(54) 发明名称
一种 (S)- 卡巴拉汀的不对称合成方法

(57) 摘要
本发明公开了一种 (S)- 卡巴拉汀的不对称合成方法，该方法将间羟基苯甲醛进行酯化基
基保护后与手性叔丁基亚磺酰胺反应生成 (R, E)-3- 甲氧基 - 苯亚甲基叔丁基磺酰胺，再与
甲基格氏试剂发生加成反应，再依次经水解、Eschweiler–Clarke 甲基化反应以及 BBr3 脱甲基
合成重要中间体 (S)-1-(3- 肽基苯基)-N, N- 二甲基乙胺，再与甲基氨基甲酸酯进行酯化，得到
(S)- 卡巴拉汀。本发明反应步骤少，每一反应步骤的收率均较高，基本上都在 90% 左右，光学产率
为 80.7%。本发明整个合成路线收率达 21.85%，远高于外消旋旋光度合路线产率，相对来说降低
了成本，减少了浪费。
1. 一种 (S)- 卡巴拉汀的不对称合成方法，其特征在于包括如下步骤：以间羟基苯甲酸为起始原料，进行羟基保护后得到 3- 甲氧基苯甲醛，与手性叔丁基亚磺酰胺反应生成 (R, E) -3- 甲氧基 - 苯亚甲基叔丁基磺酰胺，再与甲基格氏试剂发生加成反应，生成具有光学活性的 (R) - N -((S)-1-(3- 甲氧基苯基)) 乙基) - 2- 叔丁基磺酰胺，再依次经水解、Eschweiler–Clarke 甲基化反应以及 BBr3 脱甲基合成中间体 (S) -1-(3- 羟基苯基) -N, N- 二甲基乙胺，再与甲基亚磺酰胺进行酰化，得到 (S) -1-(3- 羟基苯基) -N, N- 甲基氨基甲酸 (3-[1-(二甲基氨基) 乙基] 苯基) 酯，即 (S)- 卡巴拉汀。

2. 根据权利要求 1 所述的一种 (S)- 卡巴拉汀的不对称合成方法，其特征在于包括如下步骤：

(1) 3- 甲氧基苯甲醛的合成

3- 羟基苯甲醛在氮气搅拌下加热至 50 〜 70℃，同时滴加硫酸二甲酯；反应 10 〜 30h，冷却至室温，萃取干燥，旋转蒸干，柱层析，得 3- 甲氧基苯甲醛；所述 3- 羟基苯甲醛与硫酸二甲酯的摩尔比为 1 : 1 〜 1 : 2；

(2) (R, E) -3- 甲氧基 - 苯亚甲基叔丁基磺酰胺的合成

在氮气保护下，在叔丁基亚磺酰胺中加入无水硫酸铜，所述叔丁基亚磺酰胺与无水硫酸铜摩尔比为 1 : 2 〜 1 : 4；最后加入 3- 甲氧基苯甲醛，室温搅拌反应 10 〜 30h；然后过滤，旋转蒸干，柱层析，得 (R, E) -3- 甲氧基 - 苯亚甲基叔丁基磺酰胺；所述 3- 甲氧基苯甲醛与叔丁基亚磺酰胺的摩尔比为 2 : 1 〜 1 : 1；

(3) (R) -N -((S)-1-(3- 甲氧基苯基)) 乙基) - 2- 叔丁基磺酰胺的合成

将 (R, E) -3- 甲氧基 - 苯亚甲基叔丁基磺酰胺在 -78 〜 0℃ 搅拌下滴加到甲基碘化镁格氏试剂中，并继续搅拌反应 4 〜 6h，然后使其自然升温至室温，搅拌反应过夜；将反应液萃取，干燥，旋转蒸干，柱层析，得 (R) -N -((S)-1-(3- 甲氧基苯基)) 乙基) - 2- 叔丁基磺酰胺；所述 (R, E) -3- 甲氧基 - 苯亚甲基叔丁基磺酰胺与甲基碘化镁格氏试剂的摩尔比为 1 : 1 〜 1 : 10；

(4) (S) -1-(3- 甲氧基) 苯基乙胺的合成

将盐酸加到 (R) -N -((S)-1-(3- 甲氧基苯基)) 乙基) - 2- 叔丁基磺酰胺中，所述 (R) -N -((S)-1-(3- 甲氧基苯基)) 乙基) - 2- 叔丁基磺酰胺与盐酸的摩尔比为 1 : 1 〜 1 : 5；室温搅拌反应 0.1 〜 2h；减压浓缩，加盐酸，用二氯甲烷洗 2 〜 3 次，合并有机相，用盐酸溶液萃取，合并水相，用氨水调 pH 至 8 〜 11，萃取后合并有机相，干燥，旋转蒸干，得 (S) -1-(3- 甲氧基) 苯基乙胺；

(5) (S) -1-(3- 甲氧基苯基) -N, N- 二甲基乙胺的合成

在 (S) -1-(3- 甲氧基) 苯基乙胺中加入甲酸和甲醇，油浴 90℃ 搅拌反应 0.5 〜 5h，然后再加入甲醇，继续反应 5 〜 30h；停止反应，冷却至室温；加入盐酸溶液并搅拌，用二氯甲烷洗 2 〜 3 次，合并有机相，有机相用盐酸溶液萃取，合并水相，用氨水调 pH 至 8 〜 11，萃取，合并有机相，干燥，旋转蒸干，得 (S) -1-(3- 甲氧基苯基) -N, N- 二甲基乙胺；所述 (S) -1-(3- 甲氧基) 苯基乙胺：甲醇：甲酸的摩尔比为 1 : 2 : 10 〜 1 : 100 : 500；

(6) (S) -1-(3- 甲氧基苯基) -N, N- 二甲基乙胺的合成

将 (S) -1-(3- 甲氧基苯基) -N, N- 二甲基乙胺，氨气保护下冷却至 -78℃，搅拌下加入二溴化硼，继续保持该温度下搅拌 0.5 〜 2h；然后升温至 -30 〜 -10℃，搅拌反应 2 〜 6h，
再升温至 -10℃，加饱和碳酸氢钠溶液反应；然后萃取，干燥，柱层析，得 (S)-1-(3-羟基苯基)-N, N-二甲基乙胺；所述 (S)-1-(3-甲氧基苯基)-N, N- 二甲基乙胺与三溴化硼的摩尔比为 1 : 1 ~ 1 : 10；

(7) (--)-(S)-N-乙基-N-甲基氨基甲酸 (3-[1-((二甲氨基基)乙基)]苯基) 酯即 (S)-卡巴拉汀的合成

(S)-1-(3-羟基苯基)-N, N-二甲基乙胺中加入甲乙胺基甲酸酯，所述甲乙胺基甲酸酯与 (S)-1-(3-羟基苯基)-N, N-二甲基乙胺的摩尔比为 1 : 1 ~ 1 : 2, 室温搅拌反应 2 ~ 4 h, 然后加乙醚提取，NaOH 溶液洗涤，水洗，干燥；旋转蒸干后，得 (--)-(S)-N-乙基-N-甲基氨基甲酸 (3-[1-((二甲氨基基)乙基)]苯基) 酯，即 (S)-卡巴拉汀。

3. 根据权利要求 2 所述的一种 (S)-卡巴拉汀的不对称合成方法，其特征在于，所述步骤 (1) 的 3-甲氧基苯甲酸按下述方法合成：将 50mmol 3-甲氧基苯甲酸和 15ml 甲醇溶液在磁力搅拌下加热至 65℃，同时滴加 75mmol 硫酸二甲酯和 90mmol 氢氧化钾溶液，加完后继续搅拌反应 24 h，停止搅拌，冷却至室温，乙酸乙酯萃取，无水硫酸钠干燥，旋转蒸干，柱层析，得 3-甲氧基苯甲酸。

4. 根据权利要求 2 所述的一种 (S)-卡巴拉汀的不对称合成方法，其特征在于，所述步骤 (2) 的 (R,E)-3-甲氧基苯亚甲基氯按按下述方法合成：在氢气保护下，将 20mmol 亚甲基氯钯加入 30ml 二氯甲烷，磁力搅拌下加入 44mmol 无水甲酸钠，最后加入溶于 10ml 二氯甲烷的 22mmol 3-甲氧基苯甲酸，室温搅拌反应 24h，停止搅拌，砂心漏斗过滤，旋转蒸干，柱层析，得 (R,E)-3-甲氧基苯亚甲基氯。

5. 根据权利要求 2 所述的一种 (S)-卡巴拉汀的不对称合成方法，其特征在于，所述步骤 (3) 的 (R)-N-(3-甲氧基苯基)乙基-2-叔丁基甲基硫酸酯按下述方法合成：

将 40.6mmol 醇和催化量碘在氢气保护下加入 10ml 无水乙醚，然后加入 0.5ml 碘甲烷乙醚溶液，待反应引发，碘的黄色退去后，开动磁力搅拌，并在 29 ~ 31℃下滴加 40mmol 碘甲烷与 20ml 乙醚的混合液，滴加后继续搅拌反应至单完全消失，得到甲基碘化镁格氏试剂。

将上述制得的甲基碘化镁格氏试剂冷却至 -48℃，搅拌下缓慢滴加 6.69mmol(R,E)-3-甲氧基苯亚甲基氯按按下述方法合成：将 2.14ml 甲醇和盐酸 1/4-二氧六环溶液 6.4mmol 加到 3.2mmol (R,N)-1-(3-甲氧基苯基)乙基) -2-叔丁基甲基硫酸酯中，室温搅拌反应 0.5h，减压浓缩，加 10ml 盐酸，用二氯甲烷洗 3 次，合并有机相，用 2mol/L 盐酸溶液萃取，合并水相，用氨水调 pH 至 9，用二氯甲烷萃取，合并有机相，无水硫酸钠干燥，旋转蒸干，得 (R)-N-(1-(3-甲氧基苯基)乙基)-2-叔丁基甲基硫酸酯。

6. 根据权利要求 2 所述的一种 (S)-卡巴拉汀的不对称合成方法，其特征在于，所述步骤 (4) 的 (S)-1-(3-甲氧基苯基)乙基乙胺按下述方法合成：将 2.14ml 甲醇和盐酸 1/4-二氧六环溶液 6.4mmol 加到 3.2mmol (R,N)-1-(3-甲氧基苯基)乙基) -2-叔丁基甲基硫酸酯中，室温搅拌反应 0.5h，减压浓缩，加 10ml 盐酸，用二氯甲烷洗 3 次，合并有机相，用 2mol/L 盐酸溶液萃取，合并水相，用氨水调 pH 至 9，用二氯甲烷萃取，合并有机相，无水硫酸钠干燥，旋转蒸干，得 (S)-1-(3-甲氧基苯基)乙基乙胺。

7. 根据权利要求 2 所述的一种 (S)-卡巴拉汀的不对称合成方法，其特征在于，所述步骤 (5) 的 (S)-1-(3-甲氧基苯基)-N, N-二甲基乙胺按下述方法合成：在 1.66mmol (S)-1-(3-甲氧基苯基)乙基乙胺中加入 191mmol 浓度为 88% 的甲酸和 50mmol 浓度
为38％甲醛，油浴90℃搅拌反应1h，然后再加入48mmol浓度为38％甲醛，继续反应26h,停止反应，冷却至室温，加入10ml3mol/L盐酸溶液，并搅拌，用二氯甲烷洗3次，合并有机相，有机相再用2mol/L盐酸溶液萃取，合并水相，用氨水调pH至9，用二氯甲烷萃取，合并有机相，无水硫酸镁干燥，旋转蒸干，得(S)-1-(3-甲氧基苯基)-N,N-二甲基乙胺。

8. 根据权利要求2所述的一种(S)-卡巴拉汀的不对称合成方法，其特征在于，所述步骤(6)的(S)-1-(3-羟基苯基)-N,N-二甲基乙胺按下述方法合成：将0.6mmol(S)-1-(3-甲氧基苯基)-N,N-二甲基乙胺溶于13ml二氯甲烷中，在液气保护下冷却至-78℃，搅拌下加入3.6mmol三溴化硼，继续保持该温度下搅拌0.5h，然后升温至-20℃，搅拌反应4h，再升温至-12℃，加20ml饱和碳酸氢钠淬灭反应，用乙酸乙酯萃取，并用无水硫酸钠干燥，柱层析，得(S)-1-(3-羟基苯基)-N,N-二甲基乙胺。

9. 根据权利要求2所述的一种(S)-卡巴拉汀的不对称合成方法，其特征在于，所述步骤(7)的(S)-N-乙基-3-[(1-二甲氨)乙酰]-N-甲基氨基甲酸苯酯即(S)-卡巴拉汀按下述方法合成：在0.12mmol(S)-1-(3-羟基苯基)-N,N-二甲基乙胺中加入0.25mlTHF，然后加入0.13mmolNaH，充分混合后，加入0.13mmol甲乙胺甲酰氯，室温搅拌反应2h，回收THF后，加乙醚提取，0.1mol/LNaOH溶液洗涤，水洗，无水硫酸镁干燥，旋转蒸干后，得(-)-(S)-N-乙基-N-甲基氨基甲酸(3-[1-(二甲氨基)乙酰]苯基)酯即(S)-卡巴拉汀。
一种 (S)-卡巴拉汀的不对称合成方法

技术领域
[0001] 本发明属于手性药物合成技术领域，特别涉及合成光学纯 (S)-卡巴拉汀的方法，具体是指一种 (S)-卡巴拉汀的不对称合成方法。

背景技术

[0004] 手性叔丁基亚磺酸胺为 1997 年由 Ellman 教授发现的新的手性源，为手性胺的等价物，具有高不对称诱导性和反应后叔丁基亚磺酸基易于除去等优点，近年来在不对称合成中具有广泛的应用。但未见用于卡巴拉汀合成的文献报道。
发明内容
[0005] 为了解决上述现有技术的不足之处，本发明的目的在于提供一种合成手性(S)-卡巴拉汀的不对称合成方法，本发明制备获得的手性(S)-卡巴拉汀达到光学纯，符合药品质量标准，而且成本大为下降。
[0006] 本发明以间羟基苯甲醛为起始原料,对酚羟基保护后,以手性叔丁基亚磺酰胺为导向试剂进行不对称合成,生成(S)-1-(3-羟基苯基)-N, N-二甲基乙胺,再与中间体甲乙胺基甲酰氯进行缩化,最终合成(S)-卡巴拉汀。
[0007] 本发明的目的通过下述技术方案实现:一种(S)-卡巴拉汀的不对称合成方法，包括如下步骤:以间羟基苯甲醛 (2) 为起始原料,进行酚羟基保护后得到 3-甲氧基苯甲醛 (3), 与手性叔丁基亚磺酰胺反应生成(R, E)-3-甲氧基-苯亚甲基叔丁基磺酰胺 (4), 再与甲基格氏试剂发生加成反应，生成具有光学活性的 (R)-N-((S)-1-(3-甲氧基苯基)乙基) -2-叔丁基磺酰胺 (5), 再依次经水解、Eschweiler-Clarke 甲基化反应以及 BBr3 脱甲基合成重要中间体 (S)-1-(3-羟基苯基)-N,N-二甲基乙胺 (8), 再与甲乙氨甲酰甲酰氯进行缩化,得到(-)-(S)-N-乙基-N-甲基氨基甲酸 (3-[1-(二甲基氨基)乙基] 苯基) 酯（即 (S)-卡巴拉汀 (1)), 具体合成路线如下:

[0009] 上述(S)-卡巴拉汀的不对称合成方法，包括如下步骤:
[0010] (1) 3-甲氧基苯甲醛 (3) 的合成
[0011] 3-羟基苯甲醛 (2) 在磁力搅拌下加热至 50 ~ 70℃，同时滴加硫酸二甲酯；加完后继续搅拌反应 10 ~ 30h，冷却至室温；萃取干燥，旋转蒸干，柱层析，得 3-甲氧基苯甲醛 (3)；所述 3-羟基苯甲醛与硫酸二甲酯的摩尔比为 1: 1 ~ 1: 2。
[0012] (2) (R, E)-3-甲氧基-苯亚甲基叔丁基磺酰胺 (4) 的合成
[0013] 在氮气保护下, 在叔丁基亚磺酰胺中加入无水硫酸铜, 所述叔丁基亚磺酰胺与无水硫酸铜的摩尔比为 1: 2 ~ 1: 4, 最后加入 3-甲氧基苯甲醛 (3), 室温搅拌反应 10 ~ 30h；然后过滤, 旋转蒸干, 柱层析, 得 (R, E)-3-甲氧基-苯亚甲基叔丁基磺酰胺 (4)；所述 3-甲
氧基苯甲醛与叔丁基亚磺酰胺的摩尔比为 2：1～1：1。

【0014】(3) (R)-N-(3-亚氧基苯基)乙基)-2-叔丁基磺酰胺 (5) 的合成

【0015】将 (R, E)-3-甲氧基-苯亚甲基叔丁基磺酰胺 (4) 在 -78～0℃搅拌下滴加到甲基碘化镁试剂中，并继续搅拌反应 4～6h，然后使其自然升至室温，搅拌反应过夜，将反应液萃取，干燥，旋转蒸发，柱层析，得 (R)-N-(3-亚氧基苯基)乙基)-2-叔丁基磺酰胺 (5)；所述 (R, E)-3-甲氧基-苯亚甲基叔丁基磺酰胺 (4) 与甲基碘化镁试剂的摩尔比为 1：1～1：10。

【0016】(4) (S)-1-(3-甲氧基)苯基乙胺 (6) 的合成

【0017】将盐酸加到 (R)-N-(3-亚氧基苯基)乙基)-2-叔丁基磺酰胺 (5) 中，所述 (R)-N-(3-亚氧基苯基)乙基)-2-叔丁基磺酰胺与盐酸的摩尔比为 1：1～1：5，室温搅拌反应 0.1～2h，减压浓缩，加盐酸，用二氯甲烷洗 2～3 次，合并有机相，用盐酸溶液萃取，合并水相，用氨水调 pH 至 8～11，萃取后合并有机相，干燥，旋转蒸发，得 (S)-1-(3-甲氧基)苯基乙胺 (6)。

【0018】(5) (S)-1-(3-甲氧基苯基)-N,N-二甲基乙胺 (7) 的合成

【0019】在 (S)-1-(3-甲氧基苯基)乙胺 (6) 中加入甲酸和甲醇，油浴 90℃左右搅拌反应 0.5～5h，然后加入甲酸，继续反应 5～30h，停止反应，冷却至室温，加入盐酸溶液并搅拌，用二氯甲烷洗 2～3 次，合并有机相，有机相再用盐酸溶液萃取，合并水相，用氨水调 pH 至 8～11，萃取，合并有机相，干燥，旋转蒸发，得 (S)-1-(3-甲氧基苯基)-N,N-二甲基乙胺 (7)；所述 (S)-1-(3-甲氧基)苯基乙胺 (6)；甲酸：甲酸的摩尔比为 1：2～10～1：100～500。

【0020】(6) (S)-1-(3-羟基苯基)-N,N-二甲基乙胺 (8) 的合成

【0021】将 (S)-1-(3-甲氧基苯基)-N,N-二甲基乙胺 (7)，氮气保护下冷却至 -78℃，搅拌下加入三溴化硼，继续保持该温度下搅拌 0.5～2h，然后升温至 -30～-10℃，搅拌反应 2～6h，再升温至 -10℃左右，加饱和碳酸钠溶液反应，然后萃取，干燥，柱层析，得 (S)-1-(3-羟基苯基)-N,N-二甲基乙胺 (8)；所述 (S)-1-(3-甲氧基苯基)-N,N-二甲基乙胺 (7) 与三溴化硼的摩尔比为 1：1～1：10。

【0022】(7) (-)(S)-N-乙基-N-甲基氨基甲酸 (3-[1-(二甲基氨基)乙基]苯基)酯 (-(S)-卡拉巴汀 (1)) 的合成

【0023】(S)-1-(3-羟基苯基)-N,N-二甲基乙胺 (8) 中加入甲基氨基甲酸氯，所述甲基氨基甲酸氯与 (S)-1-(3-羟基苯基)-N,N-二甲基乙胺的摩尔比为 1：1～1：2，室温搅拌反应 2～4h；然后加乙酸提取，NaOH 溶液洗涤，水洗，干燥，旋转蒸发后，得 (S)-N-乙基-N-甲基氨基甲酸 (3-[1-(二甲基氨基)乙基]苯基)酯 (即 (S)-卡拉巴汀 (1))。

【0024】为了更好地实现本发明，所述步骤 (1) 的 3-甲氧基苯甲醇 (3) 优选按下述方法合成：将 50mmol 3-羟基苯甲醛和 15ml 甲醇溶液在磁力搅拌下加热至 65℃左右，同时滴加 75mmol 硫酸二甲酯和 90mmol 氢氧化钾溶液，加完后继续搅拌反应 24h，停止反应，冷却至室温，乙酸乙酯萃取，无水硫酸钠干燥，旋转蒸发，柱层析，得 3-甲氧基苯甲醇 (3)。

【0025】所述步骤 (2) 的 (R, E)-3-甲氧基-苯亚甲基叔丁基磺酰胺 (4) 优选按下述方法合成：在氮气保护下，将 20mmol 叔丁基亚磺酰胺和 30ml 二氯甲烷，磁力搅拌下加入 44mmol 无水硫酸铜，最后加入溶于 10ml 二氯甲烷的 22mmol 3-甲氧基苯甲醇，室温搅拌反应 24h，
停止搅拌，改心漏斗过滤，旋转蒸干，柱层析，得 (R, E)-3-甲氧基-苯甲基叔丁基磺酰胺 (4)。

【0026】所述步骤 (3) 的 (R)-N-((S)-1-(3-甲氧基苯基) 乙基)-2-叔丁基磺酰胺 (5) 优选按下述方法合成：

【0027】将 40.6mmol 镁片和催化量碱在氢气保护下加入 10ml 无水乙醚，然后加入几滴 (约 0.5ml) 碘甲烷乙醚溶液，待反应引发，碘的黄色退去后，开动磁力搅拌，并在 29～31℃下缓慢滴加 40mmol 碘甲烷与 20ml 乙醚的混合液，滴加完后继续搅拌反应至镁完全消失，得到甲基碘化镁格氏试剂；

【0028】将上述制得的甲基磺化镁格氏试剂冷却至 -48℃，搅拌下缓慢滴加 6.69mmol (R, E)-3-甲氧基-苯甲基叔丁基磺酰胺 (4) 的 33ml 二氯甲烷溶液，加完后保持 -48℃下搅拌反应 4～6h，然后使其自然升至室温，搅拌反应过夜。将反应液倒入 200ml 饱和氯化铵溶液，用乙酸乙酯萃取，无水硫酸镁干燥，旋转蒸干，柱层析，得 (R)-N-((S)-1-(3-甲氧基苯基) 乙基)-2-叔丁基磺酰胺 (5)。

【0029】所述步骤 (4) 的 (S)-1-(3-甲氧基苯基) 苯基乙胺 (6) 优选按下述方法合成：将 2.14ml 甲醇和盐酸/1,4-二氧六环溶液 (2.14ml, 6.4mmol) 加到 3.2mmol (R)-N-((S)-1-(3-甲氧基苯基) 乙基)-2-叔丁基磺酰胺 (5) 中，室温搅拌反应 0.5h，减压浓缩，加 10ml 盐酸，用二氯甲烷洗 3 次，合并有机相，用 2mol/L 盐酸溶液萃取，合并水相，用氨水调 pH 至 9 左右，用二氯甲烷萃取，合并有机相，无水硫酸镁干燥，旋转蒸干，得 (S)-1-(3-甲氧基苯基) 苯基乙胺 (6)。

【0030】所述步骤 (5) 的 (S)-1-(3-甲氧基苯基)-N,N-二甲基乙胺 (7) 优选按下述方法合成：在 1.66mmol (S)-1-(3-甲氧基苯基) 苯基乙胺 (6) 中加入 191mmol 商品浓度为 88%的甲醛和 50mmol 商品浓度为 38%甲醛，油浴 90℃左右搅拌反应 1h，然后再加入 48mmol 体积浓度为 38%甲醛，继续反应 26h，停止反应，冷却至室温，加入 10ml 3 mol/L 盐酸溶液，并搅拌；用二氯甲烷洗 3 次，合并有机相，有机相再用 2mol/L 盐酸溶液萃取，合并水相，用氨水调 pH 至 9 左右，用二氯甲烷萃取，合并有机相，无水硫酸镁干燥，旋转蒸干，得 (S)-1-(3-甲氧基苯基)-N,N-二甲基乙胺 (7)。

【0031】所述步骤 (6) 的 (S)-1-(3-羟基苯基)-N,N-二甲基乙胺 (8) 优选按下述方法合成：将 0.6mmol (S)-1-(3-羟基苯基)-N,N-二甲基乙胺 (7) 溶于 13ml 二氯甲烷中，在氮气保护下冷却至 -78℃，搅拌下加入 3.6mol 三溴化硼，继续保持该温度下搅拌 0.5h，然后升温至 -20℃，搅拌反应 4h，再升温至 -12℃，加 20ml 饱和碳酸氢钠淬灭反应，用乙酸乙酯萃取，并用无水硫酸钠干燥；柱层析，得 (S)-1-(3-羟基苯基)-N,N-二甲基乙胺 (8)。

【0032】所述步骤 (7) 的 (S)-N,N-乙基-3-[(1-二甲氧基乙醚)-N-甲基氨基甲酸苯甲酯 (5)-卡巴拉汀 (1))优选按下述方法合成：在 0.12mmol (S)-1-(3-羟基苯基)-N,N-二甲基乙胺 (8) 中加入 0.25ml THF，然后加入 0.13mmol NaH，充分混合后，加入 0.13mmol 甲乙胺基甲酸苯甲酯，室温搅拌反应 2h，回收 THF 后，加乙醚提取，0.1mol/L NaOH 溶液洗涤，水洗，无水硫酸镁干燥，旋转旋干后，得 (S)-N,N-乙基-3-[(1-二甲氧基乙醚)-N-甲基氨基甲酸苯甲酯 (5)-卡巴拉汀 (1))。

【0033】本发明与现有技术相比，具有如下优点和有益效果：

【0034】1、本发明采用不对称合成方法，反应步骤少，每一步反应收率都较高，基本上都在
具体实施方式

[0037] 下面结合实施例对本发明作进一步详细的描述，但本发明的实施方式不限于此。

[0038] 实施例1

[0039] (1) 3-甲氧基苯甲醛 (3) 的合成

[0040] 在250ml 三颈瓶中，加入 3-羟基苯甲醛 (6.10g, 50mmol) 和15ml 甲醇溶液，
磁力搅拌下加热至65℃左右，同时滴加硫酸二甲酯 (7.41ml, 75mmol) 和氢氧化钾溶液
(KOH(5.04g,90mmol), 8ml 水)。加完后继续搅拌反应 24h, 停止反应，冷却至室温。乙酸乙
酯萃取 (15ml×3), 无水硫酸钠干燥, 旋转蒸干, 柱层析, 得黄色油状物 3-甲氧基苯甲醛 (3)
(5.76g, 收率: 84.1%)

[0041] (2) (R, E)-3-甲氧基-苯甲基叔丁基磺酰胺 (4) 的合成

[0042] 在氮气保护下, 称取叔丁基亚磺酰胺 (2.40g, 20mmol) 和无水硫酸铜 (7.00g,
44mmol), 将叔丁基亚磺酰胺放入100ml 三颈瓶中, 加入30ml 二氯甲烷, 磁力搅拌下加入无
水硫酸铜, 最后将溶于 10ml 二氯甲烷的 3-甲氧基苯甲醛 (3.2g, 22mmol) 加入上述三颈
瓶中, 室温搅拌反应 24h。停止搅拌, 砂心漏斗过滤, 旋转蒸干, 柱层析, 得黄色油状物 (R,
E)-3-甲氧基-苯甲基叔丁基磺酰胺 (4) (4.8g, 收率: 93.7%)。1H NMR (CDCl3) δ 1.25 (s,
9H, CH3), 3.85 (s, 3H, OCH3), 7.06 (dd, 1H, ArH), 7.39 (m, 3H, ArH), 8.24 (s, 1H, CH) ; MS, m/
z 240 (M+H+)

[0043] (3) (R)-N-((S)-1-(3-甲氧基苯基)乙基)-2-叔丁基磺酰胺 (5) 的合成

[0044] 将打磨并剪碎的镁片 (0.97g, 40.6mmol) 和催化量碘, 放入250ml 三颈瓶中, 氮气
保护下加入 10ml 无水乙醇, 然后加入几滴 (约 0.51ml) 磷甲烷乙醚溶液, 待反应引发, 磷
的黄色退去后, 开动磁力搅拌, 并在 29 ~ 31℃下缓慢滴加碘甲烷 (5.74g, 40mmol) 与乙醚
(20ml) 的混合液, 滴加完后继续搅拌反应至醚完全消失, 得到甲基碘化镁格氏试剂。

[0045] 将上述制得的甲基碘化镁格氏试剂冷却至 -48℃, 搅拌下缓慢滴加 (R, E)-3-甲
氧基-苯甲基叔丁基磺酰胺 (4) (1.60g, 6.69mmol) 的二氯甲烷 (33ml) 溶液, 加完后保
持 -48℃下搅拌反应 4 ~ 6h, 然后使其自然升至室温, 搅拌反应过夜。将反应液倒入
200ml 饱和氯化铵溶液中, 用乙酸乙酯萃取 (10ml×3), 无水硫酸镁干燥, 旋转蒸干, 柱层
析, 得白色固体 (R)-N-((S)-1-(3-甲氧基苯基)乙基)-2-叔丁基磺酰胺 (5) (1.57g, 收
率: 91.8%)。1H NMR (CDCl3) δ 1.11 (s, 9H, ClH), 1.43 (d, J = 6.7Hz, 3H, ClH), 3.44 (d, J =
3.4Hz, 1H, NH), 3.68 (s, 3H, OCH3), 4.37 (q, J = 6.6Hz, 1H, CH), 6.69 (m, 1H, ArH), 6.72 (s, 1H,
ArH), 6.82 (d, J = 7.4Hz, 1H, ArH), 7.14 (t, J = 7.8Hz, 1H, ArH) ; 13C NMR (CDCl3) δ 22.5,
25.1, 54.7, 55.1, 55.5, 57.0, 77.7, 77.0, 77.3, 112.5, 112.8, 119.2, 129.5, 145.2, 159.7 ; MS, m/z
256.4 (M+H+) ; 元素分析计算值 : C (19.56%); H (8.73%); N (5.46%); S (12.53%); 测得值 :
C 61.88%; H 8.73%; N 5.46%; S 12.53%
(4) (S)-1-(3-甲基氧基)苯基乙胺 (6) 的合成

将 2.14ml 甲醇和盐酸 /1.4-二氧六环溶液 (2.14ml, 6.4mmol) 加到盛有 (R)-N-((S)-1-(3-甲基氧基苯基)乙基)-2-叔丁基磺酸胺 (5) (0.82g, 3.2mmol) 的 100ml 单颈瓶中, 室温搅拌反应 0.5h。减压浓缩, 加入 10ml 盐酸 (3mol/L), 用二氯甲烷 (10ml×3) 洗 3 次, 合并有机相, 用盐酸溶液 (2mol/L, 10ml×3) 萃取, 合并水相, 用氢氧化钠调节 pH 至 9 左右, 用二氯甲烷 (10ml×5) 萃取, 合并有机相, 无水硫酸镁干燥, 旋转蒸发, 得黄色油状物 (S)-1-(3-甲基氧基)苯基乙胺 (6) (0.47g, 收率: 97.9 %); 1H NMR (CDCl\textsubscript{3}) δ 1.36 (d, J = 6.6Hz, 3H, CH\textsubscript{3}), 1.57 (s, 2H, NH\textsubscript{2}), 3.79 (s, 3H, OCH\textsubscript{3}), 4.07 (q, J = 6.6Hz, 1H, CH), 6.76 (m, 1H, ArH), 6.91 (m, 2H, ArH), 7.24 (m, 1H, ArH); MS, m/z 152.2 (M+H)

(5) (S)-1-(3-甲基氧基苯基)-N,N-二甲基乙胺 (7) 的合成

在盛有 (S)-1-(3-甲基氧基)苯基乙胺 (6) (0.25g, 1.66mmol) 的 100ml 三颈瓶中加入浓盐酸 (88% (体积百分数) 甲酸和 191mmol) 和浓盐酸 (38% (体积百分数) 甲酸 (4ml, 50mmol), 油浴 90°C 左右搅拌反应 1h, 然后再加入浓盐酸 (38% (体积百分数) 甲酸 (3.8ml, 48mmmol), 继续反应 26h。停止反应, 冷却至室温。加入 10ml 盐酸溶液 (3mol/L), 并搅拌。用二氯甲烷 (10ml×3) 洗 3 次, 合并有机相, 有机相再用盐酸溶液 (2mol/L, 10ml×3) 萃取, 合并水相。用氢氧化钠调节 pH 至 9 左右, 用二氯甲烷 (10ml×5) 萃取, 合并有机相, 无水硫酸镁干燥, 旋转蒸发, 得黄色油状物 (S)-1-(3-甲基氧基苯基)-N,N-二甲基乙胺 (7) (0.25g, 收率: 84.2 %); 1H NMR (CDCl\textsubscript{3}) δ 1.35 (d, J = 6.6Hz, 3H, CH\textsubscript{3}), 2.21 (s, 6H, NCH\textsubscript{3}), 3.19 (q, J = 6.6Hz, 1H, CH), 3.80 (s, 3H, -OCH\textsubscript{3}), 6.77 (m, 1H, CH), 6.85 (s, 1H, CH), 6.87 (d, 1H, CH), 7.23 (m, 1H, CH); MS, m/z 179.8 (M+H)

(6) (S)-1-(3-羟基苯基)-N,N-二甲基乙胺 (8) 的合成

将 (S)-1-(3-甲基氧基苯基)-N,N-二甲基乙胺 (7) (0.11g, 0.6mmol) 溶于 13ml 二氯甲烷中, 并倒入 100ml 三颈瓶中。氮气保护下冷却至 -78°C, 搅拌下迅速加入三溴化硼 (0.34ml, 3.6mmol), 继续保持该温度下搅拌 0.5h。然后升温至 -20°C, 搅拌反应 4h, 再升温至 -12°C, 加 20ml 饱和碳酸氢钠溶液反应。用乙酸乙酯 (10ml×4) 萃取, 并用无水硫酸钠干燥。柱层析, 得白色晶体 (S)-1-(3-羟基苯基)-N,N-二甲基乙胺 (8) (0.08g, 收率: 80.8 %), 回收原料 (S)-1-(3-甲基氧基苯基)-N,N-二甲基乙胺 (7) (0.01g, 回收率: 90.9 %); 1H NMR (CDCl\textsubscript{3}) δ 1.39 (d, J = 6.8Hz, 3H, CH\textsubscript{3}), 2.23 (s, 6H, NCH\textsubscript{3}), 3.28 (q, J = 6.8Hz, 1H, CH), 6.74 (m, 2H, ArH), 6.83 (s, 1H, ArH); MS, m/z 175.8 (M+H)

(7) (-)-N-乙基-N-甲基氨基甲酸 (3-[1-(二甲基氨基苯基)乙基]苯基)酯 (卡巴拉汀, (1)) 的合成

将 (S)-1-(3-羟基苯基)-N,N-二甲基乙胺 (8) (0.02g, 0.12mmol) 加到 50ml 环己烷中, 加入 0.25ml THF, 然后加入 NaOH (0.0051g, 0.13mmol), 充分混合后, 加入甲胺基甲酸 (0.0155g, 0.13mmol), 室温搅拌反应 2h。回收 THF 后, 用乙醚提取, 0.1mol/L NaOH 溶液洗涤, 水洗, 无水硫酸镁干燥。旋转蒸发后, 得黄色油状物 (S)-卡巴拉汀 (1) (0.0272g, 收率: 89.8 %); 1H NMR (CDCl\textsubscript{3}) δ 1.21 (m, 3H, CH\textsubscript{3}), 1.36 (d, J = 6.8Hz, 3H, CH\textsubscript{3}), 2.20 (s, 6H, NCH\textsubscript{3}), 3.02 (s, 3H, NCH\textsubscript{3}), 3.25 (q, J = 6.7, 1H, ArH), 3.43 (m, 2H, CH\textsubscript{2}), 7.01 (d, J = 8.4Hz, 1H, ArH), 7.07 (s, 1H, ArH), 7.11 (d, J = 7.6Hz, 1H, ArH), 7.28 (m, 1H, ArH); MS, m/z 251.3 (M+H)
上述实施例为本发明较佳的实施方式，但本发明的实施方式并不受上述实施例的限制，其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化，均应为等效的置换方式，都包含在本发明的保护范围之内。