PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
. International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

HO04L 12/00 A2

(11) International Publication Number:

(43) International Publication Date:

WO 98/25376

11 June 1998 (11.06.98)

(21) International Application Number: PCT/US97/21745

(22) International Filing Date: 2 December 1997 (02.12.97)

(30) Priority Data:

08/753,827 2 December 1996 (02.12.96) us

(71) Applicant: FIRST DATA CORPORATION [US/US]; Suite
330 AN, 6200 South Quebec Street, Englewood, CO 80111
(Us).

(72) Inventors: LAXTON, Gary, R.; 6631 Brunning Glen Court,
Charlotte, NC 28215 (US). HURLEY, Thomas, L.; 6635 N.
Praying Monk Road, Paradise Valley, AZ 85253 (US).

(74) Agents: LAURIE, Ronald, S. et al.; McCutchen, Doyle, Brown
& Enersen, Three Embarcadero Center, San Francisco, CA
94111 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ,
PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR,
TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, KE,
LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY,
KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML,
MR, NE, SN, TD, TG).

Published
Without international search report and to be republished

upon receipt of that report.

(54) Titlee METHOD AND APPARATUS FOR IMPROVED TRANSACTION PROCESSING IN A DISTRIBUTED COMPUTING

ENVIRONMENT

(57) Abstract

10
Enhancements to on-line transac- Clont \ OLTP Senice \ o

tion processing (OLTP) for distributed) 1 " SeV, | esource
computing environments. Improved Applations ' Applications ' Managers
mechanisms for implementing OLTP ' 120 ' 140
systems which are hardware and operat- User Intarace ' Ved ! Il
ing system independent and which pro- =3 ! 5 T ! 5| Resource
vide flexibility in architectural design. 105 :S':gml)l =3) E g. %}ﬁc:x? g. -~ S| Manager
Remote clients may transparently com- alls (G | i 8 2 1 8 (RM1)
municate with OLTP software through System Softwars| <+ | | |
a versatile remote procedure call imple- | '
mentation. Network bandwidth usage ' }25 i 1/50
is minimized through a dispatcher func- ! — !
tion which groups client transactions at 110 Client ! - i OLTP Sarvice § ! g MR:nsguzz
a dispatcher service. Message passing 1 Application =1 &' | Application 2 { & | g (RM92)
is handled through flexible message ob- 2 : :
ject technology which is data type and : !
operating system independent. Finally,] 130]
a WORLD WIDE WEB browser inter- ! Z !
face is created for connecting various ' = 15 !
user clients to appropriately configured I g OLTﬁ SSMC; g !
OLTP systems. ' § | Application 3 & '

i i

1]

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
CuU
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LX

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
G

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
™D
TG
TJ
™
TR
TT
UA
UG
us
UZ
VN
YU
YA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 98/25376 PCT/USY7/21745
1

METHOD AND APPARATUS FOR IMPROVED TRANSACTION PROCESSING

IN A DISTRIBUTED COMPUTING ENVIRONMENT

BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to on-line transaction
processing (OLTP) in distributed computing environments. More
particularly, the present invention relates to improvements
and enhancements to OLTP techniques for transaction handling

in a heterogeneous computing environment.

2. Background of the Invention

Business-critical software applications are
generally transaction oriented and have exacting performance,
integrity and administrative requirements. These requirements
dictate an architected approach to application development,
deployment and operation. In recent years, a component
software model has emerged from the software industry to
provide an architectural solution to business-critical
processing in distributed computing environments which perform
on-line transaction processing (OLTP). Newer OLTP
architectures carry forward the legacy mainframe attributes of
availability, integrity, performance, scalability and
manageability, but in true distributed applications.
Implementations of a component-based OLTP application design
creates a “virtual mainframe” from heterogeneous computing
regsources thus providing a managed coupling of resources at

the distributed application level.

10

15

20

25

30

WO 98/25376 PCT/US97/21745
' 2

In a distributed computing environment, each
application must be able to communicate and exchange
information with other applications or machines in the
environment. If all of the machines are based on the same
hardware platform, use the same operating system, and are
interconnected using a single network architecture and
communication protocol, connection and communication between
applications and/or machines is straight forward. However,
this ideal is seldom achieved. There are many different,
often mutually incompatible, computer architectures, hardware
platforms, operating systems, and application languages
utilized for various functions in a distributed OLTP system.
This heterogeneity presents an obstacle to the connectivity

and interoperability of the systems.

Many organizations now recognize that the component
goftware model is the logical evolution of early distributed
computing efforts. Mainframe and centralized mid-range
application systems are now augmented by a large base of
powerful desktop and server systems. These distributed
systems are loosely coupled at the network level by standard
network transports, and form a network computing resource
infrastructure. Initially, this infrastructure served to
migrate “front-office” applications from the centralized
systems, largely the document processing and email
communication applications easily implemented within desktop
processors and file servers. Next, two-tier client-server
database applications that also utilized the distributed
environment were deployed at the departmental level. These
applications supported finer granularity at the data level,
moving from interactive file sharing to concurrent data

element access. These first client-server applications

10

15

20

25

30

WO 98/25376 PCT/US97/21745
' 3

provided proof-of-concept for true distributed application
processing, but remained ad hoc in nature and of limited scale
and manageability. Effective distributed processing for
larger, more business-critical applications requires a shift

from the previous client-database only approach.

The component software model extends client-server
computing by supporting application partitioning to more
effectively develop and deploy application core logic and
manage its reliable execution in a network environment. The
component scftware model’s three-tier architecture promotes a
clean separation of functionality: presentation/user
interaction, core application logic and data management. This
separation confers benefits to the application developer and
supports optimized execution of the overall distributed
application. The development benefit of the decoupling
presentation and core application logic is twofold and grows
proportionally with the number of clieénts participating in the
application. First, component development allows application
designers to focus on encapsulating core application functions
in their workflow and interaction. Second, clean
presentation/application logic functional separation supports
productive life cycle management of the application code.
Frequent distribution of updated desktop applications to
hundreds of clients is a serious maintenance problem for many

client-server applications.

With the component software model, presentation
elements such as data input and display means are decoupled
from the internals of the application operating logic.
Changes to application logic encapsulated in the various

services often will not require a change in the client side

10

15

WO 98/25376 PCT/US97/21745
4

application. In recent years, several vendors have developed
component software OLTP architectures including the Tuxedo®
system from Novell and the Encina® gsystem from Transarc
Corporation. While these systems overcome a number of
disadvantages of prior distributed computing environments they
leave unresolved several issues such as the growing trend
toward ever “thinner” client applications, and create one new
disadvantage which is a potential dependence upon a particular
vendor of OLTP technologies. In addition, the existing OLTP
platforms leave unresolved certain problems generated by the
interaction of differing hardware and operating system
platforms and the need to minimize the usage of a limited
resource which is network bandwidth. Thus, there is room for
improvement in the development of business-critical

distributed computing environment platforms.

10

15

20

25

30

WO 98/25376 ’ 5 PCT/US97/21745

SUMMARY OF THE INVENTION

The drawbacks of the existing on-line transaction
processing (OLTP) systems are overcome by the methods and
apparatus of the present invention. 1In a first aspect of the
present invention, a mechanism is provided for the seamless
separation of client software from a subsequent layer of
client or server software in the OLTP system. The remote user
client and the system to which it must communicate are each
provided with a layer of interface logic whereby the remote
client software has its calls to the application service
software trapped by a remote procedure call layer. The remote
procedure call layer is implemented to create a connection to
the core service system upon which the application level
software is operating for transferring the appropriate calls.
The invoked service routines are then carried out by the
application in a manner which is transparent to the fact that

the initiating client is remote.

In another aspect of the present invention, network
communications between client applications and OLTP service
applications is minimized by introducing an additional service
application which translates single client instructions into
multiple server transactions and takes responsibility for
transaction management in calling the other server processes
thus minimizing the interaction between a client and the
various server services as well as minimizing the size of the
client application code. This dispatcher service is table
driven and uses such tables to map the single client
procedural call to the multiple application transaction

services. This also provides for an efficient mechanism of

10

15

20

25

30

WO 98/25376 PCT/US97/21745
6

changing the sequence and operations carried out at the server

without having to change client application software.

In yet another aspect of the present invention,
certain incompatibilities between differing hardware and
operating system platforms are handled in a transparent manner
which improves the flexibility of message passing in the OLTP
system. Rather than using the tightly coupled message passing
schemes promoted by OLTP system vendors, a dynamic messaging
scheme is provided which creates a message object for sending
messages between the client and server applications which are
data-type independent as well as content order independent.
This aspect of the invention allows applications running on
numerous different operating systemgs on different hardware
platforms to interact in a seamless manner while providing
application developers the opportunity to be flexible in

defining their message passing requirements.

In a final aspect of the present invention, the
effort to create a “thin” client is taken to the extreme by
introducing an OLTP service which provides a world wide web
interface to the OLTP system. This is known as an HTML web
API which allows remote users access to the OLTP system
through nothing more than an off-the-shelf web browser. The
above-described message object is the key to the HTML
transaction API. By invoking a CGI program or script in
response to the HTML request, the web server is capable of
operating as the OLTP client to the rest of the OLTP system
while providing web server functionality to the web browser
client. The CGI interface interprets OLTP requests from the
HTML pages which are parsed with a specified nomenclature to

create the OLTP message objects which are then provided to the

WO 98/25376 _ . PCT/US97/21745

OLTP system for transaction processing. Similarly, the CGI
interface is used to generate the HTML response to the web
browser. One technique implemented is to embed the HTML
extensions in HTML comment fields, marked by special
delimiters. The result is to allow an end user access to the
OLTP system with nothing but a commercial, off-the-shelf web

browser.

10

15

20

WO 98/25376 PCT/US97/21745

BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features and advantages of the present
invention will be apparent from the following detailed

description in which:

Figure 1 illustrates a logical diagram of an OLTP

system architecture.

Figure 2 illustrates a computer system architecture
in which OLTP client software is implemented in the same

computer system as the OLTP service software.

Figure 3 illustrates one embodiment of an aspect of
the present invention wherein the client application for the
OLTP system is made transparently remote from the OLTP service

portion of the OLTP software.

Figure 4 illustrates an OLTP system implementing a
dispatcher service functioning in accordance with another

aspect of the present invention.

Figure 5 demonstrates an example message exchange
between a client and a specified service using a message
object generated in accordance with the teachings of the

present invention.

Figure 6 illustrates the interaction of a
workstation operating a web browser with a web server over the

Internet’s World Wide Web.

WO 98/25376 PCT/US97/21745
. ' 9

Figures 7(a) and (b) illustrate alternative
embodiments of an HTML server configured to interact with the

OLTP system of the present invention.

10

15

20

25

30

WO 98/25376 : 10 PCT/US97/21745

DETAILED DESCRIPTION OF THE INVENTION

Methods and apparatus are disclosed for an on-line
transaction processing (OLTP) system implemented in a
distributed computing environment. Throughout this detailed
description, numerous details are set forth such as specific
data types and various communication protocols in order to
provide a thorough understanding of the present invention. To
one skilled in the art, however, it will be understood that
the present invention may be practiced without such specific
details. In other instances, well-known structures and
devices have not been shown in detail in order not to obscure
the present invention. In particular, much of the
functionality to be described herein is carried out by
software running on various computer related components in a
transaction processing system. With current software
development techhiques and component and object-oriented
approaches to software architecture, the description of
component software products does not generally require the
presentation of fully detailed source code listings. The
explanations of logical functions to be carried out by wvarious
software components and their interaction with other portions
of the system are sufficient to allow software designers of
ordinary skill to design systems meeting the functional
requirements. Accordingly, the present invention will be
described primarily in terms of the various functionality to
be implemented by various components of the transaction
processing system. Those of ordinary skill in the art, once
given the following descriptions of the various functions to

be carried out by the present invention will be able to

10

15

20

25

30

WO 98/25376 PCT/US97/21745
11

implement the necessary programming logic in various
programming languages or through other techniques without

undue experimentation.

A portion of the disclosure of this patent document
contains material which may be subject to copyright
protection. The copyright owner has no objection to the
facsimile reproduction by anyone of the patent disclosure as
it appears in the Patent and Trademark Office patent files or

records, but otherwise reserves all copyrights whatsoever.

Referring now to Figure 1, there is illustrated an
exemplary OLTP system 100. In an OLTP distributed computing
environment client application components provide user
interface routines and transaction request services.
Application services encapsulate core processing logic,
providing services such as transactional data access and
updates, etc. The OLTP gervices fulfill transactional
requests by interacting with resource managers, which may
include database systems provided by companies such as Oracle
and Sybase, etc. Thus, in Figure 1 there is illustrated
client applications 105 and 110 which may operate on
workstations or other intelligent desktops such as Unix,
DOS/Windows, MAC, or 0S/2 systems and may also include point-
of-sale terminals, automated teller machines and other devices
optimized for gpecific data gathering and presentation

functions.

The primary client function is to gather information
for subsequent processing and to display information either
input or returned as the result of transaction processing.
Transaction functions are accessed as named services

advertised to the client application. The client application

10

15

20

25

30

WO 98/25376 _ 12 PCT/US97/21745

generates and packages request messages which are directed to
a specific application service. One aspect of the present
invention that will be discussed more fully below is a robust
message passing mechanism which allows for otherwise
incompatible operating systems and hardware platforms to
communicate in a transparent manner. In large-scale
applications, many clients may concurrently request
transactions from the OLTP service components for processing

by the respective encapsulated services.

The exemplary OLTP system illustrated in Figure 1
shows three OLTP service applications 120, 125 and 130 each
respectively available to perform services advertised to the
clients 105 and 110. Application service components
encapsulate the core logic of their respective functions in
the form of named service routines. Service routines are
typically dedicated to a single type of task. Service
routines encapsulate data access, for example, by including
embedded SQL or database stored procedure logic. Cliénts may
request data update or retrieval in the form of a service
request to the particular server or service application
arbitrates resource manager interaction on behalf of the
client. A server component may advertise multiple individual
service routines, each of which may be specifically invoked by
an authorized client application. The distributed computing
environment OLTP system typically comprises one or more
application service components, each grouping the service
routines for a related group of actions or tasks constituting
an identifiable transactional function. Any number of
concurrent, authorized clients may issue requests for service
from the server application tier. A number of existing OLTP

® . _® : .
managers such as Tuxedo and Encina mentioned above provide

10

15

20

25

30

WO 98/25376 » 13 PCT/US97/21745

lower level mechanisms for service tracking, priorities, load
balancing and available resource checking for their costing

and scheduling decisgions.

In general, application services are dedicated to
individual resource managers, although multiple application
services may access the same resource manager. Thus, there is
illustrated in the exemplary embodiment of an OLTP system in
Figure 1 a resource manager 140 which is configured to
communicate with application services 120 and 125,
respectively. The second resource manager 150 is shown as a
resource manager for application service 130. Data are stored
in data “resource manager” such as resource managers 140 and
150 which may be relational databases, indexed file systems,
store and forward queue systems and other such resources. The
application service level software such as servers 120, 125
and 130 service routines as a “clients” to the various
resource managers or data servers issuing the SQIL,
enqueue/dequeue requests or other appropriate data access

protocols for the specific resource manager.

OLTP systems in implemented embodiments are
generally far more complex than the exemplary embodiment
illustrated in Figure 1. In fully operational systems, there
may be thousands of client applications communicating with
many application services and numerous resource managers. In

addition, the calls to one application service may implicate

calls to other application services which may implicate

interactions with multiple resource managers servicing a
single set of procedure calls from a client application. In
addition, multiple instances of service routines may be

required with the number varying as loads change and the

10

15

20

25

30

WO 98/25376 . PCT/US97/21745
1

system requirements dynamically change. It is the nature of
having to handle multiple resource managers which has led to
the most dramatic changes in OLTP services. Particularly, the
ability to have a two-phase commit sequence. In a two-phase
commit architecture, it is possible to rollback the state of
the system to a synchronization point if a commit instruction
to any of the resource managers fail. An industry standard
interface, known as the XA interface, supports a two-phase
commit which allows such complex OLTP systems. Much of the
teachings of the present invention are directed toward XA

compliant OLTP architectures.

Remote Procedure Call Support For Remote Clients

One common drawback to existing OLTP systems are the
mechanisms for providing a client interface with the core
service routines as embodied on a single server machine.

While the single machine may be able to support multiple
server processes, it is desirable to provide a simple
mechanism for a client application to be on a remote machine
from the machine executing the service routines. Figure 2
illustrates a prior art configuration of an OLTP application
service in which a single Machine A 200 supports an OLTP
server core for calling multiple service function instances or
procedures 220 which in turn communicate with database
resource manager interfaces 230 to direct resource requests to
a resource manager 240. In the early prior art system of
Figure 2, the OLTP client application resides on the Machine A
as OLTP client 205. The OLTP client 205 in the prior art is
tightly coupled to Machine A for invoking advertised services

220 for functions to be carried out at resource manager 240.

10

15

20

25

30

WO 98/25376 _ PCT/US97/21745
15

In this system, the service applications are required to be
running on the same Machine A as the OLTP client application

205.

Figure 3 illustrates an architectural level diagram
of a mechanism of the present invention for removing the OLTP
client application core from Machine A 200 to a remote
Machine B 300. In this case, the OLTP client 300 makes the
same OLTP procedure calls as the client 205 so that they may
utilize the same code that was compiled on Machine A 200, but
compiled to run independently on Machine B 300. However, in
the utilization of a remote client, there is introduced a
Client RPC interface 305 on Machine B 300 and a Client RPC
interface 310 on Machine A 200. The Client RPC routine 305
traps calls to the OLTP service core 210 that are made by the
OLTP client application 300. The Client RPC routine 305
creates a socket connection to Machine A 200 over the
communication network linking Machines A and B for forwarding
the OLTP service requests to the Client RPC code 310 on
Machine A. This provides an interface to a portion of the
client application 320 remaining on Machine A 200 which is
responsible for presenting OLTP service calls to the OLTP

service core 210.

A Dispatcher Service For Minimizing Client Messaging

In a structured software architectures supporting a
distributed computing environment, it is desirable to make the
client applications as “thin” as possible. That is, it is
better to have as much procegsing logic as possible in server-
based programs which occur in much fewer instances than in

client-based applications which are much more cumbersome and

10

15

20

25

30

WO 98/25376 , 16 PCT/US97/21745

voluminous in nature when it comes to upgrading and
refinements. Another object of distributed computing
environments is to implement mechanisms which reduce the
amount of inter-application communication because network
regources are limited. Client applications should be
prevented, whenever possible, from monopolizing such
resources. There is thus disclosed in Figure 4 an exemplary
OLTP system which provides a refinement to existing OLTP
systems in order to minimize the number of transactions
between the client and the server levels of the OLTP system
and which provides additional advantages. In the exemplary
embodiment OLTP system 400, two server routines or service
applications are illustrated: the Procedure One Service 410
and the Procedure Two Service 420. The client application 405
may present transaction options to a OLTP that require
invocation of multiple server-based application services such
as services 410 and 420. Not illustrated in Figure 4 are the
resource managers to which the respective service procedures

410 and 420 would direct their respective data requests.

The illustrated OLTP system 400 of Figure 4 also
shows a facet of OLTP systems wherein multiple instances of
variousg service procedures may be executing. In this example,
application service 410 is shown operating with two instances
and application service 420 is shown operating with three
instances. This allows multiple clients to call a service
application and reduces the odds that the service will be

busy.

When a service application begins executing, it
broadcasts its availability and associated information such as

resource manager information and available service procedures

10

15

20

25

30

WO 98/25376 PCT/US97/21745
: ’ 17

to a bulletin board service 430. The bulletin board service
430 creates and maintains a table 435 that identifies all
operating services in the OLTP system and whether or not the
particular service is busy. Thus, table 435 illustrates that
instance one of Procedure One is busy, denoted by a ‘B’ in the
table, while instance two of Procedure One is ready denoted by
an ‘R’. Similarly, in the example illustrated in Figure 4 all
three instances of Procedure Two are shown to be ready to

receive calls.

An enhancement to OLTP systems illustrated in the
OLTP system 400 is the introduction of a Dispatcher service
440. The function of the Dispatcher service 440 is to group
together sequences of service invocations thus reducing the
amount of processing necessary by the client application 405
and reducing the number of messages transmitted from and to
the client application 405. The Dispatcher service 440
maintains a table 445 which associates the client call with
the actual service procedure calls to be executed. Thus, if a
client application transaction actually implicates two service
procedures, it need make only a single transaction call to a
designated service name and the Dispatcher service 440 will
look up in table 445 the actual service procedures to invoke
to initiate the appropriate service application. In this
context, the Dispatcher service 440 coordinates with the
bulletin board service 430 to select a managed server process
to make sure the procedure calls wind up in the correct
service procedufe queue. The collective reply messages from
the multiple service procedures may then be received by the
Dispatcher service 400 and lumped into a single reply message

back to the client application 405, thus minimizing the number

10

15

20

25

WO 98/25376 8 PCT/US97/21745
: 1

of messages passed between the client application level and

server application level of the OLTP system.

By implementing a dispatcher service that is table
driven, it is possible to dynamically map requests to
different managed servers without requiring updates to client
applications software. Thus, if an improved Procedure One
service is provided elsewhere in the OLTP system, the table
445 can be updated to identify an alternative application
server which will have presumably broadcast to the bulletin

board service 430 that it 1s available.

Hardware And Operating System Independent Transparent Message

Object Passing Mechanism

One impediment to a truly flexible, scaleable OLTP
distributed computing environment is dealing with the fact
that different computer platforms running different operating
systems often define various data types differently. For
example, a Unix based machine may define an integer to be a
four byte piece of data with the order of data occurring from
high byte to low byte. In contrast, a PC-based machine may
define an integer data type to be two bytes long, ordered from
low byte to high byte. The present invention provides a
message passing scheme which is transparent to hardware and
operating system platforms and does not require a tight

coupling between client and server applications.

A conventional OLTP message passing call might look

like something:

10

15

20

25

30

WO 98/25376 PCT/US97/21745
: 19

OLTPcall (“ServiceName”, ibuff, ibl,

obuff, obl, flags)

Such a call exemplifies prior message passing
techniques used by many OLTP systems where the data sent to a
particular service application, in this case “ServiceName”, is
a raw data buffer, ibuff, which must be correctly interpreted
and decoded by the receiving server. Iﬁ the case where the
server operates in a different operating system or different
hardware platform, it must be programmed to be aware of the
order and data types for the information presented. Similarly
the return buffer, obuff, suffers the same constraints because
it must be properly decoded by the client application machine
to ensure proper data passing. Other OLTP systems provides
specific routines to code the message buffers in such a way as
to be decoded automatically by the OLTP core software when the
buffer is sent to another hardware platform. However, these
other buffering schemes are still very tightly coupled between
the client and the server code in that they dictate very

precise data ordering rules.

In accordance with an aspect of the present
invention, a dynamic message passing scheme is disclosed in
which message buffers may be readily interpreted because the
data type information is included in the message buffer and is
transmitted with the message to the remote application code.
Using an object oriented programming language such as C++, it
is possible to create a message object containing all of the
relevant information. Figure 5 illustrates an example of a
screen update application on a work station for a financial
transaction. At the Client Machine A 500, the client

application provides an interface by which a user may enter

10

15

20

25

WO 98/25376 PCT/US97/21745
: 20

the user’s name and account number on the display screen at
505. Then, at step 510 the user name and account number are
taken from the screen and placed into a message object 575 and
sent to an application service, in this example titled the
AccountInfo Service which runs on the account information
server Machine B 520. The application service at step 530
retrieves the account number and name from the provided
message object and generates a transaction request to the
resource manager 540 to retrieve the account balance. Then,
at step 550 the AccountInfo service takes the data from the
resource manager and adds that to the message object 575 which
is then returned to the client application at Machine A 500.
At step 560, the account balance is retrieved from the message
object 575 which has been received and is presented back to

the user interface for presentation to the user.

For the example of Figure 5, the message object is
created by a C++ object, in this case called OLTPMsg, which in

essence provides the following C++ calls:
OLTPMsg.Put (DE USERNAME, Gary Laxton)
OLTPMsg.Put (DE_ACCOUNT NUMBER, 123456)

The application stores the provided data in the
message object, is graphically illustrated by object 575 of
Figure 5. The buffer is filled with the identification of the
data variable, its data type, its length and the particular
data. Thus, regardless of the kind of machine running the
client application at Machine A or the server application at
Machine B, the data type for the variables conveyed with the
data itself is provided in a manner that each operating system

can resolve upon reading. After the input data has been put

10

15

20

25

WO 98/25376 PCT/US97/21745
: 21

into the message object 575, the service procedure AccountInfo

is engaged by another call to OLTPMsg such as:
OLTPMsg.SendMsg (AccountInfo)

which transmits the message object 575 to the OLTP service

named in the SendMsg routine.

This method of generating a message object allows
the client to change the message by adding different fields
etc. without having to recompile the service application code.
It also allows the message object to be filled in a matter
that is order independent. When the AccountInfo service 520
receives the message object, it may retrieve the values placed
therein by calls to OLTPMsg.Get (‘name of variable’). The
server will then do an OLTPMsg.Put to place the retrieved data
into the field DE_ACCOUNT BALANCE and return that to the
application Machine A. Similarly, client application will

retrieve the value returned with a call such as:

~

OLTPMsg.Get (DE_ACCOUNT_BALANCE ,

return val)

which will return the account balance to the user interface

for presentation.

Thus, by using a C++ like message object for data
passing between machines, data type transparency and operating
system/machine transparency are provided. Further, the order
and sequence in which data are placed in the message object
are inconsequential to either the operation of the client

application or the server application.

10

15

20

25

30

WO 98/25376 PCT/US97/21745
' 22

World Wide Web Client API For Use With OLTP System

In recent years there has been a dramatic shift in
the way in which computers are used and data is accessed.
Network technologies have expanded the interconnectivity of
the computer world providing almost immediate access to
information stored anywhere in the world to be displayed on a
local desktop almost anywhere else in the world. The sudden
super vitalization of the Internet and the popular mechanism
for utilizing it known as the World Wide Web have completely
changed the notion of client server technologies. Today, the
notion of an extremely thin client is exemplified by personal
computers running World Wide Web browsers such as Netscape
Navigator and Internet Explorer by Microsoft. Applications
may be written entirely for operation on a web server for
presentation and operation on a user’s computer without ever

having to change or install new software at the user client.

Figure 6 illustrates an exemplary World Wide Web
computing environment 600. In operation, a user may use a
personal computer or workstation 610 which includes its
standard operating system software 615 over which runs web
browser software 620. The web browser 620 provides an
interface for a user to specify by name or address a location
on the World Wide Web which contains a server to which the
user desires to connect. In what is becoming common
terminology, the user of user station 610 provides a universal
resource locator (URL) which the web browser 620 uses to
initiate the connection to the desired server 630. The web
browser 620 communicates with the desired server over the
Internet or Intranet 620 or other implemented computer network

utilizing a standard protocol referred to as the hypertext

10

15

20

25

30

WO 98/25376 5 PCT/US97/21745
3

transport protocol (HTTP). The machine with which the web
browser communicates is generally a server 630 running web
server software 640 which is responsible for connecting the
server to the Internet 625 for communication with remote web
browsers anywhere in the world. The web server software 640
provides rendering instructions with presentation materials
defined in accordance with the hypertext markup language
(HTML) to the web browser 620 over the Internet 625 using

HTTP. These are frequently referred to as a HTML pages.

Use of the World Wide Web today has become
increasingly interactive. A user may provide information
through a user interface on the web browser which can be
packaged and transported over the Internet to the web server
640. This may effect the selection or presentation of the
HTML pages 650 which return information back to the web
browser 620. HTML has been created to be a fairly simple
programmingvlanguage which allows people who are less than
fully trained software engineers to create dynamic programs

for presentation to end users on their web browsers.

There is another mechanism that makes World Wide Web
programming extremely dynamic, and that is the Common Gateway
Interface (CGI) which is a programming interface provided by
web servers to allow calls to external procedures outside of
the web server software. Thus, rather than strictly
retrieving and returning HTML pages 650, the web server 640
may interact with CGI programs 660 which provide a more
dynamic programming environment. CGI programming is
substantially more complex than HTML programming and requires
a greater proficiency and training in software engineering. A

CGI programmer will generate results to be presented on a web

10

15

20

25

30

WO 98/25376 5 PCT/US97/21745
4

browser by programming the various CGI logic to be carried out
while building a resulting HTML page to provide to the web
server 640 for return to the web browser 620. One
disadvantage to CGI programming, obviously, is that it
sacrifices the ability to let more designed-oriented
individuals who are capable of HTML programming from creating

products which require CGI techniques.

In another aspect of the present invention, a
mechanism is provided which allows for a more robust
interaction between HTML pages designed by an HTML designer
and CGI programs developed by CGI programmers. In addition,
this aspect of the present invention allows a web server to
operate as a “client” to the above-described OLTP systems
while implementing the extremely thin client approach provided

by the World Wide Web.

The message object technology described in the
previous section is a key ingredient to the HTML extensions

provided by the present invention.

As described, there is a special interface, CGCI,
supported by web servers that allows a developer to satisfy
web browser requests programatically. To accomplish this the
web server sends the requests to a user specified program (CGI
script) which can format data into HTML form to be returned to
the browser for display on the user screen. To make a web
server capable of interacting with the OLTP systems of the
present invention, the CGI interface is used to receive
requests from the browser and format them in an appropriate
message objects to send to the OLTP system. Figures 7(a) and
7(b) show two alternate embodiments for a web server

implemented in accordance with this aspect of the present

10

15

20

25

WO 98/25376 PCT/US97/21745
’ 25

invention. 1In Figure 7(a) the web server 700 includes web
gserver application software 710 that communicates with HTML
pages 720 and CGI programs 730. The CGI programs are written
in such a manner that they are able to take the data provided
by the client application web browser, package them into a
message object such as that described above, and direct them
to a desired OLTP service process or to the Dispatcher service
described above with respect to Figure 4. Thus, the web
server 710 itself becomes a “client” to the OLTP system. It
can be seen from this architecture of Figure 7(a) that nothing
is required to be changed at the end-user client system in

order to operate with the OLTP system.

Figure 7(b) presents an alternate architecture for
the CGI client to the OLTP system. The alternative embodiment
of Figure 7(b) is provided to off-load the OLTP processing
from the web server because web servers can be extraordinarily
busy responding thousands of clients over the World Wide Web.
In this case, the CGI programs which execute OLTP calls have
those calls trapped by the Client RPC 305 which is the same
remote procedure call technique described above with respect
to Figure 3. There is then introduced another machine to
operate as a “pseudo-CGI client” 750 which includes in its
system the Client RPC 310 which communicates with the Client
RPC 305 and forwards the calls to OLTP service core 760 which
then provides the OLTP interaction to either a Dispatcher or

other OLTP service processors in the system.

In accordance with this aspect of the present
invention, extensions to HTML are provided for making

appropriate calls for transaction message passing to the OLTP

10

15

20

WO 98/25376 PCT/US97/21745
: 26

system. The HTML extensions are implemented by embedding the

extension controls in HTML comment code.

The following describes the syntax of the language
extensions to HTML for use with the OLTP systems in accordance

with an implemented embodiment of the present inventions:

Reserved Internal Setup Variables

A few variables can be set in HTML that control the way the
OLTP client processes the HTML document. These variables can

be set using the HTML syntax:

<INPUT TYPE=“HIDDEN” NAME=“IN WEB OUTPUT PAGE"”

VALUE=“"FILENAME.HTM"” >

Control Variables

IN WEB OUTPUT PAGE - Use the specified files as the template

file.

IN MODE - If the mode is set to “dummy,” the transaction will
not actually be called and the default value for each variable
will be inserted into the template file instead of the OLTP

service output.

OLTP Service Variables

The variable DE TRANSACTION_ ID contains the name of the OLTP

gservice to be called. Any variable name sent to the OLTP

10

15

20

WO 98/25376 PCT/US97/21745
27

client that starts with DE_ will be sent to the specified OLTP

service.

DE_TRANSACTION_ID - Name of the OLTP service to be called

after the input variables have been set.

Extension Format

The HTML format for a comment is of the form <!-- to begin the
comment followed by the sequence--> to end the comment. For
example:

<!-- This is a comment within HTML -->

The special OLTP extended command set resides within the HTML
comment structure. OLTP commands are preceded by a begin
delimiter <!--${and are terminated by an end delimiter }--> as

shown below:
<!--${VARIABLE NAME}-->

The term “OLTP command” is used herein to specify the part of
the HTML comment between the ${and the}, which, in the above
example, would be VARIABLE NAME. The OLTP command has two

forms:

The single command form (shown above), which specifies only
the name of the variable to be gubstituted at the location of

the command in the document.

A longer form allows multiple commands to be performed at the

same time.

10

15

WO 98/25376 o8 PCT/US97/21745

The short form of the example above is equivalent to the long

form of the command:

<1——${FIELD=VARIABLE_NAME}-—>

Valid OLTP Commands

All commands may be shortened to the least number of
characters that would keep the command unambiguous. For
example, the command FIELD can be shortened to F since there
are no other commands that start with the letter “F~.
Ambiguous commands are accepted on a first-come first-served
basisg; in other words, the first internal command that

provides a match is used.
Commands are specified in the following form:
COMMAND=VALUE [COMMAND=VALUE [...]]

The following Table I describes the current set of supported

commands and associated values:

WO 98/25376 PCT/US97/21745
29

COMMAND VALUE DESCRIPTION

Field Char string used as a Insert the value of the
valid variable name to specified variable into the
indicate either an input HTML text.
variable or a variable
from the service output.

Type Numeric Date

Source Input Set this variable from the
URL input variables rather
than from the OLTP service
return values.

Value Char string A value to insert into the
HTML text if no value for
this variable was returned
from the OLTP service.

Width Int Output width. The output
is padded with spaces to
the width specified.

Repeat Line The current HTML line will

repeat until the first
variable in the row is not
found in the output from
the OLTP service. Normally

used for creating tables.

TABLE I

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/25376 3 PCT/US97/21745
0

With this extension mechanism, an HTML designer can
develop HTML pages for interacting with a web browser without
requiring the programming skills required for CGI programming.
A CGI programmer may separately interact with the HTML pages
720 ag shown in Figure 7(a) and 7(b) and extract those
embedded commands from the HTML page, execute the OLTP
transaction, and return the data into the HTML page. With
this mechanism, an HTML designer can design all aspects of the
presentation while putting the special comment fields where
result data from an OLTP transaction are needed to be inserted
using the special variable names. The CGI program will read
the HTML page and pass it back to the web browser intact but
operating on the embedded commands in the manner described
above with resgpect to the operation of the overall OLTP

system.

In simple summary, when data is filled in by a user
through a web browser which is exhibiting an HTML page, the
DE_ variables are established and routed back to the web
server which then provides the HTML page to the CGI script.
The CGI script sees the DE_ variables and generates the
various OLTP.Put requests to the message object and then sends
the message object to the némed OLTP service identified by the
DE_TRANSACTION ID. The result is then returned and inserted
into the appropriate space specified in the HTML page for
result data. This provides a robust OLTP environment with all
the advantages of the World Wide Web wherein a client
application is never required to be changed by the OLTP gystem
administrators. Only changes in the OLTP service applications

need be effected to change the operation seen by the end user.

10

WO 98/25376 PCT/US97/21745
31

The preceding describes numerous enhancements to
distributed computing architectures for handling on-line
transaction processing. Although the present invention has
been described in terms of exemplary and implemented
embodiments, it will be understood by those of ordinary skill
in the art that many of the techniques and aspects of the
present invention are suitable for use in other computing
contexts. Accordingly, the spirit and scope of the present
invention should be measured in terms of the claims which

follow.

10
11
12
13
14
15
16
17
18

19

WO 98/25376 PCT/US97/21745

32
CLAIMS
What 1is claimed is:
1. A computer system for providing an interface between

a remote client application and an on-line transaction
processing (OLTP) system, said computer system comprising:

server logic coupled to communicate with said remote
client for receiving data for use in an OLTP transaction
request;

at least a first hypertext markup language (HTML)
file coupled to be accessed by said server logic for delivery
to said remote client, said HTML file providing rendering
instructions to said remote client application for
presentation to an end user, said HTML file providing for at
least a first data input from said client application to be
returned to said server logic; and

CGI/OLTP interface processing logic coupled to
communicate with said server logic to receive data
representing said HTML file and said first data input, said
interface processing logic for generating from said HTML file
and said first input data an OLTP transaction request to be

provided to said OLTP system.

2. The computer system of claim 1 wherein said computer
system comprises a World Wide Web (web) server and wherein
said client application comprises a web browser for

communicating with said web server over a network.

3. The computer system of claim 1 wherein said

interface processing logic includes means for inserting into

AW N R

10

11

WO 98/25376 PCT/US97/21745
33

said HTML file result data received from said OLTP system in

response to said transaction request.

4., The computer system of claim 3 wherein said
interface processing logic includes means for detecting OLTP
transaction request information embedded between comment

delimiters in said HTML file.

5. The computer system of claim 4 further comprising
first application interface logic for trapping external OLTP
calls generated by said CGI/OLTP interface processing logic
and for forwarding said calls to a remote pseudo-CGI client of

said OLTP system.

6. The computer system of claim 4 wherein said OLTP
transaction request is generated by creating a message object
which includes data type information with said input data for

interpretation by said OLTP system.

7. A method of utilizing a World Wide Web (web) server
as a client service to an on-line transaction processing
(OLTP) system comprising the steps of:

presenting a hypertext markup language (HTML) page
to a remote web browser client application, said HTML page
providing at least a first field to receive input data from
the web browser;

receiving said input data from said web browser
client;

parsing said HTML page to extract said input data

for use in an OLTP transaction reqguest;

12
13
14
15
16
17

R B A U 61 S S I O T

W NN B

w ® g o0 Ul W N

WO 98/25376 3 PCT/US97/21745
4

generating an OLTP service call incorporating said
input data;

receiving result data from said OLTP sgervice call;
and

forwarding said result data to said web browser

client with said HTML page.

8. " The method according to claim 7 wherein said parsing
step comprises the steps of:

detecting an HTML comment field in said HTML page;

detecting an OLTP system instruction delimiter in
said comment field; and

extracting the information identified by said

delimiter.

9. The method according to claim 8 wherein said
forwarding step comprises the step of inserting said result
data into said HTML page at a point indicated by an OLTP

instruction embedded in said HTML page.

10. A method of utilizing an HTML document to convey
non-HTML information comprising the steps of:

embedding said non-HTML information in an HTML
comment field in said document;

detecting said embedded information;

extracting said embedded information from said HTML
document; and

forwarding said embedded information to a

destination configured to utilize said embedded information.

(o) I ¥

10
11
12
13

14

WO 98/25376 35 PCT/US97/21745

11. The method according to claim 10 wherein said
embedding step comprises the steps of:

embedding begin and end delimiters in said HTML
comment field; and

inserting said non-HTML information between said

begin and end delimiters in said comment field.

12. The method according to claim 11 wherein said
detecting step comprises the step of detecting said begin and

end delimiters in said comment field.

13. The method according to claim 12 wherein said
extracting step includes the step of extracting embedded

information from between said begin and end delimiters.

14. A method of remotely operating a first application
running on a first computer which presents procedure calls to
a second application running on a second computer comprising
the steps of:

detecting a procedure call to said second
application;

trapping said procedure call with a first interface
application;

establishing a communication path to a second
interface application operating on said second computer; and

forwarding said procedure call over said
communication path to said second interface application
wherein said second interface application causes said

procedure call to be initiated from said second computer.

\V]

w W 4 o Ul e

10
11
12

13

= W NN R

WO 98/25376 36 PCT/US97/21745

15. A method of passing data from a first application
running on a first computer system operating in accordance
with a first platform to a second application running on a
second computer in accordance with a second platform
comprising the steps of:

creating a message object;

putting a variable and its associated value into
said message object;

putting into said message object the data type of
gaid variable and length of said associated wvalue; and

sending said message object to said second

application operating on said second computer system.

16. A method for a dispatcher system in an OLTP system
to minimize the bandwidth utilized between a client
application and services associated with said OLTP system
comprising the steps of:

receiving a transaction request from said client
application wherein said transaction request implicates
invocation of a plurality of said services in said OLTP
system;

referring to a service table to determine which of
said OLTP services to invoke in regponse to said transaction
request; and

invoking the OLTP gerviceg identified in said

service table as corresponding to said transaction request.

17. The method according to claim 16 further comprising
the steps of:
grouping any response information resulting from

invoking said OLTP services; and

WO 98/25376 PCT/US97/21745
37

5 providing the grouped responsge information to said

6 client application.

PCT/US97/21745

1/7

WO 98/25376

[|
| [
[[
_ 2 day | 8 "
& | € uoney| &
[T 2pwes o B[t
| L B
“ P _
I ogl I
[_
| |
i 3 | <& : dd
(ed) 3 _ &z uopeoyddy | S | uonealddy 1§
gisbeueyy | le——= m 20188 4170 | 5 Fe——1 el O}
sanosay | € | = £ !
[[
P _ - !
051 “ Gcl “
[|
“ “ s alem)jos wajsAs
| @
(hve) ml|"|t m | uoijeaijddy m I m sle0 d170
| jebeuBN | G +———>| S|eomes d170| B{¢———>] B[“ddyein |-sol
solnossd | = ! = - “ | eorpauliesn
_
_
7 | ’ |
ovL “ 0z} i
|
siobeuepy “ suojesijddy “ wcﬂ_hw_u__a%
20Inosay _ 80IM8S 4110 | [fo)
00t

| DI

WO 98/25376 PCT/US97/21745

2/7

FIG. 2

Machine A OLTP Client
200 205
OLTP Service Core
210
f !
Service

Instance (1)~ 220

 J
Resource Manager Interface
230

if
U

Interface

Resource |-
Manager (RM) 240

WO 98/25376 PCT/US97/21745

3/7

Machine B

FIG 3 OLTP Client 300

Client RPC 305

—

Z
Machine A Client RPC F—~310
200 Client OLTP |~ 399
Calls

:

OLTP Service Core
210

! :
Service
Instance (1)~ 220

v
Resource Manager Interface
230

il
s

Interface

Resource]_.
Manager (RM) 240

WO 98/25376

4/7

r
(a]
o

Client Services
Applications Applications
i Dispatcher

Cpl‘lent «—»| | Semice G—

482 773 440 >

T e To Other
: | +To BB Services
Iy
[
[
P Procedure 1 |T0 RM 1
| Service :>
| "\ 410
I
|
|
i
' | Procedure 2 jTo RM2
|
! Service — >
== I N 420

To BB
Bulletin
Adveri Board (BB)
From Services Si%ce —

FIG. 4

PCT/US97/21745

Tables

1) User
Call: 1) Proc 1
2) Proc 2

445

Proci
Instances: Proc 1:1:B
Proc 1:2:.R

Proc2
Instances: Proc 2:1:R
Proc 2.:2.R
Proc 2:3:R

435

-4—» Manager

WO 98/25376
5/7
575
Message Object "Accountinfo" {
DE_USERNAME, Char, 15, Gary Laxton
DE_ACCOUNT_NUMBER, Int, 4, 123456
DE_ACCOUNT_BALANCE, Dec, 4, [Data Returned]
OLTPMsg.Put(DE_USERNAME,Gary Laxton);
OLTPMsg.Put(DE_ACCOUNT_NUMBER,123456);
OLTPMsg.SendMsg(accountinfo);
Accountinfo Service
User name and account
User name Name and Account Number
and Account numbler arde_taken off screen are taken from the message
Number are | [12"d placed into a message > and used to retrieve detail
and sent to the Accountinfo
entered on X from database.
Service.
screen
< S
{ 510 530
505 J . .
Account detail is taken from Detail is placed back into a
the message received from message and sent back to
the server and placed on the client.
the screen.
S S
560 MachineB 550
| S
520
Machine A

OLTPMsg.Get(DE_ACCOUNT_BALANCE,&Balance):

PCT/US97/21745

Resource

540

WO 98/25376

Web Browser
620

System
615

;

610

Web Browser
620

internet/
Intranet
HTTP
625

Internet/
Intranet
625

PCT/US97/21745

Web Server I@ HTML Pages
640 650
CGl Programs
660 630
Web Server |® HTML Pages
10 720
CG! Programs k-~ 730
OLTPMsg 700
Calls Interface

Y

To Dispatcher or Other
OLTP Service Processes

WO 98/25376 PCT/US97/21745

777

100
Web Server HTML Pages
Web Browser 710 720
620 Internet/ — —
Intranet }g—p»! /
System 625
615
CGl Programs f— 730
5 Client RPC 305
610 ﬁﬂ
Client RPC Pseudo

~310 ¢6l Client
OLTPMSQ 760 750

Calls

To Dispatcher or Other
OLTP Service Processes

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

