoder 20

may set idx = idx + 1, j = j + 1.

[0084] Video encoder 20 may determine whether the entry with the next greatest

frequency (i.e., z/7+i) is within the neighborhood of any pixel (i.e., x) in the palette (i.e.,

Distance(uj+1, x) < Thresh). For instance, video encoder 20 may determine whether

the entry is within the neighborhood of any pixel in the palette by determining whether

a value of the entry is within a threshold distance of a value of any pixel in the palette.

In some examples, video encoder 20 may flexibly select the distance function. As one

example, video encoder 20 may select the distance function as a sum of absolute

differences (SAD) or a sum of squared errors of prediction (SSE) of the three color

components (e.g., each of luminance, blue hue chrominance, and red hue chrominance),

or one color component (e.g., one of luminance, blue hue chrominance, or red hue

chrominance). In some examples, video encoder 20 may flexibly select the threshold

value Thresh. As one example, video encoder 20 may select the threshold value to be

dependent on the quantization parameter (QP) of the current block. As another

example, video encoder 20 may select the threshold value to be dependent on the value

of idx or the value of j.

[0085] If video encoder 20 determines that the entry with the next greatest frequency

(i.e., W/+i) is within the neighborhood of any pixel in the palette, video encoder 20 may

not insert the entry in the histogram. If video encoder 20 determines that the entry with

the next greatest frequency (i.e., z/7+i) is not within the neighborhood of any pixel in the

palette, video encoder 20 may insert the entry in the histogram.

1414-118WO01

WO 2016/201032 PCT/US2016/036572
30

[0086] Video encoder 20 may continue to insert entries in the palette until one or more

conditions are satisfied. Some example conditions are when idx = M, when j = M, or

when the size of the palette is larger than a predefined value.

[0087] Palette-based coding may have a certain amount of signaling overhead. For

example, a number of bits may be needed to signal characteristics of a palette, such as a

size of the palette, as well as the palette itself. In addition, a number of bits may be

needed to signal index values for the pixels of the block. The techniques of this

disclosure may, in some examples, reduce the number of bits needed to signal such

information. For example, the techniques described in this disclosure may include

techniques for various combinations of one or more of signaling palette-based coding

modes, transmitting palettes, predicting palettes, deriving palettes, and transmitting

palette-based coding maps and other syntax elements.

[0088] In some examples, video encoder 20 and/or video decoder 30 may predict a

palette using another palette. For example, video encoder 20 and/or video decoder 30

may determine a first palette having first entries indicating first pixel values. Video

encoder 20 and/or video decoder 30 may then determine, based on the first entries of the

first palette, one or more second entries indicating second pixel values of a second

palette. Video encoder 20 and/or video decoder 30 may also code pixels of a block of

video data using the second palette.

[0089] When determining the entries of the second palette based on the entries in the

first palette, video encoder 20 may encode a variety of syntax elements, which may be

used by video decoder to reconstruct the second palette. For example, video encoder 20

may encode one or more syntax elements in a bitstream to indicate that an entire palette

(or palettes, in the case of each color component, e.g., Y, Cb, Cr, or Y, U, V, or R, G, B,

of the video data having a separate palette) is copied from one or more neighboring

blocks of the block currently being coded. The palette from which entries of the current

palette of the current block are predicted (e.g., copied) may be referred to as a predictive

palette. The predictive palette may contain palette entries from one or more

neighboring blocks including spatially neighboring blocks and/or neighboring blocks in

a particular scan order of the blocks. For example, the neighboring blocks may be

spatially located to the left (left neighboring block) of or above (upper neighboring

block) the block currently being coded. In another example, video encoder 20 may

determine predictive palette entries using the most frequent sample values in a causal

neighbor of the current block. In another example, the neighboring blocks may

1414-118WO01

WO 2016/201032 PCT/US2016/036572
31

neighbor the block current being coded according to a particular scan order used to code

the blocks. That is, the neighboring blocks may be one or more blocks coded prior to

the current block in the scan order. Video encoder 20 may encode one or more syntax

elements to indicate the location of the neighboring blocks from which the palette(s) are

copied.

[0090] In some examples, palette prediction may be performed entry-wise. For

example, video encoder 20 may encode one or more syntax elements to indicate, for

each entry of a predictive palette, whether the palette entry is included in the palette for

the current block. If video encoder 20 does not predict an entry of the palette for the

current block, video encoder 20 may encode one or more additional syntax elements to

specify the non-predicted entries, as well as the number of such entries.

[0091] The syntax elements described above may be referred to as a palette prediction

vector. For example, as noted above, video encoder 20 and video decoder 30 may

predict a palette for a current block based on one or more palettes from neighboring

blocks (referred to collectively as a reference palette). When generating the reference

palette, a first-in first-out (FIFO) may be used by adding the latest palette into the front

of the queue. If the queue exceeds a predefined threshold, the oldest elements may be

popped out. After pushing new elements into the front of the queue, a pruning process

may be applied to remove duplicated elements, counting from the beginning of the

queue. Specifically, in some examples, video encoder 20 may encode (and video

decoder 30 may decode) a 0-1 vector to indicate whether the pixel values in the

reference palette are reused for the current palette. As an example, as shown in the

example of Table 6, a reference palette may include six items (e.g., six index values and

respective pixel values).

Index Pixel Value

0 v0

1 Vl

2 v2

3 v3

4 V4

5 v5

"able 6

1414-118WO01

WO 2016/201032 PCT/US2016/036572
32

In an example for purposes of illustration, video encoder 20 may signal a vector (1,0, 1,

1, 1, 1) that indicates that vo, v2, v3, v4, and v3 are reused in the current palette, while vi

is not re-used. In addition to reusing vo, v2, v3, v4, and vs, video encoder 20 may add

two new items to the current palette with indexes 5 and 6. The current palette for this

example is shown in Table 7, below.

Table 7

Pred Flag Index Pixel Value

1 0 Vo

0

1 1 V2

1 2 V3

1 3 V4

1 4 V5

5 Uo

6 Ul

[0092] To code the palette prediction 0-1 vector, for each item in the vector, video

encoder 20 may code one bit to represent its value. Additionally, the number of palette

items which cannot be predicted (e.g., the number of new palette entries (uO and ul in

the example of Table 7 above)) may be binarized and signaled.

[0093] Other aspects of this disclosure relate to constructing and/or transmitting a map

that allows video encoder 20 and/or video decoder 30 to determine pixel values. For

example, other aspects of this disclosure relate to constructing and/or transmitting a map

of indices that relate a particular pixel to an entry of a palette.

[0094] In some examples, video encoder 20 may indicate whether pixels of a block

have a corresponding value in a palette. In an example for purposes of illustration,

assume that an (i, j) entry of a map corresponds to an (i, j) pixel position in a block of

video data. In this example, video encoder 20 may encode a flag for each pixel position

of a block. Video encoder 20 may set the flag equal to one for the (i, j) entry to indicate

that the pixel value at the (i, j) location is one of the values in the palette. When a color

is included in the palette (i.e., the flag is equal to one), video encoder 20 may also

encode data indicating a palette index for the (i, j) entry that identifies the color in the

palette. When the color of the pixel is not included in the palette (i.e., the flag is equal

to zero) video encoder 20 may also encode data indicating a sample value for the pixel,

1414-118WO01

WO 2016/201032 PCT/US2016/036572
33

which may be referred to as an escape pixel. Video decoder 30 may obtain the above­

described data from an encoded bitstream and use the data to determine a palette index

and/or pixel value for a particular location in a block.

[0095] In some instances, there may be a correlation between the palette index to which

a pixel at a given position is mapped and the probability of a neighboring pixel being

mapped to the same palette index. That is, when a pixel is mapped to a particular

palette index, the probability may be relatively high that one or more neighboring pixels

(in terms of spatial location) are mapped to the same palette index.

[0096] In some examples, video encoder 20 and/or video decoder 30 may determine and

code one or more indices of a block of video data relative to one or more indices of the

same block of video data. For example, video encoder 20 and/or video decoder 30 may

be configured to determine a first index value associated with a first pixel in a block of

video data, where the first index value relates a value of the first pixel to an entry of a

palette. Video encoder 20 and/or video decoder 30 may also be configured to

determine, based on the first index value, one or more second index values associated

with one or more second pixels in the block of video data, and to code the first and the

one or more second pixels of the block of video data. Thus, in this example, indices of

a map may be coded relative to one or more other indices of the map.

[0097] As discussed above, video encoder 20 and/or video decoder 30 may use several

different techniques to code index values of a map relative to other indices of the map.

For instance, video encoder 20 and/or video decoder 30 may use index mode, copy

above mode, and transition mode to code index values of a map relative to other indices

of the map.

[0098] In the “index mode” of pallet-based coding, video encoder 20 and/or video

decoder 30 may first signal a palette index. If the index is equal to the size of the

palette, this indicates that the sample is an escape sample. In this case, video encoder 20

and/or video decoder 30 may signal the sample value or quantized samples value for

each component. For example, if the palette size is 4, for non-escape samples, the

palette indices are in the range [0, 3], In this case, an index value of 4 may signify an

escape sample. If the index indicates a non-escape sample, video encoder 20 and/or

video decoder 30 may signal a run-length, which may specify the number of subsequent

samples in scanning order that share the same index, by a non-negative value n-1

indicating the run length, which means that the following n pixels including the current

one have the same pixel index as the first signaled index.

1414-118WO01

WO 2016/201032 PCT/US2016/036572
34

[0099] In the “copy from above” mode of palette-based coding, video encoder 20 and/or

video decoder 30 may signal a non-negative run length value m-1 to indicate that for the

following m pixels including the current pixel, palette indexes are the same as their

neighbors directly above, respectively. Note that the copy from above” mode is

different from the “index” mode, in the sense that the palette indices could be different

within the “copy from above” run mode.

[0100] As discussed above, in some examples, it may be desirable to group bypass bins

together (i.e., to increase CABAC throughput). In accordance with one or more

techniques of this disclosure, video encoder 20 may encode, and video decoder 30 may

decode, syntax elements used to define a current palette such that syntax elements that

are coded using bypass mode are grouped together. For instance, as opposed to coding

one or more syntax elements related to delta quantization parameter (QP) and/or chroma

QP offsets for a current block of video data before a syntax element that indicates

whether a transpose process is applied to palette indices of a palette for the current block

of video data, video encoder 20 and/or video decoder 30 may code the one or more

syntax elements related to delta QP and/or chroma QP offsets for the current block of

video data after the syntax element that indicates whether a transpose process is applied

to the palette indices of the palette for the current block of video data. In this way,

video encoder 20 and/or video decoder 30 may code a larger group of syntax elements

using bypass mode, which may increase CABAC throughput.

[0101] In some examples, the one or more syntax elements related to delta QP for the

current block of video data may include a syntax elements that specifies the absolute

value of a difference between a luma QP for the current block of video data and a

predictor of the luma QP for the current block (e.g., cu_qp_delta_palette_abs), and a

syntax element that specifies a sign of the difference between the luma QP for the

current block of video data and the predictor of the luma QP for the current block (e.g.,

cuqpdeltapalettesignflag). In some examples, the one or more syntax elements

related to chroma QP offsets for the current block of video data may include a syntax

element that indicates whether entries in one or more offset lists are added to the luma

QP for the current block to determine chroma QPs for the current block (e.g.,

cu_chroma_qp_palette_offset_flag), and a syntax element that specifies an index of an

entry in each of the one or more offset lists that are added to the luma QP for the current

block to determine chroma QPs for the current block (e.g.,

cu_chroma_qp_palette_offset_idx). As such, video encoder 20 and/or video decoder

1414-118WO01

WO 2016/201032 PCT/US2016/036572
35

30 may each be configured to code a palette transpose flag syntax element at a first

position in a bitstream and code a cu_qp_delta_palette_abs syntax element, a

cuqpdeltapalettesignflag syntax element, a cu chroma qp palette offset flag

syntax element, and a cu_chroma_qp_palette_offset_idx syntax element at a second

position in the bitstream that is after the first position.

[0102] FIG. 2 is a block diagram illustrating an example video encoder 20 that may

implement the techniques of this disclosure. FIG. 2 is provided for purposes of

explanation and should not be considered limiting of the techniques as broadly

exemplified and described in this disclosure. For purposes of explanation, this

disclosure describes video encoder 20 in the context of HEVC coding. However, the

techniques of this disclosure may be applicable to other coding standards or methods.

[0103] Video encoder 20 represents an example of a device that may be configured to

perform techniques for palette-based video coding in accordance with various examples

described in this disclosure. For example, video encoder 20 may be configured to

selectively code various blocks of video data, such as CU’s or PU’s in HEVC coding,

using either palette-based coding or non-palette based coding. Non-palette based

coding modes may refer to various inter-predictive temporal coding modes or intra-

predictive spatial coding modes, such as the various coding modes specified by the

HEVC Standard. Video encoder 20, in one example, may be configured to generate a

palette having entries indicating pixel values, select pixel values in a palette to represent

pixels values of at least some positions of a block of video data, and signal information

associating at least some of the positions of the block of video data with entries in the

palette corresponding, respectively, to the selected pixel values. The signaled

information may be used by video decoder 30 to decode video data.

[0104] In the example of FIG. 2, video encoder 20 includes a prediction processing unit

100, a residual generation unit 102, a transform processing unit 104, a quantization unit

106, an inverse quantization unit 108, an inverse transform processing unit 110, a

reconstruction unit 112, a filter unit 114, a decoded picture buffer 116, and an entropy

encoding unit 118. Prediction processing unit 100 includes an inter-prediction

processing unit 120 and an intra-prediction processing unit 126. Inter-prediction

processing unit 120 includes a motion estimation unit and a motion compensation unit

(not shown). Video encoder 20 also includes a palette-based encoding unit 122

configured to perform various aspects of the palette-based coding techniques described

1414-118WO01

WO 2016/201032 PCT/US2016/036572
36

in this disclosure. In other examples, video encoder 20 may include more, fewer, or

different functional components.

[0105] Video encoder 20 may receive video data. Video encoder 20 may encode each

CTU in a slice of a picture of the video data. Each of the CTUs may be associated with

equally-sized luma coding tree blocks (CTBs) and corresponding CTBs of the picture.

As part of encoding a CTU, prediction processing unit 100 may perform quad-tree

partitioning to divide the CTBs of the CTU into progressively-smaller blocks. The

smaller block may be coding blocks of CUs. For example, prediction processing unit

100 may partition a CTB associated with a CTU into four equally-sized sub-blocks,

partition one or more of the sub-blocks into four equally-sized sub-sub-blocks, and so

on.

[0106] Video encoder 20 may encode CUs of a CTU to generate encoded

representations of the CUs (i.e., coded CUs). As part of encoding a CU, prediction

processing unit 100 may partition the coding blocks associated with the CU among one

or more PUs of the CU. Thus, each PU may be associated with a luma prediction block

and corresponding chroma prediction blocks. Video encoder 20 and video decoder 30

may support PUs having various sizes. As indicated above, the size of a CU may refer

to the size of the luma coding block of the CU and the size of a PU may refer to the size

of a luma prediction block of the PU. Assuming that the size of a particular CU is

2Nx2N, video encoder 20 and video decoder 30 may support PU sizes of 2Nx2N or

NxN for intra prediction, and symmetric PU sizes of 2Nx2N, 2NxN, Nx2N, NxN, or

similar for inter prediction. Video encoder 20 and video decoder 30 may also support

asymmetric partitioning for PU sizes of 2NxnU, 2NxnD, nLx2N, and nRx2N for inter

prediction.

[0107] Inter-prediction processing unit 120 may generate predictive data for a PU by

performing inter prediction on each PU of a CU. The predictive data for the PU may

include a predictive sample blocks of the PU and motion information for the PU. Inter­

prediction processing unit 120 may perform different operations for a PU of a CU

depending on whether the PU is in an I slice, a P slice, or a B slice. In an I slice, all PUs

are intra predicted. Hence, if the PU is in an I slice, inter-prediction processing unit 120

does not perform inter prediction on the PU. Thus, for blocks encoded in I-mode, the

predicted block is formed using spatial prediction from previously-encoded neighboring

blocks within the same frame.

1414-118WO01

WO 2016/201032 PCT/US2016/036572
37

[0108] If a PU is in a P slice, the motion estimation unit of inter-prediction processing

unit 120 may search the reference pictures in a list of reference pictures (e.g.,

“RefPicListO”) for a reference region for the PU. The reference region for the PU may

be a region, within a reference picture, that contains sample blocks that most closely

corresponds to the sample blocks of the PU. The motion estimation unit may generate a

reference index that indicates a position in RefPicListO of the reference picture

containing the reference region for the PU. In addition, the motion estimation unit may

generate an MV that indicates a spatial displacement between a coding block of the PU

and a reference location associated with the reference region. For instance, the MV may

be a two-dimensional vector that provides an offset from the coordinates in the current

decoded picture to coordinates in a reference picture. The motion estimation unit may

output the reference index and the MV as the motion information of the PU. The

motion compensation unit of inter-prediction processing unit 120 may generate the

predictive sample blocks of the PU based on actual or interpolated samples at the

reference location indicated by the motion vector of the PU.

[0109] If a PU is in a B slice, the motion estimation unit may perform uni-prediction or

bi-prediction for the PU. To perform uni-prediction for the PU, the motion estimation

unit may search the reference pictures of RefPicListO or a second reference picture list

(“RefPicListl”) for a reference region for the PU. The motion estimation unit may

output, as the motion information of the PU, a reference index that indicates a position

in RefPicListO or RefPicListl of the reference picture that contains the reference region,

an MV that indicates a spatial displacement between a sample block of the PU and a

reference location associated with the reference region, and one or more prediction

direction indicators that indicate whether the reference picture is in RefPicListO or

RefPicListl. The motion compensation unit of inter-prediction processing unit 120 may

generate the predictive sample blocks of the PU based at least in part on actual or

interpolated samples at the reference region indicated by the motion vector of the PU.

[0110] To perform bi-directional inter prediction for a PU, the motion estimation unit

may search the reference pictures in RefPicListO for a reference region for the PU and

may also search the reference pictures in RefPicListl for another reference region for

the PU. The motion estimation unit may generate reference picture indexes that indicate

positions in RefPicListO and RefPicListl of the reference pictures that contain the

reference regions. In addition, the motion estimation unit may generate MVs that

indicate spatial displacements between the reference location associated with the

1414-118WO01

WO 2016/201032 PCT/US2016/036572
38

reference regions and a sample block of the PU. The motion information of the PU may

include the reference indexes and the MVs of the PU. The motion compensation unit

may generate the predictive sample blocks of the PU based at least in part on actual or

interpolated samples at the reference region indicated by the motion vector of the PU.

[0111] In accordance with various examples of this disclosure, video encoder 20 may be

configured to perform palette-based coding. With respect to the HEVC framework, as

an example, the palette-based coding techniques may be configured to be used as a

coding unit (CU) mode. In other examples, the palette-based coding techniques may be

configured to be used as a PU mode in the framework of HEVC. Accordingly, all of the

disclosed processes described herein (throughout this disclosure) in the context of a CU

mode may, additionally or alternatively, apply to PU. However, these HEVC-based

examples should not be considered a restriction or limitation of the palette-based coding

techniques described herein, as such techniques may be applied to work independently

or as part of other existing or yet to be developed systems/standards. In these cases, the

unit for palette coding can be square blocks, rectangular blocks, or even regions of non-

rectangular shape.

[0112] Palette-based encoding unit 122, for example, may perform palette-based

encoding when a palette-based encoding mode is selected, e.g., for a CU or PU. For

example, palette-based encoding unit 122 may be configured to generate a palette

having entries indicating pixel values, select pixel values in a palette to represent pixels

values of at least some positions of a block of video data, and signal information

associating at least some of the positions of the block of video data with entries in the

palette corresponding, respectively, to the selected pixel values. Although various

functions are described as being performed by palette-based encoding unit 122, some or

all of such functions may be performed by other processing units, or a combination of

different processing units.

[0113] Palette-based encoding unit 122 may generate syntax elements to define a palette

for a block of video data. Some example syntax elements which palette-based encoding

unit 122 may generate to define a current palette for a current block of video data

include, but are not limited to, a syntax element that indicates whether a transpose

process is applied to palette indices of the current palette (e.g., palettetransposeflag),

one or more syntax elements related to delta quantization parameter (QP) (e.g.,

cuqpdeltapaletteabs, cu qp delta palette sign flag,

cu chroma qp palette offset flag, and/or cuchromaqppaletteoffsetidx), one

1414-118WO01

WO 2016/201032 PCT/US2016/036572
39

or more syntax elements related to chroma QP offsets for the current block of video

data, one or more syntax elements that indicate a number of zeros that precede a non­

zero entry in an array that indicates whether entries from a predictor palette are reused

in the current palette (e.g., palette_predictor_run), one or more syntax elements that

indicate a number of entries in the current palette that are explicitly signalled (e.g.,

numsignalledpaletteentries), one or more syntax elements that indicate a value of a

component in a palette entry in the current palette (e.g., palette_entry), one or more

syntax elements that indicate whether the current block of video data includes at least

one escape coded sample (e.g., palette escape val present flag), one or more syntax

elements that indicate a number of entries in the current palette that are explicitly

signalled or inferred (e.g., num_palette_indices_idc), and one or more syntax elements

that indicate indices in an array of current palette entries (e.g., palette_index_idc).

Palette-based encoding unit 122 may output the generated syntax elements that define

the current palette for the current block to one or more other components of video

encoder 20, such as entropy encoding unit 118.

[0114] Accordingly, video encoder 20 may be configured to encode blocks of video

data using palette-based code modes as described in this disclosure. Video encoder 20

may selectively encode a block of video data using a palette coding mode, or encode a

block of video data using a different mode, e.g., such an HEVC inter-predictive or intra-

predictive coding mode. The block of video data may be, for example, a CU or PU

generated according to an HEVC coding process. A video encoder 20 may encode

some blocks with inter-predictive temporal prediction or intra-predictive spatial coding

modes and decode other blocks with the palette-based coding mode.

[0115] Intra-prediction processing unit 126 may generate predictive data for a PU by

performing intra prediction on the PU. The predictive data for the PU may include

predictive sample blocks for the PU and various syntax elements. Intra-prediction

processing unit 126 may perform intra prediction on PUs in I slices, P slices, and B

slices.

[0116] To perform intra prediction on a PU, intra-prediction processing unit 126 may

use multiple intra prediction modes to generate multiple sets of predictive data for the

PU. To use an intra-prediction mode to generate a set of predictive data for the PU,

intra-prediction processing unit 126 may extend samples from sample blocks of

neighboring PUs across the sample blocks of the PU in a direction associated with the

intra prediction mode. The neighboring PUs may be above, above and to the right,

1414-118WO01

WO 2016/201032 PCT/US2016/036572
40

above and to the left, or to the left of the PU, assuming a left-to-right, top-to-bottom

encoding order for PUs, CUs, and CTUs. Intra-prediction processing unit 126 may use

various numbers of intra prediction modes, e.g., 33 directional intra prediction modes.

In some examples, the number of intra prediction modes may depend on the size of the

region associated with the PU.

[0117] Prediction processing unit 100 may select the predictive data for PUs of a CU

from among the predictive data generated by inter-prediction processing unit 120 for the

PUs or the predictive data generated by intra-prediction processing unit 126 for the PUs.

In some examples, prediction processing unit 100 selects the predictive data for the PUs

of the CU based on rate/distortion metrics of the sets of predictive data. The predictive

sample blocks of the selected predictive data may be referred to herein as the selected

predictive sample blocks.

[0118] Residual generation unit 102 may generate, based on the luma, Cb and Cr

coding block of a CU and the selected predictive luma, Cb and Cr blocks of the PUs of

the CU, a luma, Cb and Cr residual blocks of the CU. For instance, residual generation

unit 102 may generate the residual blocks of the CU such that each sample in the

residual blocks has a value equal to a difference between a sample in a coding block of

the CU and a corresponding sample in a corresponding selected predictive sample block

ofaPU of the CU.

[0119] Transform processing unit 104 may perform quad-tree partitioning to partition

the residual blocks associated with a CU into transform blocks associated with TUs of

the CU. Thus, a TU may be associated with a luma transform block and two chroma

transform blocks. The sizes and positions of the luma and chroma transform blocks of

TUs of a CU may or may not be based on the sizes and positions of prediction blocks of

the PUs of the CU. A quad-tree structure known as a “residual quad-tree” (RQT) may

include nodes associated with each of the regions. The TUs of a CU may correspond to

leaf nodes of the RQT.

[0120] Transform processing unit 104 may generate transform coefficient blocks for

each TU of a CU by applying one or more transforms to the transform blocks of the TU.

Transform processing unit 104 may apply various transforms to a transform block

associated with a TU. For example, transform processing unit 104 may apply a discrete

cosine transform (DCT), a directional transform, or a conceptually similar transform to

a transform block. In some examples, transform processing unit 104 does not apply

1414-118WO01

WO 2016/201032 PCT/US2016/036572
41

transforms to a transform block. In such examples, the transform block may be treated

as a transform coefficient block.

[0121] Quantization unit 106 may quantize the transform coefficients in a coefficient

block. The quantization process may reduce the bit depth associated with some or all of

the transform coefficients. For example, an //-bit transform coefficient may be rounded

down to an m-bit transform coefficient during quantization, where n is greater than m.

Quantization unit 106 may quantize a coefficient block associated with a TU of a CU

based on a quantization parameter (QP) value associated with the CU. Video encoder

20 may adjust the degree of quantization applied to the coefficient blocks associated

with a CU by adjusting the QP value associated with the CU. Quantization may

introduce loss of information, thus quantized transform coefficients may have lower

precision than the original ones.

[0122] Inverse quantization unit 108 and inverse transform processing unit 110 may

apply inverse quantization and inverse transforms to a coefficient block, respectively, to

reconstruct a residual block from the coefficient block. Reconstruction unit 112 may

add the reconstructed residual block to corresponding samples from one or more

predictive sample blocks generated by prediction processing unit 100 to produce a

reconstructed transform block associated with a TU. By reconstructing transform

blocks for each TU of a CU in this way, video encoder 20 may reconstruct the coding

blocks of the CU.

[0123] Filter unit 114 may perform one or more deblocking operations to reduce

blocking artifacts in the coding blocks associated with a CU. Decoded picture buffer

116 may store the reconstructed coding blocks after filter unit 114 performs the one or

more deblocking operations on the reconstructed coding blocks. Inter-prediction

processing unit 120 may use a reference picture that contains the reconstructed coding

blocks to perform inter prediction on PUs of other pictures. In addition, intra-prediction

processing unit 126 may use reconstructed coding blocks in decoded picture buffer 116

to perform intra prediction on other PUs in the same picture as the CU.

[0124] Entropy encoding unit 118 may receive data from other functional components

of video encoder 20. For example, entropy encoding unit 118 may receive coefficient

blocks from quantization unit 106 and may receive syntax elements from prediction

processing unit 100. Entropy encoding unit 118 may perform one or more entropy

encoding operations on the data to generate entropy-encoded data. For example,

entropy encoding unit 118 may perform a context-adaptive variable length coding

1414-118WO01

WO 2016/201032 PCT/US2016/036572
42

(CAVLC) operation, a CAB AC operation, a variable-to-variable (V2V) length coding

operation, a syntax-based context-adaptive binary arithmetic coding (SB AC) operation,

a Probability Interval Partitioning Entropy (PIPE) coding operation, an Exponential-

Golomb encoding operation, or another type of entropy encoding operation on the data.

Video encoder 20 may output a bitstream that includes entropy-encoded data generated

by entropy encoding unit 118. For instance, the bitstream may include data that

represents a RQT for a CU.

[0125] As discussed above, palette-based encoding unit 122 may output the generated

syntax elements that define the current palette for the current block to entropy encoding

unit 118. Entropy encoding unit 118 may encode one or more bins of the syntax

elements received from palette-based encoding unit 122 using CAB AC with contexts

and one or more bins of the syntax elements received from palette-based encoding unit

122 using CABAC without contexts (i.e., bypass mode). In some examples, entropy

encoding unit 118 may encode the bins of the syntax elements using contexts or bypass

mode as defined above in Table 2.

[0126] As discussed above, it may be desirable to group bypass coded bins together to

increase CABAC throughput. In SCC Draft 3, the bins of the palette_predictor_run,

numsignalledpaletteentries, palette entry, and paletteescapevalpresentflag

syntax elements are bypass coded and are grouped together. However, while the bins of

the num palette indices idc, and paletteindexidc syntax elements are also bypass

coded, they are not grouped with the bins of the palette_predictor_run,

num signalled palette entries, palette entry, and paletteescapevalpresentflag

syntax elements. Instead, in HEVC SCC Draft 3, the num_palette_indices_idc, and

palette index idc syntax elements are separated from the palette predictor run,

num signalled palette entries, palette entry, and palette escape val present flag

syntax elements by one or more syntax elements related to delta quantization parameter

(QP) and/or chroma QP offsets for a current block of video data (i.e.,

cuqpdeltapaletteabs, cu qp delta palette sign flag,

cu chroma qp palette offset flag, and cu chroma qp palette offset idx) and a

syntax element that indicates whether a transpose process is applied to the palette

indices of the palette for the current block of video data (i.e., palette_transpose_flag).

[0127] In accordance with one or more techniques of this disclosure, entropy encoding

unit 118 may encode the syntax elements used to define a current palette such that

syntax elements that are encoded using bypass mode are consecutively encoded. For

1414-118WO01

WO 2016/201032 PCT/US2016/036572
43

instance, as opposed to separating the bins of the palette_predictor_run,

numsignalledpaletteentries, palette entry, and palette escape val present flag

syntax elements and the bins of the numpaletteindicesidc, and paletteindexidc

syntax elements, entropy encoding unit 118 may encode one or more syntax elements

related to delta QP and/or chroma QP offsets for the current block of video data after a

syntax element that indicates whether a transpose process is applied to the palette

indices of the palette for the current block of video data such that the bins of the

palette predictor run, num signalled palette entries, palette entry, and

palette escape val present flag, num palette indices idc, and palette index idc

syntax elements are grouped together. In this way, the CABAC throughput of entropy

encoding unit 118 may be increased.

[0128] FIG. 3 is a block diagram illustrating an example video decoder 30 that is

configured to implement the techniques of this disclosure. FIG. 3 is provided for

purposes of explanation and is not limiting on the techniques as broadly exemplified

and described in this disclosure. For purposes of explanation, this disclosure describes

video decoder 30 in the context of HEVC coding. However, the techniques of this

disclosure may be applicable to other coding standards or methods.

[0129] Video decoder 30 represents an example of a device that may be configured to

perform techniques for palette-based video coding in accordance with various examples

described in this disclosure. For example, video decoder 30 may be configured to

selectively decode various blocks of video data, such as CU’s or PU’s in HEVC coding,

using either palette-based coding or non-palette based coding. Non-palette based

coding modes may refer to various inter-predictive temporal coding modes or intra-

predictive spatial coding modes, such as the various coding modes specified by the

HEVC Standard. Video decoder 30, in one example, may be configured to generate a

palette having entries indicating pixel values, receive information associating at least

some positions of a block of video data with entries in the palette, select pixel values in

the palette based on the information, and reconstruct pixel values of the block based on

the selected pixel values.

[0130] In the example of FIG. 3, video decoder 30 includes an entropy decoding unit

150, a prediction processing unit 152, an inverse quantization unit 154, an inverse

transform processing unit 156, a reconstruction unit 158, a filter unit 160, and a decoded

picture buffer 162. Prediction processing unit 152 includes a motion compensation unit

164 and an intra-prediction processing unit 166. Video decoder 30 also includes a

1414-118WO01

WO 2016/201032 PCT/US2016/036572
44

palette-based decoding unit 165 configured to perform various aspects of the palette­

based coding techniques described in this disclosure. In other examples, video decoder

30 may include more, fewer, or different functional components.

[0131] In some examples, video decoder 30 may further include video data memory

149. Video data memory 149 may store video data, such as an encoded video bitstream,

to be decoded by the components of video decoder 30. The video data stored in video

data memory 149 may be obtained, for example, from channel 16, e.g., from a local

video source, such as a camera, via wired or wireless network communication of video

data, or by accessing physical data storage media. Video data memory 149 may form a

coded picture buffer (CPB) that stores encoded video data from an encoded video

bitstream. The CPB may be a reference picture memory that stores reference video data

for use in decoding video data by video decoder 30, e.g., in intra- or inter-coding modes.

Video data memory 149 may be formed by any of a variety of memory devices, such as

dynamic random access memory (DRAM), including synchronous DRAM (SDRAM),

magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of memory

devices. Video data memory 149 and decoded picture buffer 162 may be provided by

the same memory device or separate memory devices. In various examples, video data

memory 149 may be on-chip with other components of video decoder 30, or off-chip

relative to those components.

[0132] A coded picture buffer (CPB) may receive and store encoded video data (e.g.,

NAL units) of a bitstream. Entropy decoding unit 150 may receive encoded video data

(e.g., NAL units) from the CPB and parse the NAL units to decode syntax elements.

Entropy decoding unit 150 may entropy decode entropy-encoded syntax elements in the

NAL units. Prediction processing unit 152, inverse quantization unit 154, inverse

transform processing unit 156, reconstruction unit 158, and filter unit 160 may generate

decoded video data based on the syntax elements extracted from the bitstream.

[0133] The NAL units of the bitstream may include coded slice NAL units. As part of

decoding the bitstream, entropy decoding unit 150 may extract and entropy decode

syntax elements from the coded slice NAL units. Each of the coded slices may include

a slice header and slice data. The slice header may contain syntax elements pertaining

to a slice. The syntax elements in the slice header may include a syntax element that

identifies a PPS associated with a picture that contains the slice.

[0134] In addition to decoding syntax elements from the bitstream, video decoder 30

may perform a reconstruction operation on a non-partitioned CU. To perform the

1414-118WO01

WO 2016/201032 PCT/US2016/036572
45

reconstruction operation on a non-partitioned CU, video decoder 30 may perform a

reconstruction operation on each TU of the CU. By performing the reconstruction

operation for each TU of the CU, video decoder 30 may reconstruct residual blocks of

the CU.

[0135] As part of performing a reconstruction operation on a TU of a CU, inverse

quantization unit 154 may inverse quantize, i.e., de-quantize, coefficient blocks

associated with the TU. Inverse quantization unit 154 may use a QP value associated

with the CU of the TU to determine a degree of quantization and, likewise, a degree of

inverse quantization for inverse quantization unit 154 to apply. That is, the compression

ratio, i.e., the ratio of the number of bits used to represent an original sequence and the

compressed sequence, may be controlled by adjusting the value of the QP used when

quantizing transform coefficients. The compression ratio may also depend on the

method of entropy coding employed.

[0136] After inverse quantization unit 154 inverse quantizes a coefficient block, inverse

transform processing unit 156 may apply one or more inverse transforms to the

coefficient block in order to generate a residual block associated with the TU. For

example, inverse transform processing unit 156 may apply an inverse DCT, an inverse

integer transform, an inverse Karhunen-Loeve transform (KLT), an inverse rotational

transform, an inverse directional transform, or another inverse transform to the

coefficient block.

[0137] If a PU is encoded using intra prediction, intra-prediction processing unit 166

may perform intra prediction to generate predictive blocks for the PU. Intra-prediction

processing unit 166 may use an intra prediction mode to generate the predictive luma,

Cb and Cr blocks for the PU based on the prediction blocks of spatially-neighboring

PUs. Intra-prediction processing unit 166 may determine the intra prediction mode for

the PU based on one or more syntax elements decoded from the bitstream.

[0138] Prediction processing unit 152 may construct a first reference picture list

(RefPicListO) and a second reference picture list (RefPicListl) based on syntax elements

extracted from the bitstream. Furthermore, if a PU is encoded using inter prediction,

entropy decoding unit 150 may extract motion information for the PU. Motion

compensation unit 164 may determine, based on the motion information of the PU, one

or more reference regions for the PU. Motion compensation unit 164 may generate,

based on samples blocks at the one or more reference blocks for the PU, predictive

luma, Cb and Cr blocks for the PU.

1414-118WO01

WO 2016/201032 PCT/US2016/036572
46

[0139] Reconstruction unit 158 may use the luma, Cb and Cr transform blocks

associated with TUs of a CU and the predictive luma, Cb and Cr blocks of the PUs of

the CU, i.e., either intra-prediction data or inter-prediction data, as applicable, to

reconstruct the luma, Cb and Cr coding blocks of the CU. For example, reconstruction

unit 158 may add samples of the luma, Cb and Cr transform blocks to corresponding

samples of the predictive luma, Cb and Cr blocks to reconstruct the luma, Cb and Cr

coding blocks of the CU.

[0140] Filter unit 160 may perform a deblocking operation to reduce blocking artifacts

associated with the luma, Cb and Cr coding blocks of the CU. Video decoder 30 may

store the luma, Cb and Cr coding blocks of the CU in decoded picture buffer 162.

Decoded picture buffer 162 may provide reference pictures for subsequent motion

compensation, intra prediction, and presentation on a display device, such as display

device 32 of FIG. 1. For instance, video decoder 30 may perform, based on the luma,

Cb and Cr blocks in decoded picture buffer 162, intra prediction or inter prediction

operations on PUs of other CUs. In this way, video decoder 30 may extract, from the

bitstream, transform coefficient levels of the significant luma coefficient block, inverse

quantize the transform coefficient levels, apply a transform to the transform coefficient

levels to generate a transform block, generate, based at least in part on the transform

block, a coding block, and output the coding block for display.

[0141] In accordance with various examples of this disclosure, video decoder 30 may be

configured to perform palette-based coding. Palette-based decoding unit 165, for

example, may perform palette-based decoding when a palette-based decoding mode is

selected, e.g., for a CU or PU. For example, palette-based decoding unit 165 may be

configure to generate a palette having entries indicating pixel values, receive

information associating at least some positions of a block of video data with entries in

the palette, select pixel values in the palette based on the information, and reconstruct

pixel values of the block based on the selected pixel values. Although various functions

are described as being performed by palette-based decoding unit 165, some or all of

such functions may be performed by other processing units, or a combination of

different processing units.

[0142] Palette-based decoding unit 165 may receive palette coding mode information,

and perform the above operations when the palette coding mode information indicates

that the palette coding mode applies to the block. When the palette coding mode

information indicates that the palette coding mode does not apply to the block, or when

1414-118WO01

WO 2016/201032 PCT/US2016/036572
47

other mode information indicates the use of a different mode, prediction processing unit

152 decodes the block of video data using a non-palette based coding mode, e.g., such

an HEVC inter-predictive mode using motion compensation unit 164 or intra-predictive

coding mode using intra-prediction processing unit 166, when the palette coding mode

information indicates that the palette coding mode does not apply to the block. The

block of video data may be, for example, a CU or PU generated according to an HEVC

coding process. Video decoder 30 may decode some blocks with inter-predictive

temporal prediction or intra-predictive spatial coding modes and decode other blocks

with the palette-based coding mode. The palette-based coding mode may comprise one

of a plurality of different palette-based coding modes, or there may be a single palette­

based coding mode.

[0143] The palette coding mode information received by palette-based decoding unit

165 may comprise a palette mode syntax element, such as a flag. A first value of the

palette mode syntax element indicates that the palette coding mode applies to the block

and a second value of the palette mode syntax element indicates that the palette coding

mode does not apply to the block of video data. Palette-based decoding unit 165 may

receive the palette coding mode information at one or more of a predictive unit level, a

coding unit level, a slice level, or a picture level, or may receive the palette coding mode

information in at least one of picture parameter set (PPS), sequence parameter set (SPS)

or video parameter set (VPS).

[0144] In some examples, palette-based decoding unit 165 may infer the palette coding

mode information based on one or more of a size of the coding block, a frame type, a

color space, a color component, a frame size, a frame rate, a layer id in scalable video

coding or a view id in multi-view coding associated with the block of video data.

[0145] Palette-based decoding unit 165 also may be configured to receive information

defining at least some of the entries in the palette with video data, and generate the

palette based at least in part on the received information. The size of the palette may be

fixed or variable. In some cases, the size of the palette is variable and is adjustable

based on information signaled with the video data. The signaled information may

specify whether an entry in the palette is a last entry in the palette. Also, in some cases,

the palette may have a maximum size.

[0146] The palette may be a single palette including entries indicating pixel values for a

luma component and chroma components of the block. In this case, each entry in the

palette is a triple entry indicating pixel values for the luma component and two chroma

1414-118WO01

WO 2016/201032 PCT/US2016/036572
48

components. Alternatively, the palette comprises a luma palette including entries

indicating pixel values of a luma component of the block, and chroma palettes including

entries indicating pixel values for respective chroma components of the block.

[0147] In some examples, palette-based decoding unit 165 may generate the palette by

predicting the entries in the palette based on previously processed data. The previously

processed data may include palettes, or information from palettes, for previously

decoded neighboring blocks. Palette-based decoding unit 165 may receive a prediction

syntax element indicating whether the entries in the palette are to be predicted. The

prediction syntax element may include a plurality of prediction syntax elements

indicating, respectively, whether entries in palettes for luma and chroma components are

to be predicted.

[0148] Palette-based decoding unit 165 may, in some examples, predict at least some of

the entries in the palette based on entries in a palette for a left neighbor block or a top

neighbor block in a slice or picture. In this case, the entries in the palette that are

predicted based on entries in either a palette for the left neighbor block or the top

neighbor block may be predicted by palette-based decoding unit 165 based on a syntax

element that indicates selection of the left neighbor block or the top neighbor block for

prediction. The syntax element may be a flag having a value that indicates selection of

the left neighbor block or the top neighbor block for prediction.

[0149] In some examples, palette-based decoding unit 165 may receive one or more

prediction syntax elements that indicate whether at least some selected entries in the

palette, on an entry-by-entry basis, are to be predicted, and generate the entries

accordingly. Palette-based decoding unit 165 may predict some of the entries and

receive information directly specifying other entries in the palette.

[0150] Information, received by palette-based decoding unit 165, associating at least

some positions of a block of video data with entries in the palette, may comprise map

information including palette index values for at least some of the positions in the block,

wherein each of the palette index values corresponds to one of the entries in the palette.

The map information may include one or more run syntax elements that each indicate a

number of consecutive positions in the block having the same palette index value.

[0151] In some examples, palette-based decoding unit 165 may receive information

indicating line copying whereby palette entries for a line of positions in the block are

copied from palette entries for another line of positions in the block. Palette-based

decoding unit 165 may use this information to perform line copying to determine entries

1414-118WO01

WO 2016/201032 PCT/US2016/036572
49

in the palette for various positions of a block. The line of positions may comprise a

row, a portion of a row, a column or a portion of a column of positions of the block.

[0152] Palette-based decoding unit 165 may generate the palette in part by receiving

pixel values for one or more positions of the block, and adding the pixel values to

entries in the palette to dynamically generate at least a portion the palette on-the-fly.

Adding the pixel values may comprise adding the pixel values to an initial palette

comprising an initial set of entries, or to an empty palette that does not include an initial

set of entries. In some examples, adding comprises adding the pixel values to add new

entries to an initial palette comprising an initial set of entries or fill existing entries in

the initial palette, or replacing or changing pixel values of entries in the initial palette.

[0153] In some examples, the palette may be a quantized palette in which a pixel value

selected from the palette for one of the positions in the block is different from an actual

pixel value of the position in the block, such that the decoding process is lossy. For

example, the same pixel value may be selected from the palette for two different

positions having different actual pixel values.

[0154] As discussed above, palette-based decoding unit 165 may receive information

that defines a palette for a current block of video data. For instance, palette-based

decoding unit 165 may receive a plurality of syntax elements from entropy decoding

unit 150. In some examples, entropy decoding unit 150 may decode the plurality of

syntax elements from a coded video bitstream according to a syntax table. As one

example, entropy decoding unit 150 may decode the plurality of syntax elements from a

coded video bitstream in accordance with the palette syntax table of HEVC SCC Draft

3, which is reproduced above in Table 1. However, as discussed above, the

arrangement of syntax elements in HEVC SCC Draft 3 may not be optimal. In

particular, the arrangement of syntax elements in HEVC SCC Draft 3 does not

maximize the number of bypass mode coded syntax elements that are grouped together,

which may decrease CAB AC throughput.

[0155] In accordance with one or more techniques of this disclosure, entropy decoding

unit 150 may decode the syntax elements used to define a current palette such that

additional bypass mode coded syntax elements are grouped together. For instance, as

opposed to separating the bins of the palette_predictor_run,

numsignalledpaletteentries, palette entry, and palette escape val present flag

syntax elements and the bins of the num palette indices idc, and palette index idc

syntax elements, entropy decoding unit 150 may decode one or more syntax elements

1414-118WO01

WO 2016/201032 PCT/US2016/036572
50

related to delta QP and/or chroma QP offsets for the current block of video data after a

syntax element that indicates whether a transpose process is applied to the palette

indices of the palette for the current block of video data such that the bins of the

palette predictor run, num signalled palette entries, palette entry, and

palette escape val present flag, num palette indices idc, and paletteindexidc

syntax elements are grouped together. As one example, entropy decoding unit 150 may

decode the syntax elements used to define the current palette in the order shown above

in Table 4. As another example, entropy decoding unit 150 may decode the syntax

elements used to define the current palette in the order shown above in Table 5. In this

way, the CAB AC throughput of entropy decoding unit 150 may be increased.

[0156] FIG. 4 is a conceptual diagram illustrating an example of determining a palette

for coding video data, consistent with techniques of this disclosure. The example of

FIG. 4 includes a picture 178 having a first coding unit (CU) 180 that is associated with

first palettes 184 and a second CU 188 that is associated with second palettes 192. As

described in greater detail below and in accordance with the techniques of this

disclosure, second palettes 192 are based on first palettes 184. Picture 178 also includes

block 196 coded with an intra-prediction coding mode and block 200 that is coded with

an inter-prediction coding mode.

[0157] The techniques of FIG. 4 are described in the context of video encoder 20 (FIG.

1 and FIG. 2) and video decoder 30 (FIG. 1 and FIG. 3) and with respect to the HEVC

Standard for purposes of explanation. However, it should be understood that the

techniques of this disclosure are not limited in this way, and may be applied by other

video coding processors and/or devices in other video coding processes and/or

standards.

[0158] In general, a palette refers to a number of pixel values that are dominant and/or

representative for a CU currently being coded, such as CU 188 in the example of FIG. 4.

First palettes 184 and second palettes 192 are shown as including multiple palettes. In

some examples, a video coder (such as video encoder 20 or video decoder 30) may code

palettes separately for each color component of a CU. For example, video encoder 20

may encode a palette for a luma (Y) component of a CU, another palette for a chroma

(U) component of the CU, and yet another palette for the chroma (V) component of the

CU. In this example, entries of the Y palette may represent Y values of pixels of the

CU, entries of the U palette may represent U values of pixels of the CU, and entries of

the V palette may represent V values of pixels of the CU. In another example, video

1414-118WO01

WO 2016/201032 PCT/US2016/036572
51

encoder 20 may encode a palette for a luma (Y) component of a CU, and another palette

for two components (U, V) of the CU. In this example, entries of the Y palette may

represent Y values of pixels of the CU, and entries of the U-V palette may represent U-

V value pairs of pixels of the CU.

[0159] In other examples, video encoder 20 may encode a single palette for all color

components of a CU. In this example, video encoder 20 may encode a palette having an

i-th entry that is a triple value, including Yi, Ui, and Vi. In this case, the palette

includes values for each of the components of the pixels. Accordingly, the

representation of palettes 184 and 192 as a set of palettes having multiple individual

palettes is merely one example and not intended to be limiting.

[0160] In the example of FIG. 4, first palettes 184 includes three entries 202-206

having entry index value 1, entry index value 2, and entry index value 3, respectively.

Entries 202-206 relate the index values to pixel values including pixel value A, pixel

value B, and pixel value C, respectively. As described herein, rather than coding the

actual pixel values of first CU 180, a video coder (such as video encoder 20 or video

decoder 30) may use palette-based coding to code the pixels of the block using the

indices 1-3. That is, for each pixel position of first CU 180, video encoder 20 may

encode an index value for the pixel, where the index value is associated with a pixel

value in one or more of first palettes 184. Video decoder 30 may obtain the index

values from a bitstream and reconstruct the pixel values using the index values and one

or more of first palettes 184. Thus, first palettes 184 are transmitted by video encoder

20 in an encoded video data bitstream for use by video decoder 30 in palette-based

decoding. In general, one or more palettes may be transmitted for each CU or may be

shared among different CUs.

[0161] Video encoder 20 and video decoder 30 may determine second palettes 192

based on first palettes 184. For example, video encoder 20 may encode a

pred_palette_flag for each CU (including, as an example, second CU 188) to indicate

whether the palette for the CU is predicted from one or more palettes associated with

one or more other CUs, such as neighboring CUs (spatially or based on scan order) or

the most frequent samples of a causal neighbor. For example, when the value of such a

flag is equal to one, video decoder 30 may determine that second palettes 192 for

second CU 188 are predicted from one or more already decoded palettes and therefore

no new palettes for second CU 188 are included in a bitstream containing the

pred_palette_flag. When such a flag is equal to zero, video decoder 30 may determine

1414-118WO01

WO 2016/201032 PCT/US2016/036572
52

that palette 192 for second CU 188 is included in the bitstream as a new palette. In

some examples, pred_palette_flag may be separately coded for each different color

component of a CU (e.g., three flags, one for Y, one for U, and one for V, for a CU in

YUV video). In other examples, a single pred_palette_flag may be coded for all color

components of a CU.

[0162] In the example above, the pred_palette_flag is signaled per-CU to indicate

whether any of the entries of the palette for the current block are predicted. In some

examples, one or more syntax elements may be signaled on a per-entry basis. That is, a

flag may be signaled for each entry of a palette predictor to indicate whether that entry

is present in the current palette. As noted above, if a palette entry is not predicted, the

palette entry may be explicitly signaled.

[0163] When determining second palettes 192 relative to first palettes 184 (e.g.,

pred_palette_flag is equal to one), video encoder 20 and/or video decoder 30 may locate

one or more blocks from which the predictive palettes, in this example first palettes 184,

are determined. The predictive palettes may be associated with one or more

neighboring CUs of the CU currently being coded (e.g., such as neighboring CUs

(spatially or based on scan order) or the most frequent samples of a causal neighbor),

i.e., second CU 188. The palettes of the one or more neighboring CUs may be

associated with a predictor palette. In some examples, such as the example illustrated in

FIG. 4, video encoder 20 and/or video decoder 30 may locate a left neighboring CU,

first CU 180, when determining a predictive palette for second CU 188. In other

examples, video encoder 20 and/or video decoder 30 may locate one or more CUs in

other positions relative to second CU 188, such as an upper CU, CU 196.

[0164] Video encoder 20 and/or video decoder 30 may determine a CU for palette

prediction based on a hierarchy. For example, video encoder 20 and/or video decoder

30 may initially identify the left neighboring CU, first CU 180, for palette prediction. If

the left neighboring CU is not available for prediction (e.g., the left neighboring CU is

coded with a mode other than a palette-based coding mode, such as an intra-prediction

more or intra-prediction mode, or is located at the left-most edge of a picture or slice)

video encoder 20 and/or video decoder 30 may identify the upper neighboring CU, CU

196. Video encoder 20 and/or video decoder 30 may continue searching for an

available CU according to a predetermined order of locations until locating a CU having

a palette available for palette prediction. In some examples, video encoder 20 and/or

1414-118WO01

WO 2016/201032 PCT/US2016/036572
53

video decoder 30 may determine a predictive palette based on multiple blocks and/or

reconstructed samples of a neighboring block.

[0165] While the example of FIG. 4 illustrates first palettes 184 as predictive palettes

from a single CU, first CU 180, in other examples, video encoder 20 and/or video

decoder 30 may locate palettes for prediction from a combination of neighboring CUs.

For example, video encoder 20 and/or video decoder may apply one or more formulas,

functions, rules or the like to generate a palette based on palettes of one or a

combination of a plurality of neighboring CUs.

[0166] In still other examples, video encoder 20 and/or video decoder 30 may construct

a candidate list including a number of potential candidates for palette prediction. A

pruning process may be applied at both video encoder 20 and video decoder 30 to

remove duplicated candidates in the list. In such examples, video encoder 20 may

encode an index to the candidate list to indicate the candidate CU in the list from which

the current CU used for palette prediction is selected (e.g., copies the palette). Video

decoder 30 may construct the candidate list in the same manner, decode the index, and

use the decoded index to select the palette of the corresponding CU for use with the

current CU.

[0167] In an example for purposes of illustration, video encoder 20 and video decoder

30 may construct a candidate list that includes one CU that is positioned above the CU

currently being coded and one CU that is positioned to the left of the CU currently being

coded. In this example, video encoder 20 may encode one or more syntax elements to

indicate the candidate selection. For example, video encoder 20 may encode a flag

having a value of zero to indicate that the palette for the current CU is copied from the

CU positioned to the left of the current CU. Video encoder 20 may encode the flag

having a value of one to indicate that the palette for the current CU is copied from the

CU positioned above the current CU. Video decoder 30 decodes the flag and selects the

appropriate CU for palette prediction.

[0168] In still other examples, video encoder 20 and/or video decoder 30 determine the

palette for the CU currently being coded based on the frequency with which sample

values included in one or more other palettes occur in one or more neighboring CUs.

For example, video encoder 20 and/or video decoder 30 may track the colors associated

with the most frequently used index values during coding of a predetermined number of

CUs. Video encoder 20 and/or video decoder 30 may include the most frequently used

colors in the palette for the CU currently being coded.

1414-118WO01

WO 2016/201032 PCT/US2016/036572
54

[0169] In some examples, video encoder 20 and/or video decoder 30 may perform

entry-wise based palette prediction. For example, video encoder 20 may encode one or

more syntax elements, such as one or more flags, for each entry of a predictive palette

indicating whether the respective predictive palette entries are reused in the current

palette (e.g., whether pixel values in a palette of another CU are reused by the current

palette). In this example, video encoder 20 may encode a flag having a value equal to

one for a given entry when the entry is a predicted value from a predictive palette (e.g.,

a corresponding entry of a palette associated with a neighboring CU). Video encoder 20

may encode a flag having a value equal to zero for a particular entry to indicate that the

particular entry is not predicted from a palette of another CU. In this example, video

encoder 20 may also encode additional data indicating the value of the non-predicted

palette entry.

[0170] In the example of FIG. 4, second palettes 192 includes four entries 208-214

having entry index value 1, entry index value 2, entry index value 3, and entry index 4,

respectively. Entries 208-214 relate the index values to pixel values including pixel

value A, pixel value B, pixel value C, and pixel value D, respectively. Video encoder

20 and/or video decoder 30 may use any of the above-described techniques to locate

first CU 180 for purposes of palette prediction and copy entries 1-3 of first palettes 184

to entries 1-3 of second palettes 192 for coding second CU 188. In this way, video

encoder 20 and/or video decoder 30 may determine second palettes 192 based on first

palettes 184. In addition, video encoder 20 and/or video decoder 30 may code data for

entry 4 to be included with second palettes 192. Such information may include the

number of palette entries not predicted from a predictor palette and the pixel values

corresponding to those palette entries.

[0171] In some examples, according to aspects of this disclosure, one or more syntax

elements may indicate whether palettes, such as second palettes 192, are predicted

entirely from a predictive palette (shown in FIG. 4 as first palettes 184, but which may

be composed of entries from one or more blocks) or whether particular entries of second

palettes 192 are predicted. For example, an initial syntax element may indicate whether

all of the entries are predicted. If the initial syntax element indicates that not all of the

entries are predicted (e.g., a flag having a value of 0), one or more additional syntax

elements may indicate which entries of second palettes 192 are predicted from the

predictive palette.

1414-118WO01

WO 2016/201032 PCT/US2016/036572
55

[0172] According to some aspects of this disclosure, certain information associated with

palette prediction may be inferred from one or more characteristics of the data being

coded. That is, rather than video encoder 20 encoding syntax elements (and video

decoder 30 decoding such syntax elements), video encoder 20 and video decoder 30

may perform palette prediction based on one or more characteristics of the data being

coded.

[0173] FIG. 5 is a conceptual diagram illustrating an example of determining indices to

a palette for a block of pixels, consistent with techniques of this disclosure. For

example, FIG. 5 includes a map 240 of index values (values 1, 2, and 3) that relate

respective positions of pixels associated with the index values to an entry of palettes

244. Palettes 244 may be determined in a similar manner as first palettes 184 and

second palettes 192 described above with respect to FIG. 4.

[0174] Again, the techniques of FIG. 5 are described in the context of video encoder 20

(FIG. 1 and FIG. 2) and video decoder 30 (FIG. 1 and FIG. 3) and with respect to the

HEVC video coding standard for purposes of explanation. However, it should be

understood that the techniques of this disclosure are not limited in this way, and may be

applied by other video coding processors and/or devices in other video coding processes

and/or standards.

[0175] While map 240 is illustrated in the example of FIG. 5 as including an index

value for each pixel position, it should be understood that in other examples, not all

pixel positions may be associated with an index value relating the pixel value to an entry

of palettes 244. That is, as noted above, in some examples, video encoder 20 may

encode (and video decoder 30 may obtain, from an encoded bitstream) an indication of

an actual pixel value (or its quantized version) for a position in map 240 if the pixel

value is not included in palettes 244.

[0176] In some examples, video encoder 20 and video decoder 30 may be configured to

code an additional map indicating which pixel positions are associated with index

values. For example, assume that the (i, j) entry in the map corresponds to the (i, j)

position of a CU. Video encoder 20 may encode one or more syntax elements for each

entry of the map (i.e., each pixel position) indicating whether the entry has an associated

index value. For example, video encoder 20 may encode a flag having a value of one to

indicate that the pixel value at the (i, j) location in the CU is one of the values in palettes

244. Video encoder 20 may, in such an example, also encode a palette index (shown in

the example of FIG. 5 as values 1-3) to indicate that pixel value in the palette and to

1414-118WO01

WO 2016/201032 PCT/US2016/036572
56

allow video decoder to reconstruct the pixel value. In instances in which palettes 244

include a single entry and associated pixel value, video encoder 20 may skip the

signaling of the index value. Video encoder 20 may encode the flag to have a value of

zero to indicate that the pixel value at the (i, j) location in the CU is not one of the

values in palettes 244. In this example, video encoder 20 may also encode an indication

of the pixel value for use by video decoder 30 in reconstructing the pixel value. In some

instances, the pixel value may be coded in a lossy manner.

[0177] The value of a pixel in one position of a CU may provide an indication of values

of one or more other pixels in other positions of the CU. For example, there may be a

relatively high probability that neighboring pixel positions of a CU will have the same

pixel value or may be mapped to the same index value (in the case of lossy coding, in

which more than one pixel value may be mapped to a single index value).

[0178] Accordingly, video encoder 20 may encode one or more syntax elements

indicating a number of consecutive pixels or index values in a given scan order that

have the same pixel value or index value. As noted above, the string of like-valued

pixel or index values may be referred to herein as a run. In an example for purposes of

illustration, if two consecutive pixels or indices in a given scan order have different

values, the run is equal to zero. If two consecutive pixels or indices in a given scan

order have the same value but the third pixel or index in the scan order has a different

value, the run is equal to one. For three consecutive indices or pixels with the same

value, the run is two, and so forth. Video decoder 30 may obtain the syntax elements

indicating a run from an encoded bitstream and use the data to determine the number of

consecutive locations that have the same pixel or index value.

[0179] The number of indices that may be included in a run may be impacted by the

scan order. For example, consider a raster scan of lines 266, 268, and 270 of map 240.

Assuming a horizontal, left to right scan direction (such as a raster scanning order), row

266 includes three index values of “1,” two index values of “2,” and three index values

of “3.” Row 268 includes five index values of “1” and three index values of “3.” In this

example, for row 266, video encoder 20 may encode syntax elements indicating that the

first value of row 266 (the leftmost value of the row) is 1 with a run of 2, followed by an

index value of 2 with a run of 1, followed by an index value of 3 with a run of 2.

Following the raster scan, video encoder 20 may then begin coding row 268 with the

leftmost value. For example, video encoder 20 may encode syntax elements indicating

1414-118WO01

WO 2016/201032 PCT/US2016/036572
57

that the first value of row 268 is 1 with a run of 4, followed by an index value of 3 with

a run of 2. Video encoder 20 may proceed in the same manner with line 270.

[0180] Hence, in the raster scan order, the first index of a current line may be scanned

directly after the last index of a previous line. However, in some examples, it may not

be desirable to scan the indices in a raster scan order. For instance, it may not be

desirable to scan the indices in a raster scan order where a first line of a block of video

data (e.g., row 266) includes a first pixel adjacent to a first edge of the block of video

data (e.g., the left most pixel of row 266, which has an index value of 1) and a last pixel

adjacent to a second edge of the block of video data (e.g., the right most pixel of row

266, which has an index value of 3), a second line of the block of video data (e.g., row

268) includes a first pixel adjacent to the first edge of the block of video data (e.g., the

left most pixel of row 268, which has an index value of 1) and a last pixel adjacent to

the second edge of the block of video data (e.g., the right most pixel of row 268, which

has an index value of 3), the last pixel of the first line is adjacent to the last pixel of the

second line, and the first edge and the second edge are parallel, and the last pixel in the

first line has the same index value as the last pixel in the second line, but has a different

index value from the first pixel in the second line. This situation (i.e., where the index

value of last pixel in the first line is the same as the last pixel in the second line, but

different from the first pixel in the second line) may occur more frequently in computer

generated screen content than other types of video content.

[0181] In some examples, video encoder 20 may utilize a snake scan order when

encoding the indices of the map. For instance, video encoder 20 may scan the last pixel

of the second line directly after the last pixel of the first line. In this way, video encoder

20 may improve the efficiency of run-length coding.

[0182] For example, as opposed to using a raster scan order, video encoder 20 may use

a snake scan order to code the values of map 240. In an example for purposes of

illustration, consider rows 266, 268, and 270 of map 240. Using a snake scan order

(such as a snake scanning order), video encoder 20 may code the values of map 240

beginning with the left position of row 266, proceeding through to the right most

position of row 266, moving down to the left most position of row 268, proceeding

through to the left most position of row 268, and moving down to the left most position

of row 270. For instance, video encoder 20 may encode one or more syntax elements

indicating that the first position of row 266 is one and that the next run of two

consecutive entries in the scan direction are the same as the first position of row 266.

1414-118WO01

WO 2016/201032 PCT/US2016/036572
58

[0183] Video encoder 20 may encode one or more syntax elements indicating that the

next position of row 266 (i.e., the fourth position, from left to right) is two and that the

next consecutive entry in the scan direction are the same as the fourth position of row

266. Video encoder 20 may encode one or more syntax elements indicating that the

next position of row 266 (i.e., the sixth position) is three and that the next run of five

consecutive entries in the scan direction are the same as the sixth position of row 266.

Video encoder 20 may encode one or more syntax elements indicating that the next

position in the scan direction (i.e., the fourth position of row 268, from right to left) of

row 268 is one and that the next run of nine consecutive entries in the scan direction are

the same as the fourth position of row 268.

[0184] In this way, by using a snake scan order, video encoder 20 may encode longer

length runs, which may improve coding efficiency. For example, using the raster scan,

the final run of row 266 (for the index value 3) is equal to 2. Using the snake scan,

however, the final run of row 266 extends into row 268 and is equal to 5.

[0185] Video decoder 30 may receive the syntax elements described above and

reconstruct rows 266, 268, and 270. For example, video decoder 30 may obtain, from

an encoded bitstream, data indicating an index value for a position of map 240 currently

being coded. Video decoder 30 may also obtain data indicating the number of

consecutive positions in the scan order having the same index value.

[0186] FIG. 6 is a flowchart illustrating an example process for decoding a block of

video data using palette mode, in accordance with one or more techniques of this

disclosure. The techniques of FIG. 6 may be performed by a video decoder, such as

video decoder 30 illustrated in FIG. 1 and FIG. 3. For purposes of illustration, the

techniques of FIG. 6 are described within the context of video decoder 30 of FIG. 1 and

FIG. 3, although video decoders having configurations different than that of video

decoder 30 may perform the techniques of FIG. 6.

[0187] As discussed above, it may be desirable to maximize the number of bypass mode

coded bins of syntax elements that are grouped together. In accordance with one or

more techniques of this disclosure, video decoder 30 may decode, from a coded video

bitstream and using bypass mode, a group of syntax elements for a palette for a current

block of video data (602). For instance, entropy decoding unit 150 of video decoder 30

may decode, using bypass mode, bins of one or more syntax elements that indicate a

number of zeros that precede a non-zero entry in an array that indicates whether entries

from a predictor palette are reused in the current palette (e.g., one or more

1414-118WO01

WO 2016/201032 PCT/US2016/036572
59

palette_predictor_run syntax elements), a syntax element that indicates a number of

entries in the current palette that are explicitly signalled (e.g., a

numsignalledpaletteentries syntax element), one or more syntax elements that each

indicate a value of a component in an entry in the current palette (e.g., one or more

palette_entry syntax elements), a syntax element that indicates whether the current

block of video data includes at least one escape coded sample (e.g., a

paletteescapevalpresentflag syntax element), a syntax element that indicates a

number of entries in the current palette that are explicitly signalled or inferred (e.g., a

num_palette_indices_idc syntax element), and one or more syntax elements that

indicate indices in an array of current palette entries (e.g., one or more

palette_index_idc syntax elements). In some examples, to decode a group of bypass-

coded syntax elements, video decoder 30 may sequentially decode syntax elements

included in the group of syntax elements without decoding any non-bypass coded bins.

As discussed above, grouping together a large number of bypass coded bins/syntax

elements may improve a CAB AC throughput of video decoder 30. In particular, the

grouping of bypass-coded syntax elements may enable video decoder 30 to avoid

starting/stopping/restarting the CAB AC engine. By contrast, when the bypass-coded

syntax elements are not grouped, video decoder 30 may have to continually start the

CAB AC engine to decode a non-bypass-coded bin with a first context, stop the CAB AC

engine to decode a bypass-coded bin, start the CAB AC engine to decode another non­

bypass-coded bin with the first context, etc. As discussed above, the repeated toggling

of the CAB AC engine may decrease the CAB AC engine’s throughput.

[0188] Video decoder 30 may decode, using CAB AC with a context and at a postion in

the coded video bitstream that is after the group of syntax elements, a syntax element

that indicates whether a transpose process is applied to palette indices of the palette for

the current block of video data (604). For instance, entropy decoding unit 150 of video

decoder 30 may decode, using CAB AC with a context, the bin of a

palette transpose flag syntax element.

[0189] Video decoder 30 may decode, using CAB AC with a context and at a postion in

the coded video bitstream that is after the syntax element that indicates whether a

transpose process is applied to palette indices of the palette for the current block of

video data, one or more syntax elements related to delta quantization parameter (QP)

and/or chroma QP offsets for the current block of video data (606). For instance,

entropy decoding unit 150 of video decoder 30 may decode, using CAB AC with one or

1414-118WO01

WO 2016/201032 PCT/US2016/036572
60

more contexts, bins of a syntax elements that specifies the absolute value of a difference

between a QP (e.g., a luma QP) for the current block of video data and a predictor of the

QP for the current block (e.g., cu_qp_delta_abs), a syntax element that specifies a sign

of the difference between the QP for the current block of video data and the predictor of

the QP for the current block (e.g., cuqpdeltasignflag), a syntax element that

indicates whether entries in one or more offset lists are added to a luma QP for the

current block to determine chroma QPs for the current block (e.g.,

cu_chroma_qp_offset_flag), and a syntax element that specifies an index of an entry in

each of the one or more offset lists that are added to the luma QP for the current block to

determine chroma QPs for the current block (e.g., cu_chroma_qp_offset_idx).

[0190] In some examples, video decoder 30 may decode the one or more syntax

elements related to delta QP and/or chroma QP offsets for the current block of video

data based on a value of a syntax element of the group of syntax elements decoded

using bypass mode. As one example, video decoder 30 may decode the one or more

syntax elements related to delta QP and/or chroma QP offsets for the current block of

video data where the syntax element of the group of syntax elements that indicates

whether the current block of video data includes at least one escape coded sample

indicates that the current block of video data does include at least one escape sample.

As another example, video decoder 30 may not decode the one or more syntax elements

related to delta QP and/or chroma QP offsets for the current block of video data where

the syntax element of the group of syntax elements that indicates whether the current

block of video data includes at least one escape coded sample indicates that the current

block of video data does not include at least one escape sample.

[0191] Video decoder 30 may generate the palette for the current block of video data

based on the group of syntax elements and the syntax element that indicates whether a

transpose process is applied to palette indices of the palette for the current block of

video data (608) and decode the current block of video data based on the generated

palette and the one or more syntax elements related to delta QP and/or chroma QP

offsets for the current block of video data (610). For instance, palette-based decoding

unit 165 may generate the palette having entries indicating pixel values, receive

information associating at least some positions of the current block of video data with

entries in the palette, select pixel values in the palette based on the information, and

reconstruct pixel values of the block based on the selected pixel values.

1414-118WO01

WO 2016/201032 PCT/US2016/036572
61

[0192] FIG. 7 is a flowchart illustrating an example process for encoding a block of

video data using palette mode, in accordance with one or more techniques of this

disclosure. The techniques of FIG. 7 may be performed by a video encoder, such as

video encoder 20 illustrated in FIG. 1 and FIG. 2. For purposes of illustration, the

techniques of FIG. 7 are described within the context of video encoder 20 of FIG. 1 and

FIG. 2, although video encoders having configurations different than that of video

encoder 20 may perform the techniques of FIG. 7.

[0193] As discussed above, it may be desirable to maximize the number of bypass mode

coded bins of syntax elements that are grouped together. In accordance with one or

more techniques of this disclosure, video encoder 20 may encode, in a coded video

bitstream and using bypass mode, a group of syntax elements for a palette for a current

block of video data (702). For instance, entropy encoding unit 118 of video encoder 20

may encode, using bypass mode, bins of one or more syntax elements that indicate a

number of zeros that precede a non-zero entry in an array that indicates whether entries

from a predictor palette are reused in the current palette (e.g., one or more

palette_predictor_run syntax elements), a syntax element that indicates a number of

entries in the current palette that are explicitly signalled (e.g., a

numsignalledpaletteentries syntax element), one or more syntax elements that each

indicate a value of a component in an entry in the current palette (e.g., one or more

palette_entry syntax elements), a syntax element that indicates whether the current

block of video data includes at least one escape coded sample (e.g., a

palette_escape_val_present_flag syntax element), a syntax element that indicates a

number of entries in the current palette that are explicitly signalled or inferred (e.g., a

numpaletteindicesidc or a numpaletteindicesminusl syntax element), and one

or more syntax elements that indicate indices in an array of current palette entries (e.g.,

one or more palette_index_idc syntax elements).

[0194] Video encoder 20 may encode, using CAB AC with a context and at a postion in

the coded video bitstream that is after the group of syntax elements, a syntax element

that indicates whether a transpose process is applied to palette indices of the palette for

the current block of video data (704). For instance, entropy encoding unit 118 of video

encoder 20 may encode, using CAB AC with a context, the bin of a

palette transpose flag syntax element.

[0195] Video encoder 20 may encode, using CABAC with a context and at a postion in

the coded video bitstream that is after the syntax element that indicates whether a

1414-118WO01

WO 2016/201032 PCT/US2016/036572
62

transpose process is applied to palette indices of the palette for the current block of

video data, one or more syntax elements related to delta quantization parameter (QP)

and/or chroma QP offsets for the current block of video data (706). For instance,

entropy encoding unit 118 of video encoder 20 may encode, using CABAC with one or

more contexts, bins of a syntax elements that specifies the absolute value of a difference

between a luma QP for the current block of video data and a predictor of the luma QP

for the current block (e.g., cu_qp_delta_abs), a syntax element that specifies a sign of

the difference between the luma QP for the current block of video data and the predictor

of the luma QP for the current block (e.g., cuqpdeltasignflag), a syntax element

that indicates whether entries in one or more offset lists are added to the luma QP for the

current block to determine chroma QPs for the current block (e.g.,

cu_chroma_qp_offset_flag), and a syntax element that specifies an index of an entry in

each of the one or more offset lists that are added to the luma QP for the current block to

determine chroma QPs for the current block (e.g., cu_chroma_qp_offset_idx).

[0196] In some examples, video encoder 20 may encode the one or more syntax

elements related to delta QP and/or chroma QP offsets for the current block of video

data based on a value of a syntax element of the group of syntax elements encoded

using bypass mode. As one example, video encoder 20 may encode the one or more

syntax elements related to delta QP and/or chroma QP offsets for the current block of

video data where the syntax element of the group of syntax elements that indicates

whether the current block of video data includes at least one escape coded sample

indicates that the current block of video data does include at least one escape sample.

As another example, video encoder 20 may not encode the one or more syntax elements

related to delta QP and/or chroma QP offsets for the current block of video data where

the syntax element of the group of syntax elements that indicates whether the current

block of video data includes at least one escape coded sample indicates that the current

block of video data does not include at least one escape sample.

[0197] It is to be recognized that depending on the example, certain acts or events of

any of the techniques described herein can be performed in a different sequence, may be

added, merged, or left out altogether (e.g., not all described acts or events are necessary

for the practice of the techniques). Moreover, in certain examples, acts or events may

be performed concurrently, e.g., through multi-threaded processing, interrupt

processing, or multiple processors, rather than sequentially. In addition, while certain

aspects of this disclosure are described as being performed by a single module or unit

1414-118WO01

WO 2016/201032 PCT/US2016/036572
63

for purposes of clarity, it should be understood that the techniques of this disclosure may

be performed by a combination of units or modules associated with a video coder.

[0198] Certain aspects of this disclosure have been described with respect to the

developing HEVC standard for purposes of illustration. However, the techniques

described in this disclosure may be useful for other video coding processes, including

other standard or proprietary video coding processes not yet developed.

[0199] The techniques described above may be performed by video encoder 20 (FIGS.

1 and 2) and/or video decoder 30 (FIGS. 1 and 3), both of which may be generally

referred to as a video coder. Likewise, video coding may refer to video encoding or

video decoding, as applicable.

[0200] While particular combinations of various aspects of the techniques are described

above, these combinations are provided merely to illustrate examples of the techniques

described in this disclosure. Accordingly, the techniques of this disclosure should not

be limited to these example combinations and may encompass any conceivable

combination of the various aspects of the techniques described in this disclosure.

[0201] In one or more examples, the functions described may be implemented in

hardware, software, firmware, or any combination thereof. If implemented in software,

the functions may be stored on or transmitted over, as one or more instructions or code,

a computer-readable medium and executed by a hardware-based processing unit.

Computer-readable media may include computer-readable storage media, which

corresponds to a tangible medium such as data storage media, or communication media

including any medium that facilitates transfer of a computer program from one place to

another, e.g., according to a communication protocol. In this manner, computer-

readable media generally may correspond to (1) tangible computer-readable storage

media which is non-transitory or (2) a communication medium such as a signal or

carrier wave. Data storage media may be any available media that can be accessed by

one or more computers or one or more processors to retrieve instructions, code and/or

data structures for implementation of the techniques described in this disclosure. A

computer program product may include a computer-readable medium.

[0202] By way of example, and not limitation, such computer-readable storage media

can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic

disk storage, or other magnetic storage devices, flash memory, or any other medium that

can be used to store desired program code in the form of instructions or data structures

and that can be accessed by a computer. Also, any connection is properly termed a

1414-118WO01

64
20

16
27

66
87

 20 No
v

20
19 computer-readable medium. For example, if instructions are transmitted from a

website, server, or other remote source using a coaxial cable, fiber optic cable, twisted

pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and

microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless

technologies such as infrared, radio, and microwave are included in the definition of

medium. It should be understood, however, that computer-readable storage media and

data storage media do not include connections, carrier waves, signals, or other transient

media, but are instead directed to non-transient, tangible storage media. Disk and disc,

as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc

(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,

while discs reproduce data optically with lasers. Combinations of the above should also

be included within the scope of computer-readable media.

[0203] Instructions may be executed by one or more processors, such as one or more

digital signal processors (DSPs), general purpose microprocessors, application specific

integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other

equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as

used herein may refer to any of the foregoing structure or any other structure suitable for

implementation of the techniques described herein. In addition, in some aspects, the

functionality described herein may be provided within dedicated hardware and/or

software modules configured for encoding and decoding, or incorporated in a combined

codec. Also, the techniques could be fully implemented in one or more circuits or logic

elements.

[0204] The techniques of this disclosure may be implemented in a wide variety of

devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of

ICs (e.g., a chip set). Various components, modules, or units are described in this

disclosure to emphasize functional aspects of devices configured to perform the

disclosed techniques, but do not necessarily require realization by different hardware

units. Rather, as described above, various units may be combined in a codec hardware

unit or provided by a collection of interoperative hardware units, including one or more

processors as described above, in conjunction with suitable software and/or firmware.

[0205] Various examples have been described. These and other examples are within the

scope of the following claims.

[0206] It will be understood that the term “comprise” and any of its derivatives (eg

comprises, comprising) as used in this specification is to be taken to be inclusive of

65
20

16
27

66
87

 20 No
v

20
19 features to which it refers, and is not meant to exclude the presence of any additional

features unless otherwise stated or implied.

[0207] The reference to any prior art in this specification is not, and should not be taken

as, an acknowledgement or any form of suggestion that such prior art forms part of the

common general knowledge.

66

20
16

27
66

87
 20 No

v
20

19 Claims

1. A method of decoding video data, the method comprising:

decoding, from a coded video bitstream and using context adaptive binary

arithmetic coding (CABAC) with a context, a syntax element, palette transpose flag,

that indicates whether a transpose process is applied to palette indices of a palette for a

current block of video data;

decoding, from the coded video bitstream, using CABAC with a context and at a

position in the coded video bitstream that is directly after the palette transpose flag,

one or more syntax elements related to delta quantization parameter (QP) and/or chroma

QP offsets for the current block of video data in order to improve CABAC throughput;

decoding, from the coded video bitstream, a group of consecutive syntax

elements using Bypass mode, wherein the group comprises:

one or more syntax elements that indicate a number of zeros that precede

a non-zero entry in an array that indicates whether entries from a predictor

palette are reused in the current palette;

a syntax element that indicates a number of entries in the current palette

that are explicitly signalled;

one or more syntax elements that each indicate a value of a component in

an entry in the current palette;

a syntax element that indicates whether the current block of video data

includes at least one escape coded sample;

a syntax element that indicates a number of indices in the current palette

that are explicitly signalled or inferred; and

one or more syntax elements that indicate indices in an array of current

palette entries; and

decoding the current block of video data based on the palette for the current

block of video data, the group of syntax elements, and the one or more syntax elements

related to delta QP and/or chroma QP offsets for the current block of video data.

2. A method of encoding video data, the method comprising:

encoding, in a coded video bitstream and using context adaptive binary

arithmetic coding (CABAC) with a context, a syntax element, a palette transpose flag,

67

20
16

27
66

87
 20 No

v
20

19 that indicates whether a transpose process is applied to palette indices of a palette for a

current block of video data;

encoding, in the coded video bitstream, using CABAC with a context and at a

position in the coded video bitstream that is directly after the palette transpose flag,

one or more syntax elements related to delta quantization parameter (QP) and/or chroma

QP offsets for the current block of video data;

encoding, in the coded video bitstream, a group of consecutive syntax elements

using Bypass mode, wherein the group comprises:

one or more syntax elements that indicate a number of zeros that precede

a non-zero entry in an array that indicates whether entries from a predictor

palette are reused in the current palette;

a syntax element that indicates a number of entries in the current palette

that are explicitly signalled;

one or more syntax elements that each indicate a value of a component in

an entry in the current palette;

a syntax element that indicates whether the current block of video data

includes at least one escape coded sample;

a syntax element that indicates a number of indices in the current palette

that are explicitly signalled or inferred; and

one or more syntax elements that indicate indices in an array of current palette

entries; and

encoding the current block of video data based on the palette for the current

block of video data, the group of syntax elements, and the one or more syntax elements

related to delta QP and/or chroma QP offsets for the current block of video data.

3. The method of claim 1 or 2, wherein the syntax element that indicates whether

the transpose process is applied to palette indices of the current block of video data

comprises a palette transpose flag syntax element.

4. The method of claim 1 or 2, wherein the one or more syntax elements related to

delta QP comprise one or both of a syntax element that indicates an absolute value of a

difference between a QP of the current block and a predictor of the QP of the current

block and a syntax element that indicates a sign of the difference between the QP of the

current block and the predictor of the QP of the current block.

68

20
16

27
66

87
 20 No

v
20

19

5. The method of claim 1 or 2, wherein the one or more syntax elements related to

chroma QP offsets comprise one or both of a syntax element that indicates whether

entries in one or more offset lists are added to a luma QP of the current block to

determine chroma QPs for the current block and a syntax element that indicates an

index of an entry in each of the one or more offset lists that are added to the luma QP

for the current block to determine the chroma QPs for the current block.

6. The method of claim 1 or 2, wherein one or more of:

the one or more syntax elements that indicate a number of zeros that precede a

non-zero entry in an array that indicates whether entries from a predictor palette are

reused in the current palette comprise one or more palettepredictorrun syntax

elements,

the syntax element that indicates a number of entries in the current palette that

are explicitly signalled comprises a num signalled palette entries syntax element,

the one or more syntax elements that each indicate a value of a component in an

entry in the current palette comprise one or more palette entry syntax elements,

the syntax element that indicates whether the current block of video data

includes at least one escape coded sample comprises palette escape valpresent flag,

the syntax element that indicates a number of indices in the current palette that

are explicitly signalled or inferred comprise a num palette indices idc syntax element,

and

the one or more syntax elements that indicate indices in an array of current

palette entries comprise one or more palette index idc syntax elements.

7. The method of claim 1 or 2, wherein decoding the group of syntax elements

comprises decoding the group of syntax elements from the coded video bitstream at a

position in the coded video bitstream that is before the syntax element that indicates

whether the transpose process is applied to palette indices of the current block of video

data.

8. The method of claim 1 or 2, further comprising:

69

20
16

27
66

87
 20 No

v
20

19 decoding, from the coded video bitstream after the group of syntax elements

coded using Bypass mode, a syntax element that indicates a last occurrence of a run

type flag within the current block of video data.

9. The method of claim 8, wherein decoding the syntax element that indicates the

last occurrence of a run type flag within the current block of video data comprises

decoding the syntax element that indicates the last occurrence of a run type flag within

the current block of video data using context adaptive binary arithmetic coding

(CABAC) with a context.

10. A device for encoding video data, the device comprising:

a memory configured to store video data; and

one or more processors configured to carry out the steps of any one of claims 1

or 3-9.

11. A device for decoding video data, the device comprising:

a memory configured to store video data; and

one or more processors configured to carry out the steps of any one of claims

2-9.

12. A device for decoding video data, the device comprising:

means for carrying out the steps of any one of claims 2-9.

13. A device for encoding video data, the device comprising:

means for carrying out the steps of any one of claims 1 or 3-9.

14. A computer-readable storage medium storing at least a portion of a coded video

bitstream that, when processed by a video decoding device, cause one or more

processors of the video decoding device to:

determine whether a transpose process is applied to palette indices of a palette

for a current block of video data;

20
16

27
66

87
 20 No

v
20

19
70

generate the palette for the current block of video data based on a following

group of consecutive syntax elements in the portion of the coded video bitstream:

one or more syntax elements that indicate a number of zeros that precede

a non-zero entry in an array that indicates whether entries from a predictor

palette are reused in the current palette;

a syntax element that indicates a number of entries in the current palette

that are explicitly signalled;

one or more syntax elements that each indicate a value of a component in

an entry in the current palette;

a syntax element that indicates whether the current block of video data

includes at least one escape coded sample;

a syntax element that indicates a number of indices in the current palette

that are explicitly signalled or inferred; and

one or more syntax elements that indicate indices in an array of current palette

entries; and

decode the current block of the video data based on the palette for the current

block of video data and a delta quantization parameter (QP) and one or more chroma QP

offsets for the current block of video data,

wherein one or more syntax elements related to the delta QP and one or more

syntax elements related to the one or more chroma QP offsets for the current block of

video data are located at a position in the portion of the coded video bitstream that is

directly after a syntax element, palette transpose flag, that indicates whether the

transpose process is applied to palette indices of the palette for the current block of

video data, wherein the syntax element that indicates whether the transpose process is

applied to palette indices of the palette for the current block of video data is decoded

using context adaptive binary arithmetic coding (CABAC) with a context, wherein at

least one of the one or more syntax elements related to the delta QP and one or more

syntax elements related to the one or more chroma QP offsets is decoded using CABAC

with a context, and wherein the group of consecutive syntax elements are decoded using

Bypass mode.

WO 2016/201032 PCT/US2016/036572
1/7

10

FIG. 1

WO 2016/201032 PCT/US2016/036572
2/7

FI
G

. 2

WO 2016/201032 PCT/US2016/036572
3/7

Q LU Q
O O LU Q

O LU Q
>

FI
G

. 3

WO 2016/201032 PCT/US2016/036572
4/7

18
4

X-
 19

2

WO 2016/201032 PCT/US2016/036572
5/7

244

I ru-rnw I

_ 1_
ENTRY
INDEX

I
VALUE

1 VALUE A

2 VALUE B
3

3 VALUE C

RASTER f SCAN

266
268

270

RUN = 2 RUN = 1 RUN = 5

RUN = 5

FIG. 5

WO 2016/201032 PCT/US2016/036572
6/7

602

604

606

608

610

FIG. 6

WO 2016/201032 PCT/US2016/036572
7/7

FIG. 7

702

706

