(12) STANDARD PATENT (11) Application No. AU 2016276687 B2

(19) AUSTRALIAN PATENT OFFICE

(54) Title
Grouping palette bypass bins for video coding

(61) International Patent Classification(s)
HO4N 19/176 (2014.01) HO4N 19/91 (2014.01)
HO4N 19/186 (2014.01) HO4N 19/93 (2014.01)
HO4N 19/70 (2014.01)

(21) Application No: 2016276687 (22) Date of Filing: 2016.06.09
(87) WIPO No: WO16/201032

(30) Priority Data

(31) Number (32) Date (33) Country
15/177,201 2016.06.08 us
62/175,137 2015.06.12 us

(43) Publication Date: 2016.12.15

(44) Accepted Journal Date: 2019.12.12

(71) Applicant(s)
Qualcomm Incorporated

(72) Inventor(s)
Joshi, Rajan Laxman;Seregin, Vadim;Pu, Wei;Zou, Feng;Karczewicz, Marta

(74) Agent/ Attorney
Madderns Pty Ltd, GPO Box 2752, Adelaide, SA, 5001, AU

wo 2016/201032 A1 || 000 T OO 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

15 December 2016 (15.12.2016)

—~
é

=

\

(10) International Publication Number

WO 2016/201032 A1l

WIPOIPCT

(51

eay)

(22)

(25)
(26)
(30)

1

International Patent Classification:
HO4N 19/176 (2014.01)
HO4N 19/70 (2014.01)
HO4N 19/91 (2014.01)

International Application Number:

PCT/US2016/036572

HO4N 19/186 (2014.01)
HO4N 19/93 (2014.01)

(72) Inventors: JOSHI, Rajan Laxman; 5775 Morehouse
Drive, San Diego, California 92121-1714 (US). SERE-
GIN, Vadim; 5775 Morehouse Drive, San Diego, Califor-
nia 92121-1714 (US). PU, Wei; 5565 Wellesley Avenue,
Apartment 5, Pittsburgh, Pennsylvania 15206 (US). ZOU,
Feng;, 5775 Morehouse Drive, San Diego, California
92121-1714 (US). KARCZEWICZ, Marta; 5775 More-

International Filing Date: house Drive, San Diego, California 55125 (US).
9 June 2016 (09.06.2016) - 74 A gent: ROSENBERG, Brian M.; Shumaker & Sieffert,
Filing Language: English P.A., 1625 Radio Drive, Suite 300, Woodbury, Minnesota
L , 55125 (US).
Publication Language: English
. (81) Designated States (uniess otherwise indicated, for every
g;/l?nstyl ;)ata: kind of national protection available). AE, AG, AL, AM,
75,137 12 June 2015 (12.06.2015) Us AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
15/177,201 8 June 2016 (08.06.2016) Us

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse

Drive, San Diego, California 92121-1714 (US).

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,

[Continued on next page]

(54) Title: GROUPING PALETTE BYPASS BINS FOR VIDEO CODING

DECODE, FROM A CODED VIDEO BITSTREAM AND USING
BYPASS MODE, A GROUP OF SYNTAX ELEMENTS FOR A
PALETTE FOR A CURRENT BLOCK OF VIDEOC DATA

|—602

|

DECODE, USING CONTEXT ADAPTIVE BINARY ARITHMETIC
CODING (CABAC) WITH A CONTEXT AND AT POSITION IN THE
CODED VIDEOQ BITSTREAM THAT IS AFTER THE GROUP OF
SYNTAX ELEMENTS, A SYNTAX ELEMENT THAT INDICATES
WHETHER A TRANSPOSE PROCESS IS APPLIED TO PALETTE
INDICES OF THE PALETTE FOR THE CURRENT BLOCK OF
VIDEO DATA

/-604

l

DECODE, USING CABAC WITH A CONTEXT AND AT POSITION
IN THE CODED VIDEO BITSTREAM THAT IS AFTER THE
SYNTAX ELEMENT THAT INDICATES WHETHER THE
TRANSPOSE PROCESS IS APPLIED TO PALETTE INDICES OF
THE PALETTE FOR THE CURRENT BLOCK OF VIDEQ DATA,
ONE OR MORE SYNTAX ELEMENTS RELATED TO DELTA
QUANTIZATION PARAMETER (QP) AND/OR CHROMA QP
OFFSETS FOR THE CURRENT BLOCK OF VIDEQ DATA

| 606

|

GENERATE THE PALETTE FOR THE CURRENT BLOCK OF
VIDEO DATA BASED ON THE GROUP OF SYNTAX ELEMENTS
AND THE SYNTAX ELEMENT THAT INDICATES WHETHER A
TRANSPOSE PROCESS IS APPLIED TO PALETTE INDICES OF
THE PALETTE FOR THE CURRENT BLOCK OF VIDEO DATA

|—608

l

DECODE THE CURRENT BLOCK OF VIDEO DATA BASED ON
THE PALETTE AND THE ONE OR MORE SYNTAX ELEMENTS
RELATED TO DELTA QUANTIZATION PARAMETER (QP) AND/
OR CHROMA QP OFFSETS FOR THE CURRENT BLOCK OF
VIDEO DATA

|—610

FIG. 6

(57) Abstract: An example method of coding video data includes
coding, from a coded video bitstream, a syntax element that indic-
ates whether a transpose process is applied to palette indices of a
palette for a current block of video data; decoding, from the coded
video bitstream and at a positon in the coded video bitstream that is
after the syntax element that indicates whether the transpose pro-
cess is applied to palette indices of the palette for the current block
of video data, one or more syntax elements related to delta quantiz-
ation parameter (QP) and/or chroma QP offsets for the current
block of video data; and decoding the current block of video data
based on the palette for the current block of video data and the one
or more syntax elements related to delta QP and/or chroma QP off-
sets for the current block of video data.

WO 2016/201032 A1 WK 00N T 00O OO

84)

PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every

kind of regional protection available): ARTIPO (BW, GH,

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

DK, EE, ES, FI, FR, GB, GR, HR, HU, IF, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF,
SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2016/201032 PCT/US2016/036572

GROUPING PALETTE BYPASS BINS FOR VIDEO CODING

[0001] This application claims the benefit of U.S. Provisional Application No.
62/175,137 filed June 12, 2015, the entire content of which is incorporated herein by
reference.

TECHNICAL FIELD

[0002] This disclosure relates to video encoding and decoding.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video compression techniques,
such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263,
ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), ITU-T-H.265, the
High Efficiency Video Coding (HEVC) standard, and extensions of such standards. The
video devices may transmit, receive, encode, decode, and/or store digital video
information more efficiently by implementing such video compression techniques.
[0004] Video compression techniques perform spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (i.e., a video frame or a portion
of a video frame) may be partitioned into video blocks. Video blocks in an intra-coded
(D slice of a picture are encoded using spatial prediction with respect to reference
samples in neighboring blocks in the same picture. Video blocks in an inter-coded (P or
B) slice of a picture may use spatial prediction with respect to reference samples in
neighboring blocks in the same picture or temporal prediction with respect to reference
samples in other reference pictures. Pictures may be referred to as frames, and
reference pictures may be referred to a reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be

coded and the predictive block. An inter-coded block is encoded according to a motion

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572

vector that points to a block of reference samples forming the predictive block, and the
residual data indicates the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be transformed from the pixel
domain to a transform domain, resulting in residual coefficients, which then may be
quantized. The quantized coefficients, initially arranged in a two-dimensional array,
may be scanned in order to produce a one-dimensional vector of coefficients, and

entropy coding may be applied to achieve even more compression.

SUMMARY

[0006] In one example, a method of decoding video data includes decoding, from a
coded video bitstream, a syntax element that indicates whether a transpose process is
applied to palette indices of a palette for a current block of video data; decoding, from
the coded video bitstream and at a positon in the coded video bitstream that is after the
syntax element that indicates whether the transpose process is applied to palette indices
of the palette for the current block of video data, one or more syntax elements related to
delta quantization parameter (QP) and/or chroma QP offsets for the current block of
video data; and decoding the current block of video data based on the palette for the
current block of video data and the one or more syntax elements related to delta QP
and/or chroma QP offsets for the current block of video data.

[0007] In another example, a method of encoding video data includes encoding, in a
coded video bitstream, a syntax element that indicates whether a transpose process is
applied to palette indices of a palette for a current block of video data; encoding, in the
coded video bitstream and at a positon in the coded video bitstream that is after the
syntax element that indicates whether the transpose process is applied to palette indices
of the palette for the current block of video data, one or more syntax elements related to
delta QP and/or chroma QP offsets for the current block of video data; and encoding the
current block of video data based on the palette for the current block of video data and
the one or more syntax elements related to delta QP and/or chroma QP offsets for the
current block of video data.

[0008] In another example, a device for coding video data includes a memory
configured to store video data and one or more processors. In this example, the one or

more processors are configured to: code, in a coded video bitstream, a syntax element

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572

that indicates whether a transpose process is applied to palette indices of a palette for a
current block of video data; code, in the coded video bitstream and at a positon in the
coded video bitstream that is after the syntax element that indicates whether the
transpose process is applied to palette indices of the palette for the current block of
video data, one or more syntax elements related to delta QP and/or chroma QP offsets
for the current block of video data; and code the current block of video data based on
the palette for the current block of video data and the one or more syntax elements
related to delta QP and/or chroma QP offsets for the current block of video data

[0009] In another example, a device for coding video data includes means for coding, in
a coded video bitstream, a syntax element that indicates whether a transpose process is
applied to palette indices of a palette for a current block of video data; means for
coding, in the coded video bitstream and at a positon in the coded video bitstream that is
after the syntax element that indicates whether the transpose process is applied to palette
indices of the palette for the current block of video data, one or more syntax elements
related to delta QP and/or chroma QP offsets for the current block of video data; and
means for coding the current block of video data based on the palette for the current
block of video data and the one or more syntax elements related to delta QP and/or
chroma QP offsets for the current block of video data.

[0010] In another example, a computer-readable storage medium stores instructions
that, when executed, cause one or more processors of a video coding device to: code, in
a coded video bitstream, a syntax element that indicates whether a transpose process is
applied to palette indices of a palette for a current block of video data; code, in the
coded video bitstream and at a positon in the coded video bitstream that is after the
syntax element that indicates whether the transpose process is applied to palette indices
of the palette for the current block of video data, one or more syntax elements related to
delta QP and/or chroma QP offsets for the current block of video data; and code the
current block of video data based on the palette for the current block of video data and
the one or more syntax elements related to delta QP and/or chroma QP offsets for the
current block of video data.

[0011] In another example, a computer-readable storage medium stores at least a
portion of a coded video bitstream that, when processed by a video decoding device,
cause one or more processors of the video decoding device to: determine whether a
transpose process is applied to palette indices of a palette for a current block of video

data; and decode the current block of the video data based on the palette for the current

1414-118WO0O01

2016276687 20 Nov 2019

block of video data and a delta QP and one or more chroma QP offsets for the current
block of video data, wherein one or more syntax elements related to the delta QP and
one or more syntax elements related to the one or more chroma QP offsets for the
current block of video data are located at a position in the coded video bitstream that is
after a syntax element that indicates whether the transpose process is applied to palette
indices of the palette for the current block of video data.

[0011a] In one aspect, the present disclosure provides a method and a device for
carrying out a method of decoding video data, the method comprising: decoding, from a
coded video bitstream and using context adaptive binary arithmetic coding (CABAC)
with a context, a syntax element, palette transpose flag, that indicates whether a
transpose process is applied to palette indices of a palette for a current block of video
data; decoding, from the coded video bitstream, using CABAC with a context and at a
position in the coded video bitstream that is directly after the palette transpose flag,
one or more syntax elements related to delta quantization parameter (QP) and/or chroma
QP offsets for the current block of video data in order to improve CABAC throughput;
decoding, from the coded video bitstream, a group of consecutive syntax elements using
Bypass mode, wherein the group comprises: one or more syntax elements that indicate a
number of zeros that precede a non-zero entry in an array that indicates whether entries
from a predictor palette are reused in the current palette; a syntax element that indicates
a number of entries in the current palette that are explicitly signalled; one or more
syntax elements that each indicate a value of a component in an entry in the current
palette; a syntax element that indicates whether the current block of video data includes
at least one escape coded sample; a syntax element that indicates a number of indices in
the current palette that are explicitly signalled or inferred; and one or more syntax
elements that indicate indices in an array of current palette entries; and decoding the
current block of video data based on the palette for the current block of video data, the
group of syntax elements, and the one or more syntax elements related to delta QP
and/or chroma QP offsets for the current block of video data.

[0011b] In another aspect, the present disclosure provides a method and a device for
carrying out a method of encoding video data, the method comprising: encoding, in a
coded video bitstream and using context adaptive binary arithmetic coding (CABAC)
with a context, a syntax element, a palette transpose flag, that indicates whether a
transpose process is applied to palette indices of a palette for a current block of video

data; encoding, in the coded video bitstream, using CABAC with a context and at a

2016276687 20 Nov 2019

4a

position in the coded video bitstream that is directly after the palette transpose flag,
one or more syntax elements related to delta quantization parameter (QP) and/or chroma
QP offsets for the current block of video data; encoding, in the coded video bitstream, a
group of consecutive syntax elements using Bypass mode, wherein the group comprises:
one or more syntax elements that indicate a number of zeros that precede a non-zero
entry in an array that indicates whether entries from a predictor palette are reused in the
current palette; a syntax element that indicates a number of entries in the current palette
that are explicitly signalled; one or more syntax elements that each indicate a value of a
component in an entry in the current palette; a syntax element that indicates whether the
current block of video data includes at least one escape coded sample; a syntax element
that indicates a number of indices in the current palette that are explicitly signalled or
inferred; and one or more syntax elements that indicate indices in an array of current
palette entries; and encoding the current block of video data based on the palette for the
current block of video data, the group of syntax elements, and the one or more syntax
elements related to delta QP and/or chroma QP offsets for the current block of video
data.

[0012] The details of one or more examples are set forth in the accompanying drawings
and the description below. Other features, objects, and advantages will be apparent

from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0013] FIG. 1 is a block diagram illustrating an example video coding system that may
utilize the techniques described in this disclosure.

[0014] FIG. 2 is a block diagram illustrating an example video encoder that may
implement the techniques described in this disclosure.

[0015] FIG. 3 is a block diagram illustrating an example video decoder that may
implement the techniques described in this disclosure.

[0016] FIG. 4 is a conceptual diagram illustrating an example of determining a palette
for coding video data, consistent with techniques of this disclosure.

[0017] FIG. 5 is a conceptual diagram illustrating an example of determining indices to

a palette for a block of pixels, consistent with techniques of this disclosure.

2016276687 20 Nov 2019

4b

[0018] FIG. 6 is a flowchart illustrating an example process for decoding a block of
video data using palette mode, in accordance with one or more techniques of this
disclosure.

[0019] FIG. 7 is a flowchart illustrating an example process for encoding a block of
video data using palette mode, in accordance with one or more techniques of this

disclosure.

DETAILED DESCRIPTION
[0020] This disclosure describes techniques for video coding and compression. In
particular, this disclosure describes techniques for palette-based coding of video data.

For instance, this disclosure describes techniques to support coding of video content,

WO 2016/201032 PCT/US2016/036572

especially screen content with palette coding, such as techniques for improved palette
index binarization, and techniques for signaling for palette coding.

[0021] In traditional video coding, images are assumed to be continuous-tone and
spatially smooth. Based on these assumptions, various tools have been developed such
as block-based transform, filtering, etc., and such tools have shown good performance
for natural content videos.

[0022] However, in applications like remote desktop, collaborative work and wireless
display, computer generated screen content may be the dominant content to be
compressed. This type of content tends to have discrete-tone and feature sharp lines,
and high contrast object boundaries. The assumption of continuous-tone and
smoothness may no longer apply and thus traditional video coding techniques may not
be efficient ways to compress.

[0023] Based on the characteristics of screen content video, palette coding is introduced
to improve screen content coding (SCC) efficiency as proposed in Guo et al., “Palette
Mode for Screen Content Coding,” Joint Collaborative Team on Video Coding (JCT-
VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 13th Meeting: Incheon,
KR, 18-26 Apr. 2013, Document: JCTVC-MO0323, available at http://phenix.it-
sudparis.eu/jct/doc_end user/documents/13 Incheon/wgl1/JCTVC-MO0323-v3 zip,
(hereinafter “JCTVC-M03237). Specifically, palette coding introduces a lookup table,
i.e., a color palette, to compress repetitive pixel values based on the fact that in SCC,
colors within one CU usually concentrate on a few peak values. Given a palette for a
specific CU, pixels within the CU are mapped to palette indices. In the second stage, an
effective copy from left run length method is proposed to effectively compress the index
block’s repetitive pattern. In some examples, the palette index coding mode may be
generalized to both copy from left and copy from above with run length coding. Note
that, in some examples, no transformation process may be invoked for palette coding to
avoid blurring sharp edges which can have a huge negative impact on visual quality of
screen contents.

[0024] As discussed above, this disclosure describes palette-based coding, which may
be particularly suitable for screen generated content coding. For example, assume a
particular area of video data has a relatively small number of colors. A video coder (a
video encoder or video decoder) may code a so-called “palette” as a table of colors for
representing the video data of the particular area (e.g., a given block). Each pixel may

be associated with an entry in the palette that represents the color of the pixel. For

1414-118WO0O01

http://phenix.it-sudparis.eu/jct/doc_end_user/documents/13_Incheon/wgll/JCTVC-M0323-v3.zip

WO 2016/201032 PCT/US2016/036572

example, the video coder may code an index that maps the pixel value to the appropriate
value in the palette.

[0025] In the example above, a video encoder may encode a block of video data by
determining a palette for the block, locating an entry in the palette to represent the color
value of each pixel, and encoding the palette with index values for the pixels mapping
the pixel value to the palette. A video decoder may obtain, from an encoded bitstream,
a palette for a block, as well as index values for the pixels of the block. The video
decoder may map the index values of the pixels to entries of the palette to reconstruct
the luma and chroma pixel values of the block.

[0026] The example above is intended to provide a general description of palette-based
coding. In various examples, the techniques described in this disclosure may include
techniques for various combinations of one or more of signaling palette-based coding
modes, transmitting palettes, predicting palettes, deriving palettes, and transmitting
palette-based coding maps and other syntax elements. Such techniques may improve
video coding efficiency, e.g., requiring fewer bits to represent screen generated content.
[0027] For example, according to aspects of this disclosure, a video coder (video
encoder or video decoder) may code one or more syntax elements for each block that is
coded using a palette coding mode. For example, the video coder may code a
palette_mode_flag to indicate whether a palette-based coding mode is to be used for
coding a particular block. In this example, a video encoder may encode a
palette_mode_ flag with a value that is equal to one to specify that the block currently
being encoded (“current block™) is encoded using a palette mode. In this case, a video
decoder may obtain the palette_mode flag from the encoded bitstream and apply the
palette-based coding mode to decode the block. In instances in which there is more than
one palette-based coding mode available (e.g., there is more than one palette-based
technique available for coding), one or more syntax elements may indicate one of a
plurality of different palette modes for the block.

[0028] In some instances, the video encoder may encode a palette_mode flag with a
value that is equal to zero to specify that the current block is not encoded using a palette
mode. In such instances, the video encoder may encode the block using any of a variety
of inter-predictive, intra-predictive, or other coding modes. When the
palette_mode_flag is equal to zero, the video encoder may encode additional
information (e.g., syntax elements) to indicate the specific mode that is used for

encoding the respective block. In some examples, as described below, the mode may be

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572

an HEVC coding mode. The use of the palette_mode flag is described for purposes of
example. In other examples, other syntax elements such as multi-bit codes may be used
to indicate whether the palette-based coding mode is to be used for one or more blocks,
or to indicate which of a plurality of modes are to be used.

[0029] When a palette-based coding mode is used, a palette may be transmitted by an
encoder in the encoded video data bitstream for use by a decoder. A palette may be
transmitted for each block or may be shared among a number of blocks in a picture or
slice. The palette may refer to a number of pixel values that are dominant and/or
representative for the block, including, e.g., a luma value and two chroma values.
[0030] In some examples, a syntax element, such as a transpose flag, may be coded to
indicate whether a transpose process is applied to palette indices of a current palette. If
transpose flag is zero, the palette indices for samples may be coded in a horizontal
traverse scan. Similarly, if the transpose flag is one, the palette indices for samples may
be coded in a vertical traverse scan. This can be thought of as decoding the index
values assuming horizontal traverse scan and then transposing the block (rows to
columns).

[0031] Aspects of this disclosure include techniques for coding the palette. For
example, according to aspects of this disclosure, a video encoder may encode one or
more syntax elements to define a palette. Some example syntax elements which a video
encoder may encode to define a current palette for a current block of video data include,
but are not limited to, a syntax element that indicates whether a transpose process is
applied to palette indices of the current palette (e.g., palette transpose flag) (i.e.,
whether the , one or more syntax elements related to delta quantization parameter (QP)
(e.g., cu_qp_delta_palette _abs, cu_qp_delta palette sign flag,
cu_chroma_qp_palette offset flag, and/or cu_chroma qp_palette offset idx), one
or more syntax elements related to chroma QP offsets for the current block of video
data, one or more syntax elements that indicate a number of zeros that precede a non-
zero entry in an array that indicates whether entries from a predictor palette are reused
in the current palette (e.g., palette _predictor_run), one or more syntax elements that
indicate a number of entries in the current palette that are explicitly signalled (e.g.,
num_signalled_palette_entries), one or more syntax elements that indicate a value of a
component in a palette entry in the current palette (e.g., palette_entry), one or more
syntax elements that indicate whether the current block of video data includes at least

one escape coded sample (e.g., palette_escape val present flag), one or more syntax

1414-118WO0O01

WO 2016/201032

PCT/US2016/036572

elements that indicate a number of entries in the current palette that are explicitly

signalled or inferred (e.g., num_palette_indices_idc), and one or more syntax elements

that indicate indices in an array of current palette entries (e.g., palette_index_idc). For

example, when operating in accordance with the HEVC Screen Content Coding (SCC)
Draft 3 (Joshi et al., “High Efficiency Video Coding (HEVC) Screen Content Coding:

Draft 3,” Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3
and ISO/IEC JTC 1/SC 29/WG 11, 20th Meeting: Geneva, CH, 10 February — 17

February 2015, Document: JCTVC-T1005, available at http://phenix.int-
evry fr/jct/doc_end user/documents/20 Geneva/wgl1/JCTVC-T1005-v2.zip,

(hereinafter “HEVC SCC Draft 3”), a video coder may signal the syntax elements listed
in palette coding() syntax table (section 7.3.8.8 of HEVC SCC Draft 3), reproduced

below as Table 1.

palette_coding(x0, y0, nCbS) { Descriptor
palettePredictionFinished = 0
NumPredictedPaletteEntries = 0
for(i=0; i <PredictorPaletteSize && !palettePredictionFinished &&
NumPredictedPaletteEntries < palette_max_size; i++) {
palette_predictor_run ue(v)
if(palette_predictor run != 1) {
if(palette_predictor run> 1)
i += palette_predictor run—1
PalettePredictorEntryReuseFlag[i] =1
NumPredictedPaletteEntries++
} else
palettePredictionFinished = 1
3
if(NumPredictedPaletteEntries < palette_max_size)
num_signalled_palette_entries ue(v)
numComps = (ChromaArrayType==0)?71:3
for(cldx = 0; cldx < numComps; cldx++)
for(i=0; 1 <num_signalled palette_entries; i++)
palette_entry ac(v)
if(CurrentPaletteSize 1= 0)
palette_escape_val_present_flag ac(v)
if(palette_escape_val present flag) {
if(cu_qp_delta_cnabled flag && !TIsCuQpDeltaCoded) {
cu_qp_delta_palette_abs ae(v)
if(cu_qp_delta_palette_abs)
cu_qp_delta_palette_sign_flag ae(v)

1414-118WO0O01

http://phenix.int-evry.fr/jct/doc_end_user/documents/20_Geneva/wgll/JCTVC-T1005-v2.zip

WO 2016/201032 PCT/US2016/036572

if(cu_chroma_qp offset enabled flag && !'TsCuChromaQpOffsetCoded) {

cu_chroma_qp_palette_offset_flag

ae(v)

if(cu_chroma_qp_offset flag && chroma_qp offset list len minusl >
0)

cu_chroma_qp_palette_offset_idx

ae(v)

¥

if(MaxPaletteIndex > 0) {

palette_transpose_flag

ae(v)

num_palette_indices_idc

ae(v)

for(i=0; i < NumPaletteIndices; i++) {

palette_index_idc

ae(v)

PaletteIndexIdc| i | = palette_index_idc

)

last_palette_run_type flag

ae(v)

)

CurrNumlIndices = 0

PaletteScanPos = 0

while(PaletteScanPos < nCbS * nCbS) {

xC = x0 + travScan]| PaletteScanPos][0 |

yC =y0 + travScan| PaletteScanPos |[1]

if(PaletteScanPos > 0) {

xcPrev = x0 + travScan| PaletteScanPos — 1 [[0]

ycPrev = y0 + travScan| PaletteScanPos — 1][1]

3

PaletteRun = nCbS * nCbS — PaletteScanPos — 1

if(MaxPaletteIndex > 0 && CurrNumlIndices < NumPaletteIndices) {

if(PaletteScanPos >= nCbS && palette_run_type_flag[xcPrev][ycPrev |
I= COPY_ABOVE MODE && PaletteScanPos <nCbS * nCbS — 1) {

palette_run_type flag| xC][yC]

ae(v)

)

readIndex =0

if(palette_run type_flag] xC][yC] == COPY_INDEX MODE &&
AdjustedMaxPaletteIndex > 0)

readIndex =1

maxPalettcRun = nCbS * nCbS — PaletteScanPos — 1

if(AdjustedMaxPaletteIndex > 0 &&
((CurrNumlIndices + readIndex) < NumPaletteIndices | |
palette_run_type flag| xC][yC] !=last_palette_run_type_flag))

if(maxPaletteRun >0) {

palette_run_msb_id_plusl

ae(v)

if(palette ran msb_id plusl > 1)

palette_run_refinement_bits

ae(v)

3

CurrNumlIndices + = readIndex

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572

10

3

runPos =0

while (runPos <= paletteRun) {

xR = x0 + travScan| PaletteScanPos][0 |

yR =y0 + travScan| PaletteScanPos |[1]

if(palette_run_type_flag| xC |[yC] == COPY_INDEX MODE) {

PaletteSampleMode[xR][yR | = COPY INDEX MODE

PaletteIndexMap[xR][yR] = CurrPaletteIndex

}else {

PaletteSampleMode[xR |[yR] = COPY_ABOVE MODE

PaletteIndexMap| xR][yR | = PaletteIndexMap[xR |[yR — 1]

}

runPos++

PaletteScanPos++

}

if(palette_escape_val present flag) {

sPos=10

while(sPos <nCbS * nCbS) {

xC =x0 + travScan| sPos][0]

yC =y0 + travScan[sPos][1 |

if(PaletteIndexMap[xC][yC | = = MaxPaletteIndex) {

for(cldx = 0; cldx < numComps; cldx++)

if(cldx==0 ||
(xR%2==0 && yR%2==0 && ChromaArrayType==1)|]|
(xR %2==0 && ChromaArrayType==2) ||
ChromaArrayType ==3) {

palette_escape_val

ae(v)

PaletteEscapeVal| cldx][xC][yC | = palette_escape_val

Table 1

[0032] In addition to providing an order in which the syntax elements are included in a

bitstream, Table 1 also provides a descriptor for each of the syntax elements that

indicates an encoding type for each syntax element. As one example, a video encoder

may encode syntax elements with the ue(v) descriptor using unsigned integer O-th order

Exp-Golomb-codes with the left bit first. As another example, a video encoder may

encode syntax elements with the ae(v) descriptor using context-adaptive arithmetic

entropy-codes (CABAC). When bins of a syntax element are encoded use CABAC, a

video encoder may encode one or more of the bins using a context and/or may encode

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572

11

one or more of the bins without a context. Encoding a bin using CABAC without a
context may be referred to as bypass mode. HEVC SCC Draft 3 further provides a table
(Table 9-47 of the HEVC SCC Draft 3), partially reproduced below as Table 2, that

indicates which bins of the syntax elements listed in Table 1 are coded with contexts

(i.e., as indicated by context “0” and context “1”) and which bins are coded in bypass

mode.
binldx
Syntax element

0 1 2 3 4 >= 5
palette_predictor run bypass bypass bypass bypass bypass bypass
num_signalled palette entries bypass bypass bypass bypass bypass bypass
palette_entry bypass bypass bypass bypass bypass bypass
palette _escape val present flag bypass na na na na na
cu_qp delta palette _abs 0 1 1 1 1 bypass
cu_qp delta palette _sign flag bypass na na na na na
cu chroma qp palette offset flag 0 na na na na na
cu_chroma qp palette offset idx 0 0 0 0 0 na
palette_transposc flag 0 na na na na na
num_palette indices idc bypass bypass bypass bypass bypass bypass
last palette run type flag 0 na na na na na
palette run type flag 0 na Na na na na
palette_index idc bypass bypass bypass bypass bypass bypass
palette_run _msb id plusl (clause 9.3.4.2.8)
palette_run_refinement bits bypass bypass bypass bypass bypass bypass
palette_escape val bypass bypass bypass bypass bypass bypass

Table 2

[0033] A comparison of Tablel and Table 2 shows that HEVC SCC Draft 3 prescribes
that all the syntax elements before cu_qp_delta_palette abs (i.e.,
num_signalled palette entries, palette entry, and palette _escape val present flag)
are bypass-coded. Similarly, syntax elements after palette transpose flag and before
last_palette_run_type flag (i.e., num_palette_indices idc and palette_index_idc)
are also bypass coded.

[0034] When encoding a bin using CABAC with a context, a video encoder may load
the context from storage into memory. In some examples, a video encoder may have
limited memory resources available and/or it may be time consuming to load a context

into memory. As such, it may be desirable for a video encoder to minimize the amount

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
12

of times contexts are loaded into memory. In some examples, grouping bypass bins
together may reduce the amount of times contexts are loaded into memory, which may
increase CABAC throughput.

[0035] In Ye et al., “CEl-related: Palette Mode Context and Codeword Simplification,”
Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and
ISO/IEC JTC 1/SC 29/WG 11, 21st Meeting: Warsaw, PL, 19-26 June 2015,
Document: JCTVC-U0090, available at http://phenix.it-

sudparis.eu/jct/doc_end user/documents/21 Warsaw/wg11/JCTVC-U0090-v1.zip
(hereinafter, “JCTVC-U00907), it was proposed that the palette transpose flag be
signalled after the last_palette_run_type flag. Specifically, JCTVC-U0090 proposes
modifying the palette coding() syntax table as shown below in Table 3 (where text in

italics is inserted and text in [/double bracket italics]] is deleted).

if(MaxPaletteIndex > 0) {
[[palette transpose_flag]] [laev)]]
num_palette_indices_idc ae(v)
for(i=0; i < NumPaletteIndices; i++) {
palette_index_idc ac(v)
PaletteIndexIdc| i | = palette_index_idc
¥
last_palette_run_type flag ae(v)
palette_transpose_flag ae(v)
¥
Table 3

[0036] However, in some examples, the arrangement of syntax elements proposed by
JCTVC-U0090 may not be optimal. For instance, when syntax elements related to delta
QP (i.e, cu_qp_delta_palette abs and cu_qp_delta_palette_sign_flag) and chroma
QP offset (i.e., cu_chroma_qp_palette offset flag and

cu_chroma_qp_palette offset_idx) are present, the arrangement of syntax elements
proposed by JCTVC-U0090 may not result in grouping of any additional bypass bins.
[0037] In accordance with one or more techniques of this disclosure, a video encoder
may encode the syntax elements used to define a current palette such that syntax
elements that are encoded using bypass mode are consecutively encoded. For instance,
as opposed to encoding one or more syntax elements related to delta quantization
parameter (QP) and/or chroma QP offsets for a current block of video data before a
syntax element that indicates whether a transpose process is applied to palette indices of

a palette for the current block of video data, a video encoder may encode the one or

1414-118WO0O01

http://phenix.it-sudparis.eu/jct/doc_end_user/documents/21_Warsaw/wgll/JCTVC-U0090-vl.zip

WO 2016/201032 PCT/US2016/036572

13

more syntax elements related to delta QP and/or chroma QP offsets for the current block

of video data after the syntax element that indicates whether a transpose process is

applied to the palette indices of the palette for the current block of video data.

[0038] One example of how the palette coding() syntax table may be modified to move

the signalling of the syntax elements related to delta QP and chroma QP offsets after the

palette transpose flag is shown below in Table 4 (where text in ifalics is inserted and

text in [/double bracket italics]] is deleted relative to a previous version of Table 4 in

HEVC SCC Draft 3).

palette_coding(x0, y0, nCbS) {

Descriptor

palettePredictionFinished = 0

NumPredictedPaletteEntrics = 0

for(i=0; i <PredictorPaletteSize && !palettePredictionFinished &&
NumPredictedPaletteEntries < palette_max_size; i++) {

palette_predictor_run

ue(v)

if(palette_predictor run != 1) {

if(palette_predictor run> 1)

i += palette_predictor run—1

PalettePredictorEntryReuseFlag[i] =1

NumPredictedPaletteEntries++

} else

palettePredictionFinished = 1

)

if(NumPredictedPaletteEntries < palette_max_size)

num_signalled_palette_entries

ue(v)

numComps = (ChromaArrayType==0)71:3

for(cldx = 0; cldx < numComps; cldx++)

for(i=0; 1 <num_signalled palette_entries; i++)

palette_entry

ae(v)

if(CurrentPaletteSize 1= 0)

palette_escape_val_present_flag

ae(v)

[[ifl palette escape val present flag) {]]

[[ifl cu_qp delta enabled flag && !IsCuQpDeltaCoded) {]]

[[cu_qp_delta_palette_abs]]

[lae(v)]]

[[if{ cu_qp delta palette abs)]]

[[cu_qp_delta_palette sign_flag]]

[lae(v)]]

[I}]

[[ifl cu_chroma qp offset enabled flag && IsCuChromaQpOffsetCoded) {]]

[[cu_chroma_gqp palette offset flag]]

[lae(v)]]

[[ifl cu_chroma qp offset flag && chroma qp offset list len minusi > 0)]]

[[cu_chroma_qp palette offset idx]]

[lae(v)]]

[I}]

[I}]

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572

14
if(MaxPaletteIndex > 0) {

[[palette transpose_flag]] [laev)]]
num_palette_indices_idc ae(v)
for(i=0; i < NumPaletteIndices; i++) {

palette_index_idc ac(v)

PaletteIndexIdc| i | = palette_index_idc
3
last_palette_run_type flag ae(v)
palette_transpose_flag ae(v)

)

iff palette escape val present flag) {

iff cu gp delta enabled flag && !IsCuQpDeltaCoded) {

cu_qp _delta_palette abs ae(v)
iff cu gp delta palette abs)
cu_qp delta palette sign flag ae(v)
/
iff cu chroma qp offset enabled flag && IsCuChromaQpOffsetCoded) {
cu_chroma_qp palette offset _flag ae(v)
iff cu chroma qp offset flag && chroma qp offset list len minusl > 0)
cu_chroma_qp palette offset idx ae(v)
/
/

CurrNumlIndices = 0

PaletteScanPos = 0

Table 4
[0039] By moving the one or more syntax elements related to delta QP and/or chroma
QP offsets for the current block of video data after the syntax element that indicates
whether a transpose process is applied to the palette indices of the palette for the current
block of video data, the video encoder may group together (i.e., consecutively encode) a
larger number of syntax elements that are coded using bypass mode. For example, by
moving the one or more syntax elements related to delta QP and/or chroma QP offsets
for the current block of video data after the syntax element that indicates whether a
transpose process is applied to the palette indices of the palette for the current block of
video data, the video encoder may group together one or more syntax elements that
indicate a number of entries in the current palette that are explicitly signalled or inferred
(e.g., num_palette_indices_idc) and one or more syntax elements that entriesindices in
an array of current palette entries (e.g., palette_index_idc) with one or more syntax
elements related to chroma QP offsets for the current block of video data, one or more

syntax elements that indicate a number of zeros that precede a non-zero entry in an array

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
15

that indicates whether entries from a predictor palette are reused in the current palette
(e.g., palette_predictor_run), one or more syntax elements that indicate a number of
entries in the current palette that are explicitly signalled (e.g.,
num_signalled_palette_entries), one or more syntax elements that indicate a value of a
component in a palette entry in the current palette (e.g., palette_entry), and one or more
syntax elements that indicate whether the current block of video data includes at least
one escape coded sample (e.g., palette_escape_val present flag). In this way, the
techniques of this disclosure may increase CABAC throughput, which may reduce the
time needed to encode video data using palette mode encoding. For instance, by
grouping together the bypass coded syntax elements, a video coder may sequentially
encode the grouped syntax elements using without starting, stopping, restarting,
reloading, and resetting a CABAC coding engine

[0040] Table 4 is only one example of how the syntax elements may be arranged. In
some examples, the syntax elements related to delta QP and chroma QP offset may be
moved further down the syntax table. For example, the syntax elements related to delta
QP and chroma QP offset could be placed just before the component values for escape
samples (i.e., palette_escape val). One example of how the syntax elements related to
delta QP and chroma QP offset could be placed just before the component values for
escape samples is shown below in Table 5 (where text in ifalics is inserted and text in

[[double bracket italics]] is deleted relative to HEVC SCC Dratft 3).

palette_coding(x0, y0, nCbS) { Descriptor

palettePredictionFinished = 0

NumPredictedPaletteEntrics = 0

for(i=0; i <PredictorPaletteSize && !palettePredictionFinished &&
NumPredictedPaletteEntries < palette_max_size; i++) {

palette_predictor_run ue(v)

if(palette_predictor run != 1) {

if(palette_predictor run> 1)

i += palette_predictor run—1

PalettePredictorEntryReuseFlag[i] =1

NumPredictedPaletteEntries++

} else

palettePredictionFinished = 1

)

if(NumPredictedPaletteEntries < palette_max_size)

num_signalled_palette_entries ue(v)

numComps = (ChromaArrayType==0)71:3

for(cldx = 0; cldx < numComps; cldx++)

for(i=0;1i<num signalled palette entries; i++)

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572

16

palette_entry

ae(v)

if(CurrentPaletteSize 1= 0)

palette_escape_val_present_flag

ae(v)

[[ifl palette escape val present flag) {]]

[[ifl cu_qp delta enabled flag && !IsCuQpDeltaCoded) {]]

[[cu_qp_delta_palette_abs]]

[[ae()]]

[[if{ cu_qp delta palette abs)]]

[[cu_qp_delta_palette sign_flag]]

[[ae()]]

[I}]

[[ifl cu_chroma qp offset enabled flag && IsCuChromaQpOffsetCoded) {]]

[[cu_chroma_gqp palette offset flag]]

[[ae()]]

[[ifl cu_chroma qp offset flag && chroma qp offset list len minusi > 0)]]

[[cu_chroma_qp palette offset idx]]

[[ae()]]

[I}]

[I}]

if(MaxPaletteIndex > 0) {

—f{patette—transpose—flaglf

num_palette_indices_idc

ae(v)

for(i=0; i < NumPaletteIndices; i++) {

palette_index_idc

ae(v)

PaletteIndexIdc| i | = palette_index_idc

)

last_palette_run_type flag

ae(v)

palette_transpose_flag

ae(v)

)

CurrNumlIndices = 0

PaletteScanPos = 0

while(PaletteScanPos < nCbS * nCbS) {

xC = x0 + travScan]| PaletteScanPos][0 |

yC =y0 + travScan| PaletteScanPos |[1]

if(PaletteScanPos > 0) {

xcPrev = x0 + travScan| PaletteScanPos — 1 [[0]

ycPrev = y0 + travScan| PaletteScanPos — 1][1]

)

PaletteRun = nCbS * nCbS — PaletteScanPos — 1

if(MaxPaletteIndex > 0 && CurrNumlIndices < NumPaletteIndices) {

if(PaletteScanPos >= nCbS && palette_run_type_flag[xcPrev][ycPrev |
I= COPY_ABOVE MODE && PaletteScanPos <nCbS * nCbS — 1) {

palette_run_type flag| xC][yC]

ae(v)

3

readIndex =0

if(palette_run type_flag] xC][yC] == COPY_INDEX MODE &&
AdjustedMaxPaletteIndex > 0)

readIndex =1

maxPalettcRun = nCbS * nCbS — PaletteScanPos — 1

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572

17

if(AdjustedMaxPaletteIndex > 0 &&
((CurrNumlIndices + readIndex) < NumPaletteIndices | |
palette_run_type flag| xC][yC] !=last_palette_run_type_flag))

if(maxPaletteRun >0) {

palette_run_msb_id_plusl

ae(v)

if(palette ran msb_id plusl > 1)

palette_run_refinement_bits

ae(v)

3

CurrNumlIndices + = readIndex

3

runPos =0

while (runPos <= paletteRun) {

xR = x0 + travScan| PaletteScanPos][0 |

yR =y0 + travScan| PaletteScanPos |[1]

if(palette_run_type_flag| xC |[yC] == COPY_INDEX MODE) {

PaletteSampleMode[xR |[yR] = COPY_INDEX MODE

PaletteIndexMap[xR][yR] = CurrPaletteIndex

}else {

PaletteSampleMode[xR |[yR] = COPY_ABOVE MODE

PaletteIndexMap| xR][yR | = PaletteIndexMap[xR |[yR — 1]

)

runPos++

PaletteScanPos++

)

if(palette_escape_val present flag) {

iff cu gp delta enabled flag && !IsCuQpDeltaCoded) {

cu_qp _delta_palette abs

ae(v)

iff cu gp delta palette abs)

cu_qp delta palette sign flag

ae(v)

/

iff cu chroma qp offset enabled flag && IsCuChromaQpOffsetCoded) {

cu_chroma_qp palette offset _flag

ae(v)

iff cu chroma qp offset flag && chroma qp offset list len minusl > 0)

cu_chroma_qp palette offset idx

ae(v)

/

sPos=10

while(sPos <nCbS * nCbS) {

xC =x0 + travScan| sPos][0]

yC =y0 + travScan[sPos][1 |

if(PaletteIndexMap[xC][yC | = = MaxPaletteIndex) {

for(cldx = 0; cldx < numComps; cldx++)

if(cldx==0 ||
(xR%2==0 && yR%2==0 && ChromaArrayType==1)|]|
(xR %2==0 && ChromaArrayType==2) ||
ChromaArrayType ==3) {

palette_escape_val

ae(v)

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
18

PaletteEscapeVal| cldx][xC][yC | = palette_escape_val

Table S
[0041] The techniques for palette-based coding of video data may be used with one or
more other coding techniques, such as techniques for inter- or intra-predictive coding.
For example, as described in greater detail below, an encoder or decoder, or combined
encoder-decoder (codec), may be configured to perform inter- and intra-predictive
coding, as well as palette-based coding.
[0042] In some examples, the palette-based coding techniques may be configured for
use with one or more video coding standards. Some example video coding standards
include, but are not limited to, ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T H.262 or
ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264
(also known as ISO/IEC MPEG-4 AVC), including its Scalable Video Coding (SVC)
and Multiview Video Coding (MVC) extensions.
[0043] Recently, the design of a new video coding standard, namely High-Efficiency
Video Coding (HEVC), has been finalized by the Joint Collaboration Team on Video
Coding (JCT-VC) of ITU-T Video Coding Experts Group (VCEG) and ISO/IEC
Motion Picture Experts Group (MPEG). A copy of the finalized HEVC standard (i.e.,
ITU-T H.265, Series H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS
Infrastructure of audiovisual services — Coding of moving video, April, 2015) is
available at https://www.itu.int/rec/T-REC-H.265-201504-1/en, (hereinafter the “HEVC
Standard”.
[0044] A Range Extension to HEVC, namely HEVC Screen Content Coding (SCC), is
also being developed by the JCT-VC. A recent draft of HEVC SCC (Joshi et al., “High
Efficiency Video Coding (HEVC) Screen Content Coding: Draft 4,” Joint Collaborative
Team on Video Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC
29/WG 11, 21st Meeting: Warsaw, PL, 19 June — 16 June 2015, is available from
http://phenix.it- sudparis.eu/jct/doc_end user/documents/21 Warsaw/wgl1/JCTVC-
U1005-v2.zip, (hereinafter “HEVC SCC Draft 47).
[0045] With respect to the HEVC framework, as an example, the palette-based coding

techniques may be configured to be used as a coding unit (CU) mode. In other

1414-118WO0O01

https://www.itu.int/rec/T-REC-H.265-201504-I/en
http://phenix.it-

WO 2016/201032 PCT/US2016/036572
19

examples, the palette-based coding techniques may be configured to be used as a
prediction unit (PU) mode in the framework of HEVC. Accordingly, all of the
following disclosed processes described in the context of a CU mode may, additionally
or alternatively, apply to PU. However, these HEVC-based examples should not be
considered a restriction or limitation of the palette-based coding techniques described
herein, as such techniques may be applied to work independently or as part of other
existing or yet to be developed systems/standards. In these cases, the unit for palette
coding can be square blocks, rectangular blocks, or even regions of non-rectangular
shape.

[0046] FIG. 1 is a block diagram illustrating an example video coding system 10 that
may utilize the techniques of this disclosure. As used herein, the term “video coder”
refers generically to both video encoders and video decoders. In this disclosure, the
terms “video coding” or “coding” may refer generically to video encoding or video
decoding. Video encoder 20 and video decoder 30 of video coding system 10 represent
examples of devices that may be configured to perform techniques for palette-based
video coding in accordance with various examples described in this disclosure. For
example, video encoder 20 and video decoder 30 may be configured to selectively code
various blocks of video data, such as CU’s or PU’s in HEVC coding, using either
palette-based coding or non-palette based coding. Non-palette based coding modes may
refer to various inter-predictive temporal coding modes or intra-predictive spatial
coding modes, such as the various coding modes specified by the HEVC Standard.
[0047] As shown in FIG. 1, video coding system 10 includes a source device 12 and a
destination device 14. Source device 12 generates encoded video data. Accordingly,
source device 12 may be referred to as a video encoding device or a video encoding
apparatus. Destination device 14 may decode the encoded video data generated by
source device 12. Accordingly, destination device 14 may be referred to as a video
decoding device or a video decoding apparatus. Source device 12 and destination
device 14 may be examples of video coding devices or video coding apparatuses.
[0048] Source device 12 and destination device 14 may comprise a wide range of
devices, including desktop computers, mobile computing devices, notebook (e.g.,
laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called
“smart” phones, televisions, cameras, display devices, digital media players, video

gaming consoles, in-car computers, or the like.

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
20

[0049] Destination device 14 may receive encoded video data from source device 12 via
a channel 16. Channel 16 may comprise one or more media or devices capable of
moving the encoded video data from source device 12 to destination device 14. In one
example, channel 16 may comprise one or more communication media that enable
source device 12 to transmit encoded video data directly to destination device 14 in real-
time. In this example, source device 12 may modulate the encoded video data
according to a communication standard, such as a wireless communication protocol, and
may transmit the modulated video data to destination device 14. The one or more
communication media may include wireless and/or wired communication media, such
as a radio frequency (RF) spectrum or one or more physical transmission lines. The one
or more communication media may form part of a packet-based network, such as a local
area network, a wide-area network, or a global network (e.g., the Internet). The one or
more communication media may include routers, switches, base stations, or other
equipment that facilitate communication from source device 12 to destination device 14.
[0050] In another example, channel 16 may include a storage medium that stores
encoded video data generated by source device 12. In this example, destination device
14 may access the storage medium via disk access or card access. The storage medium
may include a variety of locally-accessed data storage media such as Blu-ray discs,
DVDs, CD-ROMs, flash memory, or other suitable digital storage media for storing
encoded video data.

[0051] In a further example, channel 16 may include a file server or another
intermediate storage device that stores encoded video data generated by source device
12. In this example, destination device 14 may access encoded video data stored at the
file server or other intermediate storage device via streaming or download. The file
server may be a type of server capable of storing encoded video data and transmitting
the encoded video data to destination device 14. Example file servers include web
servers (e.g., for a website), file transfer protocol (FTP) servers, network attached
storage (NAS) devices, and local disk drives.

[0052] Destination device 14 may access the encoded video data through a standard
data connection, such as an Internet connection. Example types of data connections
may include wireless channels (e.g., Wi-Fi connections), wired connections (e.g., DSL,
cable modem, etc.), or combinations of both that are suitable for accessing encoded

video data stored on a file server. The transmission of encoded video data from the file

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
21

server may be a streaming transmission, a download transmission, or a combination of
both.

[0053] The techniques of this disclosure are not limited to wireless applications or
settings. The techniques may be applied to video coding in support of a variety of
multimedia applications, such as over-the-air television broadcasts, cable television
transmissions, satellite television transmissions, streaming video transmissions, €.g., via
the Internet, encoding of video data for storage on a data storage medium, decoding of
video data stored on a data storage medium, or other applications. In some examples,
video coding system 10 may be configured to support one-way or two-way video
transmission to support applications such as video streaming, video playback, video
broadcasting, and/or video telephony.

[0054] FIG. 1 is merely an example and the techniques of this disclosure may apply to
video coding settings (e.g., video encoding or video decoding) that do not necessarily
include any data communication between the encoding and decoding devices. In other
examples, data is retrieved from a local memory, streamed over a network, or the like.
A video encoding device may encode and store data to memory, and/or a video decoding
device may retrieve and decode data from memory. In many examples, the encoding
and decoding is performed by devices that do not communicate with one another, but
simply encode data to memory and/or retrieve and decode data from memory. Source
device 12 and destination device 14 may comprise any of a wide range of devices,
including desktop computers, notebook (i.e., laptop) computers, tablet computers, set-
top boxes, appliances, telephone handsets such as so-called “smart” phones, so-called
“smart” pads, televisions, cameras, display devices, digital media players, video gaming
consoles, video streaming device, or the like. In some cases, source device 12 and
destination device 14 may be equipped for wireless communication.

[0055] Destination device 14 may receive the encoded video data to be decoded via a
link 16. Link 16 may comprise any type of medium or device capable of moving the
encoded video data from source device 12 to destination device 14. In one example,
link 16 may comprise a communication medium to enable source device 12 to transmit
encoded video data directly to destination device 14 in real-time. The encoded video
data may be modulated according to a communication standard, such as a wireless
communication protocol, and transmitted to destination device 14. The communication
medium may comprise any wireless or wired communication medium, such as a radio

frequency (RF) spectrum or one or more physical transmission lines. The

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
22

communication medium may form part of a packet-based network, such as a local area
network, a wide-area network, or a global network such as the Internet. The
communication medium may include routers, switches, base stations, or any other
equipment that may be useful to facilitate communication from source device 12 to
destination device 14.

[0056] Alternatively, encoded data may be output from output interface 22 to a storage
device 19. Similarly, encoded data may be accessed from storage device 19 by input
interface. Storage device 19 may include any of a variety of distributed or locally
accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,
flash memory, volatile or non-volatile memory, or any other suitable digital storage
media for storing encoded video data. In a further example, storage device 19 may
correspond to a file server or another intermediate storage device that may hold the
encoded video generated by source device 12. Destination device 14 may access stored
video data from storage device 19 via streaming or download. The file server may be
any type of server capable of storing encoded video data and transmitting that encoded
video data to the destination device 14. Example file servers include a web server (e.g.,
for a website), an FTP server, network attached storage (NAS) devices, or a local disk
drive. Destination device 14 may access the encoded video data through any standard
data connection, including an Internet connection. This may include a wireless channel
(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded video data stored on a file
server. The transmission of encoded video data from storage device 19 may be a
streaming transmission, a download transmission, or a combination of both.

[0057] The techniques of this disclosure are not necessarily limited to wireless
applications or settings. The techniques may be applied to video coding in support of
any of a variety of multimedia applications, such as over-the-air television broadcasts,
cable television transmissions, satellite television transmissions, streaming video
transmissions, e.g., via the Internet, encoding of digital video for storage on a data
storage medium, decoding of digital video stored on a data storage medium, or other
applications. In some examples, system 10 may be configured to support one-way or
two-way video transmission to support applications such as video streaming, video
playback, video broadcasting, and/or video telephony.

[0058] In the example of FIG. 1, source device 12 includes a video source 18, video

encoder 20 and an output interface 22. In some cases, output interface 22 may include a

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
23

modulator/demodulator (modem) and/or a transmitter. In source device 12, video
source 18 may include a source such as a video capture device, e.g., a video camera, a
video archive containing previously captured video, a video feed interface to receive
video from a video content provider, and/or a computer graphics system for generating
computer graphics data as the source video, or a combination of such sources. As one
example, if video source 18 is a video camera, source device 12 and destination device
14 may form so-called camera phones or video phones. However, the techniques
described in this disclosure may be applicable to video coding in general, and may be
applied to wireless and/or wired applications.

[0059] The captured, pre-captured, or computer-generated video may be encoded by
video encoder 20. The encoded video data may be transmitted directly to destination
device 14 via output interface 22 of source device 12. The encoded video data may also
(or alternatively) be stored onto storage device 19 for later access by destination device
14 or other devices, for decoding and/or playback.

[0060] Destination device 14 includes an input interface 28, a video decoder 30, and a
display device 32. In some cases, input interface 28 may include a receiver and/or a
modem. Input interface 28 of destination device 14 receives the encoded video data
over link 16. The encoded video data communicated over link 16, or provided on
storage device 19, may include a variety of syntax elements generated by video encoder
20 for use by a video decoder, such as video decoder 30, in decoding the video data.
Such syntax elements may be included with the encoded video data transmitted on a
communication medium, stored on a storage medium, or stored a file server.

[0061] Display device 32 may be integrated with, or external to, destination device 14.
In some examples, destination device 14 may include an integrated display device and
also be configured to interface with an external display device. In other examples,
destination device 14 may be a display device. In general, display device 32 displays
the decoded video data to a user, and may comprise any of a variety of display devices
such as a liquid crystal display (LCD), a plasma display, an organic light emitting diode
(OLED) display, or another type of display device.

[0062] Video encoder 20 and video decoder 30 may operate according to a video
compression standard, such as the recently finalized HEVC standard (and various
extensions thereof presently under development). Alternatively, video encoder 20 and
video decoder 30 may operate according to other proprietary or industry standards, such

as the ITU-T H.264 standard, alternatively referred to as MPEG-4, Part 10, Advanced

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
24

Video Coding (AVC), or extensions of such standards. The techniques of this
disclosure, however, are not limited to any particular coding standard. Other examples
of video compression standards include VP8, and VP9.

[0063] Although not shown in FIG. 1, in some aspects, video encoder 20 and video
decoder 30 may each be integrated with an audio encoder and decoder, and may include
appropriate MUX-DEMUX units, or other hardware and software, to handle encoding
of both audio and video in a common data stream or separate data streams. If
applicable, in some examples, MUX-DEMUX units may conform to the ITU H.223
multiplexer protocol, or other protocols such as the user datagram protocol (UDP).
[0064] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder circuitry, such as one or more integrated circuits including
microprocessors, digital signal processors (DSPs), application specific integrated
circuits (ASICs), field programmable gate arrays (FPGAs), discrete logic, software,
hardware, firmware, or any combinations thereof. When the techniques are
implemented partially in software, a device may store instructions for the software in a
suitable, non-transitory computer-readable medium and execute the instructions in
hardware such as integrated circuitry using one or more processors to perform the
techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of which may be integrated as part
of a combined encoder/decoder (CODEC) in a respective device.

[0065] As introduced above, the JCT-VC has recently finalized development of the
HEVC standard. The HEVC standardization efforts were based on an evolving model
of a video coding device referred to as the HEVC Test Model (HM). The HM presumes
several additional capabilities of video coding devices relative to existing devices
according to, e.g., ITU-T H.264/AVC. For example, whereas H.264 provides nine intra-
prediction encoding modes, the HM may provide as many as thirty-five intra-prediction
encoding modes.

[0066] In HEVC and other video coding specifications, a video sequence typically
includes a series of pictures. Pictures may also be referred to as “frames.” A picture
may include three sample arrays, denoted Si, Scy, and S¢r. St is a two-dimensional
array (i.e., a block) of luma samples. Scy is a two-dimensional array of Cb chrominance
samples. Scyis a two-dimensional array of Cr chrominance samples. Chrominance
samples may also be referred to herein as “chroma” samples. In other instances, a

picture may be monochrome and may only include an array of luma samples.

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
25

[0067] To generate an encoded representation of a picture, video encoder 20 may
generate a set of coding tree units (CTUs). Each of the CTUs may comprise a coding
tree block of luma samples, two corresponding coding tree blocks of chroma samples,
and syntax structures used to code the samples of the coding tree blocks. In
monochrome pictures or pictures having three separate color planes, a CTU may
comprise a single coding tree block and syntax structures used to code the samples of
the coding tree block. A coding tree block may be an NxN block of samples. A CTU
may also be referred to as a “tree block” or a LCU. The CTUs of HEVC may be
broadly analogous to the macroblocks of other standards, such as H.264/AVC.
However, a CTU is not necessarily limited to a particular size and may include one or
more coding units (CUs). A slice may include an integer number of CTUs ordered
consecutively in a raster scan order.

[0068] To generate a coded CTU, video encoder 20 may recursively perform quad-tree
partitioning on the coding tree blocks of a CTU to divide the coding tree blocks into
coding blocks, hence the name “coding tree units.” A coding block may be an NxN
block of samples. A CU may comprise a coding block of luma samples and two
corresponding coding blocks of chroma samples of a picture that has a luma sample
array, a Cb sample array, and a Cr sample array, and syntax structures used to code the
samples of the coding blocks. In monochrome pictures or pictures having three separate
color planes, a CU may comprise a single coding block and syntax structures used to
code the samples of the coding block.

[0069] Video encoder 20 may partition a coding block of a CU into one or more
prediction blocks. A prediction block is a rectangular (i.e., square or non-square) block
of samples on which the same prediction is applied. A prediction unit (PU) of a CU
may comprise a prediction block of luma samples, two corresponding prediction blocks
of chroma samples, and syntax structures used to predict the prediction blocks. In
monochrome pictures or pictures having three separate color planes, a PU may comprise
a single prediction block and syntax structures used to predict the prediction block.
Video encoder 20 may generate predictive luma, Cb, and Cr blocks for luma, Cb, and Cr
prediction blocks of each PU of the CU.

[0070] Video encoder 20 may use intra prediction or inter prediction to generate the
predictive blocks for a PU. If video encoder 20 uses intra prediction to generate the
predictive blocks of a PU, video encoder 20 may generate the predictive blocks of the

PU based on decoded samples of the picture associated with the PU. If video encoder

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
26

20 uses inter prediction to generate the predictive blocks of a PU, video encoder 20 may
generate the predictive blocks of the PU based on decoded samples of one or more
pictures other than the picture associated with the PU.

[0071] After video encoder 20 generates predictive luma, Cb, and Cr blocks for one or
more PUs of a CU, video encoder 20 may generate a luma residual block for the CU.
Each sample in the CU’s luma residual block indicates a difference between a luma
sample in one of the CU’s predictive luma blocks and a corresponding sample in the
CU’s original luma coding block. In addition, video encoder 20 may generate a Cb
residual block for the CU. Each sample in the CU’s Cb residual block may indicate a
difference between a Cb sample in one of the CU’s predictive Cb blocks and a
corresponding sample in the CU’s original Cb coding block. Video encoder 20 may
also generate a Cr residual block for the CU. Each sample in the CU’s Cr residual block
may indicate a difference between a Cr sample in one of the CU’s predictive Cr blocks
and a corresponding sample in the CU’s original Cr coding block.

[0072] Furthermore, video encoder 20 may use quad-tree partitioning to decompose the
luma, Cb, and Cr residual blocks of a CU into one or more luma, Cb, and Cr transform
blocks. A transform block is a rectangular (e.g., square or non-square) block of samples
on which the same transform is applied. A transform unit (TU) of a CU may comprise a
transform block of luma samples, two corresponding transform blocks of chroma
samples, and syntax structures used to transform the transform block samples. Thus,
each TU of a CU may be associated with a luma transform block, a Cb transform block,
and a Cr transform block. The luma transform block associated with the TU may be a
sub-block of the CU’s luma residual block. The Cb transform block may be a sub-block
of the CU’s Cb residual block. The Cr transform block may be a sub-block of the CU’s
Cr residual block. In monochrome pictures or pictures having three separate color
planes, a TU may comprise a single transform block and syntax structures used to
transform the samples of the transform block.

[0073] Video encoder 20 may apply one or more transforms to a luma transform block
of a TU to generate a luma coefficient block for the TU. A coefficient block may be a
two-dimensional array of transform coefficients. A transform coefficient may be a
scalar quantity. Video encoder 20 may apply one or more transforms to a Cb transform
block of a TU to generate a Cb coefficient block for the TU. Video encoder 20 may
apply one or more transforms to a Cr transform block of a TU to generate a Cr

coefficient block for the TU.

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
27

[0074] After generating a coefficient block (e.g., a luma coefficient block, a Cb
coefticient block or a Cr coefficient block), video encoder 20 may quantize the
coefficient block. Quantization generally refers to a process in which transform
coefficients are quantized to possibly reduce the amount of data used to represent the
transform coefficients, providing further compression. After video encoder 20 quantizes
a coefficient block, video encoder 20 may entropy encode syntax elements indicating
the quantized transform coefficients. For example, video encoder 20 may perform
Context-Adaptive Binary Arithmetic Coding (CABAC) on the syntax elements
indicating the quantized transform coefficients.

[0075] Video encoder 20 may output a bitstream that includes a sequence of bits that
forms a representation of coded pictures and associated data. The bitstream may
comprise a sequence of NAL units. A NAL unit is a syntax structure containing an
indication of the type of data in the NAL unit and bytes containing that data in the form
of a RBSP interspersed as necessary with emulation prevention bits. Each of the NAL
units includes a NAL unit header and encapsulates a RBSP. The NAL unit header may
include a syntax element that indicates a NAL unit type code. The NAL unit type code
specified by the NAL unit header of a NAL unit indicates the type of the NAL unit. A
RBSP may be a syntax structure containing an integer number of bytes that is
encapsulated within a NAL unit. In some instances, an RBSP includes zero bits.
[0076] Different types of NAL units may encapsulate different types of RBSPs. For
example, a first type of NAL unit may encapsulate an RBSP for a PPS, a second type of
NAL unit may encapsulate an RBSP for a coded slice, a third type of NAL unit may
encapsulate an RBSP for SEI messages, and so on. NAL units that encapsulate RBSPs
for video coding data (as opposed to RBSPs for parameter sets and SEI messages) may
be referred to as VCL NAL units.

[0077] Video decoder 30 may receive a bitstream generated by video encoder 20. In
addition, video decoder 30 may parse the bitstream to obtain syntax elements from the
bitstream. Video decoder 30 may reconstruct the pictures of the video data based at
least in part on the syntax elements obtained from the bitstream. The process to
reconstruct the video data may be generally reciprocal to the process performed by
video encoder 20. In addition, video decoder 30 may inverse quantize coefficient
blocks associated with TUs of a current CU. Video decoder 30 may perform inverse
transforms on the coefficient blocks to reconstruct transform blocks associated with the

TUs of the current CU. Video decoder 30 may reconstruct the coding blocks of the

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
28

current CU by adding the samples of the predictive blocks for PUs of the current CU to
corresponding samples of the transform blocks of the TUs of the current CU. By
reconstructing the coding blocks for each CU of a picture, video decoder 30 may
reconstruct the picture.

[0078] In some examples, video encoder 20 and video decoder 30 may be configured to
perform palette-based coding. For example, in palette based coding, rather than
performing the intra-predictive or inter-predictive coding techniques described above,
video encoder 20 and video decoder 30 may code a so-called palette as a table of color
values for representing the video data of the particular area (e.g., a given block). Each
pixel may be associated with an entry in the palette that represents the color of the pixel,
e.g., with a luma (Y) value and chroma (Cb and Cr) values. For example, video encoder
20 and video decoder 30 may code an index that relates the pixel value to the
appropriate value in the palette.

[0079] In the example above, video encoder 20 may encode a block of video data by
determining a palette for the block, locating an entry in the palette to represent the value
of each pixel, and encoding the palette with index values for the pixels relating the pixel
value to the palette. Video decoder 30 may obtain, from an encoded bitstream, a palette
for a block, as well as index values for the pixels of the block. Video decoder 30 may
relate the index values of the pixels to entries of the palette to reconstruct the pixel
values of the block.

[0080] Aspects of this disclosure are directed to palette derivation, which may occur at
the encoder and at the decoder. As one example, video encoder 20 may derive a palette
for a current block by deriving a histogram of the pixels in the current block. In some
examples, the histogram may be expressed as H = {(v;, f;), i = {0,1,2, -+, M}} where
M+1 is the number of different pixel values in the current block, v; is pixel value, and f;
is the number of occurrence of v; (i.e., how many pixels in the current block have pixel
value v;). In such examples, the histogram generally represents a number of times that a
pixel value occurs in the current block.

[0081] Video encoder 20 may initialize one or more variables when deriving the
histogram. As one example, video encoder 20 may initialize a palette index idx to 0,
(i.e., set idx=0). As another example, video encoder 20 may initialize the palette P to be
empty (i.e, P = 0, setj=0.).

[0082] Video encoder 20 may sort the histogram, e.g., in descending order, such that

pixels having more occurrences are placed near the front of a list of values. For

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
29

instance, video encoder 20 may sort H according to the descending order of £ and the
ordered list may be expressed as H, = {(u;, f;), i ={0,1,2, -+, M}, f; = fi+1}. In this
example, the ordered list includes the most frequently occurring pixel values at the front
(top) of the list and the least frequently occurring pixel values at the back (bottom) of
the list.

[0083] Video encoder 20 may copy one or more entries from the histogram into the
palette. As one example, video encoder 20 may insert the entry in the histogram with
the greatest frequency into the palette. For instance, video encoder 20 may insert (j, u;)
into the palette P (i.e., P=P U {(idx, uj)}). In some examples, after inserting the
entry into the palette, video encoder 20 may evaluate the entry in the histogram with the
next greatest frequency for insertion into the palette. For instance, video encoder 20
may setidx =idx+ 1,j =7+ 1.

[0084] Video encoder 20 may determine whether the entry with the next greatest
frequency (i.e., #;+1) is within the neighborhood of any pixel (i.e., x) in the palette (i.e.,
Distance (uj+1, x) < Thresh). For instance, video encoder 20 may determine whether
the entry is within the neighborhood of any pixel in the palette by determining whether
a value of the entry is within a threshold distance of a value of any pixel in the palette.
In some examples, video encoder 20 may flexibly select the distance function. As one
example, video encoder 20 may select the distance function as a sum of absolute
differences (SAD) or a sum of squared errors of prediction (SSE) of the three color
components (e.g., each of luminance, blue hue chrominance, and red hue chrominance),
or one color component (e.g., one of luminance, blue hue chrominance, or red hue
chrominance). In some examples, video encoder 20 may flexibly select the threshold
value Thresh. As one example, video encoder 20 may select the threshold value to be
dependent on the quantization parameter (QP) of the current block. As another
example, video encoder 20 may select the threshold value to be dependent on the value
of idx or the value of ;.

[0085] If video encoder 20 determines that the entry with the next greatest frequency
(1.e., u;+1) 1s within the neighborhood of any pixel in the palette, video encoder 20 may
not insert the entry in the histogram. If video encoder 20 determines that the entry with
the next greatest frequency (i.e., #;+1) 1s not within the neighborhood of any pixel in the

palette, video encoder 20 may insert the entry in the histogram.

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
30

[0086] Video encoder 20 may continue to insert entries in the palette until one or more
conditions are satisfied. Some example conditions are when idx = M, when j =M, or
when the size of the palette is larger than a predefined value.

[0087] Palette-based coding may have a certain amount of signaling overhead. For
example, a number of bits may be needed to signal characteristics of a palette, such as a
size of the palette, as well as the palette itself. In addition, a number of bits may be
needed to signal index values for the pixels of the block. The techniques of this
disclosure may, in some examples, reduce the number of bits needed to signal such
information. For example, the techniques described in this disclosure may include
techniques for various combinations of one or more of signaling palette-based coding
modes, transmitting palettes, predicting palettes, deriving palettes, and transmitting
palette-based coding maps and other syntax elements.

[0088] In some examples, video encoder 20 and/or video decoder 30 may predict a
palette using another palette. For example, video encoder 20 and/or video decoder 30
may determine a first palette having first entries indicating first pixel values. Video
encoder 20 and/or video decoder 30 may then determine, based on the first entries of the
first palette, one or more second entries indicating second pixel values of a second
palette. Video encoder 20 and/or video decoder 30 may also code pixels of a block of
video data using the second palette.

[0089] When determining the entries of the second palette based on the entries in the
first palette, video encoder 20 may encode a variety of syntax elements, which may be
used by video decoder to reconstruct the second palette. For example, video encoder 20
may encode one or more syntax elements in a bitstream to indicate that an entire palette
(or palettes, in the case of each color component, e.g., Y, Cb, Cr,or Y, U, V, or R, G, B,
of the video data having a separate palette) is copied from one or more neighboring
blocks of the block currently being coded. The palette from which entries of the current
palette of the current block are predicted (e.g., copied) may be referred to as a predictive
palette. The predictive palette may contain palette entries from one or more
neighboring blocks including spatially neighboring blocks and/or neighboring blocks in
a particular scan order of the blocks. For example, the neighboring blocks may be
spatially located to the left (left neighboring block) of or above (upper neighboring
block) the block currently being coded. In another example, video encoder 20 may
determine predictive palette entries using the most frequent sample values in a causal

neighbor of the current block. In another example, the neighboring blocks may

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
31

neighbor the block current being coded according to a particular scan order used to code
the blocks. That is, the neighboring blocks may be one or more blocks coded prior to
the current block in the scan order. Video encoder 20 may encode one or more syntax
elements to indicate the location of the neighboring blocks from which the palette(s) are
copied.

[0090] In some examples, palette prediction may be performed entry-wise. For
example, video encoder 20 may encode one or more syntax elements to indicate, for
each entry of a predictive palette, whether the palette entry is included in the palette for
the current block. If video encoder 20 does not predict an entry of the palette for the
current block, video encoder 20 may encode one or more additional syntax elements to
specify the non-predicted entries, as well as the number of such entries.

[0091] The syntax elements described above may be referred to as a palette prediction
vector. For example, as noted above, video encoder 20 and video decoder 30 may
predict a palette for a current block based on one or more palettes from neighboring
blocks (referred to collectively as a reference palette). When generating the reference
palette, a first-in first-out (FIFO) may be used by adding the latest palette into the front
of the queue. If the queue exceeds a predefined threshold, the oldest elements may be
popped out. After pushing new elements into the front of the queue, a pruning process
may be applied to remove duplicated elements, counting from the beginning of the
queue. Specifically, in some examples, video encoder 20 may encode (and video
decoder 30 may decode) a 0-1 vector to indicate whether the pixel values in the
reference palette are reused for the current palette. As an example, as shown in the
example of Table 6, a reference palette may include six items (e.g., six index values and

respective pixel values).

Index | Pixel Value
0 Vo
1 \%!
2 Vs
3 V3
4 V4
5 Vs
Table 6

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
32

In an example for purposes of illustration, video encoder 20 may signal a vector (1, O, 1,
1, 1, 1) that indicates that v, va, V3, v4, and vs are reused in the current palette, while v;
is not re-used. In addition to reusing v, va, V3, v4, and vs, video encoder 20 may add
two new items to the current palette with indexes 5 and 6. The current palette for this

example is shown in Table 7, below.

Pred Flag | Index | Pixel Value
1 0 Vo
0
1 1 V2
1 2 V3
1 3 V4
1 4 Vs
5 Up
6 Uy
Table 7

[0092] To code the palette prediction 0-1 vector, for each item in the vector, video
encoder 20 may code one bit to represent its value. Additionally, the number of palette
items which cannot be predicted (e.g., the number of new palette entries (u0 and ul in
the example of Table 7 above)) may be binarized and signaled.

[0093] Other aspects of this disclosure relate to constructing and/or transmitting a map
that allows video encoder 20 and/or video decoder 30 to determine pixel values. For
example, other aspects of this disclosure relate to constructing and/or transmitting a map
of indices that relate a particular pixel to an entry of a palette.

[0094] In some examples, video encoder 20 may indicate whether pixels of a block
have a corresponding value in a palette. In an example for purposes of illustration,
assume that an (i, J) entry of a map corresponds to an (i, j) pixel position in a block of
video data. In this example, video encoder 20 may encode a flag for each pixel position
of a block. Video encoder 20 may set the flag equal to one for the (i, J) entry to indicate
that the pixel value at the (i, J) location is one of the values in the palette. When a color
is included in the palette (i.e., the flag is equal to one), video encoder 20 may also
encode data indicating a palette index for the (i, j) entry that identifies the color in the
palette. When the color of the pixel is not included in the palette (i.e., the flag is equal

to zero) video encoder 20 may also encode data indicating a sample value for the pixel,

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
33

which may be referred to as an escape pixel. Video decoder 30 may obtain the above-
described data from an encoded bitstream and use the data to determine a palette index
and/or pixel value for a particular location in a block.

[0095] In some instances, there may be a correlation between the palette index to which
a pixel at a given position is mapped and the probability of a neighboring pixel being
mapped to the same palette index. That is, when a pixel is mapped to a particular
palette index, the probability may be relatively high that one or more neighboring pixels
(in terms of spatial location) are mapped to the same palette index.

[0096] In some examples, video encoder 20 and/or video decoder 30 may determine and
code one or more indices of a block of video data relative to one or more indices of the
same block of video data. For example, video encoder 20 and/or video decoder 30 may
be configured to determine a first index value associated with a first pixel in a block of
video data, where the first index value relates a value of the first pixel to an entry of a
palette. Video encoder 20 and/or video decoder 30 may also be configured to
determine, based on the first index value, one or more second index values associated
with one or more second pixels in the block of video data, and to code the first and the
one or more second pixels of the block of video data. Thus, in this example, indices of
a map may be coded relative to one or more other indices of the map.

[0097] As discussed above, video encoder 20 and/or video decoder 30 may use several
different techniques to code index values of a map relative to other indices of the map.
For instance, video encoder 20 and/or video decoder 30 may use index mode, copy
above mode, and transition mode to code index values of a map relative to other indices
of the map.

[0098] In the “index mode” of pallet-based coding, video encoder 20 and/or video
decoder 30 may first signal a palette index. If the index is equal to the size of the
palette, this indicates that the sample is an escape sample. In this case, video encoder 20
and/or video decoder 30 may signal the sample value or quantized samples value for
each component. For example, if the palette size is 4, for non-escape samples, the
palette indices are in the range [0, 3]. In this case, an index value of 4 may signify an
escape sample. If the index indicates a non-escape sample, video encoder 20 and/or
video decoder 30 may signal a run-length, which may specify the number of subsequent
samples in scanning order that share the same index, by a non-negative value n-1
indicating the run length, which means that the following n pixels including the current

one have the same pixel index as the first signaled index.

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
34

[0099] In the “copy from above” mode of palette-based coding, video encoder 20 and/or
video decoder 30 may signal a non-negative run length value m-1 to indicate that for the
following m pixels including the current pixel, palette indexes are the same as their
neighbors directly above, respectively. Note that the copy from above” mode is
different from the “index” mode, in the sense that the palette indices could be different
within the “copy from above” run mode.

[0100] As discussed above, in some examples, it may be desirable to group bypass bins
together (i.e., to increase CABAC throughput). In accordance with one or more
techniques of this disclosure, video encoder 20 may encode, and video decoder 30 may
decode, syntax elements used to define a current palette such that syntax elements that
are coded using bypass mode are grouped together. For instance, as opposed to coding
one or more syntax elements related to delta quantization parameter (QP) and/or chroma
QP offsets for a current block of video data before a syntax element that indicates
whether a transpose process is applied to palette indices of a palette for the current block
of video data, video encoder 20 and/or video decoder 30 may code the one or more
syntax elements related to delta QP and/or chroma QP offsets for the current block of
video data after the syntax element that indicates whether a transpose process is applied
to the palette indices of the palette for the current block of video data. In this way,
video encoder 20 and/or video decoder 30 may code a larger group of syntax elements
using bypass mode, which may increase CABAC throughput.

[0101] In some examples, the one or more syntax elements related to delta QP for the
current block of video data may include a syntax elements that specifies the absolute
value of a difference between a luma QP for the current block of video data and a
predictor of the luma QP for the current block (e.g., cu_qp_delta_palette abs), and a
syntax element that specifies a sign of the difference between the luma QP for the
current block of video data and the predictor of the luma QP for the current block (e.g.,
cu_qp_delta_palette_sign_flag). In some examples, the one or more syntax elements
related to chroma QP offsets for the current block of video data may include a syntax
element that indicates whether entries in one or more offset lists are added to the luma
QP for the current block to determine chroma QPs for the current block (e.g.,
cu_chroma_qp_palette offset flag), and a syntax element that specifies an index of an
entry in each of the one or more offset lists that are added to the luma QP for the current
block to determine chroma QPs for the current block (e.g.,

cu_chroma_qp_palette offset idx). As such, video encoder 20 and/or video decoder

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
35

30 may each be configured to code a palette transpose flag syntax element at a first
position in a bitstream and code a cu_qp_delta_palette abs syntax element, a
cu_qp_delta_palette_sign_flag syntax element,a cu_chroma_qp_palette offset flag
syntax element, and a cu_chroma_qp_palette offset_idx syntax element at a second
position in the bitstream that is after the first position.

[0102] FIG. 2 is a block diagram illustrating an example video encoder 20 that may
implement the techniques of this disclosure. FIG. 2 is provided for purposes of
explanation and should not be considered limiting of the techniques as broadly
exemplified and described in this disclosure. For purposes of explanation, this
disclosure describes video encoder 20 in the context of HEVC coding. However, the
techniques of this disclosure may be applicable to other coding standards or methods.
[0103] Video encoder 20 represents an example of a device that may be configured to
perform techniques for palette-based video coding in accordance with various examples
described in this disclosure. For example, video encoder 20 may be configured to
selectively code various blocks of video data, such as CU’s or PU’s in HEVC coding,
using either palette-based coding or non-palette based coding. Non-palette based
coding modes may refer to various inter-predictive temporal coding modes or intra-
predictive spatial coding modes, such as the various coding modes specified by the
HEVC Standard. Video encoder 20, in one example, may be configured to generate a
palette having entries indicating pixel values, select pixel values in a palette to represent
pixels values of at least some positions of a block of video data, and signal information
associating at least some of the positions of the block of video data with entries in the
palette corresponding, respectively, to the selected pixel values. The signaled
information may be used by video decoder 30 to decode video data.

[0104] In the example of FIG. 2, video encoder 20 includes a prediction processing unit
100, a residual generation unit 102, a transform processing unit 104, a quantization unit
106, an inverse quantization unit 108, an inverse transform processing unit 110, a
reconstruction unit 112, a filter unit 114, a decoded picture buffer 116, and an entropy
encoding unit 118. Prediction processing unit 100 includes an inter-prediction
processing unit 120 and an intra-prediction processing unit 126. Inter-prediction
processing unit 120 includes a motion estimation unit and a motion compensation unit
(not shown). Video encoder 20 also includes a palette-based encoding unit 122

configured to perform various aspects of the palette-based coding techniques described

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
36

in this disclosure. In other examples, video encoder 20 may include more, fewer, or
different functional components.

[0105] Video encoder 20 may receive video data. Video encoder 20 may encode each
CTU in a slice of a picture of the video data. Each of the CTUs may be associated with
equally-sized luma coding tree blocks (CTBs) and corresponding CTBs of the picture.
As part of encoding a CTU, prediction processing unit 100 may perform quad-tree
partitioning to divide the CTBs of the CTU into progressively-smaller blocks. The
smaller block may be coding blocks of CUs. For example, prediction processing unit
100 may partition a CTB associated with a CTU into four equally-sized sub-blocks,
partition one or more of the sub-blocks into four equally-sized sub-sub-blocks, and so
on.

[0106] Video encoder 20 may encode CUs of a CTU to generate encoded
representations of the CUs (i.e., coded CUs). As part of encoding a CU, prediction
processing unit 100 may partition the coding blocks associated with the CU among one
or more PUs of the CU. Thus, each PU may be associated with a luma prediction block
and corresponding chroma prediction blocks. Video encoder 20 and video decoder 30
may support PUs having various sizes. As indicated above, the size of a CU may refer
to the size of the luma coding block of the CU and the size of a PU may refer to the size
of a luma prediction block of the PU. Assuming that the size of a particular CU is
2Nx2N, video encoder 20 and video decoder 30 may support PU sizes of 2Nx2N or
NxN for intra prediction, and symmetric PU sizes of 2Nx2N, 2NxN, Nx2N, NxN, or
similar for inter prediction. Video encoder 20 and video decoder 30 may also support
asymmetric partitioning for PU sizes of 2NxnU, 2NxnD, nL.x2N, and nRx2N for inter
prediction.

[0107] Inter-prediction processing unit 120 may generate predictive data for a PU by
performing inter prediction on each PU of a CU. The predictive data for the PU may
include a predictive sample blocks of the PU and motion information for the PU. Inter-
prediction processing unit 120 may perform different operations for a PU of a CU
depending on whether the PU is in an I slice, a P slice, or a B slice. In an I slice, all PUs
are intra predicted. Hence, if the PU is in an [slice, inter-prediction processing unit 120
does not perform inter prediction on the PU. Thus, for blocks encoded in I-mode, the
predicted block is formed using spatial prediction from previously-encoded neighboring

blocks within the same frame.

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
37

[0108] If a PU is in a P slice, the motion estimation unit of inter-prediction processing
unit 120 may search the reference pictures in a list of reference pictures (e.g.,
“RefPicList0”) for a reference region for the PU. The reference region for the PU may
be a region, within a reference picture, that contains sample blocks that most closely
corresponds to the sample blocks of the PU. The motion estimation unit may generate a
reference index that indicates a position in RefPicListO of the reference picture
containing the reference region for the PU. In addition, the motion estimation unit may
generate an MV that indicates a spatial displacement between a coding block of the PU
and a reference location associated with the reference region. For instance, the MV may
be a two-dimensional vector that provides an offset from the coordinates in the current
decoded picture to coordinates in a reference picture. The motion estimation unit may
output the reference index and the MV as the motion information of the PU. The
motion compensation unit of inter-prediction processing unit 120 may generate the
predictive sample blocks of the PU based on actual or interpolated samples at the
reference location indicated by the motion vector of the PU.

[0109] If a PU is in a B slice, the motion estimation unit may perform uni-prediction or
bi-prediction for the PU. To perform uni-prediction for the PU, the motion estimation
unit may search the reference pictures of RefPicListO or a second reference picture list
(“RefPicList1”) for a reference region for the PU. The motion estimation unit may
output, as the motion information of the PU, a reference index that indicates a position
in RefPicListO or RefPicList] of the reference picture that contains the reference region,
an MV that indicates a spatial displacement between a sample block of the PU and a
reference location associated with the reference region, and one or more prediction
direction indicators that indicate whether the reference picture is in RefPicListO or
RefPicList]l. The motion compensation unit of inter-prediction processing unit 120 may
generate the predictive sample blocks of the PU based at least in part on actual or
interpolated samples at the reference region indicated by the motion vector of the PU.
[0110] To perform bi-directional inter prediction for a PU, the motion estimation unit
may search the reference pictures in RefPicListO for a reference region for the PU and
may also search the reference pictures in RefPicList] for another reference region for
the PU. The motion estimation unit may generate reference picture indexes that indicate
positions in RefPicListO and RefPicList] of the reference pictures that contain the
reference regions. In addition, the motion estimation unit may generate MV that

indicate spatial displacements between the reference location associated with the

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
38

reference regions and a sample block of the PU. The motion information of the PU may
include the reference indexes and the MV of the PU. The motion compensation unit
may generate the predictive sample blocks of the PU based at least in part on actual or
interpolated samples at the reference region indicated by the motion vector of the PU.
[0111] In accordance with various examples of this disclosure, video encoder 20 may be
configured to perform palette-based coding. With respect to the HEVC framework, as
an example, the palette-based coding techniques may be configured to be used as a
coding unit (CU) mode. In other examples, the palette-based coding techniques may be
configured to be used as a PU mode in the framework of HEVC. Accordingly, all of the
disclosed processes described herein (throughout this disclosure) in the context of a CU
mode may, additionally or alternatively, apply to PU. However, these HEVC-based
examples should not be considered a restriction or limitation of the palette-based coding
techniques described herein, as such techniques may be applied to work independently
or as part of other existing or yet to be developed systems/standards. In these cases, the
unit for palette coding can be square blocks, rectangular blocks, or even regions of non-
rectangular shape.

[0112] Palette-based encoding unit 122, for example, may perform palette-based
encoding when a palette-based encoding mode is selected, e.g., for a CU or PU. For
example, palette-based encoding unit 122 may be configured to generate a palette
having entries indicating pixel values, select pixel values in a palette to represent pixels
values of at least some positions of a block of video data, and signal information
associating at least some of the positions of the block of video data with entries in the
palette corresponding, respectively, to the selected pixel values. Although various
functions are described as being performed by palette-based encoding unit 122, some or
all of such functions may be performed by other processing units, or a combination of
different processing units.

[0113] Palette-based encoding unit 122 may generate syntax elements to define a palette
for a block of video data. Some example syntax elements which palette-based encoding
unit 122 may generate to define a current palette for a current block of video data
include, but are not limited to, a syntax element that indicates whether a transpose
process is applied to palette indices of the current palette (e.g., palette_transpose flag),
one or more syntax elements related to delta quantization parameter (QP) (e.g.,
cu_qp_delta_palette_abs, cu_qp_delta_palette sign flag,

cu_chroma_qp_palette offset flag, and/or cu_chroma qp_palette offset idx), one

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
39

or more syntax elements related to chroma QP offsets for the current block of video
data, one or more syntax elements that indicate a number of zeros that precede a non-
zero entry in an array that indicates whether entries from a predictor palette are reused
in the current palette (e.g., palette _predictor_run), one or more syntax elements that
indicate a number of entries in the current palette that are explicitly signalled (e.g.,
num_signalled_palette_entries), one or more syntax elements that indicate a value of a
component in a palette entry in the current palette (e.g., palette_entry), one or more
syntax elements that indicate whether the current block of video data includes at least
one escape coded sample (e.g., palette_escape val present flag), one or more syntax
elements that indicate a number of entries in the current palette that are explicitly
signalled or inferred (e.g., num_palette_indices_idc), and one or more syntax elements
that indicate indices in an array of current palette entries (e.g., palette_index idc).
Palette-based encoding unit 122 may output the generated syntax elements that define
the current palette for the current block to one or more other components of video
encoder 20, such as entropy encoding unit 118.

[0114] Accordingly, video encoder 20 may be configured to encode blocks of video
data using palette-based code modes as described in this disclosure. Video encoder 20
may selectively encode a block of video data using a palette coding mode, or encode a
block of video data using a different mode, e.g., such an HEVC inter-predictive or intra-
predictive coding mode. The block of video data may be, for example, a CU or PU
generated according to an HEVC coding process. A video encoder 20 may encode
some blocks with inter-predictive temporal prediction or intra-predictive spatial coding
modes and decode other blocks with the palette-based coding mode.

[0115] Intra-prediction processing unit 126 may generate predictive data for a PU by
performing intra prediction on the PU. The predictive data for the PU may include
predictive sample blocks for the PU and various syntax elements. Intra-prediction
processing unit 126 may perform intra prediction on PUs in I slices, P slices, and B
slices.

[0116] To perform intra prediction on a PU, intra-prediction processing unit 126 may
use multiple intra prediction modes to generate multiple sets of predictive data for the
PU. To use an intra-prediction mode to generate a set of predictive data for the PU,
intra-prediction processing unit 126 may extend samples from sample blocks of
neighboring PUs across the sample blocks of the PU in a direction associated with the

intra prediction mode. The neighboring PUs may be above, above and to the right,

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
40

above and to the left, or to the left of the PU, assuming a left-to-right, top-to-bottom
encoding order for PUs, CUs, and CTUs. Intra-prediction processing unit 126 may use
various numbers of intra prediction modes, e.g., 33 directional intra prediction modes.
In some examples, the number of intra prediction modes may depend on the size of the
region associated with the PU.

[0117] Prediction processing unit 100 may select the predictive data for PUs of a CU
from among the predictive data generated by inter-prediction processing unit 120 for the
PUs or the predictive data generated by intra-prediction processing unit 126 for the PUs.
In some examples, prediction processing unit 100 selects the predictive data for the PUs
of the CU based on rate/distortion metrics of the sets of predictive data. The predictive
sample blocks of the selected predictive data may be referred to herein as the selected
predictive sample blocks.

[0118] Residual generation unit 102 may generate, based on the luma, Cb and Cr
coding block of a CU and the selected predictive luma, Cb and Cr blocks of the PUs of
the CU, a luma, Cb and Cr residual blocks of the CU. For instance, residual generation
unit 102 may generate the residual blocks of the CU such that each sample in the
residual blocks has a value equal to a difference between a sample in a coding block of
the CU and a corresponding sample in a corresponding selected predictive sample block
of a PU of the CU.

[0119] Transform processing unit 104 may perform quad-tree partitioning to partition
the residual blocks associated with a CU into transform blocks associated with TUs of
the CU. Thus, a TU may be associated with a luma transform block and two chroma
transform blocks. The sizes and positions of the luma and chroma transform blocks of
TUs of a CU may or may not be based on the sizes and positions of prediction blocks of
the PUs of the CU. A quad-tree structure known as a “residual quad-tree” (RQT) may
include nodes associated with each of the regions. The TUs of a CU may correspond to
leaf nodes of the RQT.

[0120] Transform processing unit 104 may generate transform coefficient blocks for
each TU of a CU by applying one or more transforms to the transform blocks of the TU.
Transform processing unit 104 may apply various transforms to a transform block
associated with a TU. For example, transform processing unit 104 may apply a discrete
cosine transform (DCT), a directional transform, or a conceptually similar transform to

a transform block. In some examples, transform processing unit 104 does not apply

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
41

transforms to a transform block. In such examples, the transform block may be treated
as a transform coefficient block.

[0121] Quantization unit 106 may quantize the transform coefficients in a coefficient
block. The quantization process may reduce the bit depth associated with some or all of
the transform coefficients. For example, an n-bit transform coefficient may be rounded
down to an m-bit transform coefficient during quantization, where » is greater than m.
Quantization unit 106 may quantize a coefficient block associated with a TU of a CU
based on a quantization parameter (QP) value associated with the CU. Video encoder
20 may adjust the degree of quantization applied to the coefficient blocks associated
with a CU by adjusting the QP value associated with the CU. Quantization may
introduce loss of information, thus quantized transform coefficients may have lower
precision than the original ones.

[0122] Inverse quantization unit 108 and inverse transform processing unit 110 may
apply inverse quantization and inverse transforms to a coefficient block, respectively, to
reconstruct a residual block from the coefficient block. Reconstruction unit 112 may
add the reconstructed residual block to corresponding samples from one or more
predictive sample blocks generated by prediction processing unit 100 to produce a
reconstructed transform block associated with a TU. By reconstructing transform
blocks for each TU of a CU in this way, video encoder 20 may reconstruct the coding
blocks of the CU.

[0123] Filter unit 114 may perform one or more deblocking operations to reduce
blocking artifacts in the coding blocks associated with a CU. Decoded picture buffer
116 may store the reconstructed coding blocks after filter unit 114 performs the one or
more deblocking operations on the reconstructed coding blocks. Inter-prediction
processing unit 120 may use a reference picture that contains the reconstructed coding
blocks to perform inter prediction on PUs of other pictures. In addition, intra-prediction
processing unit 126 may use reconstructed coding blocks in decoded picture buffer 116
to perform intra prediction on other PUs in the same picture as the CU.

[0124] Entropy encoding unit 118 may receive data from other functional components
of video encoder 20. For example, entropy encoding unit 118 may receive coefficient
blocks from quantization unit 106 and may receive syntax elements from prediction
processing unit 100. Entropy encoding unit 118 may perform one or more entropy
encoding operations on the data to generate entropy-encoded data. For example,

entropy encoding unit 118 may perform a context-adaptive variable length coding

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
42

(CAVLC) operation, a CABAC operation, a variable-to-variable (V2V) length coding
operation, a syntax-based context-adaptive binary arithmetic coding (SBAC) operation,
a Probability Interval Partitioning Entropy (PIPE) coding operation, an Exponential-
Golomb encoding operation, or another type of entropy encoding operation on the data.
Video encoder 20 may output a bitstream that includes entropy-encoded data generated
by entropy encoding unit 118. For instance, the bitstream may include data that
represents a RQT for a CU.

[0125] As discussed above, palette-based encoding unit 122 may output the generated
syntax elements that define the current palette for the current block to entropy encoding
unit 118. Entropy encoding unit 118 may encode one or more bins of the syntax
elements received from palette-based encoding unit 122 using CABAC with contexts
and one or more bins of the syntax elements received from palette-based encoding unit
122 using CABAC without contexts (i.e., bypass mode). In some examples, entropy
encoding unit 118 may encode the bins of the syntax elements using contexts or bypass
mode as defined above in Table 2.

[0126] As discussed above, it may be desirable to group bypass coded bins together to
increase CABAC throughput. In SCC Draft 3, the bins of the palette_predictor_run,
num_signalled palette _entries, palette _entry, and palette_escape val present flag
syntax elements are bypass coded and are grouped together. However, while the bins of
the num_palette_indices_idc, and palette_index_idc syntax elements are also bypass
coded, they are not grouped with the bins of the palette predictor run,
num_signalled palette _entries, palette _entry, and palette_escape val present flag
syntax elements. Instead, in HEVC SCC Draft 3, the num_palette indices_idc, and
palette_index idc syntax elements are separated from the palette predictor run,
num_signalled palette _entries, palette _entry, and palette_escape val present flag
syntax elements by one or more syntax elements related to delta quantization parameter
(QP) and/or chroma QP offsets for a current block of video data (i.e.,
cu_qp_delta_palette_abs, cu_qp_delta_palette sign flag,
cu_chroma_qp_palette offset flag, and cu_chroma_qp_palette_offset idx) and a
syntax element that indicates whether a transpose process is applied to the palette
indices of the palette for the current block of video data (i.e., palette_transpose flag).
[0127] In accordance with one or more techniques of this disclosure, entropy encoding
unit 118 may encode the syntax elements used to define a current palette such that

syntax elements that are encoded using bypass mode are consecutively encoded. For

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
43

instance, as opposed to separating the bins of the palette predictor run,
num_signalled palette _entries, palette _entry, and palette_escape val present flag
syntax elements and the bins of the num_palette indices_idc, and palette_index_idc
syntax elements, entropy encoding unit 118 may encode one or more syntax elements
related to delta QP and/or chroma QP offsets for the current block of video data after a
syntax element that indicates whether a transpose process is applied to the palette
indices of the palette for the current block of video data such that the bins of the

palette predictor run, num_signalled palette entries, palette_entry, and
palette_escape val present flag, num_palette indices idc, and palette_index_idc
syntax elements are grouped together. In this way, the CABAC throughput of entropy
encoding unit 118 may be increased.

[0128] FIG. 3 is a block diagram illustrating an example video decoder 30 that is
configured to implement the techniques of this disclosure. FIG. 3 is provided for
purposes of explanation and is not limiting on the techniques as broadly exemplified
and described in this disclosure. For purposes of explanation, this disclosure describes
video decoder 30 in the context of HEVC coding. However, the techniques of this
disclosure may be applicable to other coding standards or methods.

[0129] Video decoder 30 represents an example of a device that may be configured to
perform techniques for palette-based video coding in accordance with various examples
described in this disclosure. For example, video decoder 30 may be configured to
selectively decode various blocks of video data, such as CU’s or PU’s in HEVC coding,
using either palette-based coding or non-palette based coding. Non-palette based
coding modes may refer to various inter-predictive temporal coding modes or intra-
predictive spatial coding modes, such as the various coding modes specified by the
HEVC Standard. Video decoder 30, in one example, may be configured to generate a
palette having entries indicating pixel values, receive information associating at least
some positions of a block of video data with entries in the palette, select pixel values in
the palette based on the information, and reconstruct pixel values of the block based on
the selected pixel values.

[0130] In the example of FIG. 3, video decoder 30 includes an entropy decoding unit
150, a prediction processing unit 152, an inverse quantization unit 154, an inverse
transform processing unit 156, a reconstruction unit 158, a filter unit 160, and a decoded
picture buffer 162. Prediction processing unit 152 includes a motion compensation unit

164 and an intra-prediction processing unit 166. Video decoder 30 also includes a

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
44

palette-based decoding unit 165 configured to perform various aspects of the palette-
based coding techniques described in this disclosure. In other examples, video decoder
30 may include more, fewer, or different functional components.

[0131] In some examples, video decoder 30 may further include video data memory
149. Video data memory 149 may store video data, such as an encoded video bitstream,
to be decoded by the components of video decoder 30. The video data stored in video
data memory 149 may be obtained, for example, from channel 16, e.g., from a local
video source, such as a camera, via wired or wireless network communication of video
data, or by accessing physical data storage media. Video data memory 149 may form a
coded picture buffer (CPB) that stores encoded video data from an encoded video
bitstream. The CPB may be a reference picture memory that stores reference video data
for use in decoding video data by video decoder 30, e.g., in intra- or inter-coding modes.
Video data memory 149 may be formed by any of a variety of memory devices, such as
dynamic random access memory (DRAM), including synchronous DRAM (SDRAM),
magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of memory
devices. Video data memory 149 and decoded picture buffer 162 may be provided by
the same memory device or separate memory devices. In various examples, video data
memory 149 may be on-chip with other components of video decoder 30, or off-chip
relative to those components.

[0132] A coded picture buffer (CPB) may receive and store encoded video data (e.g.,
NAL units) of a bitstream. Entropy decoding unit 150 may receive encoded video data
(e.g., NAL units) from the CPB and parse the NAL units to decode syntax elements.
Entropy decoding unit 150 may entropy decode entropy-encoded syntax elements in the
NAL units. Prediction processing unit 152, inverse quantization unit 154, inverse
transform processing unit 156, reconstruction unit 158, and filter unit 160 may generate
decoded video data based on the syntax elements extracted from the bitstream.

[0133] The NAL units of the bitstream may include coded slice NAL units. As part of
decoding the bitstream, entropy decoding unit 150 may extract and entropy decode
syntax elements from the coded slice NAL units. Each of the coded slices may include
a slice header and slice data. The slice header may contain syntax elements pertaining
to a slice. The syntax elements in the slice header may include a syntax element that
identifies a PPS associated with a picture that contains the slice.

[0134] In addition to decoding syntax elements from the bitstream, video decoder 30

may perform a reconstruction operation on a non-partitioned CU. To perform the

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
45

reconstruction operation on a non-partitioned CU, video decoder 30 may perform a
reconstruction operation on each TU of the CU. By performing the reconstruction
operation for each TU of the CU, video decoder 30 may reconstruct residual blocks of
the CU.

[0135] As part of performing a reconstruction operation on a TU of a CU, inverse
quantization unit 154 may inverse quantize, i.e., de-quantize, coefficient blocks
associated with the TU. Inverse quantization unit 154 may use a QP value associated
with the CU of the TU to determine a degree of quantization and, likewise, a degree of
inverse quantization for inverse quantization unit 154 to apply. That is, the compression
ratio, i.e., the ratio of the number of bits used to represent an original sequence and the
compressed sequence, may be controlled by adjusting the value of the QP used when
quantizing transform coefficients. The compression ratio may also depend on the
method of entropy coding employed.

[0136] After inverse quantization unit 154 inverse quantizes a coefficient block, inverse
transform processing unit 156 may apply one or more inverse transforms to the
coefficient block in order to generate a residual block associated with the TU. For
example, inverse transform processing unit 156 may apply an inverse DCT, an inverse
integer transform, an inverse Karhunen-Loeve transform (KLT), an inverse rotational
transform, an inverse directional transform, or another inverse transform to the
coefficient block.

[0137] If a PU is encoded using intra prediction, intra-prediction processing unit 166
may perform intra prediction to generate predictive blocks for the PU. Intra-prediction
processing unit 166 may use an intra prediction mode to generate the predictive luma,
Cb and Cr blocks for the PU based on the prediction blocks of spatially-neighboring
PUs. Intra-prediction processing unit 166 may determine the intra prediction mode for
the PU based on one or more syntax elements decoded from the bitstream.

[0138] Prediction processing unit 152 may construct a first reference picture list
(RefPicList0) and a second reference picture list (RefPicList1) based on syntax elements
extracted from the bitstream. Furthermore, if a PU is encoded using inter prediction,
entropy decoding unit 150 may extract motion information for the PU. Motion
compensation unit 164 may determine, based on the motion information of the PU, one
or more reference regions for the PU. Motion compensation unit 164 may generate,
based on samples blocks at the one or more reference blocks for the PU, predictive

luma, Cb and Cr blocks for the PU.

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
46

[0139] Reconstruction unit 158 may use the luma, Cb and Cr transform blocks
associated with TUs of a CU and the predictive luma, Cb and Cr blocks of the PUs of
the CU, i.e, either intra-prediction data or inter-prediction data, as applicable, to
reconstruct the luma, Cb and Cr coding blocks of the CU. For example, reconstruction
unit 158 may add samples of the luma, Cb and Cr transform blocks to corresponding
samples of the predictive luma, Cb and Cr blocks to reconstruct the luma, Cb and Cr
coding blocks of the CU.

[0140] Filter unit 160 may perform a deblocking operation to reduce blocking artifacts
associated with the luma, Cb and Cr coding blocks of the CU. Video decoder 30 may
store the luma, Cb and Cr coding blocks of the CU in decoded picture buffer 162.
Decoded picture buffer 162 may provide reference pictures for subsequent motion
compensation, intra prediction, and presentation on a display device, such as display
device 32 of FIG. 1. For instance, video decoder 30 may perform, based on the luma,
Cb and Cr blocks in decoded picture buffer 162, intra prediction or inter prediction
operations on PUs of other CUs. In this way, video decoder 30 may extract, from the
bitstream, transform coefficient levels of the significant luma coefficient block, inverse
quantize the transform coefficient levels, apply a transform to the transform coefficient
levels to generate a transform block, generate, based at least in part on the transform
block, a coding block, and output the coding block for display.

[0141] In accordance with various examples of this disclosure, video decoder 30 may be
configured to perform palette-based coding. Palette-based decoding unit 165, for
example, may perform palette-based decoding when a palette-based decoding mode is
selected, e.g., for a CU or PU. For example, palette-based decoding unit 165 may be
configure to generate a palette having entries indicating pixel values, receive
information associating at least some positions of a block of video data with entries in
the palette, select pixel values in the palette based on the information, and reconstruct
pixel values of the block based on the selected pixel values. Although various functions
are described as being performed by palette-based decoding unit 165, some or all of
such functions may be performed by other processing units, or a combination of
different processing units.

[0142] Palette-based decoding unit 165 may receive palette coding mode information,
and perform the above operations when the palette coding mode information indicates
that the palette coding mode applies to the block. When the palette coding mode

information indicates that the palette coding mode does not apply to the block, or when

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
47

other mode information indicates the use of a different mode, prediction processing unit
152 decodes the block of video data using a non-palette based coding mode, e.g., such
an HEVC inter-predictive mode using motion compensation unit 164 or intra-predictive
coding mode using intra-prediction processing unit 166, when the palette coding mode
information indicates that the palette coding mode does not apply to the block. The
block of video data may be, for example, a CU or PU generated according to an HEVC
coding process. Video decoder 30 may decode some blocks with inter-predictive
temporal prediction or intra-predictive spatial coding modes and decode other blocks
with the palette-based coding mode. The palette-based coding mode may comprise one
of a plurality of different palette-based coding modes, or there may be a single palette-
based coding mode.

[0143] The palette coding mode information received by palette-based decoding unit
165 may comprise a palette mode syntax element, such as a flag. A first value of the
palette mode syntax element indicates that the palette coding mode applies to the block
and a second value of the palette mode syntax element indicates that the palette coding
mode does not apply to the block of video data. Palette-based decoding unit 165 may
receive the palette coding mode information at one or more of a predictive unit level, a
coding unit level, a slice level, or a picture level, or may receive the palette coding mode
information in at least one of picture parameter set (PPS), sequence parameter set (SPS)
or video parameter set (VPS).

[0144] In some examples, palette-based decoding unit 165 may infer the palette coding
mode information based on one or more of a size of the coding block, a frame type, a
color space, a color component, a frame size, a frame rate, a layer id in scalable video
coding or a view id in multi-view coding associated with the block of video data.

[0145] Palette-based decoding unit 165 also may be configured to receive information
defining at least some of the entries in the palette with video data, and generate the
palette based at least in part on the received information. The size of the palette may be
fixed or variable. In some cases, the size of the palette is variable and is adjustable
based on information signaled with the video data. The signaled information may
specify whether an entry in the palette is a last entry in the palette. Also, in some cases,
the palette may have a maximum size.

[0146] The palette may be a single palette including entries indicating pixel values for a
luma component and chroma components of the block. In this case, each entry in the

palette is a triple entry indicating pixel values for the luma component and two chroma

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
48

components. Alternatively, the palette comprises a luma palette including entries
indicating pixel values of a luma component of the block, and chroma palettes including
entries indicating pixel values for respective chroma components of the block.

[0147] In some examples, palette-based decoding unit 165 may generate the palette by
predicting the entries in the palette based on previously processed data. The previously
processed data may include palettes, or information from palettes, for previously
decoded neighboring blocks. Palette-based decoding unit 165 may receive a prediction
syntax element indicating whether the entries in the palette are to be predicted. The
prediction syntax element may include a plurality of prediction syntax elements
indicating, respectively, whether entries in palettes for luma and chroma components are
to be predicted.

[0148] Palette-based decoding unit 165 may, in some examples, predict at least some of
the entries in the palette based on entries in a palette for a left neighbor block or a top
neighbor block in a slice or picture. In this case, the entries in the palette that are
predicted based on entries in either a palette for the left neighbor block or the top
neighbor block may be predicted by palette-based decoding unit 165 based on a syntax
element that indicates selection of the left neighbor block or the top neighbor block for
prediction. The syntax element may be a flag having a value that indicates selection of
the left neighbor block or the top neighbor block for prediction.

[0149] In some examples, palette-based decoding unit 165 may receive one or more
prediction syntax elements that indicate whether at least some selected entries in the
palette, on an entry-by-entry basis, are to be predicted, and generate the entries
accordingly. Palette-based decoding unit 165 may predict some of the entries and
receive information directly specifying other entries in the palette.

[0150] Information, received by palette-based decoding unit 165, associating at least
some positions of a block of video data with entries in the palette, may comprise map
information including palette index values for at least some of the positions in the block,
wherein each of the palette index values corresponds to one of the entries in the palette.
The map information may include one or more run syntax elements that each indicate a
number of consecutive positions in the block having the same palette index value.
[0151] In some examples, palette-based decoding unit 165 may receive information
indicating line copying whereby palette entries for a line of positions in the block are
copied from palette entries for another line of positions in the block. Palette-based

decoding unit 165 may use this information to perform line copying to determine entries

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
49

in the palette for various positions of a block. The line of positions may comprise a
row, a portion of a row, a column or a portion of a column of positions of the block.
[0152] Palette-based decoding unit 165 may generate the palette in part by receiving
pixel values for one or more positions of the block, and adding the pixel values to
entries in the palette to dynamically generate at least a portion the palette on-the-fly.
Adding the pixel values may comprise adding the pixel values to an initial palette
comprising an initial set of entries, or to an empty palette that does not include an initial
set of entries. In some examples, adding comprises adding the pixel values to add new
entries to an initial palette comprising an initial set of entries or fill existing entries in
the initial palette, or replacing or changing pixel values of entries in the initial palette.
[0153] In some examples, the palette may be a quantized palette in which a pixel value
selected from the palette for one of the positions in the block is different from an actual
pixel value of the position in the block, such that the decoding process is lossy. For
example, the same pixel value may be selected from the palette for two different
positions having different actual pixel values.

[0154] As discussed above, palette-based decoding unit 165 may receive information
that defines a palette for a current block of video data. For instance, palette-based
decoding unit 165 may receive a plurality of syntax elements from entropy decoding
unit 150. In some examples, entropy decoding unit 150 may decode the plurality of
syntax elements from a coded video bitstream according to a syntax table. As one
example, entropy decoding unit 150 may decode the plurality of syntax elements from a
coded video bitstream in accordance with the palette syntax table of HEVC SCC Draft
3, which is reproduced above in Table 1. However, as discussed above, the
arrangement of syntax elements in HEVC SCC Draft 3 may not be optimal. In
particular, the arrangement of syntax elements in HEVC SCC Draft 3 does not
maximize the number of bypass mode coded syntax elements that are grouped together,
which may decrease CABAC throughput.

[0155] In accordance with one or more techniques of this disclosure, entropy decoding
unit 150 may decode the syntax elements used to define a current palette such that
additional bypass mode coded syntax elements are grouped together. For instance, as
opposed to separating the bins of the palette_predictor_run,
num_signalled palette _entries, palette _entry, and palette_escape val present flag
syntax elements and the bins of the num_palette indices_idc, and palette_index_idc

syntax elements, entropy decoding unit 150 may decode one or more syntax elements

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
50

related to delta QP and/or chroma QP offsets for the current block of video data after a
syntax element that indicates whether a transpose process is applied to the palette
indices of the palette for the current block of video data such that the bins of the

palette predictor run, num_signalled palette entries, palette_entry, and
palette_escape val present flag, num_palette indices idc, and palette_index_idc
syntax elements are grouped together. As one example, entropy decoding unit 150 may
decode the syntax elements used to define the current palette in the order shown above
in Table 4. As another example, entropy decoding unit 150 may decode the syntax
elements used to define the current palette in the order shown above in Table 5. In this
way, the CABAC throughput of entropy decoding unit 150 may be increased.

[0156] FIG. 4 is a conceptual diagram illustrating an example of determining a palette
for coding video data, consistent with techniques of this disclosure. The example of
FIG. 4 includes a picture 178 having a first coding unit (CU) 180 that is associated with
first palettes 184 and a second CU 188 that is associated with second palettes 192. As
described in greater detail below and in accordance with the techniques of this
disclosure, second palettes 192 are based on first palettes 184. Picture 178 also includes
block 196 coded with an intra-prediction coding mode and block 200 that is coded with
an inter-prediction coding mode.

[0157] The techniques of FIG. 4 are described in the context of video encoder 20 (FIG.
1 and FIG. 2) and video decoder 30 (FIG. 1 and FIG. 3) and with respect to the HEVC
Standard for purposes of explanation. However, it should be understood that the
techniques of this disclosure are not limited in this way, and may be applied by other
video coding processors and/or devices in other video coding processes and/or
standards.

[0158] In general, a palette refers to a number of pixel values that are dominant and/or
representative for a CU currently being coded, such as CU 188 in the example of FIG. 4.
First palettes 184 and second palettes 192 are shown as including multiple palettes. In
some examples, a video coder (such as video encoder 20 or video decoder 30) may code
palettes separately for each color component of a CU. For example, video encoder 20
may encode a palette for a luma (Y) component of a CU, another palette for a chroma
(U) component of the CU, and yet another palette for the chroma (V) component of the
CU. In this example, entries of the Y palette may represent Y values of pixels of the
CU, entries of the U palette may represent U values of pixels of the CU, and entries of

the V palette may represent V values of pixels of the CU. In another example, video

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
51

encoder 20 may encode a palette for a luma (Y) component of a CU, and another palette
for two components (U, V) of the CU. In this example, entries of the Y palette may
represent Y values of pixels of the CU, and entries of the U-V palette may represent U-
V value pairs of pixels of the CU.

[0159] In other examples, video encoder 20 may encode a single palette for all color
components of a CU. In this example, video encoder 20 may encode a palette having an
i-th entry that is a triple value, including Yi, Ui, and Vi. In this case, the palette
includes values for each of the components of the pixels. Accordingly, the
representation of palettes 184 and 192 as a set of palettes having multiple individual
palettes is merely one example and not intended to be limiting.

[0160] In the example of FIG. 4, first palettes 184 includes three entries 202-206
having entry index value 1, entry index value 2, and entry index value 3, respectively.
Entries 202206 relate the index values to pixel values including pixel value A, pixel
value B, and pixel value C, respectively. As described herein, rather than coding the
actual pixel values of first CU 180, a video coder (such as video encoder 20 or video
decoder 30) may use palette-based coding to code the pixels of the block using the
indices 1-3. That is, for each pixel position of first CU 180, video encoder 20 may
encode an index value for the pixel, where the index value is associated with a pixel
value in one or more of first palettes 184. Video decoder 30 may obtain the index
values from a bitstream and reconstruct the pixel values using the index values and one
or more of first palettes 184. Thus, first palettes 184 are transmitted by video encoder
20 in an encoded video data bitstream for use by video decoder 30 in palette-based
decoding. In general, one or more palettes may be transmitted for each CU or may be
shared among different CUs.

[0161] Video encoder 20 and video decoder 30 may determine second palettes 192
based on first palettes 184. For example, video encoder 20 may encode a

pred_palette flag for each CU (including, as an example, second CU 188) to indicate
whether the palette for the CU is predicted from one or more palettes associated with
one or more other CUs, such as neighboring CUs (spatially or based on scan order) or
the most frequent samples of a causal neighbor. For example, when the value of such a
flag is equal to one, video decoder 30 may determine that second palettes 192 for
second CU 188 are predicted from one or more already decoded palettes and therefore
no new palettes for second CU 188 are included in a bitstream containing the

pred palette flag. When such a flag is equal to zero, video decoder 30 may determine

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
52

that palette 192 for second CU 188 is included in the bitstream as a new palette. In
some examples, pred palette flag may be separately coded for each different color
component of a CU (e.g., three flags, one for Y, one for U, and one for V, for a CU in
YUYV video). In other examples, a single pred palette flag may be coded for all color
components of a CU.

[0162] In the example above, the pred palette flag is signaled per-CU to indicate
whether any of the entries of the palette for the current block are predicted. In some
examples, one or more syntax elements may be signaled on a per-entry basis. Thatis, a
flag may be signaled for each entry of a palette predictor to indicate whether that entry
is present in the current palette. As noted above, if a palette entry is not predicted, the
palette entry may be explicitly signaled.

[0163] When determining second palettes 192 relative to first palettes 184 (e.g.,

pred palette flagis equal to one), video encoder 20 and/or video decoder 30 may locate
one or more blocks from which the predictive palettes, in this example first palettes 184,
are determined. The predictive palettes may be associated with one or more
neighboring CUs of the CU currently being coded (e.g., such as neighboring CUs
(spatially or based on scan order) or the most frequent samples of a causal neighbor),
i.e., second CU 188. The palettes of the one or more neighboring CUs may be
associated with a predictor palette. In some examples, such as the example illustrated in
FIG. 4, video encoder 20 and/or video decoder 30 may locate a left neighboring CU,
first CU 180, when determining a predictive palette for second CU 188. In other
examples, video encoder 20 and/or video decoder 30 may locate one or more CUs in
other positions relative to second CU 188, such as an upper CU, CU 196.

[0164] Video encoder 20 and/or video decoder 30 may determine a CU for palette
prediction based on a hierarchy. For example, video encoder 20 and/or video decoder
30 may initially identify the left neighboring CU, first CU 180, for palette prediction. If
the left neighboring CU is not available for prediction (e.g., the left neighboring CU is
coded with a mode other than a palette-based coding mode, such as an intra-prediction
more or intra-prediction mode, or is located at the left-most edge of a picture or slice)
video encoder 20 and/or video decoder 30 may identify the upper neighboring CU, CU
196. Video encoder 20 and/or video decoder 30 may continue searching for an
available CU according to a predetermined order of locations until locating a CU having

a palette available for palette prediction. In some examples, video encoder 20 and/or

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
53

video decoder 30 may determine a predictive palette based on multiple blocks and/or
reconstructed samples of a neighboring block.

[0165] While the example of FIG. 4 illustrates first palettes 184 as predictive palettes
from a single CU, first CU 180, in other examples, video encoder 20 and/or video
decoder 30 may locate palettes for prediction from a combination of neighboring CUs.
For example, video encoder 20 and/or video decoder may apply one or more formulas,
functions, rules or the like to generate a palette based on palettes of one or a
combination of a plurality of neighboring CUs.

[0166] In still other examples, video encoder 20 and/or video decoder 30 may construct
a candidate list including a number of potential candidates for palette prediction. A
pruning process may be applied at both video encoder 20 and video decoder 30 to
remove duplicated candidates in the list. In such examples, video encoder 20 may
encode an index to the candidate list to indicate the candidate CU in the list from which
the current CU used for palette prediction is selected (e.g., copies the palette). Video
decoder 30 may construct the candidate list in the same manner, decode the index, and
use the decoded index to select the palette of the corresponding CU for use with the
current CU.

[0167] In an example for purposes of illustration, video encoder 20 and video decoder
30 may construct a candidate list that includes one CU that is positioned above the CU
currently being coded and one CU that is positioned to the left of the CU currently being
coded. In this example, video encoder 20 may encode one or more syntax elements to
indicate the candidate selection. For example, video encoder 20 may encode a flag
having a value of zero to indicate that the palette for the current CU is copied from the
CU positioned to the left of the current CU. Video encoder 20 may encode the flag
having a value of one to indicate that the palette for the current CU is copied from the
CU positioned above the current CU. Video decoder 30 decodes the flag and selects the
appropriate CU for palette prediction.

[0168] In still other examples, video encoder 20 and/or video decoder 30 determine the
palette for the CU currently being coded based on the frequency with which sample
values included in one or more other palettes occur in one or more neighboring CUs.
For example, video encoder 20 and/or video decoder 30 may track the colors associated
with the most frequently used index values during coding of a predetermined number of
CUs. Video encoder 20 and/or video decoder 30 may include the most frequently used

colors in the palette for the CU currently being coded.

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
54

[0169] In some examples, video encoder 20 and/or video decoder 30 may perform
entry-wise based palette prediction. For example, video encoder 20 may encode one or
more syntax elements, such as one or more flags, for each entry of a predictive palette
indicating whether the respective predictive palette entries are reused in the current
palette (e.g., whether pixel values in a palette of another CU are reused by the current
palette). In this example, video encoder 20 may encode a flag having a value equal to
one for a given entry when the entry is a predicted value from a predictive palette (e.g.,
a corresponding entry of a palette associated with a neighboring CU). Video encoder 20
may encode a flag having a value equal to zero for a particular entry to indicate that the
particular entry is not predicted from a palette of another CU. In this example, video
encoder 20 may also encode additional data indicating the value of the non-predicted
palette entry.

[0170] In the example of FIG. 4, second palettes 192 includes four entries 208-214
having entry index value 1, entry index value 2, entry index value 3, and entry index 4,
respectively. Entries 208-214 relate the index values to pixel values including pixel
value A, pixel value B, pixel value C, and pixel value D, respectively. Video encoder
20 and/or video decoder 30 may use any of the above-described techniques to locate
first CU 180 for purposes of palette prediction and copy entries 1-3 of first palettes 184
to entries 1-3 of second palettes 192 for coding second CU 188. In this way, video
encoder 20 and/or video decoder 30 may determine second palettes 192 based on first
palettes 184. In addition, video encoder 20 and/or video decoder 30 may code data for
entry 4 to be included with second palettes 192. Such information may include the
number of palette entries not predicted from a predictor palette and the pixel values
corresponding to those palette entries.

[0171] In some examples, according to aspects of this disclosure, one or more syntax
elements may indicate whether palettes, such as second palettes 192, are predicted
entirely from a predictive palette (shown in FIG. 4 as first palettes 184, but which may
be composed of entries from one or more blocks) or whether particular entries of second
palettes 192 are predicted. For example, an initial syntax element may indicate whether
all of the entries are predicted. If the initial syntax element indicates that not all of the
entries are predicted (e.g., a flag having a value of 0), one or more additional syntax
elements may indicate which entries of second palettes 192 are predicted from the

predictive palette.

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
55

[0172] According to some aspects of this disclosure, certain information associated with
palette prediction may be inferred from one or more characteristics of the data being
coded. That is, rather than video encoder 20 encoding syntax elements (and video
decoder 30 decoding such syntax elements), video encoder 20 and video decoder 30
may perform palette prediction based on one or more characteristics of the data being
coded.

[0173] FIG. 5 is a conceptual diagram illustrating an example of determining indices to
a palette for a block of pixels, consistent with techniques of this disclosure. For
example, FIG. 5 includes a map 240 of index values (values 1, 2, and 3) that relate
respective positions of pixels associated with the index values to an entry of palettes
244. Palettes 244 may be determined in a similar manner as first palettes 184 and
second palettes 192 described above with respect to FIG. 4.

[0174] Again, the techniques of FIG. 5 are described in the context of video encoder 20
(FIG. 1 and FIG. 2) and video decoder 30 (FIG. 1 and FIG. 3) and with respect to the
HEVC video coding standard for purposes of explanation. However, it should be
understood that the techniques of this disclosure are not limited in this way, and may be
applied by other video coding processors and/or devices in other video coding processes
and/or standards.

[0175] While map 240 is illustrated in the example of FIG. 5 as including an index
value for each pixel position, it should be understood that in other examples, not all
pixel positions may be associated with an index value relating the pixel value to an entry
of palettes 244. That is, as noted above, in some examples, video encoder 20 may
encode (and video decoder 30 may obtain, from an encoded bitstream) an indication of
an actual pixel value (or its quantized version) for a position in map 240 if the pixel
value is not included in palettes 244.

[0176] In some examples, video encoder 20 and video decoder 30 may be configured to
code an additional map indicating which pixel positions are associated with index
values. For example, assume that the (i, j) entry in the map corresponds to the (i, j)
position of a CU. Video encoder 20 may encode one or more syntax elements for each
entry of the map (i.e., each pixel position) indicating whether the entry has an associated
index value. For example, video encoder 20 may encode a flag having a value of one to
indicate that the pixel value at the (i, j) location in the CU is one of the values in palettes
244, Video encoder 20 may, in such an example, also encode a palette index (shown in

the example of FIG. 5 as values 1-3) to indicate that pixel value in the palette and to

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
56

allow video decoder to reconstruct the pixel value. In instances in which palettes 244
include a single entry and associated pixel value, video encoder 20 may skip the
signaling of the index value. Video encoder 20 may encode the flag to have a value of
zero to indicate that the pixel value at the (i, j) location in the CU is not one of the
values in palettes 244. In this example, video encoder 20 may also encode an indication
of the pixel value for use by video decoder 30 in reconstructing the pixel value. In some
instances, the pixel value may be coded in a lossy manner.

[0177] The value of a pixel in one position of a CU may provide an indication of values
of one or more other pixels in other positions of the CU. For example, there may be a
relatively high probability that neighboring pixel positions of a CU will have the same
pixel value or may be mapped to the same index value (in the case of lossy coding, in
which more than one pixel value may be mapped to a single index value).

[0178] Accordingly, video encoder 20 may encode one or more syntax elements
indicating a number of consecutive pixels or index values in a given scan order that
have the same pixel value or index value. As noted above, the string of like-valued
pixel or index values may be referred to herein as a run. In an example for purposes of
illustration, if two consecutive pixels or indices in a given scan order have different
values, the run is equal to zero. If two consecutive pixels or indices in a given scan
order have the same value but the third pixel or index in the scan order has a different
value, the run is equal to one. For three consecutive indices or pixels with the same
value, the run is two, and so forth. Video decoder 30 may obtain the syntax elements
indicating a run from an encoded bitstream and use the data to determine the number of
consecutive locations that have the same pixel or index value.

[0179] The number of indices that may be included in a run may be impacted by the
scan order. For example, consider a raster scan of lines 266, 268, and 270 of map 240.
Assuming a horizontal, left to right scan direction (such as a raster scanning order), row
266 includes three index values of “1,” two index values of “2.” and three index values
of “3.” Row 268 includes five index values of “1” and three index values of “3.” In this
example, for row 266, video encoder 20 may encode syntax elements indicating that the
first value of row 266 (the leftmost value of the row) is 1 with a run of 2, followed by an
index value of 2 with a run of 1, followed by an index value of 3 with a run of 2.
Following the raster scan, video encoder 20 may then begin coding row 268 with the

leftmost value. For example, video encoder 20 may encode syntax elements indicating

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
57

that the first value of row 268 is 1 with a run of 4, followed by an index value of 3 with
arun of 2. Video encoder 20 may proceed in the same manner with line 270.

[0180] Hence, in the raster scan order, the first index of a current line may be scanned
directly after the last index of a previous line. However, in some examples, it may not
be desirable to scan the indices in a raster scan order. For instance, it may not be
desirable to scan the indices in a raster scan order where a first line of a block of video
data (e.g., row 2660) includes a first pixel adjacent to a first edge of the block of video
data (e.g., the left most pixel of row 266, which has an index value of 1) and a last pixel
adjacent to a second edge of the block of video data (e.g., the right most pixel of row
266, which has an index value of 3), a second line of the block of video data (e.g., row
268) includes a first pixel adjacent to the first edge of the block of video data (e.g., the
left most pixel of row 268, which has an index value of 1) and a last pixel adjacent to
the second edge of the block of video data (e.g., the right most pixel of row 268, which
has an index value of 3), the last pixel of the first line is adjacent to the last pixel of the
second line, and the first edge and the second edge are parallel, and the last pixel in the
first line has the same index value as the last pixel in the second line, but has a different
index value from the first pixel in the second line. This situation (i.e., where the index
value of last pixel in the first line is the same as the last pixel in the second line, but
different from the first pixel in the second line) may occur more frequently in computer
generated screen content than other types of video content.

[0181] In some examples, video encoder 20 may utilize a snake scan order when
encoding the indices of the map. For instance, video encoder 20 may scan the last pixel
of the second line directly after the last pixel of the first line. In this way, video encoder
20 may improve the efficiency of run-length coding.

[0182] For example, as opposed to using a raster scan order, video encoder 20 may use
a snake scan order to code the values of map 240. In an example for purposes of
illustration, consider rows 266, 268, and 270 of map 240. Using a snake scan order
(such as a snake scanning order), video encoder 20 may code the values of map 240
beginning with the left position of row 266, proceeding through to the right most
position of row 266, moving down to the left most position of row 268, proceeding
through to the left most position of row 268, and moving down to the left most position
of row 270. For instance, video encoder 20 may encode one or more syntax elements
indicating that the first position of row 266 is one and that the next run of two

consecutive entries in the scan direction are the same as the first position of row 266.

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
58

[0183] Video encoder 20 may encode one or more syntax elements indicating that the
next position of row 266 (i.e., the fourth position, from left to right) is two and that the
next consecutive entry in the scan direction are the same as the fourth position of row
266. Video encoder 20 may encode one or more syntax elements indicating that the
next position of row 266 (i.e., the sixth position) is three and that the next run of five
consecutive entries in the scan direction are the same as the sixth position of row 266.
Video encoder 20 may encode one or more syntax elements indicating that the next
position in the scan direction (i.e., the fourth position of row 268, from right to left) of
row 268 is one and that the next run of nine consecutive entries in the scan direction are
the same as the fourth position of row 268.

[0184] In this way, by using a snake scan order, video encoder 20 may encode longer
length runs, which may improve coding efficiency. For example, using the raster scan,
the final run of row 266 (for the index value 3) is equal to 2. Using the snake scan,
however, the final run of row 266 extends into row 268 and is equal to 5.

[0185] Video decoder 30 may receive the syntax elements described above and
reconstruct rows 266, 268, and 270. For example, video decoder 30 may obtain, from
an encoded bitstream, data indicating an index value for a position of map 240 currently
being coded. Video decoder 30 may also obtain data indicating the number of
consecutive positions in the scan order having the same index value.

[0186] FIG. 6 is a flowchart illustrating an example process for decoding a block of
video data using palette mode, in accordance with one or more techniques of this
disclosure. The techniques of FIG. 6 may be performed by a video decoder, such as
video decoder 30 illustrated in FIG. 1 and FIG. 3. For purposes of illustration, the
techniques of FIG. 6 are described within the context of video decoder 30 of FIG. 1 and
FIG. 3, although video decoders having configurations different than that of video
decoder 30 may perform the techniques of FIG. 6.

[0187] As discussed above, it may be desirable to maximize the number of bypass mode
coded bins of syntax elements that are grouped together. In accordance with one or
more techniques of this disclosure, video decoder 30 may decode, from a coded video
bitstream and using bypass mode, a group of syntax elements for a palette for a current
block of video data (602). For instance, entropy decoding unit 150 of video decoder 30
may decode, using bypass mode, bins of one or more syntax elements that indicate a
number of zeros that precede a non-zero entry in an array that indicates whether entries

from a predictor palette are reused in the current palette (e.g., one or more

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
59

palette predictor run syntax elements), a syntax element that indicates a number of
entries in the current palette that are explicitly signalled (e.g., a
num_signalled_palette_entries syntax element), one or more syntax elements that each
indicate a value of a component in an entry in the current palette (e.g., one or more
palette_entry syntax elements), a syntax element that indicates whether the current
block of video data includes at least one escape coded sample (e.g., a
palette_escape val present flag syntax element), a syntax element that indicates a
number of entries in the current palette that are explicitly signalled or inferred (e.g., a
num_palette indices_idc syntax element), and one or more syntax elements that
indicate indices in an array of current palette entries (e.g., one or more
palette_index _idc syntax elements). In some examples, to decode a group of bypass-
coded syntax elements, video decoder 30 may sequentially decode syntax elements
included in the group of syntax elements without decoding any non-bypass coded bins.
As discussed above, grouping together a large number of bypass coded bins/syntax
elements may improve a CABAC throughput of video decoder 30. In particular, the
grouping of bypass-coded syntax elements may enable video decoder 30 to avoid
starting/stopping/restarting the CABAC engine. By contrast, when the bypass-coded
syntax elements are not grouped, video decoder 30 may have to continually start the
CABAC engine to decode a non-bypass-coded bin with a first context, stop the CABAC
engine to decode a bypass-coded bin, start the CABAC engine to decode another non-
bypass-coded bin with the first context, etc. As discussed above, the repeated toggling
of the CABAC engine may decrease the CABAC engine’s throughput.

[0188] Video decoder 30 may decode, using CABAC with a context and at a postion in
the coded video bitstream that is after the group of syntax elements, a syntax element
that indicates whether a transpose process is applied to palette indices of the palette for
the current block of video data (604). For instance, entropy decoding unit 150 of video
decoder 30 may decode, using CABAC with a context, the bin of a

palette transpose flag syntax element.

[0189] Video decoder 30 may decode, using CABAC with a context and at a postion in
the coded video bitstream that is after the syntax element that indicates whether a
transpose process is applied to palette indices of the palette for the current block of
video data, one or more syntax elements related to delta quantization parameter (QP)
and/or chroma QP offsets for the current block of video data (606). For instance,

entropy decoding unit 150 of video decoder 30 may decode, using CABAC with one or

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
60

more contexts, bins of a syntax elements that specifies the absolute value of a difference
between a QP (e.g., a luma QP) for the current block of video data and a predictor of the
QP for the current block (e.g., cu_qp_delta_abs), a syntax element that specifies a sign
of the difference between the QP for the current block of video data and the predictor of
the QP for the current block (e.g., cu_qp_delta_sign flag), a syntax element that
indicates whether entries in one or more offset lists are added to a luma QP for the
current block to determine chroma QPs for the current block (e.g.,
cu_chroma_qp_offset flag), and a syntax element that specifies an index of an entry in
each of the one or more offset lists that are added to the luma QP for the current block to
determine chroma QPs for the current block (e.g., cu_chroma_qp_offset_idx).

[0190] In some examples, video decoder 30 may decode the one or more syntax
elements related to delta QP and/or chroma QP offsets for the current block of video
data based on a value of a syntax element of the group of syntax elements decoded
using bypass mode. As one example, video decoder 30 may decode the one or more
syntax elements related to delta QP and/or chroma QP offsets for the current block of
video data where the syntax element of the group of syntax elements that indicates
whether the current block of video data includes at least one escape coded sample
indicates that the current block of video data does include at least one escape sample.
As another example, video decoder 30 may not decode the one or more syntax elements
related to delta QP and/or chroma QP offsets for the current block of video data where
the syntax element of the group of syntax elements that indicates whether the current
block of video data includes at least one escape coded sample indicates that the current
block of video data does not include at least one escape sample.

[0191] Video decoder 30 may generate the palette for the current block of video data
based on the group of syntax elements and the syntax element that indicates whether a
transpose process is applied to palette indices of the palette for the current block of
video data (608) and decode the current block of video data based on the generated
palette and the one or more syntax elements related to delta QP and/or chroma QP
offsets for the current block of video data (610). For instance, palette-based decoding
unit 165 may generate the palette having entries indicating pixel values, receive
information associating at least some positions of the current block of video data with
entries in the palette, select pixel values in the palette based on the information, and

reconstruct pixel values of the block based on the selected pixel values.

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
61

[0192] FIG. 7 is a flowchart illustrating an example process for encoding a block of
video data using palette mode, in accordance with one or more techniques of this
disclosure. The techniques of FIG. 7 may be performed by a video encoder, such as
video encoder 20 illustrated in FIG. 1 and FIG. 2. For purposes of illustration, the
techniques of FIG. 7 are described within the context of video encoder 20 of FIG. 1 and
FIG. 2, although video encoders having configurations different than that of video
encoder 20 may perform the techniques of FIG. 7.

[0193] As discussed above, it may be desirable to maximize the number of bypass mode
coded bins of syntax elements that are grouped together. In accordance with one or
more techniques of this disclosure, video encoder 20 may encode, in a coded video
bitstream and using bypass mode, a group of syntax elements for a palette for a current
block of video data (702). For instance, entropy encoding unit 118 of video encoder 20
may encode, using bypass mode, bins of one or more syntax elements that indicate a
number of zeros that precede a non-zero entry in an array that indicates whether entries
from a predictor palette are reused in the current palette (e.g., one or more

palette predictor run syntax elements), a syntax element that indicates a number of
entries in the current palette that are explicitly signalled (e.g., a
num_signalled_palette_entries syntax element), one or more syntax elements that each
indicate a value of a component in an entry in the current palette (e.g., one or more
palette_entry syntax elements), a syntax element that indicates whether the current
block of video data includes at least one escape coded sample (e.g., a
palette_escape _val present_flag syntax element), a syntax element that indicates a
number of entries in the current palette that are explicitly signalled or inferred (e.g., a
num_palette indices idc or a num_palette indices minusl syntax element), and one
or more syntax elements that indicate indices in an array of current palette entries (e.g.,
one or more palette_index_idc syntax elements).

[0194] Video encoder 20 may encode, using CABAC with a context and at a postion in
the coded video bitstream that is after the group of syntax elements, a syntax element
that indicates whether a transpose process is applied to palette indices of the palette for
the current block of video data (704). For instance, entropy encoding unit 118 of video
encoder 20 may encode, using CABAC with a context, the bin of a

palette transpose flag syntax element.

[0195] Video encoder 20 may encode, using CABAC with a context and at a postion in

the coded video bitstream that is after the syntax element that indicates whether a

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
62

transpose process is applied to palette indices of the palette for the current block of
video data, one or more syntax elements related to delta quantization parameter (QP)
and/or chroma QP offsets for the current block of video data (706). For instance,
entropy encoding unit 118 of video encoder 20 may encode, using CABAC with one or
more contexts, bins of a syntax elements that specifies the absolute value of a difference
between a luma QP for the current block of video data and a predictor of the luma QP
for the current block (e.g., cu_qp_delta_abs), a syntax element that specifies a sign of
the difference between the luma QP for the current block of video data and the predictor
of the luma QP for the current block (e.g., cu_qp_delta_sign _flag), a syntax element
that indicates whether entries in one or more offset lists are added to the luma QP for the
current block to determine chroma QPs for the current block (e.g.,
cu_chroma_qp_offset flag), and a syntax element that specifies an index of an entry in
each of the one or more offset lists that are added to the luma QP for the current block to
determine chroma QPs for the current block (e.g., cu_chroma_qp_offset_idx).

[0196] In some examples, video encoder 20 may encode the one or more syntax
elements related to delta QP and/or chroma QP offsets for the current block of video
data based on a value of a syntax element of the group of syntax elements encoded
using bypass mode. As one example, video encoder 20 may encode the one or more
syntax elements related to delta QP and/or chroma QP offsets for the current block of
video data where the syntax element of the group of syntax elements that indicates
whether the current block of video data includes at least one escape coded sample
indicates that the current block of video data does include at least one escape sample.
As another example, video encoder 20 may not encode the one or more syntax elements
related to delta QP and/or chroma QP offsets for the current block of video data where
the syntax element of the group of syntax elements that indicates whether the current
block of video data includes at least one escape coded sample indicates that the current
block of video data does not include at least one escape sample.

[0197] It is to be recognized that depending on the example, certain acts or events of
any of the techniques described herein can be performed in a different sequence, may be
added, merged, or left out altogether (e.g., not all described acts or events are necessary
for the practice of the techniques). Moreover, in certain examples, acts or events may
be performed concurrently, e.g., through multi-threaded processing, interrupt
processing, or multiple processors, rather than sequentially. In addition, while certain

aspects of this disclosure are described as being performed by a single module or unit

1414-118WO0O01

WO 2016/201032 PCT/US2016/036572
63

for purposes of clarity, it should be understood that the techniques of this disclosure may
be performed by a combination of units or modules associated with a video coder.
[0198] Certain aspects of this disclosure have been described with respect to the
developing HEVC standard for purposes of illustration. However, the techniques
described in this disclosure may be useful for other video coding processes, including
other standard or proprietary video coding processes not yet developed.

[0199] The techniques described above may be performed by video encoder 20 (FIGS.
1 and 2) and/or video decoder 30 (FIGS. 1 and 3), both of which may be generally
referred to as a video coder. Likewise, video coding may refer to video encoding or
video decoding, as applicable.

[0200] While particular combinations of various aspects of the techniques are described
above, these combinations are provided merely to illustrate examples of the techniques
described in this disclosure. Accordingly, the techniques of this disclosure should not
be limited to these example combinations and may encompass any conceivable
combination of the various aspects of the techniques described in this disclosure.

[0201] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over, as one or more instructions or code,
a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, e.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

[0202] By way of example, and not limitation, such computer-readable storage media
can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures

and that can be accessed by a computer. Also, any connection is properly termed a

1414-118WO0O01

2016276687 20 Nov 2019

64

computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transient
media, but are instead directed to non-transient, tangible storage media. Disk and disc,
as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0203] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

[0204] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0205] Various examples have been described. These and other examples are within the
scope of the following claims.

[0206] It will be understood that the term “comprise” and any of its derivatives (eg

comprises, comprising) as used in this specification is to be taken to be inclusive of

2016276687 20 Nov 2019

65

features to which it refers, and is not meant to exclude the presence of any additional
features unless otherwise stated or implied.

[0207] The reference to any prior art in this specification is not, and should not be taken
as, an acknowledgement or any form of suggestion that such prior art forms part of the

common general knowledge.

2016276687 20 Nov 2019

66

Claims

1. A method of decoding video data, the method comprising:
decoding, from a coded video bitstream and using context adaptive binary
arithmetic coding (CABAC) with a context, a syntax element, palette transpose flag,
that indicates whether a transpose process is applied to palette indices of a palette for a
current block of video data;
decoding, from the coded video bitstream, using CABAC with a context and at a
position in the coded video bitstream that is directly after the palette transpose flag,
one or more syntax elements related to delta quantization parameter (QP) and/or chroma
QP offsets for the current block of video data in order to improve CABAC throughput;
decoding, from the coded video bitstream, a group of consecutive syntax
elements using Bypass mode, wherein the group comprises:
one or more syntax elements that indicate a number of zeros that precede
a non-zero entry in an array that indicates whether entries from a predictor
palette are reused in the current palette;
a syntax element that indicates a number of entries in the current palette
that are explicitly signalled;
one or more syntax elements that each indicate a value of a component in
an entry in the current palette;
a syntax element that indicates whether the current block of video data
includes at least one escape coded sample;
a syntax element that indicates a number of indices in the current palette
that are explicitly signalled or inferred; and
one or more syntax elements that indicate indices in an array of current
palette entries; and
decoding the current block of video data based on the palette for the current
block of video data, the group of syntax elements, and the one or more syntax elements

related to delta QP and/or chroma QP offsets for the current block of video data.

2. A method of encoding video data, the method comprising:
encoding, in a coded video bitstream and using context adaptive binary

arithmetic coding (CABAC) with a context, a syntax element, a palette transpose flag,

2016276687 20 Nov 2019

67

that indicates whether a transpose process is applied to palette indices of a palette for a
current block of video data;
encoding, in the coded video bitstream, using CABAC with a context and at a
position in the coded video bitstream that is directly after the palette transpose flag,
one or more syntax elements related to delta quantization parameter (QP) and/or chroma
QP offsets for the current block of video data;
encoding, in the coded video bitstream, a group of consecutive syntax elements
using Bypass mode, wherein the group comprises:
one or more syntax elements that indicate a number of zeros that precede
a non-zero entry in an array that indicates whether entries from a predictor
palette are reused in the current palette;
a syntax element that indicates a number of entries in the current palette
that are explicitly signalled;
one or more syntax elements that each indicate a value of a component in
an entry in the current palette;
a syntax element that indicates whether the current block of video data
includes at least one escape coded sample;
a syntax element that indicates a number of indices in the current palette
that are explicitly signalled or inferred; and
one or more syntax elements that indicate indices in an array of current palette
entries; and
encoding the current block of video data based on the palette for the current
block of video data, the group of syntax elements, and the one or more syntax elements

related to delta QP and/or chroma QP offsets for the current block of video data.

3. The method of claim 1 or 2, wherein the syntax element that indicates whether
the transpose process is applied to palette indices of the current block of video data

comprises a palette_transpose _flag syntax element.

4. The method of claim 1 or 2, wherein the one or more syntax elements related to
delta QP comprise one or both of a syntax element that indicates an absolute value of a
difference between a QP of the current block and a predictor of the QP of the current

block and a syntax element that indicates a sign of the difference between the QP of the

current block and the predictor of the QP of the current block.

2016276687 20 Nov 2019

68

5. The method of claim 1 or 2, wherein the one or more syntax elements related to
chroma QP offsets comprise one or both of a syntax element that indicates whether
entries in one or more offset lists are added to a luma QP of the current block to
determine chroma QPs for the current block and a syntax element that indicates an
index of an entry in each of the one or more offset lists that are added to the luma QP

for the current block to determine the chroma QPs for the current block.

6. The method of claim 1 or 2, wherein one or more of:

the one or more syntax elements that indicate a number of zeros that precede a
non-zero entry in an array that indicates whether entries from a predictor palette are
reused in the current palette comprise one or more palette predictor run syntax
clements,

the syntax element that indicates a number of entries in the current palette that
are explicitly signalled comprises a num_signalled palette entries syntax element,

the one or more syntax elements that each indicate a value of a component in an
entry in the current palette comprise one or more palette_entry syntax elements,

the syntax element that indicates whether the current block of video data
includes at least one escape coded sample comprises palette _escape val present flag,

the syntax element that indicates a number of indices in the current palette that
are explicitly signalled or inferred comprise a num_palette indices_idc syntax element,
and

the one or more syntax elements that indicate indices in an array of current

palette entries comprise one or more palette index_idc syntax elements.

7. The method of claim 1 or 2, wherein decoding the group of syntax elements
comprises decoding the group of syntax elements from the coded video bitstream at a
position in the coded video bitstream that is before the syntax element that indicates
whether the transpose process is applied to palette indices of the current block of video

data.

8. The method of claim 1 or 2, further comprising:

2016276687 20 Nov 2019

69

decoding, from the coded video bitstream after the group of syntax elements
coded using Bypass mode, a syntax element that indicates a last occurrence of a run

type flag within the current block of video data.

9. The method of claim 8, wherein decoding the syntax element that indicates the
last occurrence of a run type flag within the current block of video data comprises
decoding the syntax element that indicates the last occurrence of a run type flag within
the current block of video data using context adaptive binary arithmetic coding

(CABAC) with a context.

10. A device for encoding video data, the device comprising:
a memory configured to store video data; and
one or more processors configured to carry out the steps of any one of claims 1

or 3-9.

11. A device for decoding video data, the device comprising:
a memory configured to store video data; and

one or more processors configured to carry out the steps of any one of claims

2-9.
12. A device for decoding video data, the device comprising:
means for carrying out the steps of any one of claims 2-9.
13. A device for encoding video data, the device comprising:
means for carrying out the steps of any one of claims 1 or 3-9.
14. A computer-readable storage medium storing at least a portion of a coded video

bitstream that, when processed by a video decoding device, cause one or more
processors of the video decoding device to:
determine whether a transpose process is applied to palette indices of a palette

for a current block of video data;

2016276687 20 Nov 2019

70

generate the palette for the current block of video data based on a following
group of consecutive syntax elements in the portion of the coded video bitstream:
one or more syntax elements that indicate a number of zeros that precede
a non-zero entry in an array that indicates whether entries from a predictor
palette are reused in the current palette;
a syntax element that indicates a number of entries in the current palette
that are explicitly signalled;
one or more syntax elements that each indicate a value of a component in
an entry in the current palette;
a syntax element that indicates whether the current block of video data
includes at least one escape coded sample;
a syntax element that indicates a number of indices in the current palette
that are explicitly signalled or inferred; and
one or more syntax elements that indicate indices in an array of current palette
entries; and
decode the current block of the video data based on the palette for the current
block of video data and a delta quantization parameter (QP) and one or more chroma QP
offsets for the current block of video data,
wherein one or more syntax elements related to the delta QP and one or more
syntax elements related to the one or more chroma QP offsets for the current block of
video data are located at a position in the portion of the coded video bitstream that is
directly after a syntax element, palette transpose flag, that indicates whether the
transpose process is applied to palette indices of the palette for the current block of
video data, wherein the syntax element that indicates whether the transpose process is
applied to palette indices of the palette for the current block of video data is decoded
using context adaptive binary arithmetic coding (CABAC) with a context, wherein at
least one of the one or more syntax elements related to the delta QP and one or more
syntax elements related to the one or more chroma QP offsets is decoded using CABAC
with a context, and wherein the group of consecutive syntax elements are decoded using

Bypass mode.

WO 2016/201032

SOURCE DEVICE

PCT/US2016/036572
1/7

10

DESTINATION DEVICE

12 14
VIDEO SOURCE DISPLAY DEVICE
18 32
VIDEO VIDEO
ENCODER DECODER
20 30
OUTPUT
INTERFACE > INPUT INTERFACE
28
2z ,
16

FIG. 1

PCT/US2016/036572

2/7

WO 2016/201032

— r—==-=-=-== |
D | |
da344ng 971
FunLod [! LINA _
Wv3dlsLig d3aodo3d | | oNniss3ooud | !
4 _ NOILOIQ3ud |
_ VLN |
7T _ — _
LINN ¥3LT14d _ ocl |
| 1IN |
— || omss3ooud ||
— — orT NOILOIaTYd
LINN LINN L1INN _ “HALNI |
ONIGOONa "4 |Nowvzinvno [| SNISS3o0Hd | —_—____ |
AdOYINT ISHIANI WHO4SNVHL
3SHIANI ZLL
X PRI
: 44}
s b e e e e e s menns] 1INN ONIJOINI
SINIWI13 XVLNAS a3sva-3L131vd
— Z01 —
30T hmr — 00T
1IN -« < 1INN ONISSID0¥d
NOLLVZILNVNO ONISS3O0¥d U NOLLOIQI¥d
INHOASNVL »
0¢

¥J3dOON3 O3dIA v1iva o3din

PCT/US2016/036572

WO 2016/201032

3/7

€ Old

5

8G1

291 —
091
- y3d44ng A
3¥NLoId “
a3aooaa d3Laid
o3dia -
a3aoo3ad

9S1
LINN
ONISS3O0™d
NHO4SNVIL
JASAUIANI

-

vl
LINN
NOILVZILNVND
JASYUIANI

(113
¥3d003d O3dIA

991
LINN
ONISS300¥d
NOILOId3¥d
-VLNI

vol
LINN
NOILVSN3IdINOD
NOILOW

g9l
LINN ONIAO23d
a3ssvd

-311371vd

¢St
LINN ONISS3O0¥d
NOILOIa3dd

A

oSt
LINN

ONIaOo23a
AdO¥1NS

i

671
AYON3IN

!

O3aiA
d3dOON3

PCT/US2016/036572

WO 2016/201032

4/7

(&)

a3aniva

I()

23IANTVA

g 3aNIvA

[m

v aNTVA

l

[«

ANTVA
13XId

X3ANI

AYLNd

<
-—

LR Y

FAN™ "1 ™|

— FANS =S A = | —

NmrlM‘

N

N

N

88l | 08I
1vd 1vd
961 | 00¢C
VALNI A3LNI

¥ "OId

J
4 03mvA ¢ Lv\ow
| gaanva A
= 202
Id v 3nIva L L\
— anva | x3an
1axid | AMLNS
— FAN™ ==) ™ | —

— FANS =S A = |

vwrlM‘

WO 2016/201032 PCT/US2016/036572
57

244 \

I l-Kl-l-n\II
I I:kl"'n\'l
ENTRY
bEx | VALUE |
Ak
1 VALUEA | H
BP
2 VALUEB [H
3 VALUE C “_—
RASTER
SCAN
240
N RUN=2 RUN=1 RUN =2
| | | |
266
A T1T1 22333 1 2 -~
268~ g 266
st B OBEE 1 -2
AT a1 1333 | | | 268
LR EGEES RUN = 4 RUN = 2
212122121333
212122121333
3|3[3|3[3|3]|3]3 SNAKE
3|3[3[3[3[3]3]3 SCAN
RUN=2 RUN=1 RUN=5
266~ l l
268 1 2 3
\ 1 A
. |
] RUN = 9
270 3 _
RUN=5

FIG. 5

WO 2016/201032 PCT/US2016/036572
6/7

DECODE, FROM A CODED VIDEO BITSTREAM AND USING ,—602
BYPASS MODE, A GROUP OF SYNTAX ELEMENTS FOR A
PALETTE FOR A CURRENT BLOCK OF VIDEO DATA

DECODE, USING CONTEXT ADAPTIVE BINARY ARITHMETIC 604
CODING (CABAC) WITH A CONTEXT AND AT POSITION IN THE
CODED VIDEO BITSTREAM THAT IS AFTER THE GROUP OF
SYNTAX ELEMENTS, A SYNTAX ELEMENT THAT INDICATES
WHETHER A TRANSPOSE PROCESS IS APPLIED TO PALETTE
INDICES OF THE PALETTE FOR THE CURRENT BLOCK OF
VIDEO DATA

DECODE, USING CABAC WITH A CONTEXT AND AT POSITION ,—606
IN THE CODED VIDEO BITSTREAM THAT IS AFTER THE
SYNTAX ELEMENT THAT INDICATES WHETHER THE
TRANSPOSE PROCESS IS APPLIED TO PALETTE INDICES OF
THE PALETTE FOR THE CURRENT BLOCK OF VIDEO DATA,
ONE OR MORE SYNTAX ELEMENTS RELATED TO DELTA
QUANTIZATION PARAMETER (QP) AND/OR CHROMA QP
OFFSETS FOR THE CURRENT BLOCK OF VIDEO DATA

GENERATE THE PALETTE FOR THE CURRENT BLOCK OF ,—608
VIDEO DATA BASED ON THE GROUP OF SYNTAX ELEMENTS
AND THE SYNTAX ELEMENT THAT INDICATES WHETHER A
TRANSPOSE PROCESS IS APPLIED TO PALETTE INDICES OF
THE PALETTE FOR THE CURRENT BLOCK OF VIDEO DATA

DECODE THE CURRENT BLOCK OF VIDEO DATA BASED ON ,—610
THE PALETTE AND THE ONE OR MORE SYNTAX ELEMENTS
RELATED TO DELTA QUANTIZATION PARAMETER (QP) AND/
OR CHROMA QP OFFSETS FOR THE CURRENT BLOCK OF
VIDEO DATA

FIG. 6

WO 2016/201032 PCT/US2016/036572

717

ENCODE, IN A CODED VIDEO BITSTREAM AND USING BYPASS ,—702
MODE, A GROUP OF SYNTAX ELEMENTS FOR A PALETTE FOR
A CURRENT BLOCK OF VIDEO DATA

ENCODE, USING CONTEXT ADAPTIVE BINARY ARITHMETIC
CODING (CABAC) WITH A CONTEXT AND AT POSITION IN THE
CODED VIDEO BITSTREAM THAT IS AFTER THE GROUP OF
SYNTAX ELEMENTS, A SYNTAX ELEMENT THAT INDICATES
WHETHER A TRANSPOSE PROCESS IS APPLIED TO PALETTE
INDICES OF THE PALETTE FOR THE CURRENT BLOCK OF
VIDEO DATA

—704

ENCODE, USING CABAC WITH A CONTEXT AND AT POSITION ,—706
IN THE CODED VIDEO BITSTREAM THAT IS AFTER THE
SYNTAX ELEMENT THAT INDICATES WHETHER THE
TRANSPOSE PROCESS IS APPLIED TO PALETTE INDICES OF
THE PALETTE FOR THE CURRENT BLOCK OF VIDEO DATA,
ONE OR MORE SYNTAX ELEMENTS RELATED TO DELTA
QUANTIZATION PARAMETER (QP) AND/OR CHROMA QP
OFFSETS FOR THE CURRENT BLOCK OF VIDEO DATA

FIG. 7

