A penetrant liquid for ink jet textile printing includes a compound containing a lactam structure and water, in which the content of the compound containing a lactam structure is 20% by mass or more.
PENETRANT LIQUID FOR INKJET TEXTILE PRINTING

BACKGROUND

[0001] 1. Technical Field
[0002] The present invention relates to a penetrant liquid for inkjet textile printing.
[0003] 2. Related Art
[0004] An inkjet recording method allows a relatively simple apparatus to record a high-resolution image, and use of the inkjet recording method is thus rapidly increasing in a variety of fields. Various studies on inkjet textile printing methods have been made under such circumstances. JP-A-2001-89982, for example, discloses an inkjet textile printing method which performs printing onto a fabric by an inkjet method and which aims to enable ink to penetrate to the back of a fabric, to give less blur, to be printed at a similar density on the front surface and the back surface of the fabric, and to easily produce an intricate pattern by the inkjet method. The inkjet textile method uses an ink containing 41 to 95% by weight of organic solvents based on the weight of the ink.

[0005] The method according to JP-A-2001-89982, however, provides printed materials all having a low dye concentration difference between the front side and the back side. Accordingly, in consideration of a wide variety of applications of ink compositions, that is, in the case where printed materials having a dye concentration difference between the front side and the back side are desired, a change in ink compositions is required.

SUMMARY

[0006] An advantage of some aspects of the invention is that a penetrant liquid for inkjet textile printing which can suppress a difference in coloring property between the front and back surfaces of printed materials is provided.

[0007] Some penetrant liquids of the aspects of the invention have a certain composition to confer the above-described advantage.

[0008] Some aspects of the invention are provided below.

[0009] [1] A penetrant liquid for inkjet textile printing including a compound containing a lactam structure and water, in which the content of the compound containing a lactam structure is 20% by mass or more.

[0010] [2] The penetrant liquid for inkjet textile printing according to Item [1], in which the compound containing a lactam structure includes at least one compound selected from the group consisting of 2-pyrrrolidone, 2-azetidinone, 2-piperidone, e-caprolactam, 4-ethyl-2-azetidinone, N-methyl-2-pyrrrolidone, and 3-azauro-2-piperidone.

[0011] [3] The penetrant liquid for inkjet textile printing according to Item [1] or [2], in which the content of the compound containing a lactam structure is 30 to 50% by mass.

[0012] [4] The penetrant liquid for inkjet textile printing according to any one of Items [1] to [3], further including a nonionic surfactant.

[0013] [5] The penetrant liquid for inkjet textile printing according to any one of Items [1] to [4], further including a silicone-based surfactant.

[0014] [6] The penetrant liquid for inkjet textile printing according to any one of Items [1] to [5], including at least one organic solvent selected from the group consisting of a glycol ether having a boiling point of 260°C or lower and an alkyl polyol having a boiling point of 260°C or lower, and being substantially free of an organic solvent having a boiling point of higher than 260°C.

[0015] [7] An ink set including an ink composition containing a dye and the penetrant liquid for inkjet textile printing according to any one of Items [1] to [6].

DESCRIPTION OF EXEMPLARY EMBODIMENTS

[0016] Embodiments of the invention (hereinafter referred to as “the embodiments”) will hereinafter be described in detail. The invention is not limited to the embodiments and various modifications can be made without departing from the scope of the invention.

Penetrant Liquid for Inkjet Textile Printing

[0017] A penetrant liquid for inkjet textile printing of the embodiment includes a compound containing a lactam structure and water, in which the content of the compound containing a lactam structure is 20% by mass or more.

[0018] An ink composition having high penetrability may be used to obtain a printed material having a low dye concentration difference between the front side and the back side. Using the above-described ink composition provides, however, printed materials all having a low dye concentration difference between the front side and the back side and thus a change in the ink compositions is required to obtain a printed material having a high dye concentration difference between the front side and the back side. Changing the ink composition is, however, generally difficult due to limitations regarding the number of cartridges disposed in a recording apparatus and many technical limitations regarding the replacement of ink compositions in a cartridge.

[0019] In view of the above, it is thought that it is practical to obtain either a printed material having a low dye concentration difference between the front side and the back side or a printed material having a high dye concentration difference between the front side and the back side as needed by using penetrant liquid. Specifically, it is thought that an ink composition used with a penetrant liquid enables a printed material having a low dye concentration difference between the front side and the back side to be obtained, and the same ink composition used without a penetrant liquid enables a printed material having a high dye concentration difference between the front side and the back side to be obtained. Various printed materials can thus be obtained by use or non-use of a penetrant liquid.

[0020] Printed materials having a low dye concentration difference between the front side and the back side with desirable coloring property may, however, not always be obtained by using a penetrant liquid depending on the recording media used such as fabrics formed of various types of fibers. This is related to, for example, the combinations of coloring components (an acidic dye, a basic dye, a reactive dye, or the like) of ink compositions and the types of fibers (natural fibers such as silk, synthetic fibers such as polyester, specifically, properties and functional groups of fiber surfaces) of fabrics. Using a penetrant liquid may contribute to coloring deterioration depending on the combinations of coloring components of ink compositions and the types of fibers of fabrics.

[0021] A penetrant liquid for inkjet textile printing of the embodiment can, however, provide printed materials having a
low dye concentration difference between the front side and
the back side with desirable coloring property using combi-
nations of various ink compositions and recording media
because of the above-described structure, specifically, the
structure including a certain amount of a compound contain-
ing a lactam structure. Furthermore, the penetrant liquid can
provide either a printed material having a low dye concentra-
tion difference between the front side and the back side or a
printed material having a high dye concentration difference
between the front side and the back side by use or non-use of
the penetrant liquid as needed. Each component will here-
after be described in detail.

Compound Containing Lactam Structure

A compound containing a lactam structure, for
example, preferably includes, but is not limited to, at least one
compound selected from the group consisting of 2-pyrroli-
done, 2-azezidinone, 2-piperidone, ε-caprolactam, 4-ethyl-2-
azezidinone, N-methyl-2-pyrrolidon, and 3-amino-2-piperi-
done and more preferably is 2-pyrrolidone. Using the above-
described compound containing a lactam structure tends to
result in printed materials having a low dye concentration
difference between the front side and the back side with a
desirable coloring property.

The content of the compound containing a lactam structure is 20% by mass or more, preferably 25 to 55% by
mass, more preferably 30 to 50% by mass based on 100% by
mass of a penetrant liquid for ink jet textile printing. When the content of the compound containing a lactam structure is 20%
by mass or more, printed materials having a low dye concentra-
tion difference between the front side and the back side
with a desirable coloring property can be provided. When the content of the compound containing a lactam structure is 55%
by mass or less, the property of attacking (dissolution, swell-
ing, or the like) constituent materials of a print head or a flow
channel can be suppressed and discharge reliability can be
provided.

Water

Water may be, for example, water in which ion
ic impurities have been removed as much as possible, such as
pure water or ultrapure water; examples of which include ion
exchanged water, ultrafiltration water, reverse osmosis puri-
fied water, distilled water, or the like. When water sterilized
by irradiation with an ultraviolet ray, addition of hydrogen
peroxide, or the like is used, growth of fungi and bacteria can
be prevented during long-term storage of a penetrant liquid
for ink jet textile printing. When using the above-described
water, storage stability tends to be further improved.

The content of water is preferably 30 to 80% by
mass, more preferably 35 to 75% by mass, further more
preferably 40 to 70% by mass based on 100% by mass of a
penetrant liquid for ink jet textile printing.

Organic Solvent

A penetrant liquid for ink jet textile printing may
further include an organic solvent. Examples of the organic
solvent include, but are not limited to, a glycol ether-based
solvent, a nitrogen-containing solvent, an aprotic polar sol-
vent, an alkyl polyl solvent, and a monochloral-based sol-
vent. The organic solvent may be used alone, or two or more
of organic solvents may be used in combination.

The penetrant liquid for ink jet textile printing preferably includes at least one organic solvent selected from the
group consisting of the glycol ether having a boiling point of
260°C or lower and the alkyl polyl having a boiling point of
260°C or lower. When the above-described solvent is
included, discharge reliability such as the property of recov-
ering from clogging can be improved without deterioration of
the coloring property.

Glycol Ether Having Boiling Point of 260°C or Lower

Examples of a glycol ether having a boiling point of
260°C or lower include, but are not limited to, dipropylene
glycol dimethyl ether (171°C), diethylene glycol ethyl
methyl ether (176°C), diethylene glycol isopropyl methyl
ether (179°C), dipropylene glycol monomethyl ether (188°C),
diethylene glycol diethyl ether (189°C), diethylene glycol
monomethyl ether (194°C), diethylene glycol butyl
methyl ether (212°C), tripropylene glycol dimethyl ether
(215°C), triethylene glycol dimethyl ether (216°C), dieth-
ylene glycol monobutyl ether (230°C), dipropylene glycol
(230°C), diethylene glycol (245°C), ethylene glycol
donapropyl ether (245°C), triethylene glycol mononaphyl
ether (249°C), and diethylene glycol dibutyl ether (256°C)
(-numerals within parentheses represent the standard boiling
point). Diethylene glycol monobutyl ether (a boiling point of
230°C) and triethylene glycol mononaphyl ether (a boiling
point of 230°C) are more preferred. When a glycol ether is
used, the coloring property of a back surface of a printed
material tends to be further improved. A glycol ether may be
used alone, or two or more glycol ethers may be used in
combination.

The boiling point of the glycol ether is preferably
175 to 260°C, more preferably 200 to 260°C, further more
preferably 225 to 260°C. When the boiling point of the glycol
ether is within the above-described ranges, the difference in
the coloring property between the front and back surfaces
of a printed material tends to be further reduced.

The content of the glycol ether having a boiling
point of 260°C or lower is preferably 1.0 to 15% by mass,
more preferably 1.5 to 10% by mass, further more preferably
2.5 to 5.0% by mass based on 100% by mass of a penetrant
liquid for ink jet textile printing. When the content of the
glycol ether having a boiling point of 260°C or lower is 1.0%
by mass or more, continuous discharging stability during
discharge of a penetrant from an ink jet nozzle tends to be
further improved. When the content of the glycol ether having
a boiling point of 260°C or lower is 15% by mass or less,
the response to a driving waveform of an ink jet head tends to be
further improved and discharge stability tends to be further
improved.

Alkyl Polyl Having Boiling Point of 260°C or Lower

Examples of an alkyl polyl having a boiling point of
260°C or lower include, but are not limited to, 1,2-
pentanediol (104°C), propylene glycol (188°C), 1,2-butanediol
(193°C), ethylene glycol (197°C), 1,3-butanediol
(207°C), 1,3-propanediol (214°C), 1,2-hexanediol (223°C),
1,4-butanediol (230°C), 2-methyl-2-propyl-1,3-pro-
panediol (230°C), 1,5-pentanediol (242°C), 2-ethyl-1,3-
hexanediol (244°C), 3-methyl-1,5-pentanediol (249°C),
and 1,6-hexanediol (250°C) (numerals within parentheses
represent the standard boiling point). Propylene glycol (188°C),
1,3-butanediol (207°C), and 1,2-hexanediol (223°C)
are more preferred. When an alkyl polyol as described above is used, clogging reliability during application of a penetrant liquid by an ink jet method tends to be further improved. An alkyl polyol may be used alone, or two or more alkyl polyols may be used in combination. [0032] The boiling point of the alkyl polyol is preferably 150 to 260°C, more preferably 160 to 255°C, further more preferably 170 to 250°C. When the boiling point of the alkyl polyol is within the above-described ranges, the difference in the coloring property between the front and back surfaces of a printed material tends to be further reduced.

[0033] The content of the alkyl polyol having a boiling point of 260°C or lower is preferably 1.0 to 10% by mass, more preferably 2.5 to 7.5% by mass, further more preferably 3.0 to 6.0% by mass based on 100% by mass of a penetrant liquid for ink jet textile printing. When the content of the alkyl polyol having a boiling point of 260°C or lower is 1.0% by mass or more, clogging during discharge of a penetrant from an ink jet nozzle tends to be suppressed. When the content of the alkyl polyol having a boiling point of 260°C or lower is 10% by mass or less, the response to a driving waveform of an ink jet head tends to be further improved and discharge stability tends to be further improved.

[0034] The penetrant liquid for ink jet textile printing is preferably substantially free of an organic solvent having a boiling point higher than 260°C. When the penetrant liquid is substantially free of the above-described solvent, the difference in the coloring property between the front and back surfaces of a printed material tends to be further reduced. The term “substantially free” means that the content of an organic solvent having a boiling point higher than 260°C is preferably 0 to 1.0% by mass, more preferably 0 to 0.50% by mass, further more preferably 0% by mass based on 100% by mass of a penetrant liquid for ink jet textile printing.

[0035] Examples of the organic solvent having a boiling point higher than 260°C include, but are not limited to, triethylene glycol monobutyl ether (272°C), triethylene glycol (287°C), and glycerin (290°C). (Numerals within parentheses represent the standard boiling points).

Surfactant

[0036] A penetrant liquid for ink jet textile printing may further include a surfactant. Examples of the surfactant include, but are not limited to, a nonionic surfactant, a cationic surfactant, and an anionic surfactant. A nonionic surfactant is preferred. When a nonionic surfactant is used, discharge stability tends to be further improved.

Nonionic Surfactant

[0037] Examples of a nonionic surfactant include, but are not limited to, a silicone-based surfactant, an acrylenglycol-based surfactant, a polyoxyethylene alkyl ether-based surfactant, a polyoxypropylene alkyl ether-based surfactant, a polycyclic phenyl ether-based surfactant, a sorbitan derivative-based surfactant, and a fluorine-based surfactant. A silicone-based surfactant is preferred. When a silicone-based surfactant is used, penetrability tends to be further improved.

[0038] The content of the nonionic surfactant is preferably 0.10 to 1.0% by mass, more preferably 0.20 to 0.75% by mass, further more preferably 0.30 to 0.60% by mass based on 100% by mass of a penetrant liquid for ink jet textile printing. When the content of the nonionic surfactant is 0.10% by mass or more, penetrability tends to be further improved. When the content of the nonionic surfactant is 1.0% by mass or less, a blur can be suppressed.

Silicone-Based Surfactant

[0039] Examples of a silicone-based surfactant include, but are not limited to, a polydimethylsiloxane-based compound and a polyether-modified organosiloxane. Examples of a commercially available silicone-based surfactant include, but are not limited to, BYK-306, BYK-307, BYK-333, BYK-341, BYK-345, BYK-346, and BYK-348 (the aforementioned being all trade names, manufactured by BYK Co., Ltd.), KF-351A, KF-352A, KF-353, KF-354L, KF-355A, KF-615A, KF-945, KF-640, KF-642, KF-643, KF-6020, X-22-4515, KF-6011, KF-6012, KF-6015, and KF-6017 (the aforementioned being all trade names, manufactured by Shin-Etsu Chemical Co., Ltd.). A silicone-based surfactant may be used alone, or two or more of silicone-based surfactants mixed together may be used.

Other Components

[0040] The content of the silicone-based surfactant is preferably 0.10 to 1.0% by mass, more preferably 0.20 to 0.75% by mass, further more preferably 0.30 to 0.60% by mass based on 100% by mass of a penetrant liquid for ink jet textile printing. When the content of the silicone-based surfactant is 0.10% by mass or more, penetrability tends to be further improved. When the content of the silicone-based surfactant is 1.0% by mass or less, deterioration of discharge stability tends to be suppressed.

Textile Printing Method

[0041] The penetrant liquid for ink jet textile printing can further include ureas, saccharides, a pH-adjusting agent, a chelating agent, an antisepic, an antitrust agent, or other components.

[0042] A textile printing method using a penetrant liquid for ink jet textile printing of the embodiment will hereinafter be described. The textile printing method includes a recording step in which an ink composition containing a dye is applied onto a front surface of a fabric by an ink jet method, and a penetrant liquid applying step in which a penetrant liquid is applied onto the front surface or the back surface of the fabric before or after the above-described recording step.

[0043] A printed material having the same record on a front surface and a back surface of a fabric is required in some cases. A method for providing such printed material includes applying a penetrant, which guides an ink composition to penetrate, to a fabric before or after applying the ink composition to the fabric. Some compositions of the penetrant, however, may cause difficulties in printing. The difficulties include coloring deterioration (a fabric is hard to dry), a variation in the coloring property of the front and back surfaces of a printed material due to drying of the penetrant liquid before penetration, or a variation in the coloring property of the front and back surfaces of a printed material due to a penetrant liquid being resistant to dry.

[0044] The embodiments can, however, provide printed materials less likely to have coloring deterioration and having less coloring property difference between the front and back surfaces by using a penetrant liquid having a certain composition. The embodiments will hereinafter be described in detail.
Recording Step

[0045] A recording step refers to application of an ink composition containing a dye onto a front surface of a fabric by an ink jet method. Examples of the ink jet method include, but are not limited to, a charge deflection method, a continuous method, an on-demand method (a piezo method, bubble jet (registered trademark) method), and the like.

Ink Composition

[0046] An ink composition may contain a dye, a solvent, a surfactant, ureas, saccharides, a pH-adjusting agent, a chelating agent, an antiseptic, an antitrust, or other components.

[0047] Examples of a dye include, but are not limited to, an acidic dye such as CI. Acid Yellow, CI. Acid Red, CI. Acid Blue, CI. Acid Orange, CI. Acid Violet, and CI. Acid Black; a basic dye such as CI. Basic Yellow, CI. Basic Red, CI. Basic Blue, CI. Basic Orange, CI. Basic Violet, and CI. Basic Black; direct dyes such as CI. Direct Yellow, CI. Direct Red, CI. Direct Blue, CI. Direct Orange, CI. Direct Violet, and CI. Direct Black; a reactive dye such as CI. Reactive Yellow, CI. Reactive Red, CI. Reactive Blue, CI. Reactive Orange, CI. Reactive Violet, and CI. Reactive Black; and a disperse dye such as CI. Disperse Yellow, CI. Disperse Red, CI. Disperse Blue, CI. Disperse Orange, CI. Disperse Violet, and CI. Disperse Black. A dye may be used alone, or two or more dyes may be used in combination.

Fabric

[0048] Examples of a fiber contained in a fabric include, but are not limited to, a natural fiber such as silk, cotton, linen, and wool; a synthetic fiber such as a polyester fiber, a nylon fiber, a triacetate fiber, a diacetate fiber, and a polyamide fiber; and a regenerated fiber such as rayon and the like. A fabric may be formed from one type of fiber or may be a mixed spun containing two or more types of fibers. In particular, a mixed spun fabric of fibers having various penetrabilities can readily provide the effect of the penetrant liquid. The fabric may be any type of fabric such as a woven fabric, a knitted fabric, or a non-woven fabric of the above-described fibers.

[0049] Examples of a combination of a fabric and a dye include, but are not limited to, a reactive dye and a fiber containing cellulose as a main component (cotton, linen, rayon, or the like), an acidic dye and silk, wool, or a nylon fiber, a basic dye and an acrylic fiber, direct dyes and cotton, linen, or rayon, and a disperse dye and a polyester fiber. The combinations of the reactive dye and a fiber containing cellulose as a main component, and the acidic dye and silk, wool, or a nylon fiber are preferred. When such combinations are used, differences in the coloring property between the front and back surfaces of a printed material tend to be further suppressed. The combination of a fabric and a dye, however, is not limited to the above-described combinations.

[0050] An ink jet textile printing method of the embodiment enables differences in the coloring property between the front and back surfaces of a printed material to be suppressed by using a penetrant liquid described below without adjusting a composition of a penetrant liquid for each fabric.

Step of Applying Penetrant Liquid

[0051] A step of applying a penetrant liquid refers to applying a penetrant liquid onto a front surface or a back surface of a fabric before or after the recording step. Examples of a method of applying the penetrant liquid include, but are not limited to, a roller method, a spray method, and an ink jet method. The ink jet method is preferred because the method enables a penetrant liquid to be applied selectively.

[0052] The step of applying a penetrant liquid may be performed before the recording step, after the recording step, or both before and after the recording steps. When the step of applying a penetrant liquid is performed before the recording step, the recording step is preferably performed before the penetrant liquid that has been applied onto a fabric dries. When the step of applying a penetrant liquid is performed after the recording step, the step of applying a penetrant liquid may be performed before or after the ink composition applied onto a fabric dries, preferably the step of applying a penetrant liquid is performed before an ink composition applied onto a fabric dries. The penetrant liquid may be applied onto a front surface, applied onto a back surface, or applied onto both a front surface and a back surface of a fabric.

Heating Step

[0053] The ink jet textile printing method of the embodiment may further include a heating step for heating a fabric after the recording step and the step of applying a penetrant liquid. Including the heating step enables a dye to further desirably dye a fiber contained in a fabric. Examples of the heating method include, but are not limited to, an HT method (a high temperature steaming method), an HP method (a high pressure steaming method), and a thermosol method.

[0054] During the heating step, an ink composition applied surface of a fabric may be pressed or may not be pressed. A heating method without pressing the ink composition applied surface of a fabric includes oven drying (using a conveyor oven, a batch oven, or the like without pressing). Such heating step further improves the efficiency of production of a recording product. Examples of a heating method with pressing the ink composition applied surface of a fabric include, but are not limited to, heat-pressing and wet-on-drying. The term “pressing” refers to applying a pressure to a recording medium through contacting with a solid body.

[0055] The temperature during the heating treatment is preferably 80 to 150°C, more preferably 90 to 110°C. When the temperature during the heating treatment is within the above-described range, a dye tends to further desirably dye a fiber contained in a fabric.

Cleaning Step

[0056] The ink jet textile printing method of the embodiment may further include a cleaning step to clean a fabric after the heating step. The cleaning step effectively removes a dye which has not dyed a fiber. The cleaning step may be performed with, for example, water, and a soaping treatment may optionally be performed. The soaping treatment may be, but is not limited to, a method of washing out an unfixed dye with a heated soap solution.

Ink Set

[0057] The ink set of the embodiment includes an ink composition containing a dye and the above-described penetrant liquid for ink jet textile printing.
Examples

The invention will be described in more detail hereinafter with reference to Examples and Comparative Examples. The Examples should not be construed as limiting the invention in any way.

Materials for Ink Compositions

Major materials used for ink compositions in the following Examples and Comparative Examples are given below.

Dyes

C.I. Acid Black 172
C.I. Reactive Black 39

Glycol Ethers

Triethylene glycol monobutyl ether (standard boiling point 272°C.)
Diethylene glycol monobutyl ether (standard boiling point 230°C.)

Alkyl Polyols

Triethylene glycol (standard boiling point 285°C.)
Diethylene glycol (standard boiling point 245°C.)

Nitrogen-Containing Compound

2-Pyrrolidone (standard boiling point 245°C.)

Surfactant

Offine PD-002W (a nonionic (an acetylene-based) surfactant, manufactured by Nissin Chemical Industry Co., Ltd.)

Ureas

Urea

pH-Adjusting Agent

Triethanolamine

Tris(hydroxymethyl)aminomethane

Antiseptic

Proxel XL2 (trade name, manufactured by Arch Chemicals, Inc.)

Preparation of Ink Composition 1

Materials of the composition shown in Table 1 below were mixed and stirred sufficiently to obtain ink composition 1. Specifically, the materials were mixed to provide a homogeneous mixture and then filtered with a membrane filter (a pore size of 1 μm) to prepare ink composition 1. The units of numerals are “% by mass” and “Total” represents “100.0% by mass” in Table 1 below.

TABLE 1-continued

<table>
<thead>
<tr>
<th>Composition of ink composition 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dye</td>
<td>C.I. Acid Black 172</td>
</tr>
<tr>
<td>Glycol ether</td>
<td>Triethylene glycol monobutyl ether (boiling point 272°C.)</td>
</tr>
<tr>
<td>Alkyl polyol</td>
<td></td>
</tr>
<tr>
<td>Nitrogen-containing compound</td>
<td></td>
</tr>
<tr>
<td>Surfactant</td>
<td>Offine PD-002W (nonionic (acetylene-based) surfactant, manufactured by Nissin Chemical Industry Co., Ltd.)</td>
</tr>
<tr>
<td>Others</td>
<td></td>
</tr>
<tr>
<td>Urea</td>
<td></td>
</tr>
<tr>
<td>Triethanolamine</td>
<td></td>
</tr>
<tr>
<td>Proxel XL2</td>
<td></td>
</tr>
<tr>
<td>Ion exchanged water</td>
<td></td>
</tr>
<tr>
<td>Total (% by mass)</td>
<td>100</td>
</tr>
</tbody>
</table>

Preparation of Ink Composition 2

Materials of the composition shown in Table 2 below were mixed and stirred sufficiently to obtain ink composition 2. Specifically, the materials were mixed to provide a homogeneous mixture and then filtered with a membrane filter (a pore size of 1 μm) to prepare ink composition 2. The units of numerals are “% by mass” and “Total” represents “100.0% by mass” in Table 2 below.

TABLE 2

<table>
<thead>
<tr>
<th>Composition of ink composition 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dye</td>
<td>C.I. Reactive Black 39</td>
</tr>
<tr>
<td>Glycol ether</td>
<td>Diethylene glycol monobutyl ether (boiling point 230°C.)</td>
</tr>
<tr>
<td>Alkyl polyol</td>
<td>Diethylene glycol (boiling point 245°C.)</td>
</tr>
<tr>
<td>Nitrogen-containing compound</td>
<td>2-Pyrrolidone (boiling point 245°C.)</td>
</tr>
<tr>
<td>Surfactant</td>
<td>Offine PD-002W (nonionic (acetylene-based) surfactant, manufactured by Nissin Chemical Industry Co., Ltd.)</td>
</tr>
<tr>
<td>Others</td>
<td></td>
</tr>
<tr>
<td>Urea</td>
<td></td>
</tr>
<tr>
<td>Triethanolamine</td>
<td></td>
</tr>
<tr>
<td>Proxel XL2</td>
<td></td>
</tr>
<tr>
<td>Ion exchanged water</td>
<td></td>
</tr>
<tr>
<td>Total (% by mass)</td>
<td>100</td>
</tr>
</tbody>
</table>

Materials for Penetrant Liquid for Ink Jet Textile Printing

Major materials used for a penetrant liquid for ink jet textile printing in the following Examples and Comparative Examples are given below.

Organic Solvents

Propylene glycol (a boiling point of 188°C.)
Glycerin (a boiling point of 290°C.)
1,3-Butanediol (a boiling point of 207°C.)
1,2-Hexanediol (a boiling point of 223°C.)
Triethylene glycol monobutyl ether (a boiling point of 272°C.)
Diethylene glycol monobutyl ether (a boiling point of 230°C.)
Triethylene glycol monomethyl ether (a boiling point of 230°C.)
Compounds Containing Lactam Structure

- **[0082]** 2-Azetidinone
- **[0083]** 2-Pyrrolidone
- **[0084]** 2-Piperidone
- **[0085]** 6-Caprolactam
- **[0086]** 4-Ethyl-2-azetidinone
- **[0087]** N-Methyl-2-pyrrolidone
- **[0088]** 3-Amino-2-piperidone

pH-Adjusting Agents

- **[0089]** Isopropanolamine
- **[0090]** Triethanolamine

Surfactants

- **[0091]** Olfine PD002W (an acetylene glycol-based surfactant, manufactured by Nissin Chemical Industry Co., Ltd.)
 - Olfine PD570 (a nonionic surfactant, manufactured by Nissin Chemical Industry Co., Ltd.)
 - Silface SAG002 (a silicone-based surfactant, manufactured by Nissin Chemical Industry Co., Ltd.)
 - BYK 348 (a silicone-based surfactant, manufactured by BYK Co., Ltd.)

Preparation of Penetrant Liquid for Ink Jet Textile Printing

Materials of the compositions shown in Tables 3 and below were mixed and stirred sufficiently to obtain respective penetrant liquids for ink jet textile printing. The units of numerals are “% by mass” and “Total” represents “100.0% by mass” in Tables 3 and 4.

TABLE 3

<table>
<thead>
<tr>
<th>Examples</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Propylene glycol</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glycerin</td>
<td>1,3-Butanediol</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,2-Hexanediol</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Triethylene glycol monobutyl ether</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diethylene glycol monobutyl ether</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Triethylene glycol monomethyl ether</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound containing lactam structure</td>
<td>2-Azetidinone</td>
<td>40</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Pyrrolidone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-Piperidone</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-Caprolactam</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-Ethyl-2-azetidinone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-Methyl-2-pyrrolidone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>3-Amino-2-piperidone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH-Adjusting agent</td>
<td>Isopropanolamine</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Triethanolamine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surfactant</td>
<td>Olfine PD002W</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Olfine PD570 (manufactured by Nissin Chemical Industry Co., Ltd.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Silface SAG002 (manufactured by Nissin Chemical Industry Co., Ltd.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BYK 348 (manufactured by BYK Co., Ltd.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coloring property</td>
<td>Ink composition 1 (acidic dye)</td>
<td>1.54</td>
<td>1.54</td>
<td>1.56</td>
<td>1.55</td>
<td>1.56</td>
<td>1.56</td>
<td>1.56</td>
</tr>
<tr>
<td></td>
<td>OD value of front surface</td>
<td>1.50</td>
<td>1.51</td>
<td>1.52</td>
<td>1.53</td>
<td>1.52</td>
<td>1.52</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td>OD value of back surface</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>OD value difference between front surface and back surface</td>
<td>1.73</td>
<td>1.74</td>
<td>1.74</td>
<td>1.74</td>
<td>1.73</td>
<td>1.73</td>
<td>1.73</td>
</tr>
<tr>
<td></td>
<td>Ink composition 2 (acidic dye)</td>
<td>1.64</td>
<td>1.63</td>
<td>1.61</td>
<td>1.64</td>
<td>1.63</td>
<td>1.62</td>
<td>1.60</td>
</tr>
<tr>
<td></td>
<td>OD value of front surface</td>
<td>0.99</td>
<td>0.11</td>
<td>0.14</td>
<td>0.10</td>
<td>0.11</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>OD value of back surface</td>
<td>1.57</td>
<td>1.56</td>
<td>1.57</td>
<td>1.56</td>
<td>1.57</td>
<td>1.57</td>
<td>1.57</td>
</tr>
<tr>
<td></td>
<td>OD value difference between front surface and back surface</td>
<td>1.48</td>
<td>1.47</td>
<td>1.46</td>
<td>1.49</td>
<td>1.50</td>
<td>1.48</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td>Fabric 3 (cotton 100%, basis weight 130 g/m²)</td>
<td>0.09</td>
<td>0.09</td>
<td>0.11</td>
<td>0.07</td>
<td>0.07</td>
<td>0.09</td>
<td>0.12</td>
</tr>
</tbody>
</table>

TABLE 4

<table>
<thead>
<tr>
<th>Examples</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Propylene glycol</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glycerin</td>
<td>1,3-Butanediol</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,2-Hexanediol</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Triethylene glycol monobutyl ether</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diethylene glycol monobutyl ether</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Triethylene glycol monomethyl ether</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
### TABLE 3-continued

<table>
<thead>
<tr>
<th>Compound containing lactam structure</th>
<th>2-Azetidinone</th>
<th>2-Pyrrolidone</th>
<th>2-Piperidone</th>
<th>4-Epichlorhydrin</th>
<th>N-Methyl-2-pyrrolidone</th>
<th>N-Methyl-2-pyrrolidone</th>
<th>3-Amino-2-piperidone</th>
<th>2-Piperidone</th>
<th>3-Amino-2-piperidone</th>
<th>2-Piperidone</th>
<th>3-Amino-2-piperidone</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH-Adjusting agent</td>
<td></td>
</tr>
<tr>
<td>Isopropanolamine</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Triethanolamine</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Surfactant</td>
<td></td>
</tr>
<tr>
<td>Offine PD570 (manufactured by Nisshin Chemical Industry Co., Ltd.)</td>
<td>0.5</td>
<td>0.6</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Silfase SAG002 (manufactured by Nisshin Chemical Industry Co., Ltd.)</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>BYK 348 (manufactured by BYK Co., Ltd.)</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>Coloring property</td>
<td>Ink composition 1 (acidic dye)</td>
<td>OD value of front surface balance</td>
<td>1.55</td>
<td>1.55</td>
<td>1.55</td>
<td>1.53</td>
<td>1.53</td>
<td>1.54</td>
<td>1.54</td>
<td>1.56</td>
<td>1.56</td>
</tr>
<tr>
<td>Fabric 1 (nylon 66, basis weight 60 g/m²)</td>
<td>OD value of back surface balance</td>
<td>1.49</td>
<td>1.50</td>
<td>1.54</td>
<td>1.49</td>
<td>1.50</td>
<td>1.52</td>
<td>1.51</td>
<td>1.51</td>
<td>1.51</td>
<td>1.51</td>
</tr>
<tr>
<td>Ink composition 1 (acidic dye)</td>
<td>OD value of front surface balance</td>
<td>1.73</td>
<td>1.73</td>
<td>1.72</td>
<td>1.72</td>
<td>1.72</td>
<td>1.74</td>
<td>1.74</td>
<td>1.73</td>
<td>1.73</td>
<td>1.73</td>
</tr>
<tr>
<td>Fabric 2 (mixed spun fabric containing nylon and polyurethane, mixing ratio 80:20, basis weight 190 g/m²)</td>
<td>OD value of back surface balance</td>
<td>1.63</td>
<td>1.63</td>
<td>1.61</td>
<td>1.62</td>
<td>1.63</td>
<td>1.63</td>
<td>1.62</td>
<td>1.62</td>
<td>1.62</td>
<td>1.62</td>
</tr>
<tr>
<td>Ink composition 2 (reactive dye)</td>
<td>OD value of front surface balance</td>
<td>0.10</td>
<td>0.10</td>
<td>0.11</td>
<td>0.09</td>
<td>0.09</td>
<td>0.11</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Fabric 3 (cotton 100%, basis weight 130 g/m²)</td>
<td>OD value of back surface balance</td>
<td>0.10</td>
<td>0.09</td>
<td>0.11</td>
<td>0.08</td>
<td>0.08</td>
<td>0.09</td>
<td>0.11</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
</tbody>
</table>

### TABLE 4

<table>
<thead>
<tr>
<th>Comparative Examples</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solvent</td>
<td>Propylene glycol</td>
<td>No penetrant liquid</td>
<td>5</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>Glycerin</td>
<td>1.3-Hexadecanol</td>
<td>40</td>
<td>50</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Triethylene glycol monobutyl ether</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound containing lactam structure</td>
<td>2-Azetidinone</td>
<td>2-Pyrrolidone</td>
<td>2-Piperidone</td>
<td>4-Epichlorhydrin</td>
<td>N-Methyl-2-pyrrolidone</td>
</tr>
<tr>
<td>pH-Adjusting agent</td>
<td>Triethanolamine</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Surfactant</td>
<td>Offine PD002W</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Offine PD570 (manufactured by Nisshin Chemical Industry Co., Ltd.)</td>
<td>0.5</td>
<td>0.6</td>
<td>0.4</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Silfase SAG002 (manufactured by Nisshin Chemical Industry Co., Ltd.)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>BYK 348 (manufactured by BYK Co., Ltd.)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Water</td>
<td>Ink composition 1 (acidic dye)</td>
<td>OD value of front surface balance</td>
<td>1.55</td>
<td>1.55</td>
<td>1.55</td>
</tr>
<tr>
<td>Fabric 1 (nylon 66, basis weight 60 g/m²)</td>
<td>OD value of back surface balance</td>
<td>1.37</td>
<td>1.37</td>
<td>1.37</td>
<td>1.37</td>
</tr>
<tr>
<td>Ink composition 1 (acidic dye)</td>
<td>OD value of front surface balance</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>Fabric 2 (mixed spun fabric containing nylon and polyurethane, mixing ratio 80:20, basis weight 190 g/m²)</td>
<td>OD value of back surface balance</td>
<td>1.74</td>
<td>1.74</td>
<td>1.74</td>
<td>1.74</td>
</tr>
<tr>
<td>Ink composition 1 (acidic dye)</td>
<td>OD value of front surface balance</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
<td>0.74</td>
</tr>
<tr>
<td>Fabric 2 (mixed spun fabric containing nylon and polyurethane, mixing ratio 80:20, basis weight 190 g/m²)</td>
<td>OD value difference between front surface and back surface</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
TABLE 4-continued

<table>
<thead>
<tr>
<th>Comparative Examples</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ink composition 2</td>
<td>OD value of front surface</td>
<td>1.60</td>
<td>1.56</td>
<td>1.55</td>
<td>1.54</td>
</tr>
<tr>
<td>(reactive dye)</td>
<td>OD value of back surface</td>
<td>0.98</td>
<td>1.47</td>
<td>1.44</td>
<td>1.46</td>
</tr>
<tr>
<td>Fabric 3 (cotton 100%, basis weight 130 g/m²)</td>
<td>OD value difference between front surface and back surface</td>
<td>0.62</td>
<td>0.09</td>
<td>0.11</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Evaluation of Coloring Property of Front Surface and Evaluation of Coloring Difference Between Front Surface and Back Surface

Sample 1

[0096] A cartridge of an ink jet printer PX-G930 (manufactured by Seiko Epson Corporation) was filled with ink composition 1 and the penetrant liquid obtained as described above. Fabric 1 (silk 100%, basis weight 60 g/m²) was fed to the printer, and then the fabric was printed using the ink composition at a duty of 100% and using the penetrant liquid at a duty of 100% to apply ink composition 1 and the penetrant liquid onto the front surface of fabric 1. The image resolution was set to 1440x720 dpi.

[0097] Fabric 1, in which ink composition 1 and the penetrant liquid were applied onto the front surface, was steamed at 100° C. for 30 minutes and then washed with an aqueous solution containing 0.2% by mass of Laccol STA (a surfactant manufactured by Meisei Chemical Works, Ltd.) at 55° C. for 10 minutes, followed by drying to give sample 1.

Sample 2

[0098] Sample 2 was obtained by the same method as in Example 1, except that fabric 2 (mixed spun, nylon 80% and polyurethane 20%; basis weight 190 g/m²) was used instead of fabric 1.

Sample 3

[0099] A cartridge of the ink jet printer PX-G930 (manufactured by Seiko Epson Corporation) was filled with ink composition 2 and the penetrant liquid obtained as described above. Fabric 3 (cotton 100%, basis weight 130 g/m²) was fed to the printer, and then the fabric was printed using the ink composition at a duty of 100% and using the penetrant liquid at a duty of 100% to apply ink composition 2 and the penetrant liquid onto the front surface of fabric 3. The image resolution was set to 1440x720 dpi.

[0100] Fabric 3, in which ink composition 2 and the penetrant liquid were applied onto the front surface, was steamed at 102° C. for 10 minutes and then washed with an aqueous solution containing 0.2% by mass of Laccol STA (a surfactant manufactured by Meisei Chemical Works, Ltd.) at 90° C. for 10 minutes, followed by drying to give sample 3.

Evaluation

[0101] OD values (coloring densities) of the front surfaces and the back surfaces of the obtained samples were respectively measured using a color measurement instrument (trade name “Gretag Macbeth Spectrolino” manufactured by X-RITE INC.). The coloring property of the front surface and a difference in the coloring property between the front surface and the back surface were evaluated on the basis of the evaluation criteria using the measured OD values.


What is claimed is:
1. A penetrant liquid for ink jet textile printing comprising: a compound containing a lactam structure and water, wherein the content of the compound containing a lactam structure is 20% by mass or more.
2. The penetrant liquid for ink jet textile printing according to claim 1, wherein the compound containing a lactam structure includes at least one compound selected from the group consisting of 2-pyrrolidone, 2-azetidinone, 2-piperidone, ε-caprolactam, 4-ethyl-2-azetidinone, N-methyl-2-pyrrolidone, and 3-amino-2-piperidone.
3. The penetrant liquid for ink jet textile printing according to claim 1, wherein the content of the compound containing a lactam structure is 30 to 50% by mass.
4. The penetrant liquid for ink jet textile printing according to claim 1, further comprising a nonionic surfactant.
5. The penetrant liquid for ink jet textile printing according to claim 1, further comprising a silicone-based surfactant.
6. The penetrant liquid for ink jet textile printing according to claim 1, further comprising at least one organic solvent selected from the group consisting of a glycol ether having a boiling point of 260° C. or lower and an alkyd polyol having a boiling point of 260° C. or lower, and being substantially free of an organic solvent having a boiling point higher than 260° C.
7. An ink set comprising: an ink composition containing a dye, and the penetrant liquid for ink jet textile printing according to claim 1.
8. An ink set comprising: an ink composition containing a dye, and the penetrant liquid for ink jet textile printing according to claim 2.
9. An ink set comprising: an ink composition containing a dye, and the penetrant liquid for ink jet textile printing according to claim 3.
10. An ink set comprising: an ink composition containing a dye, and the penetrant liquid for ink jet textile printing according to claim 4.
11. An ink set comprising:
an ink composition containing a dye, and
the penetrant liquid for ink jet textile printing according to
claim 5.
12. An ink set comprising:
an ink composition containing a dye, and
the penetrant liquid for ink jet textile printing according to
claim 6.

* * * * *