An object is to provide a wheel speed detecting device with a countermeasure against entrance of mud water. An annular recess groove is provided in an outer circumference of an end portion of a hub on a sensor side. Moreover, a cup-shaped flange portion extends from the sensor supporting member, the flange portion covering the annular recess groove while maintaining a predetermined gap T1 between the flange portion and the outer circumference of the end portion of the hub. Mud water heads toward a multi-pole magnet ring by running through the gap T1 formed between the flange portion and the outer circumference of the hub. However, entrance of mud water can be effectively prevented by making the gap T1 small. Mud water still entering the gap T1 is trapped in the annular recess groove.
ABSTRACT OF THE DISCLOSURE

An object is to provide a wheel speed detecting device with a countermeasure against entrance of mud water. An annular recess groove is provided in an outer circumference of an end portion of a hub on a sensor side. Moreover, a cup-shaped flange portion extends from the sensor supporting member, the flange portion covering the annular recess groove while maintaining a predetermined gap T1 between the flange portion and the outer circumference of the end portion of the hub. Mud water heads toward a multi-pole magnet ring by running through the gap T1 formed between the flange portion and the outer circumference of the hub. However, entrance of mud water can be effectively prevented by making the gap T1 small. Mud water still entering the gap T1 is trapped in the annular recess groove.
WHEEL SPEED DETECTING DEVICE

FIELD OF THE INVENTION
The present invention relates to a wheel speed detecting device including a multi-pole magnet ring and a sensor.

BACKGROUND OF THE INVENTION
A technique is known in which a pulsar ring is provided to a wheel of a motorcycle, a detection sensor is provided to a brake caliper, and a wheel speed is obtained from pulse information acquired from the pulsar ring by using the detection sensor (for example, see Japanese Patent Application Publication No. 2006-103372 (Fig. 3)).

To be specific, in Fig. 3 of Japanese Patent Application Publication No. 2006-103372, reference numeral (32) (the number in parenthesis indicates a reference numeral described in the patent document. The same applies below) denotes the pulsar ring, reference numeral (33) denotes the sensor, and reference numeral (31) denotes the brake caliper.

Here, the pulsar ring (32) is a ring with a relatively large diameter. Meanwhile, a technique is known in which energy loss is reduced by reducing moment of inertia. In view of this technique, it is desirable to reduce the diameter of the pulsar ring (32).

In this regard, a magnetic encoder whose diameter can be reduced is proposed (for example, see Japanese Patent Application Publication No. 2009-97997 (Fig. 1)).

As shown in Fig. 1 of Japanese Patent Application Publication No. 2009-97997, a slinger (24) having a L-shaped cross section is attached to an inner ring (13) being a rotating body, and a multi-pole magnet (23) is attached to an outer side surface of the slinger (24). A movement of this multi-pole magnet (23) is detected by a rotation sensor (22) and thereby the rotation speed of the inner ring (13) can be figured out.
Specifically, a wheel speed can be detected by disposing a rolling bearing (11) between an axle and a wheel of a motorcycle.

Moreover, since the multi-pole magnet (23) has a sufficiently small diameter, energy loss can be reduced.

However, in a vehicle, especially in a motorcycle, part of mud water splashed by a wheel sometimes enters a space between the multi-pole magnet (23) and a detecting portion (25) in Fig. 1 of Japanese Patent Application Publication No. 2009-97997. Mud water includes various kinds of foreign objects, and the foreign objects may include iron powder which affects magnetic property.

The iron powder adheres onto the multi-pole magnet (23) by magnetic force. Thus, a countermeasure for the adhesion is demanded.

Moreover, as shown in Fig. 1 of Japanese Patent Application Publication No. 2009-97997, the rotation sensor (22) disposed outside the rolling bearing (11) is in a so-called exposed state. Thus, there is room for improvement in terms of external appearance. In addition, the rotation sensor (22) has to be supported by an unillustrated sensor stay. Here, it is inevitable for a rotation detecting device (21) including the sensor stay, the rotation sensor (22), and the multi-pole magnet (23) to become large in size. The rotation detecting device (21) is desired to have a reduced size when considered to be mounted on a motorcycle.

An object of the present invention is to provide a wheel speed detecting device which is small in size and is provided with a countermeasure against entrance of mud water including iron powder.

SUMMARY OF THE INVENTION

A first aspect of the present invention provides a wheel speed detecting device in which a multi-pole magnet ring is provided to a bearing fitted into a hub of a wheel, and a sensor is provided to a swing arm or a front fork via a sensor supporting member at a portion facing the multi-pole magnet ring, the wheel speed detecting device detecting the multi-pole magnet ring, which rotates together with the wheel, by using the sensor, and thereby detecting a rotation speed of the wheel from the detection information obtained by the sensor. In the speed detecting device, an annular recess groove is provided in an outer circumference of an end portion of the hub on a side closer to the sensor, and a cup-shaped flange portion extends from the sensor supporting member, the flange portion covering the annular recess groove.
while maintaining a predetermined gap between the flange portion and the outer circumference of the end portion of the hub.

According to a second aspect of the present invention, a plurality of the annular recess grooves are provided to be arranged in a longitudinal direction of an axle supporting the wheel.

According to a third aspect of the present invention, an outer diameter of the flange portion is set to be the same as an outer diameter of the hub.

According to a fourth aspect of the present invention, the flange portion is detachably attached to the sensor supporting member.

According to a fifth aspect of the present invention, an inner diameter of a tip end of the flange portion is set to be smaller than an outer diameter of the hub.

According to the first aspect of the present invention, the outer circumference of the end portion of the hub is covered with the cup-shaped flange portion. Mud water heads toward a multi-pole magnetic ring by running through the gap formed between the flange portion and the outer circumference of the hub. However, entrance of mud water can be effectively prevented by making the gap small. Mud water still entering the gap is accumulated in the annular recess groove.

A synergy effect of the cup-shaped flange portion and the annular recess groove allows the wheel speed detecting device to be provided with a countermeasure against entrance of mud water including iron powder.

Moreover, the sensor supporting member holding the sensor at the portion facing the multi-pole magnet ring is inevitably a ring-shaped member or a cylindrical member. A ring-shaped member or a cylindrical member can be fitted onto the axle. A vehicle speed detecting device including such sensor supporting member, sensor, and multi-pole magnet ring can achieve reduction in overall size and improvement in external appearance.

According to the second aspect of the present invention, the plurality of the annular recess grooves are provided to be arranged in the longitudinal direction of the axle supporting the wheel. Thus, mud water having entered the gap can be more securely blocked.
According to the third aspect of the present invention, the outer diameter of the flange portion is set to be the same as the outer diameter of the hub. Thus, a new labyrinth portion is formed by the tip end surface of the flange portion and the step portion of the hub, thereby effectively suppressing entrance of mud water.

According to the fourth aspect of the present invention, the flange portion is detachably attached to the sensor supporting member. Thus, if the outer diameter of the hub is changed, the flange portion can be replaced with a flange portion of a different size. In other words, the wheel speed detecting device can be applied to various types of vehicles, and the versatility of the wheel speed detecting device is improved.

According to the fifth aspect of the present invention, the inner diameter of the tip end of the flange portion is set to be smaller than the outer diameter of the hub. Thus, the countermeasure against entrance of mud water can be further improved.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the invention are shown in the drawings, wherein:

Fig. 1 is a view for explaining a main portion of a motorcycle including a wheel speed detecting device according to the present invention.

Fig. 2 is a cross-sectional view of a bearing.

Fig. 3 is a view seen in a direction of an arrow 3 in Fig. 2.

Fig. 4 is a cross-sectional view of a main portion according to Embodiment 1.

Fig. 5 is a cross-sectional view of a main portion according to Embodiment 2.

Fig. 6 is a cross-sectional view of a main portion according to Embodiment 3.

Fig. 7 is a cross-sectional view of a main portion according to Embodiment 4.

Fig. 8 is a cross-sectional view of a main portion according to Embodiment 5.

Fig. 9 is a cross-sectional view of a main portion according to Embodiment 6.
Fig. 10 is an explanation view of a main portion according to Embodiment 7.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Embodiments of the present invention will be described below on the basis of the attached drawings.

Firstly, Embodiment 1 of the present invention will be described on the basis of the drawings.

Fig. 1 is a view for explaining a main portion of a motorcycle including a wheel speed detecting device according to the present invention. As shown in Fig. 1, a bearing 13 is fitted to a hub 12 of a rear wheel 11. A multi-pole magnet ring 15 is provided to an outer ring 14 of this bearing 13. At a portion facing the multi-pole magnet ring 15, a sensor 17 is disposed between a swing arm 16 and the hub 12.

Specifically, a donut-shaped sensor supporting member 18 is brought into contact with the swing arm 16. A collar 19 is press fitted into the sensor supporting member 18. The collar 19 is press fitted in a manner that its one end portion on the bearing 13 side protrudes from the sensor supporting member 18. It is acceptable that the collar 19 and the sensor supporting member 18 are integrated to each other and formed as a single component by reducing the inner diameter of the sensor supporting member 18. However, in a case where there is a need to use a different material for each component, such as in a case where wear resistant steel is used for the collar 19 and soft steel for the sensor supporting member 18, the collar 19 is press fitted as in this embodiment.

One or multiple sensors 17 are buried into such sensor supporting member 18.

Part of the sensor supporting member 18 is inserted into the hub 12. In other words, an outer end surface of the bearing 13 is displaced beyond an end surface of the hub 12 on the swing arm 16 side (or, buried). As a result, a later-described labyrinth structure is formed.

An annular recess groove 22 is provided in an outer circumference 21 of an end portion of the hub 12 on the sensor 17 side. In addition, a cup-shaped flange portion 23 covering the annular recess groove 22 while maintaining a predetermined gap T1 between the flange portion 23 and the outer circumference 21 of the end portion of the hub 12 extends from the sensor supporting member 18 in a direction away from the swing arm 16.

An example of a structure of the bearing 13 will be described by the following drawings.
As shown in Fig. 2, the bearing 13 includes an inner ring 24, balls 25, and the outer ring 14. A ring fitting 26 having an L-shaped cross section is fitted to the outer ring 14. Note that, a sealing member 27 such as an oil seal is attached to the inside of the ring fitting 26, and the multi-pole magnet ring 15 is attached to the outside of the ring fitting 26 in advance. The sealing member 27 can block dust and water flying toward the balls 25.

As shown in Fig. 3, the multi-pole magnet ring 15 is a special magnet in which north pole portions 28 and south pole portions 29 are arranged alternately.

Thus, in Fig. 1, the rotation speed of the multi-pole magnet ring 15 can be detected by detecting pole changes of the multi-pole magnet ring 15 with the sensor 17. Detection information is sent out through a harness 31. Since the multi-pole magnet ring 15 rotates together with the wheel, a wheel speed (rotation speed of the wheel) can be detected from the detection information.

In other words, the wheel speed detecting device 10 includes the multi-pole magnet ring 15 attached to the hub 12 being a rotating body and the sensor 17 attached to the swing arm 16 being a non-rotating body.

An operation of the wheel speed detecting device 10 having the above configuration will be described next.

As shown in Fig. 4, the cup-shaped flange portion 23 covering the annular recess groove 22 while maintaining the predetermined gap T_1 between the flange portion 23 and the outer circumference 21 of the end portion of the hub 12 extends from the sensor supporting member 18.

Specifically, the cup-shaped flange portion 23 includes a disk portion 32 extending radially outward from the sensor supporting member 18 and a cylinder portion 33 extending parallel to the outer circumference 21 of the hub 12 from an outer circumference of the disk portion 32.

The disk portion 32 may be a conical plate instead of a disk.

A gap between the outer circumference 21 of the hub 12 and the cylinder portion 33 is T_1. Moreover, a gap between a tip end surface 12b of the hub 12 and the disk portion 32 is T_2, and a gap between an inner circumference 12c of the hub 12 and an outer circumference of a
tip end of the sensor supporting member 18 is T3. The gap T3 is formed as follows. The outer end surface 13a of the bearing 13 is displaced beyond the tip end surface 12b of the hub 12 on the swing arm 16 side, thereby inserting part of the sensor supporting member 18 into the hub 12. Note that, each of the gaps T1 to T3 is set to be as small as possible within a range in which the components do not come into contact with each other while considering the expansion, vibration, and the like of the components.

As indicated by an arrow (1), mud water entering from the outside reaches the multi-pole magnet ring 15 after passing through the labyrinth structure including a gap portion 35 with the gap T1, a gap portion 36 with the gap T2, and a gap portion 37 with the gap T3. However, the labyrinth structure is formed by arranging the gap portions 35 to 37 in a squared U-shape and the gaps T1 to T3 are sufficiently small. Thus, the labyrinth structure has a large flow resistance, and it is hard for mud water to enter the structure.

Even if mud water enters the gap portion 35 with the gap T1, the mud water is trapped by the annular recess groove 22. Thus, entrance of mud water is prevented and there is no concern of mud water reaching the multi-pole magnet ring 15.

Modifications of the embodiment shown in Fig. 4 will be described based on Figs. 5 to 9.

Embodiment 2 of the present invention will be described based on the drawing.

As shown in Fig. 5, Fig. 5 is different from Fig. 4 in that two annular recess grooves 22, 38 are provided in the outer circumference 21 of the hub 12, the grooves 22, 38 arranged in a longitudinal direction of an axle 39 of the rear wheel, and that the cylinder portion 33 is extended to cover all of the two annular recess grooves 22, 38. Since other configurations are the same as those of Fig. 4, the same reference numerals as in Fig. 4 are used, and descriptions thereof are omitted.

If the annular recess groove 38 is filled with mud water, the next annular recess groove 22 traps mud water. Thus, blocking performance of mud water is improved. Three or more annular recess grooves 22 may be provided.

Next, Embodiment 3 of the present invention will be described based on the drawing.

As shown in Fig. 6, Fig. 6 is different from Fig. 4 in that an outer diameter Dh of the hub 12 and an outer diameter Ds of the cylinder portion 33 are the same. Since other configurations
are the same as those of Fig. 4, the same reference numerals as in Fig. 4 are used, and descriptions thereof are omitted.

If a gap between a step portion (wall portion) 41 of the hub 12 and a tip end 33a of the cylinder portion 33 is T4, the labyrinth structure includes the gap portion 35 with the gap T1, the gap portion 36 with the gap T2, the gap portion 37 with the gap T3, and a gap portion 42 with the gap T4. Thus, the flow resistance increases, and the blocking performance of mud water is further improved.

Next, Embodiment 4 of the present invention will be described based on the drawing.

As shown in Fig. 7, Fig. 7 is different from Fig. 4 in that the flange 23 is detachably attached to the sensor supporting member 18. Since other configurations are the same as those of Fig. 4, the same reference numerals as in Fig. 4 are used, and descriptions thereof are omitted.

The flange portion 23 is press fitted to the sensor supporting member 18. Alternatively, the flange portion 23 may be fixed to the sensor supporting member 18 by a screw or adhesive.

If the outer diameter of the hub 12 is changed, the flange portion 23 may be replaced with a flange portion of a different size. In other words, the wheel speed detecting device can be applied to various types of vehicles, and the versatility of the wheel speed detecting device can be improved.

Next, Embodiment 5 of the present invention will be described based on the drawing.

As shown in Fig. 8, Fig. 8 is different from Fig. 4 in that an inner diameter Di of a tip end of the flange portion 23 is set to be smaller than the outer diameter Dh of the hub 12. Since other configurations are the same as those of Fig. 4, the same reference numerals as in Fig. 4 are used, and descriptions thereof are omitted.

In consideration of assembly, it is recommended to attach a diameter reduction ring 43 to the cylinder portion 33 by screws 44, the diameter reduction ring 43 having an L-shaped cross section and being a circle divided into two to four parts. When the diameter reduction ring 43 divided into two or three parts is used, the tip end thereof can be inserted into the annular recess groove 22.

Next, Embodiment 6 of the present invention will be described based on the drawing.
As shown in Fig. 9, Fig. 9 is different from Fig. 4 in that a sealing member 45 is attached to the tip end of the cylinder portion 33, and that this sealing member 45 is brought into contact with the outer circumference 21 of the hub 12. Since other configurations are the same as those of Fig. 4, the same reference numerals as in Fig. 4 are used, and descriptions thereof are omitted.

A material with low sealing performance such as sponge is used as the sealing member 45. Accordingly, a certain level of air permeability allows hot air due to heat generated in the bearing 13 to be exhausted to the outside.

The countermeasure against entrance of mud water can be improved further accordingly by addition of the sealing member 45.

Next, Embodiment 7 being a modified embodiment of Fig. 1 will be described based on the drawing.

As shown in Fig. 10, the wheel speed detecting device 10 of the present invention may be provided between a front fork 46 and a hub 12 of a front wheel 47. Since other configurations are the same as those of Fig. 1, the same reference numerals as in Fig. 1 are used, and descriptions thereof are omitted.

Note that, the annular recess groove may have a semi-circular cross section or a U-shaped cross section.

The wheel speed detecting device of the present invention can be applied to a three-wheeled vehicle, a four-wheeled vehicle, and a bicycle which does not have an engine, in addition to a motorcycle.

The wheel speed detecting device of the present invention is suitable for a motorcycle.

Although various preferred embodiments of the present invention have been described herein in detail, it will be appreciated by those skilled in the art, that variations may be made thereto without departing from the invention as defined in the appended claims.
THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

1. A wheel speed detecting device in which a multi-pole magnet ring is provided to a bearing fitted into a hub of a wheel, and a sensor is provided to a swing arm or a front fork via a sensor supporting member at a portion facing the multi-pole magnet ring, the wheel speed detecting device detecting the multi-pole magnet ring, which rotates together with the wheel, by using the sensor, and thereby detecting a rotation speed of the wheel from the detection information obtained by the sensor, wherein an annular recess groove is provided in an outer circumference of an end portion of the hub on a side closer to the sensor, and a cup-shaped flange portion extends from the sensor supporting member, the flange portion covering the annular recess groove while maintaining a predetermined gap (T1) between the flange portion and the outer circumference of the end portion of the hub.

2. The wheel speed detecting device according to claim 1, wherein a plurality of the annular recess grooves are provided to be arranged in a longitudinal direction of an axle supporting the wheel.

3. The wheel speed detecting device according to claim 1, wherein an outer diameter (Ds) of the flange portion is set to be the same as an outer diameter (Dh) of the hub.

4. The wheel speed detecting device according to claim 1, wherein the flange portion is detachably attached to the sensor supporting member.

5. The wheel speed detecting device according to claim 1, wherein an inner diameter (Di) of a tip end of the flange portion is set to be smaller than an outer diameter (Dh) of the hub.