发明名称

记录设备和记录方法

摘要

本发明提供一种记录设备和记录方法。该记录设备用于通过利用扫描墨的记录头扫描记录介质来形成记录数据，包括：间隔单元，用于对通过沿扫描方向分割至少包括第一扫描区域和第二扫描区域的扫描区域所形成的多个区域，间隔记录头排出墨的单元，其中通过记录头的扫描记录每一扫描区域；以及记录头驱动单元，用于通过基于由间隔单元间隔后的数据驱动记录头来排出墨，其中，第一扫描区域中的区域之间的边界在扫描方向上位于与第二扫描区域中的区域之间的边界不同的位置处，其中第二扫描区域与第一扫描区域相邻。
1. 一种记录设备，用于通过利用排出墨用的记录头扫描记录介质来在所述记录介质上记录图像，所述记录设备包括：

间除单元，用于对通过沿扫描方向和副扫描方向分割与扫描区域相对应的设置区域所形成的多个区域，间除所述记录头排出墨用的数据，其中，通过所述记录头的一次扫描记录每一所述扫描区域，每一所述设置区域至少包括第一设置区域和在所述副扫描方向上与所述第一设置区域相邻的第二设置区域；所述第一设置区域和所述第二设置区域包括布置在扫描方向上的区域，并且在与所述扫描方向垂直的方向上，所述第一设置区域和所述第二设置区域的长度短于所述扫描区域的长度，所述副扫描方向与所述记录头的扫描方向相交，所述间除是指除去记录头排出墨用的部分数据；以及

记录头驱动单元，用于通过基于由所述间除单元间除后的数据驱动所述记录头来排出墨。

其中，所述第一设置区域中的区域之间的边界在所述扫描方向上位于与所述第二设置区域中的区域之间的边界不同的位置处。

2. 根据权利要求1所述的记录设备，其特征在于，在所述扫描方向上，所述设置区域的长度长于所述扫描区域的长度。

3. 根据权利要求1所述的记录设备，其特征在于，所述记录头包括用于生成排出墨用的热能的加热器。

4. 一种记录设备，用于通过利用排出墨用的记录头扫描记录介质来在所述记录介质上记录图像，所述记录设备包括：

确定单元，用于基于扫描区域中的排出墨用的数据的点计数值、第一区域中的排出墨用的数据的点计数值和第二区域中的排出墨用的数据的点计数值，对于所述扫描区域所形成的至少包括所述第一区域和所述第二区域的多个区域，针对在所述扫描方向上相邻的所述第一区域和所述第二区域之间的边界部分，除所述边界部分之外的所述第一区域以及除所述边界部分之外的所述第二区域，确定排出墨用的数据的间除比，其中通过所述记录头的一次扫描记录每一所述扫描区域；

间除单元，用于基于由所述确定单元所确定的间除比来间除所述数据，其中，间除是指除去记录头排出墨用的部分数据；以及

记录头驱动单元，用于通过基于由所述间除单元间除后的数据驱动所述记录头来排出墨。

其中，所述所述设置区域间的间除比是所述第一区域的间除比和所述第二区域的间除比的平均值。

5. 一种用于通过利用排出墨用的记录头扫描记录介质来在所述记录介质上记录图像的方法，所述方法包括：

对通过沿扫描方向和副扫描方向分割与扫描区域相对应的设置区域所形成的多个区域，间除所述记录头排出墨用的数据，其中，通过所述记录头的一次扫描记录每一所述扫描区域，每一所述设置区域至少包括第一设置区域和在所述副扫描方向上与所述第一设置区域相邻的第二设置区域，所述第一设置区域和所述第二设置区域包括布置在扫描方向上的区域，并且在与所述扫描方向垂直的方向上，所述第一设置区域和所述第二设置区域的长度短于所述扫描区域的长度，所述副扫描方向与所述记录头的扫描方向相交，所述间除是
指除去记录头排出墨用的部份数据；以及
通过基于间除后的所述数据驱动所述记录头来排出墨。
其中，所述第一设置区域中的区域之间的边界在所述扫描方向上位于与所述第二设置区域中的区域之间的边界不同的位置处。
记录设备和记录方法

技术领域
[0001] 本发明涉及一种记录设备和记录方法，具体地，适用于一种使用热敏打印头记录图像的记录设备和记录方法。

背景技术
[0002] 喷墨记录系统打印机通过在纸张等记录介质的输送方向（副扫描方向）垂直的方向（扫描方向）扫描记录头，在记录介质上记录图像，其中，记录头基于图像的记录数据排出墨。在喷墨记录系统中，气泡喷墨记录系统是一种利用由电磁转换器（下面有时称为“加热器”）快速加热墨而使墨气化而生成的气泡的压力将墨从排出口排出的系统。
[0004] 在图14A和14B中，设置有基板1，加热器2，孔板4和排出口5。此外，在基板1和孔板4之间形成墨流路10，并在该多个墨流路10之间设置间隙9。另外，在基板1上形成供墨口8。将加热器2对着排出口5设置在基板1上。在加热器2的表面上形成保护膜。通过墨流路10将墨从与墨流路10连通的公共液体室（未示出）供给各排出口5。当向设置在对各排出口5的位置处的加热器2施加驱动脉冲时，墨被快速加热，从而墨从排出口5排出。
[0005] 然而，即使当向加热器2施加相同的驱动脉冲时，墨排出量也根据加热器2附近的墨的温度而不同。此外，如果向加热器2连续施加驱动脉冲，则热累积在记录头11中。因此，如果从记录头11连续排出墨，则这使得加热器2附近的墨温度升高，从而墨排出量增加。
[0006] 图15A～15C是现有技术的示出记录头温度和墨排出量之间的关系的图。这里，由于实际上难以测量加热器2附近的墨温度，因而通常通过在记录头中设置热敏电阻来测量温度，以代替测量加热器2附近的墨温度。图15B和15C分别示出当如图15A所示在从记录头11连续排出墨的同时从记录位置A到记录位置B扫描记录头11时记录头温度Th和记录位置之间的关系以及墨排出量Vd和记录位置之间的关系。如图15B和15C所示，记录头温度Th随着扫描从记录位置A向记录位置B的进行而升高，并且，随着该记录头温度Th的升高，墨排出量Vd也增加。因此，如图15A所示，所记录图像的记录浓度从记录位置A向记录位置B上升，因而扫描方向发生浓度不均匀。
[0007] 因此，在日本特开平8-156258号公报所述的记录方法中，计数各扫描的记录数据中的有效数据，并且当该计数值超过基准值时，间开（thin）该扫描中的随后的记录数据，或者减少用于驱动记录头11的脉冲信号的脉冲宽度。根据该记录方法，可以降低由记录头温度的升高所引起的墨排出量的增加的影晌，即，可以降低扫描方向上的浓度不均匀。
[0008] 然而，在日本特开平8-156258号公报所述的记录方法中，在一些情况下，在记录浓度突然变化的区域，这导致图像质量下降。
[0009] 现在参考图16说明这一现象。图16是现有技术的示出当利用日本特开平
说明书

8-156258 号公报中所述的记录方法记录图像时在记录介质 21 上所形成的、记录浓度突然改变的区域的图。在图 16 中，通过在从记录头 11 播出墨水时沿箭头 A 所示的扫描方向扫描记录头 11，并在扫描之间沿箭头 B 所示的扫描方向输送记录介质 21，来记录图像。也就是说，在记录在记录介质中的区域中，通过在扫描区域（带）23 上顺次记录图像，将图像记录在记录介质 21 的记录区域 22 上，其中，在每一扫描区域 23 上，记录头 11 进行一次扫描。这里，记录头 11 通过仅在沿与箭头 A 相同的方向进行扫描时排出墨，来在记录介质 21 上进行记录。

[0010] 在日本特开平 8-156258 号公报所述的记录方法中，通过计数每一扫描的记录数据中的有效数据，并且当该计数值超过基准值时，间除该扫描中的后的记录数据或者减小驱动记录头 11 的脉冲信号的脉冲宽度，来进行记录。下面将说明在该计数值超过了基准值并且间除记录数据时的情况。

[0011] 在记录头 11 的第 N 次扫描要记录的第 N 区域（第 N 扫描区域）中所示的边界线 24 的位置处，该位置处的有效数据的计数值达到了基准值。该边界线 24 是示出从该位置开始间除记录数据的假想线。

[0012] 在位于边界线 24 左侧的区域 25A 中，由于因记录头 11 的扫描而导致记录头的温度升高，因而该区域中的墨排出量增加。因此，在区域 25A 中，以更高的记录浓度记录图像。

[0013] 然而，通过间除记录数据可以抑制在位于边界线 24 右侧的区域 25B 中油墨排出量增加而引起的记录浓度的改变。通过以这种方式在扫描途中间除记录数据，即使由于记录头温度升高而引起墨排出量增加，也可以减轻扫描方向上的浓度不均匀。

[0014] 然而，如果从边界线 24 等的某一位位置开始间除记录数据，则记录浓度跨过边界线 24 临时下降。结果，在边界线 24 右侧紧挨着开始间除记录数据的原位和没有间除记录数据的边界线 24 的左侧之间，记录浓度发生相当大的差异。也就是说，边界线 24 的附近变成记录浓度突然变化的区域。从视觉上被觉察为浓度不均匀，因此导致图像质量下降。

[0015] 此外，假定同样在第 N 扫描区域的下一扫描区域（第 N+1 扫描区域）中，有效数据的计数值在沿扫描方向与第 N 扫描区域相同的位置处达到基准值。在这种情况下，由于记录浓度突然变化的区域在副扫描方向上连续，因而更容易被觉察为浓度不均匀，这导致图像质量进一步下降。因此，如果记录浓度突然变化的区域在副扫描方向上连续，这将会导致记录在记录介质上的图像的质量严重下降。

发明内容

[0016] 本发明的目的在于提供一种当间除记录数据而进行记录时可以抑制由于形成记录浓度突然变化的区域而导致的图像质量的下降的记录设备。

[0017] 根据本发明的一个方面，一种用于通过利用排出墨用的记录头扫描记录介质来在所述记录介质上记录图像的记录设备，包括：间除单元，用于对通过沿扫描方向分割至少包括第一扫描区域和第二扫描区域的扫描区域所形成的多个区域，间除所述记录头排出墨用的数据，其中通过所述记录头的一次扫描记录每一所述扫描区域；以及记录头驱动单元，用于通过基于由所述间除单元间除后的数据驱动所述记录头来排出墨，其中，所述第一扫描区域中的区域之间的边界在所述扫描方向上位于与所述第二扫描区域中的区域之间的边界不同的位置处，其中所述第二扫描区域与所述第一扫描区域相邻。
[0018] 根据本发明的另一方面，一种用于通过利用排出墨用的记录头扫描记录介质来在所述记录介质上记录图像的记录设备，包括：除单元，用于对通过沿扫描方向分割扫描区域相对应的至少包括第一设置区域和第二设置区域的所述区域所形成的多个区域，间除所述记录头排出墨用的数据，其中通过所述记录头的一次扫描记录每一所述扫描区域；以及记录头驱动单元，用于通过基于由所述间除单元间除后的数据驱动所述记录头来排出墨，其中，所述第一设置区域中的区域之间的边界在所述扫描方向上位于与所述第二设置区域区域之间的边界不同的位置处，所述所述第二设置区域与所述第一设置区域相邻。

[0019] 根据本发明的另一方面，一种用于通过利用排出墨用的记录头扫描记录介质来在所述记录介质上记录图像的记录设备，包括：除单元，用于对通过沿扫描方向分割扫描区域所形成的至少包括第一区域和第二区域的多个区域，在所述扫描方向上相邻的所述第一区域和所述第二区域之间的区域的边界部分，以上所述区域部分之外的所述第一区域以及所述区域部分之外的所述第二区域，确定排出墨用的数据的间除比，其中通过所述记录头的一次扫描记录每一所述扫描区域；以及记录头驱动单元，用于通过基于由所述间除单元间除后的数据驱动所述记录头来排出墨，其中，所述区域部分的间除比是所述第一区域的间除比和所述第二区域的间除比的平均值。

[0020] 根据本发明的另一方面，一种用于通过利用排出墨用的记录头扫描记录介质来在所述记录介质上记录图像的方法，包括：对通过沿扫描方向分割扫描区域所形成的至少包括第一区域和第二区域的多个区域，间除所述记录头排出墨用的数据，其中通过所述记录头的一次扫描记录每一所述扫描区域，以及通过基于除后的所述数据驱动所述记录头来排出墨，其中，第一扫描区域中的区域之间的边界在所述扫描方向上位于与第二扫描区域中的区域之间的边界不同的位置处，所述所述第二扫描区域与所述第一扫描区域相邻。

[0021] 根据典型实施例，能够减轻当间除记录数据而进行记录时由于形成记录浓度突然变化的区域而导致的图像质量的下降，以减小由于记录头温度的升高而引起的墨排出量的增加的影响。

[0022] 通过以下参考附图对典型实施例的详细说明，本发明的其它特征和方面将显而易见。

附图说明
[0023] 包括在说明书书中并构成说明书的一部分的附图，示出了本发明的典型实施例、特征和方面，并与说明书一起用来解释本发明的原理。
[0024] 图 1 是示出本发明的第一典型实施例中的区域的设置的图；
[0025] 图 2 是第一典型实施例中的点计数处理和校正处理的流程图；
[0026] 图 3 是示出校正处理中所使用的各种掩模图案 (mask pattern) 的图；
[0027] 图 4 是根据本发明的典型实施例的喷墨记录设备的外部透视图；
[0028] 图 5 是示出根据本发明的典型实施例的喷墨记录设备中的控制结构的框图；
[0029] 图 6 是示出墨排出量的速度依赖性的图；
[0030] 图 7 是示出扫描区域中所设置的区域的例子的图；
具体实施方式

[0040] 下面参考附图详细说明本发明的各种典型实施例、特征和方面。
[0041] 图 4 是根据本发明的典型实施例的喷墨记录设备的外部透视图。
[0042] 喷墨盒 201 包括贮存分别为黑色、青色、品红色和黄色的四种颜色的墨的储墨器和与墨盒相对应的记录头 11。
[0043] 输送辊 203 在与辅助轴 204 夹持记录介质 21 的同时沿箭头所示的方向转动，以沿 y 方向（副扫描方向）间歇输送记录介质 21。此外，一对供纸辊 205 供给记录介质 21。类似地，输送辊 203 和辅助轴 204，这对供纸辊 205 在其之间夹持记录介质 21 的同时转动。转动速度慢于输送辊 203 的转动速度，这样可以在记录介质 21 上产生张力，从而使得能够在任何扭曲的情况下进行输送。
[0044] 接着，说明通过驱动记录头排出墨的记录头驱动单元的结构。滑座 202 在支持四个喷墨盒 201 的同时沿与上述 y 方向相交（垂直）的扫描方向（图 4 中的 x 方向）往复移动（往复扫描）。当记录头 11 没有进行记录时，或者当进行记录头 11 的恢复处理时，该滑座 202 在虚线所示的初始位置处处等待。
[0045] 一旦发出记录开始指令，在记录开始前处于初始位置 h 处的滑座 202 就沿 x 方向扫描。此时，从记录头 11 的 256 个排出口排出墨，以在记录介质 21 上记录图像记录 256/1200 英寸的宽度（以 1/1200 英寸的间隔排列各排出口）。一旦完成了直到记录介质 21 边缘的记录，滑座 202 就返回到它的原始初始位置 h，并且再次沿 x 方向进行用于记录图像的扫描。在完成该初始扫描的记录之后，并且在开始第二次扫描的记录之前，通过沿箭头所示的方向转动输送辊 203，将记录介质 21 在 y 方向上输送 256/1200 英寸。
[0046] 因此，例如，通过重复对于滑座 202 的每一扫描利用记录头 11 记录 256/1200 英寸并且输送记录介质 21，可以完成一页的记录。将该记录模式称为“一遍（one pass）记录模式”。
[0047] 喷墨记录设备 1 中可使用的记录模式的另一例子是“多遍（multipass）记录模式”。众所周知，在多遍记录模式中，在区域中通过进行多次分开的记录以完成记录来记录图像，并且随着次数的增加，图像质量变得越好。
[0048] 此外，喷墨记录设备 1 可以通过使用双向记录模式完成记录，在双向记录模式中，沿 x 方向在相互相反的方向上分别进行第一次扫描和第二次扫描。
[0049] 本典型实施例中的记录头 11 的结构和排出口 5 的排列与图 14A 和 14B 所示的记
录头 11 中的相同，并且以 1/1200 英寸的间隔排列各排出口 5。

图 5 是示出根据本典型实施例的喷墨记录设备 1 中的控制结构的框图。

中央处理单元 (CPU) 600 通过主总线 605 控制喷墨记录设备 1 的各单元，并且进行数据处理。也就是说，CPU 600 基于存储在只读存储器 (ROM) 601 中的程序，控制以下所述的头温度控制电路 614、头驱动控制电路 615 和滑座驱动控制电路 616 等的各单元，并进行数据处理。使用随机存取存储器 (RAM) 602 作为 CPU 600 进行数据处理等的工作区。

其它存储设备的例子包括硬盘（未示出）。图像输入单元 603 具有与主设备的接口，并且临时保存从主设备输入的图像。图像信号处理单元 604 包括进行色彩转换、二值化和压缩处理等的数据转换单元 618 以及执行下面所述的记录数据校正处理的数据校正单元 619。操作单元 606 包括用于控制操作者能够控制输入的按键等。

恢复系统控制电路 607 基于存储在 RAM 602 中的恢复处理程序，控制预设排出等恢复操作。恢复系统电机 608 驱动例如对接记录头 11 并稍微离开记录头 11 的清洁叶片 609、帽 610 和吸波 611。

此外，头驱动控制电路 615 控制设置在记录头 11 中的加热器的驱动，并且基于数据校正单元 619 已执行了校正处理的记录数据，使记录头 11 排出记录用的墨。此外，基于恢复处理程序，还排出预备记录用的墨。另外，基于程序，滑座驱动控制电路 616 和纸张输送控制电路 617 同样分别控制滑座的移动和记录介质的输送。

此外，在设置有用于排出记录头 11 中的墨的加热器的基板上设置保温加热器，从而使得可以将记录头中的墨温度调整为期望设置的温度。同样在该基板上设置用于测量记录头 11 中的墨的真实温度的热敏电阻 612。类似地，还可以将热敏电阻 612 设置在基板的外部，或者设置在记录头 11 的周围附近。

接着，在本典型实施例中，说明用于抑制由记录头温度升高而引起的墨排出量增加的影响的记录方法。决定记录头的墨排出量的因素包括记录头排出单元的墨温度（记录头温度）。图 6 是由在用于驱动记录头的驱动脉冲条件固定时墨排出量的温度依赖性的图。如曲线 A 所示，排出量 Vd 相对于记录头温度 Th 的升高而直线增加。如果将该直线斜率定义为温度依赖性系数，则将温度依赖性系数表示为 K = ΔVd/ΔTh (pL/℃·dot).

该系数 K 由头的墨特性决定，而与驱动脉冲条件无关。图 6 还类似地如曲线 B 和 C 显示了使用其它记录头时的情况。在本典型实施例中，控制由于记录头温度的变动而引起的墨排出量的变动，从而通过使用改变要记录的图像数据的总点数的图像校正，使得记录介质上的记录浓度变得恒定。作为这类记录数据的校正方法，采用通过去除二值化后的数据校正墨排出的变动的方法。由图 5 所示的设备控制块中的图像信号处理单元 604 中的数据校正单元 619 进行该处理。现在更加详细地说明由该数据校正单元 619 所进行的该处理。

图 1 是示出本典型实施例中的记录方法的图，并且示出如下所述的用于设置区域 110 的方法。通过在扫描区域 23 中顺序记录图像，将图像记录在记录区域 22 上，其中，每一扫描区域 23 是能够由记录头 11 的一次扫描所记录的区域。这里，从第一扫描区域到第 L 扫描区域顺序记录图像。利用双向记录模式及一遍记录模式进行该记录，其中在双向记录模式中，在沿记录头 11 的两个方向进行扫描的过程中进行记录。然而，在图 1 中，仅示出了第一扫描区域～第四扫描区域的记录区域。
首先说明本典型实施例中的记录方法的步骤流程。在奇数扫描区域和偶数扫描区域中设置多个区域 110，其中，在奇数扫描区域中，沿箭头 A 所示的方向进行扫描（正向扫描）时进行记录，在偶数扫描区域中，沿与箭头 A 所示的方向相反的方向进行扫描（反向扫描）时进行记录。 然后，基于与各区域 110 相对应的记录数据的排出数据（记录数据中的、具有表示应该排出墨的值“1”的数据），计数在区域 110 中要排出的墨的点数（记录点数）。 此外，基于该计数结果执行下面所述的点计数处理。使用该点计数处理结果，进行校正处理以将排出数据转换成非排出数据（具有表示不应该排出墨的值“0”的数据）。

接着说明用于设置区域 110 的方法。通过将区域设置区（area setting region）在扫描方向上不包含 N 个区域且在扫描方向上不包含 M 个区域，来设置区域 110。该区域设置区是与各扫描区域相对应的区域。在本典型实施例中，区域设置区是这样的区域：该区域设置区在扫描方向上的长度与扫描区域的长度相同，并且该区域设置区在扫描方向上的长度长于扫描区域的长度。使用具体数字对此进行更具体的说明，首先，在本典型实施例中，记录宽度（扫描区域在扫描方向上的长度）为 8 英寸，扫描区域沿扫描方向具有 256 像素，并且沿记录宽度方向具有 9600 像素（= 8×1200dpi）。此外，将区域设置区在扫描方向上的长度设置为 10000 像素，较扫描区域的长度长 400 像素，并且将该所定义的区域设置区在扫描方向上分成 N = 1，并且在扫描方向上分成 M = 10。也就是说，将区域 110 作为在扫描方向上具有 256 像素且在扫描方向上具有 1000 像素的区域。另外，在该设置中，对于奇数扫描区域，左端与区域设置区的左端对齐，对于偶数扫描区域，右端与区域设置区的右端对齐。因此，从扫描方向上相邻的区域设置区（第一设置区域和第二设置区域）交替地扫描区域的右侧或左侧凸出。也就是说，在奇数扫描区域中，区域设置区向扫描区域的右侧凸出，在偶数扫描区域中，区域设置区向扫描区域的左侧凸出。

图 1 显示这样所设置的区域 110 和扫描区域 23 之间的位置关系。同样通过图 1 显而易见，区域 110 在奇数扫描区域和偶数扫描区域中分别交替地向扫描区域的右侧或左侧凸出，因而区域 110 从记录头的扫描完成位置附近的记录区域凸出。由于这样来设置区域 110，因而在扫描方向上相邻的区域 110 的边界（区域边界线 31）对于奇数扫描区域和偶数扫描区域在扫描方向上具有不同位置。

接着使用图 1 和 2，说明本典型实施例的计算数处理和基于点计数结果的记录数据的校正处理。首先，使用图 1 说明点数计数处理所使用的三个计数数据。

在本典型实施例的点数计数处理中使用三个计数数据，包括点计数值 E、累计点计数值 Sm 和总点计数值 Sa。将第 1 次扫描要记录的且要在从记录区域的左端开始为第 m 区域以及从记录区域的上端开始为第 n 区域的区域（m，n）中排出的墨的点数定义为点计数值 E(m,n)。在本典型实施例中，由于将区域 110 的扫描方向上的长度设置为与扫描区域 23 的长度相同，因而 1 = n。此外，将区域 (m,n) 要记录的第 1 次扫描中的累计点数定义为累计点计数值 Sm(m,n)，并且将从第一次扫描开始到紧挨着的前一次扫描（即，1 减去第 1 次扫描）为止的总记录点数定义为总点计数值 Sa(1-1)。此外，为了对区域 (m,n) 的记录数据进行校正处理，将利用区域 (m,n) 计算出的校正量定义为 H(m,n)。
描方向上从记录区域的上端开始为第一区域的区域 (1, 1) 中的校正量。

图 2 是示出点计数处理和记录数据校正处理的流程图。

对于每一扫描启动该点计数处理。首先，在步骤 S100，CPU 600 确定将作为点计数和校正处理的目标区域的区域 (m, n) 为 m = 1 和 n = 1。此外，初始化用于存储 Sm(1, 1) ~ Sm(M, N) 和 Sa(0) ~ Sa(L) 的值的寄存器等中的存储区域。

在步骤 S101，CPU 600 使开始对作为点计数的目标区域的区域 (1, 1) 进行计数的第一位置与记录数据的数据的第一位置相匹配。

在步骤 S102，CPU 600 计数扫描方向上的第一区域和扫描方向上的第一区域的区域 (1, 1) 中的输出数据，并且将该值作为点计数值 E(1, 1) 临时存储在存储区域中。

在步骤 S103，CPU 600 判断在步骤 S102 进行点计数的区域是否是扫描方向上的第一区域，即，判断该区域是否是扫描方向上的第一位置。如果该区域是扫描方向上的第一区域（步骤 S103 为否），则处理进入步骤 S104，而如果该区域不是第一区域（步骤 S103 为否），则处理进入步骤 S105。

在步骤 S104，CPU 600 基于总点计数值 Sa(0)（由于在该阶段正在进行第一次扫描，因而直到前一次扫描为止还没有计算数），计算校正量 H(1, 1)。然后，CPU 600 将通过从该区域的点计数值 E(1, 1) 减去校正量 H(1, 1) 所获得的值设置为新的点计数值 E(1, 1)。

在步骤 S106，CPU 600 将 E(1, 1) 和点计数值 Sm(m, n) 相加，并且将其作为新的点计数值 Sm(1, 1) 存储在相应的存储区域中。

在步骤 S107，CPU 600 对与区域 (1, 1) 相对应的存储数据与校正量 H(1, 1) 相对应的校正处理。对于将记录数据的输出数据部分以与校正量相对应的数量改变成非输出数据，进行对区域 (1, 1) 的记录数据的校正处理。下面将详细说明该处理。

此外，在步骤 S108，CPU 600 判断是否 m ≥ M。如果 m 不大于或等于 M（步骤 S108 为否），则在步骤 S109，CPU 600 将 m 的值增大 1，并且在扫描方向上将点计数处理和记录数据校正处理的目标区域移位 1 个区域。

也就是说，CPU 600 利用 m = 2 重复从步骤 S102 ～步骤 S109 的处理，从而使得对区域 (2, 1) 进行点计数和记录数据校正处理。

首先，在步骤 S102，CPU 600 计数扫描方向上作为目标的第二区域的区域 (2, 1) 的输出数据，并且将该区域的点计数值 E(2, 1) 临时存储在存储区域中。

在步骤 S103，CPU 600 判断经过了步骤 S102 中的点计数的区域是否是扫描方向上的第一区域。由于目标区域 (2, 1) 为扫描方向上的第二区域，即，该目标区域不是扫描方向上的第一区域，因而处理进入步骤 S105。

在步骤 S105，CPU 600 基于点计数值 E(1, 1)、累计点计数值 Sm(1, 1) 和总点计数值 Sa(0) 这三个计数数据，计算区域 (2, 1) 的校正量 H(2, 1)，以抑制预期记录密度的上升。然后，通过从点计数值 E(2, 1) 减去校正量 H(2, 1)，CPU 600 确定新的点计数值 E(2, 1)。

在步骤 S106，CPU 600 将在步骤 S105 所确定的 E(2, 1) 和累计点计数值 Sm(1, 1) 相加，并且将其作为新的累计点计数值 Sm(2, 1) 存储在相应的存储区域中。

在步骤 S107，CPU 600 对目标区域 (2, 1) 的记录数据进行与校正量 H(2, 1) 相对应的校正处理。

此外，在步骤 S108，CPU 600 判断是否 m ≥ M。如果 m 不大于或等于 M（步骤 S108 为否），则处理进入步骤 S109，CPU 600 将 m 的值增大 1，并且在扫描方向上将点计数处理和记录数据校正处理的目标区域移位 1 个区域。

也就是说，CPU 600 利用 m = 2 重复从步骤 S102 ～步骤 S109 的处理，从而使得对区域 (2, 1) 进行点计数和记录数据校正处理。
证明，CPU 600 将 m 的值增大 1，并且在扫描方向上将点计数处理和记录数据校正处理的目标区域移位 1 个区域。

[0081] 随后，CPU 600 类似地重复步骤 S102 ～步骤 S109 的处理，直到 m ≥ M 成立为止（步骤 S108 为是），即，对于所有 m(1 ～ M)，进行每一区域的点计数处理和记录数据校正处理。

[0082] 接着，在步骤 S110，CPU 600 将累计点计数值 Sm(m, n)（在该阶段为 Sm(10, 1)）的值作为新的总点计数值 Sa(1) 存储在相应的存储区域中。此外，CPU 600 将该扫描的经过了校正处理的记录数据传送给记录头 11，以进行记录。然后，CPU 600 开始下一扫描的点计数处理和记录数据校正处理。

[0083] 在步骤 S111，CPU 600 判断是否 1 ≥ L。如果 1 不大于或等于 L（步骤 S111 为否），则在步骤 S112，CPU 600 将 1 的值增大 1，并且在副扫描方向上将点计数处理和记录数据校正处理的目标区域移位 1 个区域。

[0084] 在步骤 S113，CPU 600 将临时存储直到前一次扫描为止的三个计数数据中的点计数值 E(m, n) 和累计点计数值 Sm(m, n) 的存储器初始化成 0。

[0085] 随后，CPU 600 在通过重复步骤 S101 ～步骤 S113 的处理依次进行对每一区域 110 的点计数处理和记录数据校正处理的同时，基于校正后的记录数据进行记录，并且完成图像的记录。

[0086] 应该注意，CPU 600 基于点计数值 E(m, n)、累计点计数值 Sm(m, n) 和总点计数值 Sa(n) 这三个计数数据，计算校正值 H(m, n)。具体地，如下面的数学表达式 (1) 所示，CPU 600 可以通过将这三个计数数据乘以各自的系数 X, Y 和 Z 来进行该计算。可以考虑喷墨记录设备 1 的特性等来选择这些系数各自的最佳值。

[0087] \[H(m, n) = X \times E(m, n) + Y \times Sm(m, n) + Z \times Sa(n) \] (X, Y 和 Z 为 实 数)。

(1)

[0088] 接着说明本典型实施例中的记录数据的校正处理。在本典型实施例中，通过使用通常用作校正单位的掩模图案，对记录数据进行校正处理。

[0089] 图 3 是示出用于将区域 110 中的记录点数减少成期望的记录点数的各种掩模图案的图。具体地，图 3 示出用于将记录数据分别间除成 98.0%、96.0%、94.0%、92.0%、90.0%、88.0%、86.0% 和 84.0% 的掩模图案 1101、1102、1103、1104、1105、1106、1107 和 1108。

[0090] 首先，当在步骤 S104 或步骤 S105 计算校正量 H(m, n) 时，CPU 600 基于目标区域的校正量 H(m, n) 计算要减少的点数与目标区域的总点数的比（校正比）。然后，在步骤 S107，CPU 600 基于计算出的校正比，从上述掩模图案中选择具有最接近的校正比的掩模图案。然后 CPU 600 通过使用所选择的掩模图案屏蔽目标区域的记录数据，对目标区域的记录数据进行间除处理。

[0091] 例如，对于总点数为 100000 的区域，如果基于校正量计算出要减少的点数为 7000 个点，则校正比为 93.0% （= (100000 - 7000) / 100000 x 100）。接着，CPU 600 从准备的掩模图案中选择具有与该校正比最接近的校正比（间除比）的掩模图案。在本典型实施例的情况下，CPU 600 选择 92.0% 的掩模图案，从而可以通过对记录数据进行逻辑运算来进行记录数据校正处理。
[0092] 对于包括除记录区域 22 以外的区域的区域，如奇数扫描区域中的右端区域，如果将不具有任何记录数据的部分作为校正处理目标，则该区域的记录数据的间隙量可以不是所期望的比。因此，对于包括不具有任何记录数据的区域的这类区域，可以通过准备不同大小的掩模图案进行适当的间隙校正，从而使得仅屏蔽存在记录数据的部分。

[0093] 在本典型实施例中，如已参考图 1 所示，设置区域 110 以使得区域 110 在奇数扫描区域和偶数扫描区域中分别交替地向扫描区域的右端和左端凸出。作为这样设置区域 110 的结果，可以设置在副扫描方向上的相邻的区域 110 的区域边界线 31，使得区域边界线 31 在扫描方向上的位置不同于相邻扫描区域的区域边界线 31。

[0094] 根据要记录的图像的条件，在扫描方向上相邻的区域之间的校正量可以有很大的不同。在这种情况下，在中间夹有区域边界线 31 的一个区域（第一区域）和另一区域（第二区域）之间在记录浓度上发生大的差异。结果，记录浓度在区域边界线 31 附近区域中突然变化。然而，在本典型实施例中，扫描区域（第一区域）的区域边界线 31 沿扫描方向位于与相邻扫描区域（第二区域）的区域边界线 31 不同的位置。也就是说，在多个相邻扫描区域中，即使形成了记录浓度突然变化的区域，也由于这些区域在扫描方向上的相同位置处的副扫描方向上不连续，因而可以减轻图象质量的下降。

[0095] 因此，根据本典型实施例，可以降低由墨排出量的增加所引起的沿扫描方向的浓度不均匀，并且可以减轻因形成记录浓度突然变化的区域而导致的图象质量的下降。

[0096] 在本典型实施例中，作为用于降低扫描方向上的浓度不均匀的处理，对各区域 110 进行点数处理，并且通过并行于三个计数数据将排出数据转换成非排出数据来进行校正处理。然而，用于降低扫描方向上的浓度不均匀的方法不局限于该方法。也就是说，通过应用通常已知的方法，可以计数各区域的记录点数，并且一旦该计数值达到了基准值，就可以间除随后的记录数据。可选地，还可以使得用于驱动记录头 11 的脉冲信号的脉冲宽度更小。

[0097] 此外，用于记录图像的记录模式也不局限于在沿两个方向进行扫描的行进行记录的双向记录模式。还可以使用单向记录模式进行记录。

[0098] 另外，本典型实施例的记录方法无需使得所有相邻扫描区域在扫描方向上的区域边界线 31 的位置都不同。也就是说，即使仅使对相邻扫描区域在扫描方向上的区域边界线 31 的位置不同，也可以减轻该部分的图象质量的下降。

[0099] 在第一典型实施例中，各自具有相同大小的区域 110 在奇数扫描区域和偶数扫描区域中交替地向右端和左侧凸出。并且设置区域边界线 31 在扫描方向上的位置以使其在相邻扫描区域之间不同。这里，将说明其它区域设置方法，例如，不具有在扫描方向上连续的区域边界线 31 的方法。在下面的说明中，以相同的附图标记表示与第一典型实施例中所述的组件或部分相同的组件或部分，并且下面不再对其进行说明。

[0100] 图 7 示出用于设置区域 110 的另一方法的例子。设置区域 110 以使得区域 110 在扫描方向上的大小在奇数扫描区域和偶数扫描区域之间不同。

[0101] 具体地，通过将区域设置区在副扫描方向上分成 N = 1 个区域且在扫描方向上分成 M = 10 个区域，来设置奇数扫描区域所设置的区域 110，其中，该区域设置区在副扫描方向上的长度与扫描区域的长度相同，并且在扫描方向上的长度长于记录宽度。类似于第一典型实施例，区域设置区在扫描方向上的长度为 10000 像素，组扫描区域的长度为 400 像素。各区域 110 具有在副扫描方向上 256 像素且在扫描方向上 1000 像素的大小。
另一方面，通过将区域设置区在副扫描方向上分成 N = 1 个区域且在扫描方向上分成 M = 10 个区域，来设置对偶数扫描区域所设置的区域。其中，该区域设置区在副扫描方向上的长度和在扫描方向上的长度与扫描区域的长度相同。也就是说，对于偶数扫描区域，各区域 110 设置成具有在副扫描方向上 256 像素且在扫描方向上 960 像素的大小。

因此，即使当在相邻扫描区域中分别设置区域 110 时，区域边界线 31 在扫描方向上的位置也不同于相邻扫描区域的位置。因此，即使在多个连续扫描区域中形成了记录浓度突然变化的区域，也由于该区域在扫描方向上的相同位置处在副扫描方向上不连续，因而可以减轻由于形成记录浓度突然变化的区域而导致的图像质量的降低。

图 8 出示用于设置区域 110 的另一方法的例子。为各扫描区域随机设置区域 110 在扫描方向上的大小。通过这样设置区域 110，可以使得区域边界线 31 在扫描方向上的位置与相邻扫描区域的区域边界线 31 在扫描方向上的位置不同。

参考图 8，在奇数扫描区域中，在扫描方向上，位于左侧的区域 110 的大小小于或等于位于右侧的区域 110 的大小。此外，各扫描区域的左侧端的区域 110 的大小小于右侧端的大小。此外，在偶数扫描区域中，以与奇数扫描区域相反的顺序配置区域 110。（参见图 8）。通过这样设置区域，并且通过利用沿箭头 A 的方向和箭头 A 的相反方向这两个方向进行记录的双方向记录模式进行记录，任一扫描区域的区域大小随着记录头的扫描而变大。

在记录图像时，由于加热器在开始扫描之后立即快速加热，因而墨的排出量趋于不均匀。因此，通过将紧挨着开始扫描之后的区域 110 设置成相对小于扫描结束附近的区域 110，使得紧挨着开始扫描之后的记录数据的校正处理的范围较小，从而可以抑制墨排出量的不均匀。为了获得相同效果，不必将所有区域的区域大小都设置成随着记录头的扫描而增大。

此外，对于所有扫描区域，不必将用于分割区域设置区的值 M 设置成相同值。更具体地，通过改变各扫描区域的分割数量 M 的值，可以为各扫描区域随机设置区域 110 在扫描方向上的大小，从而使得区域边界线 31 在副扫描方向上不连续。

此外，如图 9 所示，通过将用于沿副扫描方向进行分割的数量 N 的值设置成 2 或更大（在图 9 中，N = 2），可以减小区域边界线 31 沿副扫描方向的长度。也就是说，由于具有急剧变化的记录浓度的区域变小，因而可以减轻由于形成记录浓度急剧变化的区域而导致的图像质量的下降。

而且，本发明的各典型实施例不局限于一遍记录模式，并且可应用于多遍记录模式。当应用这种多遍记录模式时，需要考虑以下条件来计算各遍的记录数据的校正量，通过在同一区域上打印数次来进行重叠打印的情况以及各次扫描的记录点数很小的情况。

此外，还可以使用被称为“顺序多次扫描（SMS）间除处理”的间除方法作为校正处理方法。

如果想要实现对间除比的均匀控制和快速处理，使用 SMS 间除处理是有效的。在 SMS 间除处理中，每当一个记录数据到达时，读取由计数器（寄存器）指定的该记录数据的计数值（特定的位，例如 MSB），并且如果该值为“1”，则不间除该记录数据（进行记录）。另一方面，如果计数器值为“0”，则间除该记录数据（不进行记录）。然后，将计数器左移一位（移位）。当计数器移位至左端时，计数器再次返回到左端（循环移位）。通过每当一个记录数据到达时重复该处理，确定间除的点（进行间除处理）。
现使用图 10A ～ 10D 更详细地说明 SMS 间除。在图 10A ～ 10D 中，在记录数据中，
以圆圈（○）表示记录数据，以叉（×）表示没有数据要记录的位置。此外，以粗体示出正
被关注的数据。关于计数器值，用 1 表示要进行记录的位置，用 0 表示记录数据要经过间除
处理的位置。以粗体示出由计数器指定的计数器值。
在图 10A 中，第一个记录数据为圆圈，并且计数器值为 0，因此间除第一个数据。因
此，在该处理之后，第一个记录数据为叉，并且计数器向左移动一个位置（图 10B）。不记录
下一个数据，因而该数据保持为叉，并且计数器保持没有移位（图 10C）。对于第三个数据，
由于计数器值为 1，因而该数据保持不变，并且计数器左移一位。因此，按照 1/4 的比率来间
除记录数据（图 10D）。
因此，由于仅对具有记录数据的点判断是否进行间除，因而与记录数据的图案不
同步。此外，由于不需要准备多个掩模图案，因而该方法完全可应用于掩模图案存储容量受
限的设备。
此外，计数处理和校正处理不局限于上述处理，在上述处理中，根据二值记录数
据计数排出数据，并且对记录数据进行校正。例如，可以根据多值图像数据计数记录点数，
并且可以通过改变图像数据中的记录点数来进行校正处理。下面将更详细地说明使用多值
图像数据的点计数处理和校正处理。
在图 5 所示的控制块中，图像信号处理单元 604 中的数据转换单元 618 产生与从
主设备输入到图像输入单元 603 并被存储的图像的多值图像数据的各像素的灰度值“K”相
对应的二值图案。例如，如果将由 4 位（16 个灰度级）表示的多值图像数据输入到图像输
入单元 603，则必须利用数据转换单元 618 将该输入数据转换成二值数据。这里，利用使用
表面积分度（surface areagradation）进行转换处理的情况来说明输入图像数据的二值化
处理。
如图 11A 中的像素数据 2100 所示，从主设备（未示出）发送输入数据，该输入
数据一个像素的大小为 (1/300) 平方英寸（分辨率 300dpi ×300dpi），并且颜色 C、M、Y
和 K 均为 4 位（16 个灰度级）。然后，首先对每一颜色的每一个输入数据进行伪半色调
(pseudo-half tone) 处理和分辨率转换处理，其中具体地，对输入图像的每一个像素分配
4×4 像素。接着，以该 4×4 像素格为一个单位矩阵，进行下面的处理：用各单单位矩阵中以
“1”所表示的每个数据的点数 0 ～ 15 代替灰度值 0 ～ 15。结果，产生与原始一个像素数据
2100 相对应的记录数据 2101(2102 ～ 2117)，在记录数据 2101 中，一个点在主扫描方向和
副扫描方向上都为 1/1200 英寸 (1200dpi ×1200dpi)，并且记录数据 2101 对于 CMYK 颜色均
具有每个像素 1 位（2 个灰度级）。然后，基于这样所产生的记录数据进行记录。
图 11B 是示出将从主设备所发送的具有像素值 “9h”（h 表示十六进制的数字）
的一个像素（4 位）的像素数据 2120（分辨率 300dpi ×300dpi）转换成记录数据 2121(2122 ～
2137) 的例子的图。转换后的记录数据 2121 包括由以每个像素 1 位所表示的记录数据（点
分辨率 1200dpi ×1200dpi）构成的 9 个点（9 个“1”）。虽然针对伪半色调处理和分辨率转
换处理提出了各种技术，但是，在本典型实施例中，利用表查找技术同时进行伪半色调处理
和分辨率转换处理。在该方法中，根据从主设备所发送的每个像素 4 位的记录数据（分辨率
300dpi ×300dpi）的值，使用所准备的每点 1 位的记录数据 (1200dpi ×1200dpi)，将该记录
数据转换成 16 个灰度级。此外，分辨率转换处理不局限于使用用于输入图像数据的二值化
处理的表面积灰度方法。可以利用平均浓度存储方法或抖动矩阵方法等任何处理方法进行该处理。

[0119] 在上述结构中，在各扫描区域中设置区域 110，以进行点计数处理。当记录头排水
口数量为 256，记录宽度为 8 英寸，并且分辨率为 300dpi × 300dpi 时，各扫描区域沿扫描
方向的大小为 64 像素（= 256/4）且沿扫描方向长度为 240 像素（= 8×300）。因此，例
如，通过将区域设置区在副扫描方向上分成 N = 1 个区域且在扫描方向上分成 M = 10 个区
域，来设置对奇数扫描区域所设置的区域 110，其中，该区域设置区在副扫描方向上的长度
与扫描区域的长度相同，并且在扫描方向上的长度较记录宽度长 100 像素。也就是说，在奇
数扫描区域中，将区域 110 设置成具有在副扫描方向上 64 像素且在扫描方向上 250 像素的
大小。

[0120] 另一方面，通过将区域设置区在副扫描方向上分成 N = 1 个区域且在扫描方向上
分成 M = 10 个区域，来设置并扫描区域所设置的区域 110，其中，该区域设置区在副扫
描方向上的长度和在扫描方向上的长度与扫描区域的长度相同。也就是说，在偶数扫描区
域中，将区域 110 设置成具有在副扫描方向上 64 像素且在扫描方向上 240 像素的大小。此
外，将具有灰度值 0～15 的数据分配给以上所述方式所设置的区域 110 的各像素。

[0121] 在点计数处理中使用点计数值 Et、累计点计数值 Smt 和总点计数值 Sat 等三个记
数数据。也就是说，将通过累计区域（m,n）的多值数据灰度值所获得的排出次数作为点计
数值 Et(m,n)，其中，区域（m,n）是从记录区域的左端开始的第 m 个区域且是从记录区域的
上端开始的第 n 个区域，通过第 1 次扫描记录区域（m,n）。此外，将第 1 次扫描中的累计点
计数值作为累计点计数值 Smt(m,n)，并且将从第一次扫描到前一次扫描的累计排出次数的
总和作为总点计数值 Sat (1-1)。此外，以 Ht (m,n) 表示对各区域计算出的校正量。

[0122] 应该注意，使用三个计数数据的点计数处理的概况与以上所述的第一典型实施例
中的相同，因此在此省略对其的说明。

[0123] 接着更详细地说明记录数据校正处理技术。这里采用改变多值灰度值的等级的方
法作为图像数据的校正方法。

[0124] 图 12 显示形式记录数据的区域中的多值输入数据。在该阶段，记录数据中的总
点数和输入数据的灰度值的累计值相互一致。

[0125] 当使用上述三个计数数据计算校正量时，首先，计算作为校正量从输入数据的数
据灰度值的累计值减少的数值。然后，将输入数据的任意图像灰度值依次减少一个灰度值。
重复该动作直到所减少的值对应于校正量为止。作为用于减少灰度值的次序，对较高灰度
值优先进行减少。

[0126] 例如，如果输入数据 2401 的像素数量为 64 (300dpi)，灰度值的累计值为 380，并
且计算出要作为校正量减少的数量为 30，则进行用于将 30 个像素的灰度值减小 1 的处理，这
30 个像素是从 64 个像素中按照灰度值从高到低的顺序选择出来的。该处理之后的结果如图
12 中的数据 2402 所示。以粗体四分方框包围的数值表示数据被改变的像素。

[0127] 如上所述，通过对例外值图像数据计数记录点数，可以进行用于改变图像数据的
记录点数的校正处理。即使在这种情况下，通过将区域边界线 31 在扫描方向上的位置设置
成不同于相邻扫描区域的区域边界线 31 在扫描方向上的位置，也可以减轻由于形成记录
浓度突然变化的区域而导致的图像质量的下降。
[0128] 在本发明的第二典型实施例中，对于在扫描方向上相邻的两个区域的边界附近的部分，采用这两个区域的校正量的平均值。通过进行这一校正处理，即使当这两个区域的校正量差异大时，也可以降低其边界处的记录浓度变化，这样可以减轻图像质量的下降。应该注意，以相同的附图标记表示已在第一典型实施例中说明的结构，因此不再重复对其的详细说明。

[0129] 图 13A 是示出本典型实施例中区域 110 的设置的示意图。在第二典型实施例中，区域设置区在扫描方向和副扫描方向上具有与扫描区域相同的大小。此外，通过将该区域设置区在副扫描方向上分成 N = 1 个区域且在扫描方向上分成 M = 10 个区域，来设置区域 110。使用具体数字来对此进行说明，在本典型实施例中，记录宽度为 8 英寸，扫描区域在副扫描方向上的长度为 256 像素，并且记录宽度为 9600 像素（= 8 x 1200dpi）。因此，将区域 110 设置在副扫描方向上 256 像素且在扫描方向上 960 像素大小的区域。然而，在本典型实施例中，区域边界线 31 没有被设置在沿扫描方向与相邻扫描区域的区域边界线 31 的位置不同的位置上。

[0130] 接着对这样所设置的区域 110 进行点数处理，以基于点数结果计算各区域的校正量。与第一典型实施例中的点数处理类似，本典型实施例的点数处理使用点数值 E、累数点数值 S_m 和总点数值 S_a 这三个计数数据。此外，基于上述这三个计数数据，同样以类似于第一典型实施例的方式进行校正量 H。因此，不重复对于点数计数处理和校正量计算的详细说明。

[0131] 接着，将各区域 110 分成正常区域(normal region) 和邻近区域(proximal region)，其中，在正常区域中，不加修正地采用由此所确定的校正量，在邻近区域中，采用在扫描方向上相邻区域的两个区域的校正量的平均值（平均校正量）以降低记录浓度变化。图 13B 是示出本典型实施例中在由第一次扫描所记录的第一扫描区域的各区域 110 中所定义的正常区域 111 和邻近区域 112 的示意图。如图 13B 所示，除第一扫描区域的右端的区域 (1,10) 以外，为区域 (1,1) ～ (1,9) 设置正常区域和邻近区域。将这些正常区域设置为区域 110 内左侧 950 像素的区域，并且将邻近区域设置为区域 110 内右侧 50 像素的区域。将扫描区域的右端的整个区域 (1,10) 设置为正常区域。

[0132] 此外，在区域 (1,1) ～ (1,10) 的正常区域中，不加修正地采用基于这三个计数数据所计算出的校正量 H(1,1) ～ H(1,10)。另一方面，在区域 (1,1) ～ (1,9) 的邻近区域中，采用均为在扫描方向上相邻区域的两个区域的校正量的平均量的平均校正量 H’ (1,1) ～ H’ (1,9)。这里，根据下面所示的数值表达式 (2) 来计算在区域 (1, n) 的邻近区域中采用的平均校正量 H’ (1, n)。

\[
H’(1, n) = \frac{H(1, n) + H(1, n+1)}{2} \quad (2)
\]

[0133] 例如，将区域 (1,1) 的邻近区域中所采用的平均校正量 H’ (1,1) 计算为区域 (1,1) 的平均校正量 H(1,1) 和区域 (1,2) 的平均校正量 H(1,2) 的平均值。

[0134] 为了降低由于记录头的温度升高而导致的记录浓度变化，随着记录头在扫描方向上行进，各区域的校正量趋于增大。因为这一原因，例如，对于区域 (1,1) 和 (1,2)，利用按照上面的顺序增大的校正量（间除比）进行校正：区域 (1,1) 的正常区域的校正量、区域 (1,1) 的邻近区域的校正量和区域 (1,2) 的正常区域的校正量。

[0135] 因此，基于在正常区域和邻近区域中计算出的校正量，计算要减少的点数相对于
各区域中的总点数的比率（校正比）。此外，通过准备与各正常区域和邻近区域的大小相匹配的掩模图案，并且选择具有最接近的校正比的掩模图案，来进行用于减少到所期望的记录点数的间除处理。应该注意，除使用掩模的校正处理方法外，还可以使用使用 SMS 间除处理的校正处理，进行用于减少记录点数的校正处理。

此外，用于降低记录浓度变化的方法不局限于上述记录方法。例如，可以将区域边缘线 31 的左侧和右侧各 50 个像素总计 100 个像素设置为邻近区域。此外，可以将该邻近区域的大小设置成能够降低区域之间的边缘处的记录浓度变化。而且，可以通过进行从相加两个相邻区域的校正量所计算出的值减去固定值的处理，计算邻近区域的校正量。也就是说，邻近区域的校正量可以是两个相邻区域的校正量之间的值。

在以上说明中，对相邻扫描区域没有将区域边缘线 31 设置在扫描方向上的不同位置。然而，在第一典型的实施例中一样，也可以设置区域 110 以使得在扫描方向上相邻的区域 110 之间的区域边缘线 31 在扫描方向上的位置不同于在副扫描方向上相邻的扫描区域的区域边缘线 31 在扫描方向上的位置。在这种情况下，由于区域边缘线 31 在扫描方向上的相同位置处在扫描方向上不连续，因而可以进一步减轻图像质量的下降。

在喷墨记录系统中，本发明包括用于产生使墨的粘度改变并排出墨的热能的单元（例如，电热转换器）的记录头和记录设备方面具有尤其出色的效果。

关于这种系统的代表结构和原理，使用美国 4,723,129 专利中所述的基本原理是有效的。该系统可应用于按需型或连续型系统。在按需型系统的情况下，向设置在与保持液体（墨）的薄片（sheet）或液体流路的位置相对应的位置处的电热转换器施加至少一个驱动信号，该驱动信号对应于记录信息并且施加超过泡核沸腾（nucleate boiling）的温度。因此，在电热转换器中生成热能，从而使墨的热作用表面发生沸腾。这种沸腾，由于可以与该驱动信号一一对应地形成液滴（墨）中的气泡，因而该系统对于按需型系统更有效。由于这些气泡的扩大和收缩而通过排出开口排出液体（墨），从而形成至少一个液滴。如果以脉冲状形成该驱动信号，则由于脉冲适当地发生气泡的扩大和收缩，因而能够以充分出色的应答性实现液体（墨）的排出。作为这类脉冲状驱动信号，美国 4,463,359 和 4,345,262 号专利中所述的信号是合适的。此外，通过采用美国 4,313,124 号专利中所述的条件可以进行更好的记录，该专利与热作用表面的温度的升高有关。

作为记录头的结构，本发明不局限于上述专利文献中所述的组合排出口、液体流路（线液体流路或直角液体流路）和电热转换器的结构。例如，美国 4,558,333 和 4,459,600 号专利中所述的在弯曲区域中配置热作用单元的结构也包括在本发明的范围内。另外，日本特开昭 59-123670 号公报所述的结构是有效的，其中在该结构中，使用多个电热转换器共用的狭缝作为电热转换器的排出单元。此外，日本特开昭 59-138461 号公报中所述的结构也是有效的，其中在该结构中，用于吸收热能压力波的开口分别对应于各排出单元。也就是说，根据本发明，不管记录头的类型如何，都可以可靠地有效地进行记录。

另外，本发明对于上述串列型记录头、对于被固定到设备主体的记录头或者对于
芯片型记录头都是有效的，其中，可以在设备主体上替换芯片型记录头，并且通过将芯片型记录头安装在设备主体上，可以进行其与设备主体的电连接和从设备主体向其供电。在使用盒型记录头的情况下，本发明也是有效的，其中在盒型记录头中，在记录头中一体化地设置储墨器。此外，根据本发明的典型实施例的记录设备还可以设置有记录头的排出恢复单元以及预备辅助单元等。例如，该记录设备还可以对记录头设置例如覆盖单元、清洁单元、加压或吸单元、包括电热转换器以及其它一些加热元件或者它们的组合的预备加热单元、以及用于进行除记录以外的排出的预备排出单元。

[0144] 此外，关于所安装记录头的类型和数量，例如，可以仅设置与单色墨相对应的一个记录头，或者可以设置分别与多种不同颜色或不同浓度的墨相对应的多个记录头。也就是说，除仅使用黑色等主流颜色的记录设备的记录模式以外，还可以一起地配置记录头，或者由多个记录头的组合形成记录头。然而，在包括不同颜色的多色记录模式或者利用混合色的全色记录模式中，至少一种记录模式的设备中也是有效的。另外，在上述典型实施例中，尽管将墨作为液体进行了说明，但是墨在室温以下可以是固态，在室温时软化或者液化。在喷墨系统中，通常控制温度，使得通过将墨的温度调整到约 30°C ~ 70°C 的范围内而使得墨的粘度处于稳定排出范围内。因此，还可以使用在施加记录用信号时变成液体的墨。此外，为了防止由于热能而引起的温度的升高，可以使用热能作为用于将墨状态从固态改变成液态的能量，并且为了防止墨的蒸发，还可以使用不加热的情况下固化且通过加热而液化的墨。在任何情况下，本发明还可以应用于具有在施加热能时液化的性质的墨的情况下。这种类型的墨包括；在根据记录信号施加热能时液化以排出液体墨的墨，或者在到达记录介质时已固化的墨。如日本特开昭 51-56847 号或 60-71260 号公报所述，可以以液态或者作为固态将这类墨保持在多孔薄片的凹部或者通孔中，并且使这类墨的位置对着电热转换器。在本发明中，膜沸腾系统对于上述墨最为有效。

[0145] 喷墨记录设备的其它例子包括用作计算机等的信息处理机的图像输出终端的类型、组合有阅读器的复印机，以及具有发送和接收功能的传真机。

[0146] 尽管参考典型实施例说明了本发明，但是应该理解，本发明不局限于所公开的典型实施例。所附权利要求书的范围符合最宽的解释，以包含所有这类修改、等同结构和功能。

[0147] 本申请要求 2008 年 1 月 29 日提交的日本 2008-017839 号专利申请的优先权，其全部内容通过引用包含于此。
图 3
图 6
图7
图10A

第一记录数据
处理之前
○○○○○○○○○ 0 1 1 1 0 1 1 1

图10B

第二记录数据
处理之前
××○○○○○○○○○ 1 1 1 0 1 1 1 0

图10C

SMS间除处理结果
原始数据
○○○○○○○○○○○○○

图10D

处理后的数据
××○○○○○○○○○○○○○
<table>
<thead>
<tr>
<th></th>
<th>2402</th>
<th></th>
<th>2401</th>
</tr>
</thead>
<tbody>
<tr>
<td>数据变化之前</td>
<td></td>
<td>数据变化之后</td>
<td></td>
</tr>
<tr>
<td>10 10 9 9</td>
<td>3 0 0</td>
<td>0 1 0 7 7</td>
<td>8 9</td>
</tr>
<tr>
<td>11 6 5 11 10 10 15 5 0</td>
<td>3 0 0</td>
<td>1 0 8 6 6 3 2 4</td>
<td></td>
</tr>
<tr>
<td>9 7 3 2 9 14 12 0</td>
<td>4 3 0</td>
<td>1 0 8 6 6 3 2 4</td>
<td></td>
</tr>
<tr>
<td>4 3 0 1 0 8 6 6 3 2 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

300dpi×300dpi
64位素 (4位)
灰度值累计：380

校正量：30
图 15A

图 15B

图 15C