(54) Title: NEW COMBINATION FOR USE IN THE TREATMENT OF INFLAMMATORY DISORDERS

(57) Abstract: There is provided combination products comprising (a) a mast cell inhibitor, or a pharmaceutically-acceptable salt or solvate thereof; and (b) a statin, or a pharmaceutically-acceptable salt or solvate thereof. Such combination products find particular utility in the treatment of atherosclerosis and related conditions.
NEW COMBINATION FOR USE IN THE TREATMENT OF INFLAMMATORY DISORDERS

Field of the Invention

This invention relates to a novel pharmaceutical combination.

Background and Prior Art

Cardiovascular diseases, such as coronary heart disease and stroke are major causes of death, disability, and healthcare expense, particularly in industrialised countries. Such diseases are often direct sequelae of atherosclerosis, a multifactorial condition that develops preferentially in subjects that smoke and/or present risk factors such as hypertension, diabetes mellitus, hypercholesterolemia, elevated plasma low density lipoprotein (LDL) and triglycerides.

Atherosclerotic lesions (or plaques) develop over many years. Pathological processes, such as cholesterol accumulation in the artery wall, foam cell formation, inflammation and cell proliferation are typically involved.

Levels of high-density lipoproteins (HDLs), LDLs, total cholesterol and triglycerides are all indicators in determining the risk of developing atherosclerosis and associated cardiovascular disorders, such as coronary artery diseases (e.g. angina pectoris, myocardial infarction, etc.), stroke (including cerebro-vascular accident and transient ischaemic attack) and peripheral arterial occlusive disease.

Patients with high overall cholesterol and/or triglycerides levels are at a significant risk, irrespective of whether or not they also have a favourable HDL level. Patients with normal overall cholesterol levels but low HDL levels are also at increased risk. Recently, it has also been noted that the level of risk of cardiovascular disease associated with high levels of apolipoprotein B (ApoB; which carries lipids in very low-density lipoproteins (VLDLs) and LDLs), and/or
low levels of apolipoprotein A-I (ApoA-I; which carries lipids in HDLs), is extremely high.

Drugs that reduce LDL levels in serum can reduce the build-up of atherosclerotic plaques, and can reduce (long term) the risk of plaque rupture and associated thrombo-embolic complications. There are several types of drugs that can help reduce blood cholesterol levels. The most commonly prescribed are the hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitors (hereinafter defined together, irrespective of their generic name, as "statins"), including simvastatin and atorvastatin. These drugs prevent directly the formation of cholesterol in the liver and thus reduce the risk of cardiovascular disease.

Other prescribed drug categories include resins (such as cholestyramine and colestipol), which act by binding bile acids, so causing the liver to produce more of the latter, and using up cholesterol in the process. Further, the B vitamin niacin has been reported at high doses to lower triglycerides and LDL levels in addition to increasing HDL levels. Fibrates (such as gemfibrozil and fenofibrate) are known to lower triglycerides and can increase HDL levels.

The introduction of cholesterol lowering drugs such as statins has significantly reduced mortality from coronary heart disease and stroke. However, these drugs suffer from the disadvantage that they are not equally effective in all patients and are known to have certain side effects (e.g. changes in liver function, myopathy and rhabdomyolysis), and atherosclerosis remains a major cause of death and disability. Indeed, a recent review article (Briel et al, JAMA, 295, 2046 (2006)) suggests that statins do not reduce serious cardiovascular events during the first four months of treatment in patients with acute coronary syndromes.

There is thus a real clinical need for safer and/or more effective treatments of atherosclerosis and associated cardiovascular disorders, particularly in those patients with acute coronary syndromes. Furthermore, there is no established drug treatment for the arterial disease abdominal aortic aneurysm, a potentially fatal disease associated with atherosclerosis.
Mast cells (mastocytes) are cells that are present in most tissues in the vicinity of blood vessels, and are especially prominent near the boundaries between the extra-corporeal environment and the internal milieu, such as the skin, mucosal surfaces (such as the lungs, digestive tract, mouth, conjunctiva and nose). Mast cells play an important protective role, being involved in wound healing and defence against pathogens.

In allergic reactions, mast cells remain inactive until an allergen binds to IgE already in association with the cell. Binding of two or more IgE molecules (crosslinking) leads to steric changes that cause disturbances to the cell membrane structure. This results in a complex sequence of reactions inside the cell that leads to activation and so-called "degranulation".

In this respect, mast cells play a key role in the inflammatory process. Crosslinking of IgE receptors (as well as direct (e.g. physical or chemical) injury) may stimulate mast cells to degranulate, and thereby release various mediators into the interstitium, including eicosanoids, such as prostaglandin D2 and leukotriene C4, cytokines, and preformed mediators, such as heparin, serine proteases and, particularly, histamine.

Histamine dilates post capillary venules, activates the endothelium, and increases blood vessel permeability. This leads to local oedema (swelling), warmth, redness, and the attraction of other inflammatory cells to the site of release. It also irritates nerve endings (leading to itching or pain).

Mast cells therefore play a central role in asthma, eczema, allergic rhinitis and allergic conjunctivitis. Mast cells are also implicated in the pathology associated with the autoimmune disorders such as rheumatoid arthritis and multiple sclerosis.

Treatments of inflammatory conditions associated with mast cell degranulation include antihistamine drugs, which act by blocking the action of histamine on e.g. nerve endings and blood vessels. Chromone-based drugs (such as sodium cromoglycate and nedocromil) are thought to block ion channels essential for mast cell degranulation, stabilizing the cell and preventing release of histamine
and related mediators. Other mast cell stabilisers include pemilast, suplatast, ripirinast, amlexanox, ketotifen, tazanolast and tranilast.

International patent application WO 2004/071531 mentions certain mast cell inhibitors for the treatment of cerebral diseases involving mast cell activation caused by ischemia.

US patent application US 2006/0024365 discloses dual retard pharmaceutical dosage forms comprising modified release high dose high solubility active ingredients in combination with immediate release low dose active ingredients. A wide variety of drugs, including some of those mentioned herein, are listed as potential candidates for the low dose active ingredient.

US patent application US 2003/0104048 discloses novel pharmaceutical dosage forms comprising hydrophilic surfactant-containing fillers including pharmaceutically-active ingredients encapsulated by a shell. Various active compounds, including some of those mentioned herein, are listed amongst many possible drug candidates for use in such dosage forms.

US patent application US 2007/0014733 discloses pharmaceutical compositions for the treatment of cardiovasular disorders comprising metabolites of nebivolol. Various active compounds, including some of those mentioned herein, are listed among the many active ingredients that may be combined with such metabolites in such compositions.
US patent applications US 2006/0135577 and US 2006/0148830 disclose novel antagonists of the LPA receptor (and especially the EDG-2 receptor) for use in inter alia disorders of the urinary system, inflammation etc. Certain active compounds, including some of those mentioned herein, are mentioned separately among the many different active ingredients that may be combined with such novel compounds.

US patent application US 2006/0084695 discloses inhibitors of MAP kinase and/or HMG-CoA reductase for use in the treatment of cardiovascular conditions, such as atherosclerosis and the like.

Finally, US patent application US 2005/0106229 (see also WO 2005/092264) discloses pharmaceutical compositions comprising tranilast for use in the inhibition or prevention of adhesions between tissue and/or organ surfaces.

The use of combination products comprising, mast cell inhibitors and statins is not specifically disclosed in any of the above-mentioned documents. Further, the use of such combination products in the treatment of atherosclerosis and associated cardiovascular disorders, particularly in those patients with acute coronary syndromes, or abdominal aortic aneurysms, is not disclosed in any of these documents.

Disclosure of the Invention

According to the invention, there is provided a combination product comprising:
(a) one or more mast cell inhibitor, or a pharmaceutically-acceptable salt or solvate thereof, provided that the mast cell inhibitor is not pembirolast or sulplatast; and
(b) one or more statin, or a pharmaceutically-acceptable salt or solvate thereof, which combination products are referred to hereinafter as "the combination products according to the invention".

In the context of the present application, the term "mast cell inhibitor" includes any compound that is capable of inhibiting, to an experimentally-determinable
degree, the degranulation of (and therefore release of e.g. histamine from) mast cells in in vitro and/or in vivo tests. Mast cell inhibitors that may be mentioned include histamine H1 receptor antagonists that are known to inhibit mast cell activation to varying degrees, such as acrivastine, astemizole, azelastine, cetirizine, carebastine, desloratadine, ebastine, fexofenadine, ketotifen, levocabastine, levocetirizine, loratadine, mizolastine, norastemizole, olopatadine, oxatomide and terfenadine. Other mast cell inhibitors that may be mentioned include those that are used for local inhibition of mast cell activation, such as cromoglycate (e.g. disodium cromoglycate), nedocromil (such as nedocromil sodium) and andolast. However, preferred mast cell inhibitors include orally active non-antihistamine drugs that inhibit mast cell activation, such as repirinast, amlexanox, tazanolast and tranilast. Also included within this definition are active metabolites of mast cell inhibitors, such as acitazanolast (which is an active metabolite of tazanolast) and MY-1250 (5,6-dihydro-7,8-dimethyl-4,5-dioxo-4H-pyano[3,2-c]quinoline-2-carboxylic acid, which is an active metabolite of repirinast).

Preferred mast cell inhibitors include tranilast, more preferably ketotifen, particularly repirinast (or its active metabolite, MY-1250), and especially amlexanox and tazanolast.

The term “a statin” includes one or more statins. The terms “statin” and “HMG-CoA reductase inhibitor” are employed synonymously in the context of the present invention and include fluvastatin, simvastatin, lovastatin, rosuvastatin, pitavastatin, glenvastatin, cerivastatin, pravastatin, mevastatin, bervastatin, dalvastatin and atorvastatin.

Other statins that may be mentioned include Acitermate, benfluorex, Clestin, colestolone, dihydromevinolin, meglutol, rawsonol, as well as the compounds with the following code names: ATI-16000, BAY-10-2987, BAY-x-2678, BB-476, BIO-002, BIO-003, BIO-2, BMS-180431, CP-83101, DMP-565, FR-901512, GR-95030, HBS-107, KS-01-019, L-659699, L-669262, NR-300, P-882222, PTX-023595, RP 61969, S-2468, SC-32561, sc-45355, SDZ-265859, SQ-33600, U-20685, and NO-enhancing/releasing statins, such as NCX-6550 (nitropravastatin) and NCX-6560 (nitroatorvastatin).
More preferred statins include pitavastatin (e.g. Livalo®, Pitava®), fluvastatin (e.g. Lescol®), simvastatin (e.g. Zocor®, Lipex®), lovastatin (e.g. Mevacor®, Altocor®), rosuvastatin (e.g. Crestor®), pravastatin (e.g. Pravachol®, Selektine®, Lipostat®) and atorvastatin (e.g. Lipitor®, Torvast®). Particularly preferred statins include simvastatin, more particularly atorvastatin and, especially, rosuvastatin.

Pharmaceutically-acceptable salts that may be mentioned include acid addition salts and base addition salts. Such salts may be formed by conventional means, for example by reaction of a free acid or a free base form of an active ingredient with one or more equivalents of an appropriate acid or base, optionally in a solvent, or in a medium in which the salt is insoluble, followed by removal of said solvent, or said medium, using standard techniques (e.g. in vacuo, by freeze-drying or by filtration). Salts may also be prepared by exchanging a counter-ion of an active ingredient in the form of a salt with another counter-ion, for example using a suitable ion exchange resin.

Preferred salts of ketotifen include fumarate salts, but other salts that may be mentioned include hydrochloride, bisulfate, maleate and tosylate salts. Salts of tranilast, amlexanox, tazanostat and MY-1250 that may be mentioned include alkali metal salts, such as lithium, sodium and potassium salts.

Preferred salts of statins include sodium, potassium and calcium salts, such as pitavastatin calcium, fluvastatin sodium, pravastatin sodium, rosuvastatin calcium and atorvastatin calcium.

Active ingredients that are employed in combination products according to the invention (and in particular ketotifen) may be employed in diastereomerically-enriched and/or enantiomerically-enriched form. By "diastereomerically-enriched" and "enantiomerically-enriched" we mean, respectively, any mixture of the diastereoisomers/enantiomers of an active ingredient, in which one isomer is present in a greater proportion than the other. For example, enantiomers (of e.g. ketotifen) with optical purities (enantiomeric excess; e.e.) of greater than 90% may be employed.
Preferred combination products according to the invention include (in ascending order of preference) those in which:

(i) the mast cell inhibitor (a) in a composition of the invention is tranilast or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) in a composition of the invention is lovastatin or a pharmaceutically-acceptable salt or solvate thereof;

(ii) the mast cell inhibitor (a) is tranilast or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is pitavastatin or a pharmaceutically-acceptable salt or solvate thereof;

(iii) the mast cell inhibitor (a) tranilast or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is fluvastatin or a pharmaceutically-acceptable salt or solvate thereof;

(iv) the mast cell inhibitor (a) is tranilast or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is pravastatin or a pharmaceutically-acceptable salt or solvate thereof;

(v) the mast cell inhibitor (a) is ketotifen or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is pitavastatin or a pharmaceutically-acceptable salt or solvate thereof;

(vi) the mast cell inhibitor (a) is ketotifen or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is fluvastatin or a pharmaceutically-acceptable salt or solvate thereof;

(vii) the mast cell inhibitor (a) is ketotifen or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is pravastatin or a pharmaceutically-acceptable salt or solvate thereof;

(viii) the mast cell inhibitor (a) is ketotifen or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is lovastatin or a pharmaceutically-acceptable salt or solvate thereof;

(ix) the mast cell inhibitor (a) is amlexanox or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is pitavastatin or a pharmaceutically-acceptable salt or solvate thereof;

(x) the mast cell inhibitor (a) is amlexanox or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is fluvastatin or a pharmaceutically-acceptable salt or solvate thereof;
(xi) the mast cell inhibitor (a) is amlexanox or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is pravastatin or a pharmaceutically-acceptable salt or solvate thereof;

(xii) the mast cell inhibitor (a) is amlexanox or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is lovastatin or a pharmaceutically-acceptable salt or solvate thereof;

(xiii) the mast cell inhibitor (a) is tazanolast or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is pitavastatin or a pharmaceutically-acceptable salt or solvate thereof;

(xiv) the mast cell inhibitor (a) is tazanolast or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is fluvastatin or a pharmaceutically-acceptable salt or solvate thereof;

(xv) the mast cell inhibitor (a) is tazanolast or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is pravastatin or a pharmaceutically-acceptable salt or solvate thereof;

(xvi) the mast cell inhibitor (a) is tazanolast or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is lovastatin or a pharmaceutically-acceptable salt or solvate thereof;

(xvii) the mast cell inhibitor (a) is repirinast or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is pitavastatin or a pharmaceutically-acceptable salt or solvate thereof;

(xviii) the mast cell inhibitor (a) is repirinast or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is fluvastatin or a pharmaceutically-acceptable salt or solvate thereof;

(xix) the mast cell inhibitor (a) is repirinast or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is pravastatin or a pharmaceutically-acceptable salt or solvate thereof;

(xx) the mast cell inhibitor (a) is repirinast or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is lovastatin or a pharmaceutically-acceptable salt or solvate thereof;

(xxi) the mast cell inhibitor (a) is MY-1250 or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is pitavastatin or a pharmaceutically-acceptable salt or solvate thereof;
(xxii) the mast cell inhibitor (a) is MY-1250 or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is fluvastatin or a pharmaceutically-acceptable salt or solvate thereof;

(xxiii) the mast cell inhibitor (a) is MY-1250 or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is pravastatin or a pharmaceutically-acceptable salt or solvate thereof;

(xxiv) the mast cell inhibitor (a) is MY-1250 or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is lovastatin or a pharmaceutically-acceptable salt or solvate thereof;

(xxv) the mast cell inhibitor (a) is tranilast or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is simvastatin or a pharmaceutically-acceptable salt or solvate thereof;

(xxvi) the mast cell inhibitor (a) is tranilast or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is atorvastatin or a pharmaceutically-acceptable salt or solvate thereof;

(xxvii) the mast cell inhibitor (a) is tranilast or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is rosuvastatin or a pharmaceutically-acceptable salt or solvate thereof;

(xxviii) the mast cell inhibitor (a) is ketotifen or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is simvastatin or a pharmaceutically-acceptable salt or solvate thereof;

(xxix) the mast cell inhibitor (a) is ketotifen or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is atorvastatin or a pharmaceutically-acceptable salt or solvate thereof;

(XXX) the mast cell inhibitor (a) is ketotifen or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is rosuvastatin or a pharmaceutically-acceptable salt or solvate thereof;

(XXxi) the mast cell inhibitor (a) is amlexanox or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is simvastatin or a pharmaceutically-acceptable salt or solvate thereof;

(XXxii) the mast cell inhibitor (a) is amlexanox or a pharmaceutically-acceptable salt or solvate thereof; and the statin (b) is atorvastatin or a pharmaceutically-acceptable salt or solvate thereof.

10
(xxxiii) the mast cell inhibitor (a) is amlexanox or a pharmaceutically-
acceptable salt or solvate thereof; and the statin (b) is rosuvastatin or
a pharmaceutically-acceptable salt or solvate thereof;

(xxxiv) the mast cell inhibitor (a) is tazanolast or a pharmaceutically-
acceptable salt or solvate thereof; and the statin (b) is simvastatin or a
pharmaceutically-acceptable salt or solvate thereof;

(xxxv) the mast cell inhibitor (a) is tazanolast or a pharmaceutically-
acceptable salt or solvate thereof; and the statin (b) is atorvastatin or a
pharmaceutically-acceptable salt or solvate thereof;

(xxxvi) the mast cell inhibitor (a) is tazanolast or a pharmaceutically-
acceptable salt or solvate thereof; and the statin (b) is rosuvastatin or
a pharmaceutically-acceptable salt or solvate thereof;

(xxxvii) the mast cell inhibitor (a) is repirinast or a pharmaceutically-acceptable
salt or solvate thereof; and the statin (b) is simvastatin or a
pharmaceutically-acceptable salt or solvate thereof;

(xxxxviii) the mast cell inhibitor (a) is repirinast or a pharmaceutically-
acceptable salt or solvate thereof; and the statin (b) is atorvastatin or a
pharmaceutically-acceptable salt or solvate thereof;

(xxxix) the mast cell inhibitor (a) is repirinast or a pharmaceutically-acceptable
salt or solvate thereof; and the statin (b) is rosuvastatin or a
pharmaceutically-acceptable salt or solvate thereof;

(xl) the mast cell inhibitor (a) is MY-1250 or a pharmaceutically-acceptable
salt or solvate thereof; and the statin (b) is simvastatin or a
pharmaceutically-acceptable salt or solvate thereof;

(xli) the mast cell inhibitor (a) is MY-1250 or a pharmaceutically-acceptable
salt or solvate thereof; and the statin (b) is atorvastatin or a
pharmaceutically-acceptable salt or solvate thereof;

(xlii) the mast cell inhibitor (a) is MY-1250 or a pharmaceutically-acceptable
salt or solvate thereof; and the statin (b) is rosuvastatin or a
pharmaceutically-acceptable salt or solvate thereof.

For the avoidance of doubt, preferred features of combination products according
to the invention mentioned hereinbefore or hereinafter may be imported
into/applied to any one of the above-mentioned specific combinations (i) to (xlii)
above.
Combination products according to the invention provide for the administration of mast cell inhibitor as hereinbefore defined in conjunction with a statin as hereinbefore defined, and may thus be presented either as separate formulations, wherein at least one of those formulations comprises a mast cell inhibitor, and at least one comprises a statin, or may be presented (i.e. formulated) as a combined preparation (i.e. presented as a single formulation including mast cell inhibitor and a statin).

Thus, there is further provided:

(1) a pharmaceutical formulation including one or more mast cell inhibitor, or a pharmaceutically-acceptable salt or solvate thereof, provided that the mast cell inhibitor is not pemirolast or suplatastat; one or more statin, or a pharmaceutically-acceptable salt or solvate thereof; and a pharmaceutically-acceptable adjuvant, diluent or carrier (which formulation is hereinafter referred to as a “combined preparation”); and

(2) a kit of parts comprising components:

(A) a pharmaceutical formulation including one or more mast cell inhibitor, or a pharmaceutically-acceptable salt or solvate thereof, provided that the mast cell inhibitor is not pemirolast or suplatastat, in admixture with a pharmaceutically-acceptable adjuvant, diluent or carrier; and

(B) a pharmaceutical formulation including one or more statin, or a pharmaceutically-acceptable salt or solvate thereof, in admixture with a pharmaceutically-acceptable adjuvant, diluent or carrier,

which components (A) and (B) are each provided in a form that is suitable for administration in conjunction with the other.

According to a further aspect of the invention, there is provided a method of making a kit of parts as defined above, which method comprises bringing component (A), as defined above, into association with a component (B), as defined above, thus rendering the two components suitable for administration in conjunction with each other.
By bringing the two components "into association with" each other, we include that components (A) and (B) of the kit of parts may be:

(i) provided as separate formulations (i.e. independently of one another), which are subsequently brought together for use in conjunction with each other in combination therapy; or

(ii) packaged and presented together as separate components of a "combination pack" for use in conjunction with each other in combination therapy.

Thus, there is further provided a kit of parts comprising:

(I) one of components (A) and (B) as defined herein; together with

(II) instructions to use that component in conjunction with the other of the two components.

The kits of parts described herein may comprise more than one formulation including an appropriate quantity/dose of mast cell inhibitor/salt/solvate, and/or more than one formulation including an appropriate quantity/dose of statin/salt/solvate, in order to provide for repeat dosing. If more than one formulation (comprising either active compound) is present, such formulations may be the same, or may be different in terms of the dose of either compound, chemical composition(s) and/or physical form(s).

Statins that are employed in combination products according to the invention may preferably be in the form of so-called "statin lactones". Combination products according to the invention may comprise pitavastatin lactone, mevastatin lactone, fluavastatin lactone, rosuvastatin lactone, pravastatin lactone and atorvastatin lactone, and particularly lovastatin lactone and simvastatin lactone.

The combination products according to the invention find utility in the treatment of inflammatory conditions. Inflammatory conditions are typically characterized by activation of immune defence mechanisms, resulting in an effect that is more harmful than beneficial to the host. Such conditions are generally associated with varying degrees of tissue redness or hyperemia, swelling, hyperthermia, pain, itching, cell death and tissue destruction, cell proliferation, and/or loss of function. Inflammatory conditions that may be mentioned include endometriosis and, more preferably, allergy (including allergic conjunctivitis and allergic rhinitis), ankylosing
spondylitis, asthma, atopic dermatitis, chronic obstructive pulmonary disease,
contact dermatitis, cystitis, gouty arthritis, inflammatory bowel disease (such as
Crohn’s disease and ulcerative colitis), multiple sclerosis, osteoarthritis,
pancreatitis, prostatitis, psoriasis, psoriatic arthritis, rheumatoid arthritis, tendinitis,
bursitis, Sjogren’s syndrome, systemic lupus erythematosus, uveitis, urticaria,
vasculitis, diabetic vascular complications, migraine, atherosclerosis and
associated cardiovascular disorders. Conditions that may be mentioned include
endometriosis, migraine and, more preferably, asthma, chronic obstructive
pulmonary disease, Crohn’s disease, multiple sclerosis, psoriasis, rheumatoid
arthritis, systemic lupus erythematosus, ulcerative colitis and, more particularly,
atherosclerosis and associated cardiovascular disorders.

The term “atherosclerosis” will be understood by those skilled in the art to include
any disease characterised by cholesterol accumulation in a blood vessel,
especially an artery wall, foam cell formation, inflammation and cell proliferation.
Cardiovascular disorders “associated with” atherosclerosis include aortic
aneurysms (including abdominal and/or atherosclerotic aortic aneurysms) and,
more preferably, arteriosclerosis, peripheral arterial occlusive disease, coronary
artery diseases (e.g. angina pectoris, myocardial infarction, heart attack, etc),
coronary disease (including cardiac disease and heart disease, such as
ischaemic heart disease), and may also include plaque or atheroma rupture
and/or instability, vascular or arterial disease, ischaemic disease/ischaemia and
stroke (including cerebro-vascular accident and transient ischaemic attack).

Patient groups that may be mentioned include those with acute coronary
syndromes. The term “acute coronary syndrome(s)” will be understood by the
skilled person to include any abnormal myocardial and ischaemic state, often but
not exclusively associated with chest pain and/or an abnormal electrocardiogram
(ECG). Such syndromes are the most common presentation of myocardial
infarction (heart attack). The skilled person will appreciate that the term is largely
synonymous with the term “unstable angina”, as opposed to “stable angina” (i.e.
angina that develops during exertion and resolves at rest). Exertional angina that
occurs at worsening rate (“crescendo angina”) will similarly be regarded by the
skilled person as within the definition “unstable.”
According to a further aspect of the invention there is provided a method of treatment of an inflammatory disorder, and in particular atherosclerosis and/or an associated cardiovascular disorder, which method comprises the administration of a combination product according to the invention to a patient in need of such treatment.

For the avoidance of doubt, in the context of the present invention, the terms “treatment”, “therapy” and “therapy method” include the therapeutic, or palliative, treatment of patients in need of, as well as the prophylactic treatment and/or diagnosis of patients which are susceptible to, inflammatory disorders, such as atherosclerosis and associated cardiovascular disorders.

With respect to the kits of parts as described herein, by “administration in conjunction with”, we include that respective formulations comprising mast cell inhibitor (or salt/solvate thereof) and statin (or salt/solvate thereof) are administered, sequentially, separately and/or simultaneously, over the course of treatment of the relevant condition.

Thus, in respect of the combination product according to the invention, the term “administration in conjunction with” includes that the two components of the combination product (mast cell inhibitor and statin) are administered (optionally repeatedly), either together, or sufficiently closely in time, to enable a beneficial effect for the patient, that is greater, over the course of the treatment of the relevant condition, than if either a formulation comprising the mast cell inhibitor, or a formulation comprising the statin, are administered (optionally repeatedly) alone, in the absence of the other component, over the same course of treatment. Determination of whether a combination provides a greater beneficial effect in respect of, and over the course of treatment of, a particular condition will depend upon the condition to be treated or prevented, but may be achieved routinely by the skilled person.

Further, in the context of a kit of parts according to the invention, the term “in conjunction with” includes that one or other of the two formulations may be administered (optionally repeatedly) prior to, after, and/or at the same time as, administration of the other component. When used in this context, the terms
“administered simultaneously” and “administered at the same time as” include that individual doses of mast cell inhibitor and statin are administered within 48 hours (e.g. 24 hours) of each other.

"Patients" include mammalian (including human) patients.

In accordance with the invention, mast cell inhibitors and statins are preferably administered locally or systemically, for example orally, intravenously or intraarterially (including by intravascular stent and other perivascular devices/dosage forms), intramuscularly, cutaneously, subcutaneously, transmucosally (e.g. sublingually or buccally), rectally, transdermally, nasally, pulmonarily (e.g. tracheally or bronchially), topically, or by any other parenteral route, in the form of a pharmaceutical preparation comprising the compound(s) in pharmaceutically acceptable dosage form(s). Preferred modes of delivery include oral (particularly), intravenous, cutaneous or subcutaneous, nasal, intramuscular, or intraperitoneal delivery.

Mast cell inhibitors and statins will generally be administered together or separately in the form of one or more pharmaceutical formulations in admixture with a pharmaceutically acceptable adjuvant, diluent or carrier, which may be selected with due regard to the intended route of administration and standard pharmaceutical practice. Such pharmaceutically acceptable carriers may be chemically inert to the active compounds and may have no detrimental side effects or toxicity under the conditions of use. Such pharmaceutically acceptable carriers may also impart an immediate, or a modified, release of either active ingredient, whether administered together in a combined preparation or in the form of a kit of parts.

Suitable pharmaceutical formulations may be commercially available or otherwise are described in the literature, for example, Remington *The Science and Practice of Pharmacy*, 19th ed., Mack Printing Company, Easton, Pennsylvania (1995) and *Martindale – The Complete Drug Reference* (34th Edition) and the documents referred to therein, the relevant disclosures in all of which documents are hereby incorporated by reference. Otherwise, the preparation of suitable formulations, and in particular combined preparations including both mast cell inhibitors and
statins may be achieved non-inventively by the skilled person using routine techniques.

The amount of active ingredients in the formulation(s) will depend on the severity of the condition, and on the patient, to be treated, as well as the compound(s) which is/are employed, but may be determined non-inventively by the skilled person.

Depending on the disorder, and the patient, to be treated, as well as the route of administration, active ingredients may be administered at varying therapeutically effective doses to a patient in need thereof.

However, the dose administered to a mammal, particularly a human, in the context of the present invention should be sufficient to effect a therapeutic response in the mammal over a reasonable timeframe. One skilled in the art will recognize that the selection of the exact dose and composition and the most appropriate delivery regimen will also be influenced by *inter alia* the pharmacological properties of the formulation, the nature and severity of the condition being treated, and the physical condition and mental acuity of the recipient, as well as the potency of the specific compound, the age, condition, body weight, sex and response of the patient to be treated, and the stage/severity of the disease, as well as genetic differences between patients.

Administration of active ingredients may be continuous or intermittent (e.g. by bolus injection). The dosage may also be determined by the timing and frequency of administration.

Suitable doses of active ingredients include those referred to in the medical literature, such as *Martindale – The Complete Drug Reference (34th Edition)* and the documents referred to therein, the relevant disclosures in all of which documents are hereby incorporated by reference. Suitable doses of active ingredients are therefore in the range of about 0.01 mg/kg of body weight to about 1,000 mg/kg of body weight. More preferred ranges are about 0.1 mg/kg to about 20 mg/kg on a daily basis, when given orally.
However, suitable doses of mast cell inhibitors are known to those skilled in the art. For example, peroral doses may be in the range of about 0.1 mg to about 1.2 g, such as about 0.5 mg to about 900 mg, per day, irrespective of whether the formulation employed is a combined preparation or a kit of parts as hereinbefore described.

In this respect, suitable peroral doses that may be mentioned are as follows:

(1) for tazanolast, suitable lower limits of daily dose ranges are about 15 mg, such as about 25 mg, such as about 30 mg, such as about 50 mg, such as about 75 mg, such as about 100 mg, such as about 225 mg; and suitable upper limits are about 750 mg, such as about 500 mg, such as about 450 mg, such as about 350 mg, such as about 300 mg, such as about 225 mg, such as about 150 mg, such as about 80 mg, such as about 40 mg;

(2) for repirinast, suitable lower limits of daily dose ranges are about 15 mg, such as about 25 mg, such as about 50 mg, such as about 75 mg, such as about 100 mg, such as about 150 mg; and suitable upper limits are about 1 g, such as about 900 mg, such as about 600 mg, such as about 400 mg, such as about 350 mg, such as about 300 mg, such as about 150 mg, such as about 100 mg, such as about 50 mg;

(3) for amlexanox, suitable lower limits of daily dose ranges are about 5 mg, such as about 10 mg, such as about 20 mg, such as about 30 mg, such as about 35 mg, such as about 50 mg, such as about 75 mg; and suitable upper limits are about 500 mg, such as about 300 mg, such as about 275 mg, such as about 250 mg, such as about 200 mg, such as about 180 mg, such as about 150 mg, such as about 100 mg, such as about 60 mg, such as about 30 mg;

(4) for tranilast, suitable lower limits of daily dose ranges are about 25 mg, such as about 50 mg, such as about 75 mg, such as about 100 mg, such as about 150 mg, such as about 200 mg, such as about 300 mg; and suitable upper limits are to about 1 g, such as about 900 mg, such as about 800 mg, such as about 700 mg, such as about 600 mg, such as about 500 mg, such as about 250 mg, such as about 100 mg, such as about 50 mg; and
(5) for ketotifen, suitable lower limits of daily dose ranges are about 0.05 mg, such as about 0.1 mg, such as about 0.2 mg, such as about 0.3 mg, such as about 0.4 mg, such as about 0.5 mg; and suitable upper limits are about 5 mg, such as about 4 mg, such as about 3.5 mg, such as about 3 mg, such as about 2.5 mg, such as about 2.0 mg, such as about 1.0 mg, such as about 0.6 mg, such as about 0.3 mg, per day, irrespective of whether the formulation employed is a combined preparation or a kit of parts as hereinbefore described.

Similarly, suitable doses of statins are known to those skilled in the art. Suitable lower limits of peroral doses are therefore typically about 0.5 mg, such as about 1 mg, such as about 2 mg, such as about 5 mg, such as about 8 mg, such as about 10 mg; and suitable upper limits are about 150 mg, such as about 100 mg, such as about 90 mg, such as about 80 mg, such as about 50 mg, such as about 20 mg, such as about 10 mg, such as about 6 mg, such as about 3 mg, per day, irrespective of whether the formulation employed is a combined preparation or a kit of parts as hereinbefore described. For pitavastatin, suitable lower limits of peroral doses are about 0.1 mg, such as about 0.2 mg, such as about 0.5 mg, such as about 0.75 mg, such as about 1 mg; and suitable upper limits are about 10 mg, such as about 5 mg, such as about 4 mg, such as about 2 mg, such as about 1.5 mg, such as about 1.0 mg, such as about 0.8 mg, such as about 0.5 mg, per day, irrespective of whether the formulation employed is a combined preparation or a kit of parts as hereinbefore described.

In any event, the medical practitioner, or other skilled person, will be able to determine routinely the actual dosage, which will be most suitable for an individual patient. The above-mentioned dosages are exemplary of the average case; there can, of course, be individual instances where higher or lower dosage ranges are merited, and such are within the scope of this invention.

Wherever the word "about" is employed herein, for example in the context of doses of active ingredients, it will be appreciated that such variables are approximate and as such may vary by ± 10%, for example ± 5% and preferably ± 2% (e.g. ± 1%) from the numbers specified herein.
For the avoidance of doubt, the following specific combinations are disclosed herein:

(1) those in which the mast cell inhibitor (a) is acitazanolast (an active metabolite of tazanolast), or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in the following list: atorvastatin, rosuvastatin, simvastatin, lovastatin, pravastatin, fluvastatin, pitavastatin, NO-enhancing/releasing statins (e.g. NCX-6560/nitroatorvastatin and NCX-6550/nitropravastatin), or a pharmaceutically-acceptable salt or solvate of any of these compounds (which list is referred to hereinafter as List A);

(2) those in which the mast cell inhibitor (a) is acrivastine, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A;

(3) those in which the mast cell inhibitor (a) is andolast, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A;

(4) those in which the mast cell inhibitor (a) is amlexanox, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A;

(5) those in which the mast cell inhibitor (a) is astemizole, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A;

(6) those in which the mast cell inhibitor (a) is azelastine, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A;

(7) those in which the mast cell inhibitor (a) is carebastine, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A;

(8) those in which the mast cell inhibitor (a) is cetirizine, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A;

(9) those in which the mast cell inhibitor (a) is cromoglycate, or a pharmaceutically-acceptable salt (e.g. disodium cromoglycate) or solvate thereof, and the statin (b) is selected from any one compound in List A;
(10) those in which the mast cell inhibitor (a) is desloratadine, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A;

(11) those in which the mast cell inhibitor (a) is ebastine, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A;

(12) those in which the mast cell inhibitor (a) is fexofenadine, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A;

(13) those in which the mast cell inhibitor (a) is ketotifen, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A;

(14) those in which the mast cell inhibitor (a) is levocabastine, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A;

(15) those in which the mast cell inhibitor (a) is levocetirizine, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A;

(16) those in which the mast cell inhibitor (a) is loratadine, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A;

(17) those in which the mast cell inhibitor (a) is mizolastine, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A;

(18) those in which the mast cell inhibitor (a) is MY-1250, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A;

(19) those in which the mast cell inhibitor (a) is nedocromil, or a pharmaceutically-acceptable salt (e.g. nedocromil sodium) or solvate thereof, and the statin (b) is selected from any one compound in List A;

(20) those in which the mast cell inhibitor (a) is norastemizole, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A;
(21) those in which the mast cell inhibitor (a) is olopatadine, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A;

(22) those in which the mast cell inhibitor (a) is oxatomide, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A;

(23) those in which the mast cell inhibitor (a) is repirinast, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A;

(24) those in which the mast cell inhibitor (a) is tazanolast, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A;

(25) those in which the mast cell inhibitor (a) is terfenadine, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A; and

(26) those in which the mast cell inhibitor (a) is tranilast, or a pharmaceutically-acceptable salt or solvate thereof, and the statin (b) is selected from any one compound in List A.

For the avoidance of doubt, preferred features of combination products according to the invention mentioned hereinbefore or hereinafter may be imported into/applied to any one of the above-mentioned mast cell inhibitor/platelet aggregation inhibiting drug combinations (1) to (26).

The combination products/methods described herein may have the advantage that, in the treatment of the conditions mentioned hereinbefore, they may be more convenient for the physician and/or patient than, be more efficacious than, be less toxic than, have a broader range of activity than, be more potent than, produce fewer side effects than, or that it/they may have other useful pharmacological properties over, similar methods (treatments) known in the prior art for use in the treatment of inflammatory disorders (such as atherosclerosis and associated cardiovascular conditions) or otherwise.

The invention is illustrated by the following examples.
Examples

Example 1
MonoMac-6 Cell Inflammatory Mediator Release Assays

MonoMac-6 (MM6) cells (Ziegler-Heitbrock et al, Int. J. Cancer, 41, 456 (1988)) are cultured (37°C/5% CO₂) in RPMI-1640 medium supplemented with 1 mM sodium pyruvate, 1× nonessential amino acids, 1-100 μg/mL insulin, 1 mM oxalacetic acid, 100 units/mL penicillin, 100 μg/mL streptomycin and 10% (v/v) fetal bovine serum. For differentiation, TGFβ (2 ng/mL) and 1,25(OH)₂D₃ (50 nM) are added, generally for about 2-4 days.

To stimulate release of the inflammatory mediator leukotriene B₄ (LTB₄), differentiated or undifferentiated MM6 cells (at 1-15×10⁶/mL; 0.5-1 mL) are incubated for 5-30 minutes (at 37°C in PBS with calcium) with 25-50 μM arachidonic acid and 2-10 μM calcium ionophore A23187 (A23187 may also be used without arachidonic acid). The MM6 cells may also be stimulated with documented biologically active concentrations of adenosine diphosphate (ADP), and/or the thromboxane analogue U-46619, with or without A23187 and/or arachidonic acid as above. The MM6 incubations/stimulations above may also be performed in the presence of human platelets (from healthy donor blood) with an MM6:platelet ratio of 1:10 to 1:10000. The incubations/stimulations are stopped with two volumes of cold methanol and prostaglandin B₂ (PGB₂) added as internal standard. The samples are centrifuged and the supernatants are diluted with water to reach a final methanol concentration of 30% and pH is adjusted to 3-4. Arachidonic acid metabolites in the supernatant are extracted on preconditioned (1 mL methanol followed by 1 mL H₂O) C18 solid phase columns (Sorbent Technology, U.K.). Metabolites are eluted with methanol, whereafter one volume of water is added to the eluate. For reverse phase HPLC, 76 μL of each sample is mixed with 39 μL H₂O (other volume ratios may also be used). A Waters RCM 8×10 column is eluted with methanol/acetonitrile/H₂O/acetic acid (30:35:35:0.01 v/v) at 1.2 mL/min. The absorbance of the eluate is monitored at 270 nm for detection and quantitation of PGB₂ and LTB₄. Commercially available enzyme immuno-assay kits (EIA/ELISA kits) for measuring LTB₄ may also be used according to instructions from the kit manufacturer(s). Using commercially
available enzyme immuno-assay kits (EIA/ELISA kits) according to instructions from the manufacturer(s), supernatants from the MM6 incubations/stimulations above may also be analysed with regard to content of the inflammatory mediators prostaglandin E₂ (PGE₂) and/or thromboxane B₂ (TXB₂).

Stock solutions of mast cell inhibitors (tranilast, ketotifen, repirinast (or its active metabolite, MY-1250), amlexanox or tazanolast) and statins (pitavastatin, fluvastatin, lovastatin, pravastatin or, preferably, simvastatin, rosuvastatin or atorvastatin) are prepared in ethanol, DMSO, N-methyl-2-pyrrolidone, PEG 400, propylene glycol and/or deionized water or physiological saline solution, with sonication, warming and adjustment of pH as needed (other vehicles may also be used). Cells are incubated (at 37°C/5% CO₂ in PBS without calcium or in RPMI-1640 with 1-10% fetal bovine serum, with or without supplements) with test drug(s) (mast cell inhibitor in combination with statin, mast cell inhibitor alone and statin alone) for 1 minute to 24 hours prior to MM6 stimulation for inflammatory mediator release (test drug(s) may also be added simultaneously with MM6 stimulation). The drugs are added to reach final concentrations of 1 nM to 100 μM (for comparison, some experiments are performed without the drugs).

To stimulate release of inflammatory cytokines and chemokines such as IL-1β, IL-6, TNF, IL-8, IL-10, IL-12p70, MCP-1, differentiated or undifferentiated MM6 cells (at 1-10×10⁶/mL) are incubated (37°C/5% CO₂) for 4-24 hours (in RPMI-1640 with 1-10% fetal bovine serum, with or without supplements) with lipopolysaccharide (LPS, final concentration 1-100 ng/mL), phorbol-12-myristate-13-acetate (PMA, final concentration 1-100 ng/mL) or an LPS/PMA mixture. The MM6 cells may also be stimulated with documented biologically active concentrations of adenosine diphosphate (ADP), arachidonic acid, calcium ionophore A23187 and/or the thromboxane analogue U-46619, with or without PMA and/or LPS as above. The MM6 cell incubations/stimulations may also be performed in the presence of human platelets (from healthy donor blood) with an MM6:platelet ratio of 1:10 to 1:10000. Cells are incubated (at 37°C/5% CO₂ in RPMI-1640 with 1-10% fetal bovine serum, with or without supplements) with test drug(s) (mast cell inhibitor in combination with statin, mast cell inhibitor alone and statin alone; as above regarding stock solutions and concentrations) for 1 minute to 24 hours prior to MM6 stimulation (for comparison, some experiments are...
performed without the drugs; test drug(s) may also be added simultaneously with MM6 stimulation). After spinning down the cells after the incubations/stimulations, human cytokine and chemokine concentrations in the supernatants are quantitated using a Cytometric Bead Array (BD Biosciences Pharmingen, San Diego, USA) according to the manufacturer’s instructions. Commercially available enzyme immuno-assay kits (EIA/ELISA kits) for measuring cytokines and chemokines may also be used according to instructions from the manufacturer(s). The cell pellets are stored frozen (-80°C) in RLT buffer (QIAGEN, Valencia, CA) until further processing for microarray experiments (see Example 12 below).

Example 2

Human Peripheral Blood Cell Inflammatory Mediator Release Assays

Human peripheral blood mononuclear cells (PBMC) or polymorphonuclear cells (PMN) are isolated by Lymphoprep or Ficoll-Paque separation (with or without Polymorphoprep separation and/or Dextran sedimentation) from healthy donor blood using established protocols.

To stimulate release of the inflammatory mediator leukotriene B₄ (LTB₄), PBMC or PMN (at 1-15×10⁵/mL; 0.5-1 mL) are incubated for 5-30 minutes (at 37°C in PBS with calcium) with 25-50 μM arachidonic acid and 2-10 μM calcium ionophore A23187 (A23187 may also be used without arachidonic acid). The PBMC/PMN may also be stimulated with documented biologically active concentrations of adenosine diphosphate (ADP), and/or the thromboxane analogue U-46619, with or without A23187 and/or arachidonic acid as above. The PBMC/PMN incubations/stimulations above may also be performed in the presence of human platelets (from healthy donor blood) with a PBMC/PMN:platelet ratio of 1:10 to 1:10000. The incubations/stimulations are stopped with two volumes of cold methanol and prostaglandin B₂ added as internal standard. The samples are centrifuged and the supernatants are diluted with water to reach a final methanol concentration of 30% and pH is adjusted to 3-4. Arachidonic acid metabolites in the supernatant are extracted on preconditioned (1 mL methanol followed by 1 mL H₂O) C18 solid phase columns (Sorbent Technology, U.K.). Metabolites are eluted with methanol, after which one volume of water is added to the eluate. For
reverse phase HPLC, 76 µL of each sample is mixed with 39 µL H₂O (other volume ratios may also be used). A Waters RCM 8×10 column is eluted with methanol/acetonitrile/H₂O/acetic acid 30:35:35:0.01 v/v) at 1.2 mL/minute. The absorbance of the eluate is monitored at 270 nm for detection and quantitation of PGB₂ and LTB₄. Commercially available enzyme immuno-assay kits (EIA/ELISA kits) for measuring LTB₄ may also be used according to instructions from the manufacturer(s). Using commercially available enzyme immuno-assay kits (EIA/ELISA kits) according to instructions from the manufacturer(s), supernatants from the PBMC/PMN incubations/stimulations above may also be analysed with regard to content of the inflammatory mediators prostaglandin E₂ (PGE₂) and/or thromboxane B₂ (TXB₂). Cells are incubated (at 37°C in PBS without calcium or in RPMI-1640 with 0-10% fetal bovine serum) with test drug(s) (mast cell inhibitor (tranilast, ketotifen, repirinast (or its active metabolite, MY-1250), amlexanox or tazanolast) in combination with statin (pitavastatin, fluvastatin, lovastatin, pravastatin or, preferably, simvastatin, rosuvastatin or atorvastatin), mast cell inhibitor alone and statin alone) for 1 minute to 24 hours prior to PBMC/PMN stimulation for inflammatory mediator release (see Example 1 above for details regarding drug stock solutions and concentrations; test drug(s) may also be added simultaneously with PBMC/PMN stimulation). For comparison, some experiments are performed without the drugs.

To stimulate release of inflammatory cytokines and chemokines such as IL-1β, IL-6, TNF, IL-8, IL-10, IL-12p70, MCP-1, PBMC/PMN (at 1-10×10⁶/mL) are incubated (37°C/5% CO₂) for 4-24 hours (in RPMI-1640 with 1-10% fetal bovine serum) with lipopolysaccharide (LPS, final concentration 1-100 ng/mL), phorbol-12-myristate-13-acetate (PMA, final concentration 1-100 ng/mL) or an LPS/PMA mixture. The PBMC/PMN cells may also be stimulated with documented biologically active concentrations of adenosine diphosphate (ADP), arachidonic acid, calcium ionophore A23187 and/or the thromboxane analogue U-46619, with or without PMA and/or LPS as above. The PBMC/PMN incubations/stimulations may also be performed in the presence of human platelets (from healthy donor blood) with a PBMC/PMN:platelet ratio of 1:10 to 1:10000. Cells are incubated (at 37°C/5% CO₂ in RPMI-1640 with 1-10% fetal bovine serum) with test drug(s) (mast cell inhibitor in combination with statin, mast cell inhibitor alone and statin alone, as above) for 1 minute to 24 hours prior to PBMC/PMN stimulation for
cytokine/chemokine release (for comparison, some experiments are performed without the drugs; test drug(s) may also be added simultaneously with PBMC/PMN stimulation). After spinning down the cells after the incubations/stimulations, human cytokine and chemokine concentrations in the supernatants are quantitated using a Cytometric Bead Array (BD Biosciences Pharmingen, San Diego, USA) according to the manufacturer's instructions. Commercially available enzyme immuno-assay kits (EIA/ELISA kits) for measuring cytokines and chemokines may also be used according to instructions from the manufacturer(s). The cell pellets are stored frozen (-80°C) in RLT buffer (QIAGEN, Valencia, CA) until further processing for microarray experiments (see Example 12 below).

Example 3
Mouse Mast Cell Inflammatory Mediator Release Assays

Bone marrow–derived cultured mouse mast cells (mMCs) are obtained by culturing bone marrow cells from C57BL/6 mice. The bone marrow cells (from mouse femurs flushed with PBS) are cultured (37°C/5% CO₂) in 10% WEHI-3 or X-63 enriched conditioned RPMI 1640, supplemented with 10% heat-inactivated fetal bovine serum, 4 mM L-glutamine, 50 μM 2-mercaptoethanol, 1 mM sodium pyruvate, 0.1 mM non-essential amino acids, 10 mM Hepes, and 100 μg/mL penicillin/streptomycin. Development of mast cells (which grow in suspension) is confirmed by expression of Kit (by flow-cytometry) on the cell surface and/or by toluidine blue staining (generally after at least 3-5 weeks of culture).

Bone marrow–derived cultured mouse mast cells of connective tissue type (CT-type) are obtained by culturing bone marrow cells from C57BL/6 mice. The bone marrow cells are cultured (37°C/5% CO₂) in RPMI-1640 medium containing 10% filtered FCS, 4 mM L-glutamine, 1 mM sodium pyruvate, 100 IU/mL penicillin G, 100 μg/mL streptomycin, 0.1 mM MEM non-essential amino acids and 50 μM 2-ME, supplemented with 50 ng/mL recombinant murine stem cell factor and 1 ng/mL murine recombinant IL-4. Mast cell development is confirmed by expression of Kit (by flow-cytometry) on the cell surface and/or by toluidine blue staining (generally after at least 3-5 weeks of culture).
Mouse mast cell lines MC/9 (obtained from ATCC, Product no CRL-8306) and C1.MC/C57.1 (Young et al., Proc. Natl. Acad. Sci. USA, 84, 9175 (1987)) may also be used. The MC/9 cells are cultured according to instructions from ATCC (http://www.atcc.org), and C1.MC/C57.1 cells are cultured as described in Rumsaeng et al (J. Immunol. 158, 1353 (1997)).

For activation/stimulation through cross-linking of the IgE-receptor, the cultured mast cells are initially sensitized for 90 minutes at 37°C (5% CO₂) with a monoclonal mouse anti-TNP IgE-antibody (IgE-I-b4, ATCC, Rockville, MD, USA), used as a 15% hybridoma supernatant. Cells to be used in the N-acetyl-beta-D-hexosaminidase (or histamine) or cytokine/chemokine release assays (see below) are then subjected to two washings with PBS and re-suspended in RPMI-1640 medium supplemented with 0.2% bovine serum albumin (BSA) (Sigma) before the cells (at 0.5-10x10⁶/mL) are activated by addition of 100 ng/mL TNP-BSA (Biosearch Technologies, San Francisco, CA) with a coupling ratio of 9/1. The incubation (37°C/5% CO₂) with TNP-BSA is 30 minutes for the analysis of beta-hexosaminidase (or histamine) release and 4-24 hours for analysis of cytokine and chemokine release. Cells are incubated (37°C/5% CO₂) with test drug(s) (mast cell inhibitor (tranilast, ketotifen, repirinast (or its active metabolite, MY-1250), amlexanox or tazanolast) in combination with statin (pitavastatin, fluvastatin, lovastatin, pravastatin or, preferably, simvastatin, rosuvastatin or atorvastatin), mast cell inhibitor alone and statin alone) for 1 minute to 24 hours prior to addition of TNP-BSA (see Example 1 above for detail regarding drug stock solutions and concentrations; test drug(s) may also be added simultaneously with TNP-BSA stimulation). For comparison, some experiments are performed without the drugs. After the incubations/stimulations, the samples are centrifuged and the supernatants analysed with regard to content of beta-hexosaminidase (or histamine) and/or cytokines/chemokines as described below. The cell pellets are stored frozen (-80°C) in RLT buffer (QIAGEN, Valencia, CA) until further processing for microarray experiments (see Example 12 below).

For detection of IgE-dependent release of the granular mast cell enzyme beta-hexosaminidase, an enzymatic colourimetric assay is used. 60 μL from each well supernatant is transferred to a 96 well plate and mixed with an equal volume of
substrate solution (7.5 mM p-nitrophenyl-N-acetyl-b-D-glucosaminide dissolved in 80 mM citric acid, pH 4.5). The mixture is incubated on a rocker platform for 2 hours at 37°C. After incubation, 120 μL of glycine (0.2 M, pH 10.7) is added to each well and the absorbance at 405 and 490 nm is measured using an Emax Precision Microplate Reader (Molecular Devices, Sunnyvale, CA). Release of beta-hexosaminidase is expressed as a percentage of total beta-hexosaminidase determined after cell lysis. For detection of IgE-dependent release of granular mast cell histamine, commercially available enzyme immuno-assay kits (EIA/ELISA kits) for measuring histamine is used according to instructions from the manufacturer(s).

For detection of IgE-dependent release of mouse mast cell cytokines and chemokines such as IL-6, IL-4, TNF, IL-1β, KC, MCP-1, IL-10, IL-12p70, IFNγ, a Cytometric Bead Array (BD Biosciences Pharmingen, San Diego, USA) is used according to the manufacturer's instructions. Commercially available enzyme immuno-assay kits (EIA/ELISA kits) for measuring cytokines and chemokines may also be used according to instructions from the manufacturer(s).

In addition to the mast cell experiments above, mast cell-inhibiting effects of the test drug(s) (as above) may also be studied using well established and documented experimental approaches and assays for analysing induced (with e.g. anti-IgE (with or without pretreatment of the cells with rat or mouse IgE), concanavalin A, protein L, compound 48/80, ionophore A23187, PMA) release of histamine, beta-hexosaminidase or tryptase from freshly isolated peritoneal rat or mouse mast cells.

Example 4
RAW 264.7 Cell Inflammatory Mediator Release Assays

RAW 264.7 cells are cultured (37°C/5% CO2) in DMEM, supplemented with 100 units/mL penicillin, and 100 μg/mL streptomycin and 10% fetal bovine serum.

To stimulate release of inflammatory cytokines and chemokines such as IL-6, TNF, IL-1β, KC, MCP-1, IL-10, IL-12p70, IFNγ, RAW 264.7 cells (at 1-10×10^5/mL) are incubated (37°C/5% CO2) for 4-24 hours (in DMEM with 1-10% fetal bovine
serum, with or without supplements) with lipopolysaccharide (LPS, final concentration 1-100 ng/mL), phorbol-12-myristate-13-acetate (PMA, final concentration 1-100 ng/mL) or an LPS/PMA mixture. The RAW 264.7 cells may also be stimulated with documented biologically active concentrations of adenosine diphosphate (ADP), arachidonic acid, calcium ionophore A23187 and/or the thromboxane analogue U-46619, with or without PMA and/or LPS as above. The RAW 264.7 incubations/stimulations may also be performed in the presence of mouse or human (from healthy donor blood) platelets with a RAW 264.7:platelet ratio of 1:10 to 1:10000. Cells are incubated (at 37°C/5% CO₂ in DMEM with 1-10% fetal bovine serum, with or without supplements) with test drug(s) (mast cell inhibitor (tranilast, ketotifen, repirinast (or its active metabolite, MY-1250), amlexanox or tazanolast) in combination with statin (pitavastatin, fluvastatin, lovastatin, pravastatin or, preferably, simvastatin, rosuvastatin or atorvastatin), mast cell inhibitor alone and statin alone) for 1 minute to 24 hours prior to RAW 264.7 stimulation for cytokine/chemokine release (see Example 1 above for details regarding drug stock solutions and concentrations; test drug(s) may also be added simultaneously with RAW 264.7 stimulation). For comparison, some experiments are performed without the drugs. After spinning down the cells after the incubations/stimulations, mouse cytokine and chemokine concentrations in the supernatants are quantitated using a Cytometric Bead Array (BD Biosciences Pharmingen, San Diego, USA) according to the manufacturer's instructions. Commercially available enzyme immuno-assay kits (EIA/ELISA kits) for measuring cytokines and chemokines may also be used according to instructions from the manufacturer(s). The cell pellets are stored frozen (-80°C) in RLT buffer (QIAGEN, Valencia, CA) until further processing for microarray experiments (see Example 12 below).

Example 5
Rat Paw Inflammation Induced by Carrageenan

This assay is essentially according to that described by Winter et al (Proc. Soc. Exp. Biol. Med., 111, 544 (1962)). Test drug(s) (mast cell inhibitor (tranilast, ketotifen, repirinast (or its active metabolite, MY-1250), amlexanox or tazanolast) in combination with statin (pitavastatin, fluvastatin, lovastatin, pravastatin or, preferably, simvastatin, rosuvastatin or atorvastatin), mast cell inhibitor alone and
statin alone) at doses of 0.03 to 50 mg/kg are administered subcutaneously, intravenously, intraperitoneally or orally every 2-24 hours to male Sprague-Dawley or Wistar rats weighing approximately 150-400 g (for comparison, some experiments are performed without the drugs). Prior to administration, stock solutions of drugs (see Example 1 above) are diluted as needed in e.g. 0.5% or 1% methylcellulose in water (for oral treatment) or saline (for parenteral administration). Other vehicles may also be used. 1 minute to 24 hours after the first drug dose, a 0.5, 1.0 or 2.0% solution of carrageenan (Type IV Lambda, Sigma Chemical Co.) in 0.9% saline is injected into the subplantar region of one hind paw of anaesthetised rats. Before, and at indicated intervals 3-24 hours after carrageenan injection, the volume of the injected paw is measured with a displacement plethysmometer connected to a pressure transducer with a digital indicator. The degree of swelling indicates the degree of inflammatory edema. 3-24 hours after carrageenan injection, the rats are sacrificed and perfused with saline or PBS (other perfusion media may also be used). Plantar soft tissue biopsies from the inflamed paws are collected, weighed, stored frozen (samples for microarray analysis are frozen at -80°C in TRlzol, Invitrogen, Carlsbad, CA), and, as described below (Example 10 and 12), subsequently analyzed with regard to 1) myeloperoxidase (MPO) accumulation, reflecting inflammatory neutrophil leukocyte accumulation; and/or 2) tissue gene expression using microarray technology. Non-inflamed paw tissue from untreated rats provides base-line levels of MPO and gene expression. Tissue inflammation may also be studied using conventional histological and immunohistochemical techniques. Paw inflammation may also be induced by subplantar injection of compound 48/80 (48/80, 1-5 μg in 50-100 μl PBS or saline) (instead of carrageenan), followed by measurement of inflammatory paw swelling and collection of tissue biopsies for microarray and/or MPO analysis (as above) 30 min to 8 hours after 48/80 injection.

Example 6
Mouse Ear Inflammation Induced by Croton Oil

This assay is essentially according to that described by Tonelli et al. (Endocrinology 77, 625 (1965)) (other strains of mice may also be used). Test drug(s) (mast cell inhibitor (tranilast, ketotifen, repirinast (or its active metabolite,
MY-1250), amlexanox or tazanolast) in combination with statin (pitavastatin, fluvastatin, lovastatin, pravastatin or, preferably, simvastatin, rosuvastatin or atorvastatin), mast cell inhibitor alone and statin alone) at doses of 0.03 to 50 mg/kg are administered subcutaneously, intravenously, intraperitoneally or orally every 2-24 hours (for comparison, some experiments are performed without the drugs). Prior to administration, stock solutions of drugs (see Example 1 above) are diluted as needed in e.g. 0.5% or 1% methylcellulose in water (for oral treatment) or saline (for parenteral administration). Other vehicles may also be used. 1 minute to 24 hours after the first drug dose, 10-30 μL of a 2.0 or 4.0% solution of croton oil in acetone or ethanol is applied topically to one or both ears. At indicated intervals 4-12 hours after croton oil application, the animals are sacrificed, and punch biopsies of the ears are weighed to determine the inflammatory swelling of the ears (ear thickness may also be measured to determine the swelling). The biopsies from the inflamed ears are collected, stored frozen (samples for microarray analysis are frozen at -80°C in TRIzol), and, as described below (Example 10 and 12), subsequently analyzed with regard to 1) myeloperoxidase (MPO) accumulation, reflecting inflammatory neutrophil leukocyte accumulation; and/or 2) tissue gene expression using microarray technology. Non-inflamed ear biopsies from untreated mice provide base-line levels of swelling, MPO and gene expression. Tissue inflammation may also be studied using conventional histological and immunohistochemical techniques.

Example 7

Mouse Ear Inflammation Induced by Phorbol Ester or Arachidonic Acid

These assays are essentially according to those described by Chang et al (Eur. J. Pharmacol. 142, 197 (1987)) (although other strains of mice may also be used). Test drug(s) (mast cell inhibitor (tranilast, ketotifen, repirinast (or its active metabolite, MY-1250), amlexanox or tazanolast) in combination with statin (pitavastatin, fluvastatin, lovastatin, pravastatin or, preferably, simvastatin, rosuvastatin or atorvastatin), mast cell inhibitor alone and statin alone) at doses of 0.03 to 50 mg/kg are administered subcutaneously, intravenously, intraperitoneally or orally every 2-24 hours to male or female mice (for comparison, some experiments are performed without the drugs). Prior to
administration, stock solutions of drugs (see Example 1 above) are diluted as needed in e.g. 0.5% or 1% methylcellulose in water (for oral treatment) or saline (for parenteral administration). Other vehicles may also be used. 1 minute to 24 hours after the first drug dose, 1-10 μg of phorbol 12-myristate 13-acetate (PMA), tetradecanoyl phorbol acetate (TPA), or 1-5 mg arachidonic acid in 10-30 μl acetone or ethanol is applied topically to one or both ears. 4-12 hours after PMA or TPA application, and 30 min to 6 hours after arachidonic acid application, the animals are sacrificed, and punch biopsies of the ears are weighed to determine the inflammatory swelling of the ears (ear thickness may also be measured to determine the swelling). The biopsies from the inflamed ears are collected, stored frozen (samples for microarray analysis are frozen at -80°C in TRIzol), and, as described below (Example 10 and 12), subsequently analyzed with regard to 1) myeloperoxidase (MPO) accumulation, reflecting inflammatory neutrophil leukocyte accumulation; and/or 2) tissue gene expression using microarray technology. Non-inflamed ear biopsies from untreated mice provide base-line levels of swelling, MPO and gene expression. Tissue inflammation may also be studied using conventional histological and immunohistochemical techniques.

Example 8
Acute Tissue Reaction and Inflammation in Response to Injury in Mouse and Rat

Male CBA or NMRI mice weighing approximately 15-30 g, or male Wistar or Sprague-Dawley rats weighing approximately 150-450 g, are used (other strains of mice and rats may also be used). Acute tissue injury and acute inflammation is achieved in the distal part of the tail or one of the ears using a scalpel under aseptic conditions. One, two or three parallel, approximately 5-15 mm long, longitudinal cuts are made through all layers of the skin. Test drug(s) (mast cell inhibitor (tranilast, ketotifen, repirinast or its active metabolite, MY-1250), amlnexanox or tazanolast) in combination with statin (pitavastatin, fluvastatin, lovastatin, pravastatin or, preferably, simvastatin, rosuvastatin or atorvastatin), mast cell inhibitor alone and statin alone) at doses of 0.03 to 50 mg/kg are administered subcutaneously, intravenously, intraperitoneally or orally every 2-24 hours, with the first dose given 1 minute to 24 hours before tissue injury (for
comparison, some experiments are performed without the drugs). Prior to administration, stock solutions of drugs (see Example 1 above) are diluted as needed in e.g. 0.5% or 1% methylcellulose in water (for oral treatment) or saline (for parenteral administration). Other vehicles may also be used. 2-48 hours after injury, the animals are killed and the injured segments of the tissues are removed, weighed and stored frozen (samples for microarray analysis are frozen at -80°C in TRizol), and, as described below (Example 10 and 12), subsequently analyzed with regard to 1) myeloperoxidase (MPO) accumulation, reflecting inflammatory neutrophil leukocyte accumulation; and/or 2) tissue gene expression using microarray technology. Corresponding non-injured/non-inflamed tissues from untreated animals provide base-line levels of MPO and gene expression. Tissue reactions and inflammation in response to injury may also be studied using conventional histological and immunohistochemical techniques.

Example 9
Acute Tissue Reaction and Inflammation in Response to Injury in Rat

Male Sprague-Dawley rats weighing 350-500 g are used (although other strains of rats may also be used). Animals are anesthetized with Isoflurane in oxygen and acute tissue injury and acute inflammation is achieved in the left common carotid artery as follows: After surgical exposure of the left common, external and internal carotid arteries and temporary cessation of local blood flow with temporary ligatures, a balloon catheter (2-French Fogarty) is passed through the external carotid into the aorta. Next, the balloon is inflated with sufficient water to distend the common carotid artery and then pulled back to the external carotid. This procedure is repeated three times, and then the catheter is removed, the external carotid ligated and the wound closed. Test drug(s) (mast cell inhibitor (tranilast, ketotifen, repirinast (or its active metabolite, MY-1250), amlexanox or tazanolast) in combination with statin (pitavastatin, fluvastatin, lovastatin, pravastatin or, preferably, simvastatin, rosuvastatin or atorvastatin), mast cell inhibitor alone and statin alone) at doses of 0.03 to 50 mg/kg are administered subcutaneously, intravenously, intraperitoneally or orally every 2-24 hours, with the first dose given 1 minute to 24 hours before tissue injury (for comparison, some experiments are performed without the drugs). Prior to administration, stock solutions of drugs (see Example 1 above) are diluted as needed in e.g. 0.5% or
1% methylcellulose in water (for oral treatment) or saline (for parenteral administration). Other vehicles may also be used. 2-48 hours after injury, the animals are anesthetized with Isoflurane in oxygen and their left carotid arteries exposed. Clamps are put on the very proximal part of the common and internal carotid arteries, respectively, and then the vessel between the clamps is gently flushed with sterile saline and/or TRIzol, removed, weighed and stored frozen (samples for microarray analysis are frozen at -80°C in TRIzol), and, as described below (Example 10 and 12), subsequently analyzed with regard to 1) myeloperoxidase (MPO) accumulation, reflecting inflammatory neutrophil leukocyte accumulation; and/or 2) tissue gene expression using microarray technology. Corresponding non-injured/inflamed vessels from untreated rats provide base-line levels of MPO and gene expression. Tissue reactions and inflammation in response to injury may also be studied using conventional histological and immunohistochemical techniques.

Example 10
Inflammatory Accumulation of Tissue Myeloperoxidase

The enzyme myeloperoxidase (MPO) is abundant in neutrophil leukocytes and is often used as a marker for the detection of neutrophil accumulation in inflamed tissue. To determine inflammatory myeloperoxidase accumulation in inflamed mouse and rat tissues (as described in Example 5-9 above), the tissues are homogenised in 0.5% hexadecyltrimethyl-ammonium bromide, and freeze-thawed. The MPO activity of the supernatant is determined spectrophotometrically as the change in absorbance at 650 nm (25°C) occurring in the redox reaction of H₂O₂–tetramethylbenzidine catalysed by MPO. Values are expressed as MPO units/mg tissue.

Example 11
Smooth Muscle Cell Assays

Rat aortic smooth muscle cells (RASMCs) are isolated as previously described (Hedin et al, Arterioscler. Thromb. Vasc. Biol., 17, 1977 (1997)). Cells are cultured (37°C/5% CO₂) in Ham’s medium F-12 supplemented with 10% fetal bovine serum, 50 µg/mL L-ascorbic acid, 50 µg/mL streptomycin, 50 IU/mL
penicillin (F-12/10% fetal bovine serum), grown to confluence, serially passaged by trypsinization, and used in experiments after 2-6 passages. RASMCs are seeded in 24-well plates at a density of approximately 4x10^4 cells per well in F-12/10% fetal bovine serum (plates with larger numbers of wells per plate and appropriate lower numbers of cells per well may also be used). After 24 hours, the cells are synchronized in G0/G1 phase by starvation in Ham's medium F-12 supplemented with 0.1% bovine serum albumin (BSA), 50 μg/mL L-ascorbic acid, 50 μg/mL streptomycin and 50 IU/mL penicillin (F-12/0.1% BSA) for 24-48 hours. To estimate DNA synthesis, starved RASMCs are stimulated with either 10 ng/ml IGF-1 or 10% fetal bovine serum for 12-48 hours (other well established mitogens such as PDGF may also be used). Test drug(s) (mast cell inhibitor (tranilast, ketotifen, repirinast (or its active metabolite, MY-1250), amlexanox or tazanolast) in combination with statin (pitavastatin, fluvastatin, lovastatin, pravastatin or, preferably, simvastatin, rosuvastatin or atorvastatin), mast cell inhibitor alone and statin alone) are added 1 minute to 24 hours prior to stimulation (see Example 1 above for details regarding drug stock solutions and concentrations; test drug(s) may also be added simultaneously with stimulation). For comparison, some experiments are performed without the drugs. The cells are labelled with 1 μCi [3H]-thymidine for 8 hours before the end of the stimulation period. The plates are then washed with ice-cold PBS, incubated overnight with ice-cold 10% (w/v) trichloroacetic acid, lysed in 0.2 M sodium hydroxide, and radioactivity is measured in a liquid scintillation counter. The stimulated RASMC proliferation may also be analyzed using commercially available bromodeoxyuridine (BrdU) cell proliferation assays (for example Cell Proliferation ELISA, BrdU, from Roche Applied Science), the cell proliferation reagent WST-1 (Roche Diagnostics Scandinavia AB, Bromma, Sweden) (both according to the manufacturer's instructions), or by cell counting. In separate experiments (to study gene expression), larger numbers of starved RASMCs (1-5 x 10^6 cells per well) are stimulated with 10 ng/ml IGF-1 or 10% fetal bovine serum (or PDGF) as above, or with LPS (1-100 ng/mL), with 1-10% fetal bovine serum for 4-48 hours (all stimuli with and without test drug(s) as above). The cells are then collected and stored frozen (-80°C) in RLT buffer (QIAGEN, Valencia, CA) until further processing for microarray experiments (see Example 12 below).
Human bronchial smooth muscle cells (HBSMCs, Promocell, Heidelberg, Germany) are cultured in DMEM supplemented with 10% FBS, 100 units/mL penicillin, 100 µg/mL streptomycin, 0.12 IU/mL insulin, and with or without 2 µg/mL amphotericin B. Prior to the experiments, cells may be growth arrested for 24 hours in low-FBS (0.3-5%), insulin-free medium. To stimulate formation and release of inflammatory cytokines and chemokines such as IL-8 and eotaxin, HBSMCs (at 80% confluence, corresponding to approximately 8×10^5/25 cm² flask) are incubated (37°C/5% CO₂) for 24-48 hours (in DMEM with 1-10% fetal bovine serum, with or without supplements) with different combinations of IL-1β and TNF-α (both at 1-50 ng/mL). Cells are incubated (at 37°C/5% CO₂ in DMEM with 0.3-10% fetal bovine serum, with or without supplements) with test drug(s) (mast cell inhibitor in combination with statin, mast cell inhibitor alone and statin alone, as above) for 1 minute to 24 hours prior to HBSMC stimulation (see Example 1 above for details regarding drug stock solutions and concentrations; test drug(s) may also be added simultaneously with HBSMC stimulation). For comparison, some experiments are performed without the drugs. After the incubations/stimulations, human cytokine and chemokine concentrations in the supernatants are quantitated using commercially available enzyme immunoassay kits (EIA/ELISA kits) according to instructions from the manufacturer(s).

The cells are then collected and stored frozen (-80°C) in RLT buffer (QIAGEN, Valencia, CA) until further processing for microarray experiments (see Example 12 below).

Example 12

Analysis of Gene Expression

Total RNA from mouse, rat and human tissues (see Example 5 to 9, 15, 16, 19 and 20) is isolated using TRIzol (Invitrogen, Carlsbad, CA) followed by RNeasy cleanup (QIAGEN, Valencia, CA) according to manufacturers' protocols. Total RNA from the cell incubations/stimulations described in the examples above and below (mouse mast cells, MonoMac-6, PBMC, PMN, RAW 264.7, RASMC, HBSMC, NB4, HL-60) is isolated using RNeasy Mini Kit (QIAGEN), with or without RNase-Free DNase set (QIAGEN), according to the manufacturer's protocol(s). Depending on the species from which the different tissues and cells originate, microarray analysis is performed using GeneChip® Human Genome
U133 Plus 2.0 Array, GeneChip® Mouse Genome 430 2.0 Array or GeneChip®
Rat Genome 230 2.0 Array, or corresponding newer version of these chips (all
arrays from Affymetrix, Santa Clara, CA) according to the manufacturer's
protocols. The microarray expression data is analyzed using e.g. GeneChip
Operating Software (Affymetrix) and Bioconductor/R (www.bioconductor.org).
Other relevant software may also be used.

Gene expression from the different species may also be analyzed using Human
Genome Survey Microarray V2.0, Mouse Genome Survey Microarray V2.0 or Rat
Genome Survey Microarray (or corresponding newer version of these arrays)
according to protocols from the manufacturer Applied Biosystems (Foster City,
CA). These microarray expression data are analyzed using e.g. 1700
Chemiluminescent Microarray Analyzer (Applied Biosystems, Foster City, CA)
supplied with an Oracle® database of annotations, GeneSpring 7.2 (Agilent
Technologies, Inc., Palo Alto, CA) and Microarray Suite version 5.0 software
(MAS 5.0, Affymetrix). Other relevant software may also be used.

Gene expression (mRNA levels) may also be analyzed using quantitative or
semi-quantitative PCR. Analysis of gene expression at the protein level may be
analyzed using commercially available enzyme immuno-assay kits (EIA/ELISA
kits) (according to instructions from the manufacturer(s)), or conventional Western
blot and/or immunohistochemical approaches.

Example 13

Cell Proliferation Assays

Proliferation of stimulated and unstimulated mouse mast cells, MonoMac-6 cells,
RAW 264.7 cells, NB4 cells, HL-60 cells and HBSMC described in the examples
above and below (with or without growth arrest for 24-48 hours in 0.1-5% fetal
bovine serum prior to the addition of the respective test drugs and/or stimuli
described in the Examples above and below for 24-72 hours) is measured using
the cell proliferation reagent WST-1 (Roche Diagnostics Scandinavia AB,
Bromma, Sweden) or commercially available bromodeoxyuridine (BrdU) cell
proliferation assays (for example Cell Proliferation ELISA, BrdU, from Roche
Applied Science) according to the manufacturers' instructions. Other conventional tests of cell proliferation may also be used.

Example 14

Platelet Aggregation Tests

Aggregation of rabbit or human platelets (in platelet rich plasma or whole blood) induced by adenosine diphosphate (ADP), arachidonic acid, collagen or the thromboxane analogue U-46619 is analyzed using aggregometry, for example as described by Bertele et al (*Eur. J. Pharmacol.* 85, 331 (1982)). Induced (as above) platelet aggregation may also be analyzed using washed human or rabbit platelets and/or with other established aggregometry or other corresponding methods for measuring platelet aggregation. Test drug(s) (mast cell inhibitor (tranilast, ketotifen, repirinast (or its active metabolite, MY-1250), amlexanox or tazanolast) in combination with statin (pitavastatin, fluvastatin, lovastatin, pravastatin or, preferably, simvastatin, rosvastatin or atorvastatin), mast cell inhibitor alone and statin alone) are added 1-120 minutes prior to induction of platelet aggregation (see Example 1 above for details regarding drug stock solutions and concentrations; test drug(s) may also be added simultaneously with induction of platelet aggregation). For comparison, some experiments are performed without the drugs.

Example 15

Mouse Peritoneal Inflammation-Induced by Zymosan and Other Stimuli

This assay is essentially according to Rao et al (*J. Pharmacol. Exp. Ther.* 269, 917 (1994)) (other strains of mice may also be used). Test drug(s) (mast cell inhibitor (tranilast, ketotifen, repirinast (or its active metabolite, MY-1250), amlexanox or tazanolast) in combination with statin (pitavastatin, fluvastatin, lovastatin, pravastatin or, preferably, simvastatin, rosvastatin or atorvastatin), mast cell inhibitor alone and statin alone) at doses of 0.03 to 50 mg/kg are administered subcutaneously, intravenously, intraperitoneally or orally every 2-24 hours to the animals (for comparison, some experiments are performed without the drugs). Prior to administration, stock solutions of drugs (see Example 1 above) are diluted as needed in e.g. 0.5% or 1% methylcellulose in water (for oral
treatment) or saline (for parenteral administration). Other vehicles may also be used. 1 minute to 24 hours after the first drug dose, 0.5-2 mg zymosan A (Sigma, cat. no. Z4250) in 0.5-1 mL sterile PBS (sonicated and well mixed) is injected intraperitoneally (instead of using zymosan A, peritoneal inflammation may also be induced by intraperitoneal injection of pro-inflammatory concentrations of other well established pro-inflammatory stimuli such as anti-mouse-IgE (with or without intraperitoneal pretreatment with mouse IgE for 1-3 days), concanavalin A, carrageenan, proteose peptone, LPS, PMA, thioglycollate, arachidonic acid, fMLP, TNF, IL-1β. Test drug(s) may also be administered simultaneously with intraperitoneal injection of zymosan or the other pro-inflammatory stimuli). 2-24 hours after injection of zymosan (or one or more of the other pro-inflammatory stimuli), the animals are sacrificed. The peritoneal cavity is then flushed with 1-3 mL of a lavage buffer (ice-cold PBS with or without 3-5 mM EDTA or 5-10 units/mL heparin). Total and differential leukocyte counts in the lavage fluid are done with a hemocytometer following staining with Türk’s solution and/or in cytoospin preparations stained with May-Grunwald Giemsa or a modified Wright’s (Diff-Quik) stain, respectively, by light microscopy using standard morphological criteria. Other established methods for determining total and differential leukocyte counts may also be used. The remaining lavage fluid is centrifuged (300-3000 x g, 4°C, 3-10 min), and cell-free lavage fluid supernatant is stored frozen (-20°C to -80°C) until analyzed for content of inflammatory mediators LTB₄, PGE₂, TXB₂ and/or mouse cytokines/chemokines (e.g. IL-4, IL-6, TNF, IL-1β, KC, MCP-1, IL-10, IL-12p70, IFNγ) content as described in Example 1 and 4 above. The histamine content in the lavage fluid supernatant is determined by using commercially available histamine enzyme immuno-assay kits (EIA/ELISA kits) according to instructions from the manufacturer(s). Inflammatory peritoneal cell activation may also be studied by measuring beta-hexosaminidase activity in the lavage fluid using the beta-hexosaminidase assay described in Example 3. The cell pellets of the lavage fluid are resuspended in 0.1-1.0 mL 0.05 M KHPO₄ pH 6.0 with 0.5% HTAB and stored frozen (-20°C to -80°C) until analysis of myeloperoxidase (MPO) content as described by Rao et al (J. Pharmacol. Exp. Ther. 269, 917-25 (1994)). Identical cell pellets from separate animals are stored frozen (-80°C) in RLT buffer (QIAGEN, Valencia, CA) until further processing for microarray experiments (see Example 12). At the time of flushing the peritoneal cavity with lavage buffer, tissue (peritoneal wall, intestines and/or
other intra- or retroperitoneal organs/tissues) biopsies from the inflamed peritoneal cavity are collected, weighed, stored frozen (samples for microarray analysis are frozen at -80°C in TRizol, Invitrogen, Carlsbad, CA), and, as described in Example 12, subsequently analyzed with regard to tissue gene expression using microarray technology. Non-inflamed peritoneal cavities from untreated animals provide base-line levels of MPO, inflammatory mediators, cytokines/chemokines and gene expression. Tissue inflammation may also be studied using conventional histological and immunohistochemical techniques.

Example 16
Rat Peritoneal Inflammation-Induced by Zymosan and Other Stimuli

Male Wistar or Sprague Dawley rats weighing approximately 150-450 g are used. Test drug(s) (mast cell inhibitor (tranilast, ketotifen, repirinast (or its active metabolite, MY-1250), amlexanox or tazaranost) in combination with statin (pitavastatin, fluvastatin, lovastatin, pravastatin or, preferably, simvastatin, rosuvastatin or atorvastatin), mast cell inhibitor alone and statin alone) at doses of 0.03 to 50 mg/kg are administered subcutaneously, intravenously, intraperitoneally or orally every 2-24 hours to the animals (for comparison, some experiments are performed without the drugs). Prior to administration, stock solutions of drugs (see Example 1 above) are diluted as needed in e.g. 0.5% or 1% methylcellulose in water (for oral treatment) or saline (for parenteral administration). Other vehicles may also be used. 1 minute to 24 hours after the first drug dose, 1-100 mg zymosan A (Sigma, cat. no. Z4250) in 1-10 mL sterile PBS (sonicated and well mixed) is injected intraperitoneally (instead of using zymosan A, peritoneal inflammation may also be induced by intraperitoneal injection of pro-inflammatory concentrations of other well established pro-inflammatory stimuli such as anti-rat-IgE (with or without intraperitoneal pretreatment with rat IgE for 1-3 days), concanavalin A, protein L, compound 48/80, carrageenan, proteose peptone, LPS, PMA, thioglycolate, arachidonic acid, fMLP, TNF, IL-1β. Test drug(s) may also be administered simultaneously with intraperitoneal injection of zymosan or the other pro-inflammatory stimuli). 2-24 hours after injection of zymosan (or one or more of the other stimuli), the animals are sacrificed. The peritoneal cavity is then flushed with 10-20 ml of a lavage buffer (e.g. ice-cold PBS with or without 3-5 mM EDTA or 5-10 units/mL.
heparin). Total and differential leukocyte counts in the lavage fluid are done with a hemocytometer following staining with Türk's solution and/or in cytopsin preparations stained with May-Grünwald Giemsa or a modified Wright's (Diff-Quik) stain, respectively, by light microscopy using standard morphological criteria. Other established methods for determining total and differential leukocyte counts may also be used. The remaining lavage fluid is centrifuged (300-3000 x g, 4°C, 3-10 min), and cell-free lavage fluid supernatant is stored frozen (-20°C to -80°C) until analyzed for content of the inflammatory mediators LTB₄, PGE₂, TXB₂ and/or rat cytokines/chemokines (e.g. IL-4, IL-6, TNF, IL-1β, KC, MCP-1, IL-10, IL-12p70, IFNγ) essentially as described in Example 1 and 4 above. The histamine content in the lavage fluid supernatant is determined by using commercially available histamine enzyme immuno-assay kits (EIA/ELISA kits) according to instructions from the manufacturer(s). Inflammatory peritoneal cell activation may also be studied by measuring beta-hexosaminidase activity in the lavage fluid using the beta-hexosaminidase assay described in Example 3. The cell pellets of the lavage fluid are resuspended in 0.1-1.0 mL 0.05 M KHPO₄, pH 6.0 with 0.5% HTAB and stored frozen (-20°C to -80°C) until analysis of myeloperoxidase (MPO) content basically as described by Rao et al (J. Pharmacol. Exp. Ther., 269, 917-25 (1994)). Identical cell pellets from separate animals are stored frozen (-80°C) in RLT buffer (QIAGEN, Valencia, CA) until further processing for microarray experiments (see Example 12). At the time of flushing the peritoneal cavity with lavage buffer, tissue (peritoneal wall, intestines and/or other intra- or retroperitoneal organs/tissues) biopsies from the inflamed peritoneal cavity are collected, weighed, stored frozen (samples for microarray analysis are frozen at -80°C in TRIzol, Invitrogen, Carlsbad, CA), and, as described in Example 12, subsequently analyzed with regard to tissue gene expression using microarray technology. Non-inflamed peritoneal cavities from untreated animals provide base-line levels of MPO, inflammatory mediators, cytokines/chemokines and gene expression. Tissue inflammation may also be studied using conventional histological and immunohistochemical techniques.
Example 17

NB4 and HL-60 Cell Inflammatory Mediator Release Assays

Human NB4 cells (Lanotte et al, Blood, 77, 1080 (1991)) are cultured (37°C/5% CO2) in RPMI-1640 medium supplemented with 100 units/mL penicillin, 100 μg/mL streptomycin and 10% (v/v) fetal bovine serum. For differentiation, 1-5 μM all-trans-retinoic acid (ATRA) is added, generally every third day.

Human HL-60 cells (Steinhilber et al, Biochim. Biophys. Acta 1178, 1 (1993)) are cultured (37°C/5% CO2) in RPMI-1640 medium supplemented with 100 units/mL penicillin, 100 μg/mL streptomycin and 10-20% (v/v) fetal bovine serum. For differentiation ATRA (1-5 μM), DMSO (1-2%), PMA (100-500 ng/mL) or vitamin D3 (1-15 μM) is added for 5 days.

To stimulate formation and release of the inflammatory mediator leukotriene B4 (LTB₄), differentiated or undifferentiated NB4 or HL-60 cells (at 1-15×10⁶/mL) are incubated for 5-30 minutes (at 37°C in PBS with calcium) with 10-40 μM arachidonic acid and/or 2-10 μM calcium ionophore A23187. The NB4 and HL-60 cells may also be stimulated with documented biologically active concentrations of adenosine diphosphate (ADP), fMLP, and/or the thromboxane analogue U-46619, with or without A23187 and/or arachidonic acid as above. The NB4 and HL-60 incubations/stimulations above may also be performed in the presence of human platelets (from healthy donor blood) with an NB4/HL-60:platelet ratio of 1:10 to 1:10000. The incubations/stimulations are stopped with 1 mL cold methanol and prostaglandin B₂ (PGB₂) added as internal standard. The samples are centrifuged and the supernatants are diluted with water to reach a final methanol concentration of 30% and pH is adjusted to 3-4. Arachidonic acid metabolites in the supernatant are extracted on preconditioned (1 mL methanol followed by 1 mL H₂O) C18 solid phase columns (Sorbent Technology, U.K.). Metabolites are eluted with methanol, whereafter one volume of water is added to the eluate. For reverse phase HPLC, 76 μL of each sample is mixed with 39 μL H₂O (other volume ratios may also be used). A Waters RCM 8×10 column is eluted with methanol/acetoneitrile/H₂O/acetic acid (30:35:35:0.01 v/v) at 1.2 mL/min. The absorbance of the eluate is monitored at 270 nm for detection and quantitation of PGB₂ and LTB₄. Commercially available enzyme immuno-assay
kits (EIA/ELISA kits) for measuring LTB₄ may also be used according to instructions from the kit manufacturer(s). Using commercially available enzyme immuno-assay kits (EIA/ELISA kits) according to instructions from the manufacturer(s), the supernatants from the NB4/HL-60 incubations/stimulations above may also be analysed with regard to content of the inflammatory mediators prostaglandin E₂ (PGE₂) and/or thromboxane B₂ (TXB₂). Cells are incubated (at 37°C in PBS without calcium or in RPMI-1640 with 1-20% fetal bovine serum, with or without supplements) with test drug(s) (mast cell inhibitor (tranilast, ketotifen, repirinast (or its active metabolite, MY-1250), amlexanox or tazanolast) in combination with statin (pitavastatin, fluvastatin, lovastatin, pravastatin or, preferably, simvastatin, rosuvastatin or atorvastatin), mast cell inhibitor alone and statin alone) for 1 minute to 24 hours prior to NB4 or HL-60 stimulation for inflammatory mediator release (see Example 1 above for details regarding drug stock solutions and concentrations; test drug(s) may also be added simultaneously with NB4/HL-60 stimulation). For comparison, some experiments are performed without the drugs.

To stimulate formation and release of inflammatory cytokines, chemokines and mediators such as IL-1β, IL-6, TNF, IL-8, IL-10, IL-12p70, MCP-1, PAF, C5a, differentiated or undifferentiated NB4 or HL-60 cells (at 1-10×10⁶/mL) are incubated (37°C, 5% CO₂) for 4-24 hours (in RPMI-1640 with 1-10% fetal bovine serum, with or without supplements) with lipopolysaccharide (LPS 1-100 ng/mL), phorbol-12-myristate-13-acetate (PMA 1-100 ng/mL) or calcium ionophore A23187 (1-10 μM), or combinations of these stimuli. The NB4 and HL-60 cells may also be stimulated with documented biologically active concentrations of adenosine diphosphate (ADP) and/or the thromboxane analogue U-46619, with or without LPS, PMA and/or A23187 as above. The NB4 and HL-60 incubations/stimulations may also be performed in the presence of human platelets (from healthy donor blood) with an NB4/HL-60:platelet ratio of 1:10 to 1:10000. Cells are incubated (at 37°C, 5% CO₂ in RPMI-1640 with 1-10% foetal bovine serum, with or without supplements) with test drug(s) (mast cell inhibitor in combination with statin, mast cell inhibitor alone and statin alone, as above) for 1 minute to 24 hours prior to NB4 or HL-60 stimulation for cytokine/chemokine/mediator release (for comparison, some experiments are performed without the drugs; test drug(s) may also be added simultaneously with
NB4/HL-60 stimulation). After spinning down cells, human cytokine/chemokine and mediator concentrations in the supernatants are quantitated using a Cytometric Bead Array (BD Biosciences Pharmingen, San Diego, USA) according to the manufacturer's instructions. Commercially available enzyme immuno-assay kits (EIA/ELISA kits) for measuring the cytokines/chemokines and mediators may also be used according to instructions by the manufacturer(s). The cell pellets are stored frozen (-80°C) in RLT buffer (QIAGEN, Valencia, CA) until further processing for microarray experiments (see Example 12 above).

In addition to studying the effects of the drugs above on release of mediators and chemokines/cytokines from the neutrophil-like NB4 and HL-60 cells, effects of the drugs on spontaneous or stimulated adhesion and/or migration of these cells may also be analyzed (freshly isolated human blood polymorphonuclear cells (PMN) isolated according to standard protocols may also be used). Spontaneous or stimulated (with fMLP, IL-8, PAF, LTB₄ or other relevant PMN activating factors) adhesion of the PMN or neutrophil-like cells to e.g. cultured endothelial cells or protein-coated artificial surfaces are studied using well established and documented experimental approaches and assays. Migration (stimulated with fMLP, IL-8, PAF, LTB₄ or other relevant PMN chemotactic factors) of the PMN or neutrophil-like cells are studied using well established and documented experimental approaches and assays, e.g. migration through commercially available protein-coated membranes designed for such migration studies.

Example 18

Platelet and Leukocyte Activation in Human Whole Blood

Venous blood is collected by venepuncture without stasis, using siliconized vacutainer tubes containing 1/10 volume of 129 mM trisodium citrate (Becton Dickinson, Meylan, France). Whole blood platelet P-selectin expression (reflecting platelet activity), leukocyte CD11b expression (reflecting leukocyte activity), single platelet and platelet-platelet microaggregate counting, and platelet-leukocyte aggregates (PLAs) are measured using flow cytometric assays, essentially as described previously (see e.g. Li et al. Circulation 100, 1374 (1999) for reference). Briefly, 5 µL aliquots of whole blood are added to 45 µL Heps buffered saline (150 mM NaCl, 5 mM KCl, 1 mM MgSO₄, 10 mM Heps, pH 7.4)
containing appropriately diluted antibodies (see below) in the absence or presence of platelet activating stimuli such as adenosine diphosphate (ADP), U-46619, U-44069, platelet activating factor (PAF), arachidonic acid, collagen or thrombin, and/or leukocyte activating stimuli such as N-formyl-methionyl-leucyl-phenylalanine (fMLP), arachidonic acid, PAF, LPS, A23187 or LTB₄. Prior to exposing the blood to the platelet and/or leukocyte activating stimuli + the antibodies, blood samples (0.1-1 ml) are incubated with test drug(s) (mast cell inhibitor (tranilast, ketotifen, repirinast (or its active metabolite, MY-1250), amlexanox or tazanolast) in combination with statin (pitavastatin, fluvastatin, lovastatin, pravastatin or, preferably, simvastatin, rosuvastatin or atorvastatin), mast cell inhibitor alone and statin alone) for 1-60 minutes (test drug(s) may also be added simultaneously with the stimuli above). For comparison, some blood samples are stimulated as above without exposure to the drug(s). Platelet P-selectin expression is determined by R-phycoerythrin (RPE)-CD62P monoclonal antibody (MAb) AC1.2 (Becton Dickinson, San Jose, CA, USA). Leukocyte CD11b expression is determined by fluorescein isothiocyanate (FITC)-conjugated MAb BEAR 1 (Immunotech, Marseille, France). FITC and RPE conjugated isotypic MAbs are used as negative controls. Fluorescent beads (SPHERO™ Rainbow particles, 1.8-2.2 μm) used for platelet counting are from PharMingen (San Diego, CA, USA). Platelets are identified with FITC conjugated anti-CD42a (GPIIX) MAb Beb 1 (Becton Dickinson), and leukocytes are identified with RPE conjugated anti-CD45 MAb J33 (Immunotech). Samples (drug-treated or untreated blood + antibodies with or without the stimuli, as above) are incubated at room temperature in the dark for 20 min. Afterwards, the samples are diluted and mildly fixed with 0.5% (v/v) formaldehyde saline, and analysed for the various platelet and leukocyte parameters with a Beckman-Coulter EPICS XL-MCL flow cytometer (Beckman-Coulter Corp., Hialeah, FL). Platelet P-selectin expression data are reported as the percentages of P-selectin positive cells in the platelet population and as absolute counts of P-selectin positive platelets. Leukocyte CD11b expression is reported as mean fluorescence intensity (MFI) of the total leukocyte population and of leukocyte subpopulations. Platelet-leukocyte aggregates (PLAs) are presented as both absolute counts and percentages of platelet-conjugated leukocytes in the total leukocyte population and among lymphocytes, monocytes, and neutrophils. Other relevant reagents, experimental conditions/approaches, equipment and modes of analysis to measure
corresponding platelet and leukocyte activation in human whole blood may also be used.

Example 19

Experimental Abdominal Aortic Aneurysms

Test drug(s) (mast cell inhibitor (tranilast, ketotifen, repirinast (or its active metabolite, MY-1250), amlexanox or tazanolast) in combination with statin (pitavastatin, fluvastatin, lovastatin, pravastatin or, preferably, simvastatin, rosuvastatin or atorvastatin), mast cell inhibitor alone and statin alone) at doses of 0.3 to 200 mg/kg are administered subcutaneously, intravenously, intraperitoneally or orally every 2-24 hours to the animals (drugs, up to 400 mg/kg/day, may also be continuously administered subcutaneously or intraperitoneally using e.g. Alzet® Osmotic Pumps according to instructions by the manufacturer.) (For comparison, some experiments are performed without the drugs.) Prior to administration, stock solutions of drugs (see Example 1 above) are diluted as needed in e.g. 0.5% or 1% methylcellulose in water (for oral treatment) or saline (for parenteral administration). Other vehicles may also be used. Immediately after or up to 7 days after the first drug dose, production of experimental abdominal aortic aneurysms (and measurements of aortic diameters) is performed using periaortic CaCl₂ application essentially according to Longo et al (*J. Clin. Invest.*, 110, 625, 2002) or using aortic elastase perfusion essentially according to Pyo et al (*J. Clin. Invest.*, 105, 1641 (2000)). (Other strains of mice than those used in Longo *et al* and Pyo *et al* may also be used.) Effects of the drugs on the elastase- or CaCl₂-induced aneurysmal increases in aortic diameter are typically measured immediately before and one, two, three and/or four weeks after challenge with elastase or CaCl₂ (other measurement intervals may also be used). Effects of the drugs on inflammation (e.g. tissue leukocyte accumulation), gene expression and protease activity is measured in specimens of the aortic aneurysmal tissue using established/conventional biochemical, histological, immunohistochemical, immunological, microarray and zymographical techniques. Examples of how to handle collected tissues and measure tissue gene expression is described in Examples 5 and 12 above. Effects of the drugs may also be studied in corresponding rat models of elastase-induced aortic aneurysms, for example essentially according to Holmes *et al* (*J.*
Surg. Res., 63, 305 (1996)), or CaCl2-induced aortic aneurysms, for example essentially according to Isenburg et al (Circulation, 115, 1729 (2007)).

Example 20

Human Arterial Tissue ex vivo

Samples of human atherosclerotic carotid or femoral arteries or abdominal aortic aneurysms obtained during routine surgery are used to study drug effects on spontaneous or induced inflammation, gene expression and protease activity in the diseased arterial tissues. Before the incubations/treatments below, the tissues are kept on ice in PBS without Ca and Mg (other established tissue media may also be used).

To stimulate release of inflammatory cytokines and chemokines (e.g. IL-1β, IL-4, IL-6, TNF, IL-8, IL-10, IL-12p70, MCP-1, IFNγ) and release and/or activation of matrix metalloproteases (MMPs), diced tissues are incubated (37°C/5% CO2) for 1-24 hours (in RPMI-1640 with 1-10% fetal bovine serum; other established tissue media may also be used) with or without lipopolysaccharide (LPS, final concentration 1-100 ng/mL), phorbol-12-myristate-13-acetate (PMA, final concentration 1-100 ng/mL) or an LPS/PMA mixture.

To stimulate release of inflammatory histamine, tryptase, cytokines and chemokines (see above), and release and/or activation of matrix metalloproteases, the diced tissues can also be incubated (37°C with or without 5% CO2) for 5 min to 24 hours (in RPMI-1640 with 1-10% fetal bovine serum; other established media may also be used) with or without anti-IgE, concanavalin A, protein L or compound 48/80. Stimulation of IgE-dependent release of inflammatory mediators may also be performed using pre-incubation with anti-TNP IgE followed by TNP-BSA challenge essentially as described in Example 3.

Prior to exposing the tissues to the inflammatory stimuli above, the tissues are incubated with test drug(s) (mast cell inhibitor (tranilast, ketotifen, repirinast (or its active metabolite, MY-1250), amlexanox or tazarotest) in combination with statin (pitavastatin, fluvastatin, lovastatin, pravastatin or, preferably, simvastatin, rosvastatin or atorvastatin), mast cell inhibitor alone and statin alone) for 1
minute to 24 hours (test drug(s) may also be added simultaneously with the stimuli above). The test drugs remain present during the incubations with the proinflammatory stimuli.

5 Effects of the drugs on the release of inflammatory mediators (e.g. histamine, tryptase, cytokines, chemokines), gene expression and protease (e.g. MMPs such as MMP2, MMP3, MMP9) activity in the vascular tissues are examined using established/conventional biochemical, histological, immunohistochemical, immunological, microarray and zymographical techniques. Examples of how to handle tissues and measure tissue gene expression are described in Examples 5 and 12 above, and examples of how to measure the inflammatory mediators are described in Examples 1 and 3 above.

Example 21

Inhibition of Macrophage Proliferation by Amlexanox and Atorvastatin

Cells from the human macrophage cell-line MonoMac-6 (MM6) (Ziegler-Heitbrock et al, *Int. J. Cancer*, 41, 456 (1988)) were cultured (37°C/5% CO₂) in RPMI-1640 medium supplemented with 1 mM sodium pyruvate, 1×nonessential amino acids, 10 μg/mL insulin, 1 mM oxalacetic acid, 100 units/mL penicillin, 100 μg/mL streptomycin and 10% (v/v) fetal bovine serum. At the start of the experiment, MM6 cells were seeded in 96-well plates at a density of 1x10⁵ cells/mL (100 μL per well).

20 Proliferation of the MM6 cells was measured using the Cell Proliferation Reagent WST-1 (Roche Diagnostics Scandinavia AB, Bromma, Sweden) or by cell counting using a microscope. The WST-1 reagent is designed to be used for spectrophotometric quantification of e.g. cell growth in proliferation assays and was used according to the manufacturers’ instructions. The wavelength for measuring absorbance was 450 nm.

Stock solutions of amlexanox (sodium salt; purchased from KB Chemtronica, Stockholm, Sweden as the free acid and converted to the sodium salt by adding 1.1 equivalents of aqueous NaOH, followed by precipitation with 2-propanol) and atorvastatin (sodium salt; received as atorvastatin calcium as a gift from Biocon,
Ltd., Bangalore, India and converted to the sodium salt by firstly converting the calcium salt into the free acid by addition of aqueous hydrochloric acid and then, after isolation via extraction, adding one equivalent of aqueous NaOH) were made in sterile saline.

Untreated MM6 cells increased from 1×10^5 cells/mL at the start of the experiment to $1.4 \times 10^5 \pm 0.06 \times 10^5$ cells/mL and $2.3 \times 10^5 \pm 0.10 \times 10^5$ cells/mL after 24 and 48 hours, respectively (mean values ± sem, n=4 for each of the three time-points). Amlexanox and/or atorvastatin were added at the start of the experiments and 46 hours later the effects of the drugs on MM6 cell proliferation were studied using the WST-1 reagent described above. The WST-1 reagent was added at 44 hours after the start of the experiments and the average absorbance of untreated control cells exposed to the WST-1 reagent was 1.56 (n=5).

After treatment with 1 μM, 3 μM and 10 μM atorvastatin the MM6 proliferation was 101%, 73% and 72%, respectively, of the proliferation of untreated control cells (mean values, n=5 for each concentration).

After treatment with 10 μM, 30 μM and 100 μM amlexanox the MM6 proliferation was 103%, 86% and 77%, respectively, of the proliferation of untreated control cells (mean values, n=5 for each concentration).

After combination treatment with 1 μM atorvastatin + 10 μM amlexanox, 3 μM atorvastatin + 30 μM amlexanox and 10 μM atorvastatin + 100 μM amlexanox the MM6 proliferation was 59%, 56% and 57%, respectively, of the proliferation of untreated control cells (mean values, n=5 for each combination).

Example 22

Inhibition by Amlexanox and Rosuvastatin of Tumor Necrosis Factor Release from Human Peripheral Blood Mononuclear Cells

Human peripheral blood mononuclear cells (PBMC) were isolated from healthy donor buffy coats by centrifugation on Lymphoprep (Medinor AB, Lidingö, Sweden). Briefly, 10 mL of blood diluted 2x in sterile saline was carefully layered on 2.5 mL of Lymphoprep. Centrifugation (without break) was performed at 1800
rpm for 20 minutes at room temperature. The PBMC layer was carefully removed and washed x2 with the RPMI-1640 medium with supplements described below.

In the experiments described below, the isolated PBMC were incubated (37°C/5% CO₂) in RPMI-1640 medium supplemented with 1 mM sodium pyruvate, 1x nonessential amino acids, 10 μg/mL insulin, 1 mM oxalacetic acid, 100 units/mL penicillin, 100 μg/mL streptomycin and 10% (v/v) fetal bovine serum. At the start of the experiments, the PBMC were seeded in 24-well plates at a density of 1x10⁶ cells/mL (1 mL per well).

From the start of the experiments, the PBMC were treated (incubation conditions as above) with indicated final concentrations of the test drugs for 18 hours prior to stimulation with phorbol-12-myristate-13-acetate (PMA; Sigma-Aldrich, Stockholm, Sweden) followed by measurement of PMA-induced release of tumor necrosis factor (TNF; see below for details).

To stimulate formation and release of TNF, PMA was added to the wells at a final concentration of 10 ng/mL and the incubation continued for 5 hours. After spinning down the cells after the different PBMC incubations/stimulations, the supernatants were analyzed with regard to TNF content. The supernatants were analyzed freshly.

The concentrations of TNF in the supernatants were quantitated using Human TNF ELISA Kit II from BD Biosciences - Pharmingen (San Diego, USA) according to instructions supplied by the manufacturer.

Stock solutions of amlexanox (sodium salt; see above) and rosuvastatin (sodium salt; extracted and purified from commercially available Crestor® tablets and isolated as the sodium salt as described in Bioorganic & Medicinal Chemistry, 5, 437-444 (1997)) were made in sterile saline.

The PBMC that were not exposed to PMA produced about 10 pg/mL of TNF. However, after five hours of PMA stimulation, the mean TNF concentration in the supernatants of untreated PBMC was 465 pg/mL (n=2).
After treatment of the PBMC with rosuvastatin alone at final concentrations of 1 µM, 3 µM or 10 µM, the mean TNF concentrations after PMA stimulation were 432 pg/mL, 400 pg/mL and 413 pg/mL, respectively (n=2 for each drug concentration), i.e. after treatment with 1 µM, 3 µM and 10 µM rosuvastatin the TNF concentrations were 93%, 86% and 89%, respectively, of the TNF concentrations in the untreated PMA-stimulated control PBMC (mean values, n=2 for each drug concentration).

After treatment of the PBMC with amlexanox alone at final concentrations of 10 µM, 30 µM or 100 µM, the mean TNF concentrations after PMA stimulation were 377 pg/mL, 341 pg/mL and 287 pg/mL, respectively (n=2 for each drug concentration), i.e. after treatment with 10 µM, 30 µM and 100 µM amlexanox, the TNF concentrations were 81%, 73% and 62%, respectively, of the TNF concentrations in the untreated PMA-stimulated control PBMC (mean values, n=2 for each drug concentration).

After combination treatment with 1 µM rosuvastatin + 10 µM amlexanox, 3 µM rosuvastatin + 30 µM amlexanox and 10 µM rosuvastatin + 100 µM amlexanox the TNF concentrations were 60%, 48% and 46%, respectively, of the TNF concentration in the untreated PMA-stimulated control PBMC (mean values, n=2 for each drug combination).

One or more of the above-described examples demonstrate a clear synergistic effect for the combination of mast cell inhibitors (e.g. tranilast, ketotifen, repirinast (or its active metabolite, MY-1250), amlexanox and/or tazanolast) and statins (e.g. pitavastatin, fluvastatin, lovastatin, pravastatin or, preferably, simvastatin, rosuvastatin and/or atorvastatin).
Claims

1. A combination product comprising:
 (a) one or more mast cell inhibitor, or a pharmaceutically-acceptable salt or solvate thereof, provided that the mast cell inhibitor is not pemirolast or suplatast; and
 (b) one or more statin, or a pharmaceutically-acceptable salt or solvate thereof.

2. A combination product as claimed in Claim 1, wherein the statin is selected from pitavastatin, fluvastatin, simvastatin, lovastatin, rosuvastatin, pravastatin and atorvastatin.

3. A combination product as claimed in Claim 2, wherein the statin is selected from simvastatin, rosuvastatin and atorvastatin.

4. A combination product as claimed in any one of the preceding claims, wherein the mast cell inhibitor is selected from tranilast, ketotifen, repirinast, MY-1250, amlexanox and tazanolast.

5. A combination product as claimed in Claim 4, wherein the mast cell inhibitor is selected from repirinast, MY-1250, amlexanox and tazanolast.

6. A combination product as claimed in any one of the preceding claims which comprises a pharmaceutical formulation including one or more mast cell inhibitor, or a pharmaceutically-acceptable salt or solvate thereof, provided that the mast cell inhibitor is not pemirolast or suplatast; a statin, or a pharmaceutically-acceptable salt or solvate thereof; and a pharmaceutically-acceptable adjuvant, diluent or carrier.

7. A combination product as claimed in any one of Claims 1 to 5, which comprises a kit of parts comprising components:
 (A) a pharmaceutical formulation including one or more mast cell inhibitor, or a pharmaceutically-acceptable salt or solvate thereof, provided that the mast cell inhibitor is not pemirolast or suplatast, in admixture with a pharmaceutically-acceptable adjuvant, diluent or carrier; and
(B) a pharmaceutical formulation including a statin, or a pharmaceutically-
acceptable salt or solvate thereof, in admixture with a pharmaceutically-
acceptable adjuvant, diluent or carrier,
which components (A) and (B) are each provided in a form that is suitable for
administration in conjunction with the other.

8. A method of making a kit of parts as defined in Claim 7, which method
comprises bringing component (A) into association with a component (B), thus
rendering the two components suitable for administration in conjunction with each
other.

9. A kit of parts comprising:
(I) one of components (A) and (B) as defined in Claim 7; together with
(II) instructions to use that component in conjunction with the other of the two
components.

10. A combination product as claimed in any one of Claims 1 to 7 or 9, wherein
the statin is not employed in the form of a statin lactone.

11. A combination product as claimed in any one of Claims 1 to 7 or 9, wherein
the statin employed is lovastatin lactone or simvastatin lactone.

12. A kit of parts as claimed in any one of Claim 7, Claim 9, or Claim 10 or Claim
11 (as dependent on Claim 7 or Claim 9), wherein components (A) and (B) are
suitable for sequential, separate and/or simultaneous use in the treatment of an
inflammatory disorder.

13. The use of a combination product as defined in any one of Claims 1 to 7 or 9
to 12, for the manufacture of a medicament for the treatment of an inflammatory
disorder.

the administration of a combination product as defined in any one of Claims 1 to 7
or 9 to 12, to a patient in need of such treatment.
15. A kit of parts as claimed in Claim 12, a use as claimed in Claim 13, or a method as claimed in Claim 14, wherein the disorder is selected from asthma, chronic obstructive pulmonary disease, endometriosis, migraine, Crohn’s disease, multiple sclerosis, psoriasis, rheumatoid arthritis, systemic lupus erythematosus or ulcerative colitis.

16. A kit of parts as claimed in Claim 12, a use as claimed in Claim 13, or a method as claimed in Claim 14, wherein the disorder is atherosclerosis or an associated cardiovascular disorder.

17. A kit of parts, use or method as claimed in Claim 16, wherein the disorder is atherosclerosis.

18. A kit of parts, use or method as claimed in Claim 16, wherein the cardiovascular disorder associated with atherosclerosis is selected from an aortic aneurysm, arteriosclerosis, peripheral arterial occlusive disease, a coronary artery disease, a coronary disease, plaque rupture and/or instability, atheroma rupture and/or instability, a vascular disease, an arterial disease, an ischaemic disease, ischaemia and stroke.

19. A kit of parts, use or method as claimed in Claim 18, wherein the coronary artery disease is selected from angina pectoris, myocardial infarction and heart attack.

20. A kit of parts, use or method as claimed in Claim 18, wherein the coronary disease is selected from a cardiac disease and a heart disease.

21. A kit of parts, use or method as claimed in Claim 18, wherein the stroke is selected from cerebro-vascular accident and transient ischaemic attack.

22. A kit of parts, use or method as claimed in Claim 18, wherein the disorder is plaque rupture and/or instability, or atheroma rupture and/or instability.

23. A kit of parts, use or method as claimed in Claim 18, wherein the disorder is an aortic aneurysm.
24. A kit of parts, use or method as claimed in any one of Claims 12 to 23, wherein the patient has an acute coronary syndrome.