0O 03/005189 A2

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date
16 January 2003 (16.01.2003)

PCT

(10) International Publication Number

WO 03/005189 A2

(1

@1

22

25

(206)

30

(71)

(72)

(74)

International Patent Classification’:
International Application Number: PCT/US02/21218
International Filing Date: 2 July 2002 (02.07.2002)
Filing Language: English
Publication Language: English

Priority Data:

60/303,427 6 July 2001 (06.07.2001) US
10/127,042 19 April 2002 (19.04.2002) US
Applicant: CONVERGYS CMG UTAH [US/US];

10975 South Sterling View Drive, South Jordan, UT 84095
(US).

Inventors: LUPO, Joseph, Paul; 9837 Montclair Circle,
Apopka, FL. 32703 (US). WEAGRAFF, Stephen, De-
Wayne; 218 Harbour Gardens Court, Orlando, FL. 32806
(US). DEAN, Thomas, Byron; 1226 Riebel Ridge Road,
New Richmond, OH 45157 (US). SAUER, Michael,
Daniel; 3991 Bremen Pass, Cleves, OH 45002 (US).

Agents: SCHALNAT, Ria, Farrell et al.; Frost Brown
Todd LLC, 201 East Fifth Street, 2200 PNC Center, Cincin-
nati, OH 45202 (US).

34

GO6F 9/40 (81) Designated States (national): AE, AG, AL, AM, AT, AU,

AZ, BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD FOR CREATING BROWSER-BASED USER INTERFACE APPLICATIONS USING A FRAMEWORK

(57) Abstract: A framework and method of programming web-based interfaces using management classes for the management of
behavior regarding specific web elements wherein said code relating to said management classes is loaded into a user’s browser and
primarily executed within the client-side browser environment.

WO 03/005189 PCT/US02/21218

METHOD FOR CREATING BROWSER-BASED
USER INTERFACE APPLICATIONS USING A
FRAMEWORK

PREAMBLE

[0001] This application is based upon, claims priority from, and incorporates
by reference the entirety of the provisional application Serial No.

60/303,427, Lupo, et al,-filed July 6, 2001.

FIELD OF INVENTION
[0002] This invention relates to development frameworks for web-based user
interfaces. 4
BACKGROUND
[0003] Code reuse is the goal of many a computer project whether it is coded

in an objected-oriented programming (OOP) language (including, but
not limited to, Java, C++, and C#) or a more structured language
(including, but not limited to, COBOL and C). Complementary to the
goal of code reuse is the goal of standardizing code (also known as

plug-and-play). These goals may be achieved through a combination
- 1-

WO 03/005189

[0004]

[0005]

PCT/US02/21218

of OOP principles such as encapsulation, inheritance, abstract classes

and polymorphism, composition, interfaces, implementation,

frameworks, and contracts. The treatise, The Object-Oriented Thought
Process, Sams Publishing 2000, by Matt Weisfeld, provides an
excellent explanation of these concepts, however, some of these terms
may have multiple meanings depending on the context in which they

are used.

The following provides background on these principles. It is, however,
expected that these principles are well understood by those skilled in
the art. Classes are blueprints of the methods and variables in an

object. Objects are instantiations of a class; they contain real values.

Classes and objects are two of the defining ideas of object-oriented
programming. Classes may provide for the implementation of methods
contained in the class or the implementation may be provided by or
overridden by the object instantiation of that class. Objects may
encapsulate their methods and/or attributes to hide them from end users
of the framework. In general, an attribute is a property or
characteristic. In the Hypertext Markup Language (HTML), an
attribute is a characteristic of a page element, such as a font. This also
makes code design easier for such developers because they do not have
to understand the entire system to create an application. The developer
communicates with a given object through an interface provided by
that object. Class types include super-classes, classes, and sub-classes.
A class can have subclasses that can inherit all or some of the
characteristics of the class. In relation to each subclass, the class
becomes the superclass. Subclasses can also define their own methods
and variables that are not part of their superclass. The structure of a

class and its subclasses is called the class hierarchy. Class types also
- 2.

WO 03/005189

[0006]

[0007]

PCT/US02/21218

include abstract classes, which are class blueprints that do not contain
any implementation of one or more of its methods. Such abstract
classes may be overridden when instantiated according to the OOP
principle known as polymorphism. It is possible for an instantiation of
an object to be composed of multiple object instantiations

(composition).

Frameworks may be utilized by developers through application
programming interfaces (API) when developing computer programs.
APIs are the publicly revealed methods and attributes of a given
computer system. Frameworks comprise a contract of classes (the
API) designed to achieve an objective. These classes may be encoded
on a computer readable medium and manipulated/arranged to create an
application. To use a framework, a developer must use the
predetermined interface (which may be extensible) to create an
application. A contract is any mechanism that requires a developer to
comply with the specifications provided by the API of a particular
framework. For instancé, if a developer creates rogue code, the
“computer executable instructions encoded on a computer readable
medium” (also, software, code, and program) may not compile and the
code will be useless. Another type of interface is used in OOP,
particularly in Java or Java-like languages, which may not allow for
multiple inheritance. Such interfaces are a method of specifying
behavior for multiple, unrelated classes/objects to enforce contracts. It
also provides an alternative to an ungainly, multiple-level inheritance
architecture. A given class may implement an interface to extend its

functionality.

Web Developers use OOP principles to develop applications organized

around objects rather than functions. These methodologies, when used
- 3-

WO 03/005189 PCT/US02/21218

correctly, provide simple, standard interfaces for objects, which are
known in the art as “black boxes”. A first step in designing such a
system involves identifying all the objects to be manipulated and
determining how they relate to each other (data modeling). Once an
object has been identified, its data elements and functions may be
generalized as a base class. Additional functionality specifically related
the event model (events, such as a keypress or a mouseclick, received
by each object and the 'event handlers' that react to each event) may
also be specified on the base class. These classes may be organized
into a framework. But frameworks provide more than an amalgam of
classes. Frameworks also provide a structure for integrating these
components, a predefined interoperation of components, and, if
designed well, a basic skeleton for developing an application. By
promoting reuse of code, design, and prototype architecture, a
framework helps developers create an application in a timely manner
while still permitting them to customize the application to the user's
requirements and benefit from the framework's maturity, robustness

and stability.

[0008] Dynamic HTML (DHTML) and Document Object Model (DOM)
allow authors direct, programmable access to the individual
components of their Web documents, from individual elements to
containers. This access, combined with the event model, allows the
browser to react to user input, execute scripts on the fly, and display
the new content without downloading additional documents from a
server. In this object model, every HTML/Web element/object is
programmable. This means every HTML element/object on the page

may comprise a script that changes the page content dynamically in
- 4-

WO 03/005189 PCT/US02/21218

response to user actions, i.e., moving the mouse pointer over a
particular element, pressing a key, or entering information into a BF
form input. Stand-alone scripts may also be shared between pages and
components. Each object may contain a pointer to a script that
comprises client-side computer executable instructions for execution
via the user’s browser to modify content without having to go back to
the server for a new file. Client-side scripts promote the creation of
interactive Web sites because users do not have to wait for new pages
to download from Web servers. A client is the requesting program or
user in a client/server relationship. The user of a Web browser is
effectively making client requests for pages from servers all over the
Web. Ultimately, the speed of an individual’s browsing and the
performance of the Internet as a whole improves. See,
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/om/doc_
object.asp. In DHTML, every HTML element is a scriptable object,
with its own set of properties, methods, and events. See,

http://www.w3schools.com/dhtml/default.asp.

[0009] DHTML may include a combination of some version of HTML
(including cascading style sheets and the DOM), Style Sheets and
scripts written in JavaScript, VBScript, or some other browser
compatible scripting language (and equivalents thereof). Cascading
Style Sheets (CSS) provide a style and layout for HTML documents.
The DOM provides a document content model (map) for HTML
documents which allows access to every element in the document.
DHTML is the art of making HTML pages dynamic by using scripting
to manipulate the style, layout and contents of the document. With a
scripting language, we can access the elements in the DOM. Event

handlers allow access to these scripts.

- 5.

WO 03/005189

[0010]

[0011]

PCT/US02/21218

Although object-oriented programming, frameworks and dynamic
HTML/DOM are known in the art, developers have not found a way to
utilize the unique features of each of these components to maximize
the development of web pages. On the World Wide Web, a web page
is a file notated with the Hypertext Markﬁp Language (HTML).
Usually, it contains text and specifications about where image or other
multimedia files (web elements) are to be placed when the page is
displayed. For instance, developers commonly code elements in a web
page in such a way that the implementation of the dynamic
functionality provided by a client-side script is directly encoded into
the object itself as a method of that object. Alternatively, the object
may contain a pointer to the specific script. A script, however, is not
an object and the only reuse that may occur with web pages using this
technique is via the archaic cut and paste method. Such code must
then be hand modified to conform to the particularities of the next
HTML element, which needs such functionality. Thus, a new method

and system for programming client-side web pages is required.

SUMMARY OF THE INVENTION

This application addresses a need in the industry for a robust
framework, which promotes greater code reuse and stability in the
development of web-based user interfaces, by exploiting the
advantages behind client-side scripting and Java subclassing. In
information technology, the user interface (Ul) is everything designed
into an information device with which a human being may interact --
including display screen, keyboard, mouse, light pen, the appearance
of a desktop, illuminated characters, help messages, and how an

application program or a Web site invites interaction and responds to

- 6-

WO 03/005189

[0012]

[0013]

trArAne A

PCT/US02/21218

it. Web-based refers to websites/webpages or a related collection of
World Wide Web (WWW) files.

The framework may be specifically geared toward self-care clients
(Internet-based clients that allow an end-user access to the system
using a web browser to “care” for themselves) and call-center web
clients (used by customer services representatives). Such interface
designs may be highly controlled (where the end-user or CSR is
confined to processing defined steps using a defined interface) or
exploratory (where the end-user or CSR is free to navigate around and
selectively operate the application). A browser is an application
program that provides a way to look at and interact with all the
information on the World Wide Web or other network system
including intranets, extranets, peer-to-peer networks, etc. The
framework is unique in the way it develops these interfaces because it
allows the developer to separate the appearance and the management
of each particular HTML element into two separate objects (display
object/management object) wherein the management object not only
manages the displéy object but is also highly extensible. The
framework may further include composite objects. Composite objects
comprise an object that is created by combining two or more objects.
Finally, the framework may be designed to act independent of a
specific browser or browser version. The framework may comprise
JavaScript files, style sheet files, and HTML code examples that ease

the task of web client development.

One embodiment of the invention comprises a framework, which
further comprises a class designed for the instantiation of a shadow
object/management object. Shadow objects may be instantiated from

abstract classes and associated with a display object/element/DOM
- 7-

WO 03/005189

[0014]

PCT/US02/21218

component. The shadow object may manage the display object. Thus,
a given user interface component/widget may be divided into a display
object and a corresponding shadow object by defining the shadow
object as a data element/attribute of the display object. The shadow
object may be used to facilitate code reuse for functionality associated
with the display object such as data validation, masking, and state
management. Data validation includes the verification or comparison
of data against another source to confirm its veracity, format, etc.
Masking refers to the reformatting or overlaying of data to conform to
a more acceptable format (i.e., a user enters 5132894521 into the
system and the masking functionality reformats the data entered into
(513) 289-4521). State management functionality includes the
alteration of elements on a web page in response to specific actions or
non-actions by a user (i.e., enabling a submit button when the proper

number of digits are entered into a telephone field).

Shadow objects may be associated with DOM elements such as
windows, navigators, events, collections, documents, forms, inputs,
selects, options, textareas, tables, editable tables, tablerows, téblecells,
anchors, images, framesets, frames, iframes and more. Each of these
generic shadow objects may be further specialized/extended. For
instance, the Input Element object <INPUT> represents an INPUT
element, which can be of the following types: button, checkbox, file,
hidden, image, password, radio, reset, submit, or text. These elements
and others are within the knowledge of one skilled in the art. Each
type of <INPUT> element may have a corresponding shadow object.
An editable table is a web element that may extend a base table by
giving it editable rows. An editable table is a table or grid of data that

may appear as display-only in normal mode. Once a user takes an

- 8-

WO 03/005189

[0015]

[0016]

PCT/US02/21218

action, such as click on a cell, the user may be able to modify the

contents of the cell.

A given shadow object may be derived from a base shadow class
geared toward a specific manageme}lt, for instance, validation of a
social security number. Derivation is the process of instantiating an
object. An instance is a particular realization of an abstraction or
template such as a class of objects or a computer process. Instantiation
is the creation of an instance by, for example, defining one particular
variation of object within a class, giving it a name, and locating it in
some physical place. The derived class may include and extend the
base validation class created to govern general data validation for any
given widget in the user interface. The base class might include
functionality common to all validation rules such as “Is mouse click
valid?” or “Is text entry valid?” These functions and/or others may be
included in the derived class that is specific to the particular instance of
the display object such as social security number textbox, or city drop-
down list, etc. Specific management features may be assigned to the
shadow object as attributes/methods. This allows the web developer to
code the specific management features it needs for each widget/DOM
component by adding an “instance” of that widget’s shadow object

rather than cutting and pasting generic management code.

Ordinarily, client-side data validation is a cumbersome task for the
Web developer, requiring many hours of Javascript coding. The
framework may be designed to provide shadow objects with numerous
validation methods that may be used and extended as necessary. Some
validation methods include date validation (i.e., validating that an
expiration date is in correct date format and is later than the current

date but less than 90 days in the future); telephone number validation
- 9.

WO 03/005189

{0017]

[0018]

[0019]

PCT/US02/21218

(i.e., validating that a telephone number has the correct number and
arrangement of digits and that the area code and exchange fall within a
specified range); credit card validation (i.e., checking that the card
number entered by the user has the correct number of digits and passes
a basic validation test); minimum selection testing (i.e., checking that a

new subscriber has selected at least one service).

Like data validation, state management allows the Web developer to
prevent incorrect or incomplete information from being sent to the
Web server by disabling and enabling buttons or other components
based on the user's input. One embodiment of the framework may be
designed to provide shadow objects with state management methods
that may disable the submit button until after the user has entered or
selected all required information; make parts of the screen invisible
until the user selects a specific check box or radio button, so that the
user doesn't waste time entering unnecessary information; and/or run a
customized function based on the application's state management

requirements.

The framework may be further designed to provide shadow objects
with data masking methods to allow users to enter information in a
familiar format without unnecessary text boxes or keystrokes (e.g.,
automatically providing the hyphens and parentheticals for a user

entering a phone number).

In another embodiment, the framework may be designed to provide
shadow objects with methods that affect other aspects of the display
object/DOM component. For instance, a shadow object may comprise
an attribute of a DOM component that triggers a help function or a

pop-up help file for that DOM component when a predefined key is

- 10-

WO 03/005189

[0020]

[0021]

SaamamAs A

PCT/US02/21218

pressed while the DOM component is in focus. Each component on
the page can be associated with a specific URL that is part of the Help

system.

In addition to providing a framework, which may provide the classes
for shadow objects geared toward management, validation, masking,
and other functionality, the framework also provides an improved
infrastructure for developing standard web clients. The framework
may further provide composite DOM components (display classes) and
classes for associated shadow objects to improve the speed of
development time. While such componénts may be jury-rigged on a
given web page, such components are not provided as part of the DOM
or as a DOM component for use in web development. A framework
may be specifically geared to the development of user interfaces for a
particular industry such as billing or telecommunications and provide
composite components that are applicable to those industries. Thus, the
framework may extend the DOM by providing a palette of composite
objects such as social security number inputs, credit card/expiration
date inputs, control number inputs, address inputs, telephone number
inputs, an accumulator list box, date and time inputs, multiple pane tab

controls, drop-down and pop-up menus, tree menus, and more.

In another embodiment, the framework may be further developed to
“standards” instead of to specific browser versions. Rather than basing
the functions that get executed and the attributes that get interpreted on
a derived web browser manufacturer and version number, the method
queries the web browser environment on the client-side for the
presence of specific functions and attributes that are defined in the
various browser specifications. If not present, other less “standard”

functions and attributes are utilized. This provides functionality for
- 11-

WO 03/005189

[0022]

[0023]

[0024]

[0025]

PCT/US02/21218

web-based applications across multiple web browser types without
creating multiple versions of code for each function utilized by the

application.

In another embodiment, the framework may be further configured to
provide tracing and searching functionality. Tracing functionality
allows the developer to track what is being executed on the Web page.
This may include checking what functions called other functions and in
what order; argument values; displaying variable values and the logic
path that the function takes when it runs; displaying more detailed
attribute values for a specific object and variables/attributes; and
displaying information in an alert message box and pausing the
function. Tracing levels may be combined and a tracing level may be

changed at a specific point in the debugging process.

The framework’s searching functionality allows the Developer to
search the Document Object Model (DOM) for a specific object or
objects by name or ID. Functions may also be provided to allow
searching across a single document or multiple documents in a

frameset.

The framework may also be designed to include cookie functionality.
Cookies are small files that Web pages store in a specified place on the
user's hard drive. These files allow a Web page to store and refer to
information about the user and his or her preferences so that on a
return visit, the Web page can "greet" the user, or present content

customized for the user.

In another embodiment, a framework embodied on a computer-
readable medium for designing a web-based user interface comprises

at least one management class associated with a display class; wherein

- 12-

WO 03/005189

[0026]

PCT/US02/21218

said at least one management class is not derived from said at least one
display class; wherein an object instantiated from said at least one
management class (management object) may be associated with an
object instantiated from said display class (display object); wherein
said management object manages said display object; wherein said
web-based user interface may be developed using said at least one
management object and said at least one display object; and wherein a
set of computer-executable instructions associated with said
management object (management object code) may execute within a
browser associated with a user of said web-based user interface. A
management class is a blueprint of the methods and variables
(attributes) in 2 management object. The management object manages
the behavior of its assigned display element. The management object -
code of the framework may further be included as part of a web page
when said web page loads into a browser. The management class of
the framework may also further comprise at least one subclass. In this
framework, the display class may be associated with a web element’s
appearance and the management class may be associated with a web
element’s behavior. Furthermore, multiple management objects may
be combined to create composite objects that may be associated with a
corresponding display object. These composite objects may include
the following display objects and other analogous display objects: a
social security number input; a telephone number input; an
accumulator list box; a date input; a time input; a multiple pane tab
control; a drop-down menu; a pop-up menu; a hierarchical component,

and a tree menu.

In another embodiment, said management object code may execute

within said browser and said management object code may be

- 13-

WO 03/005189

[0027]

[0028]

PCT/US02/21218

independent of a specific browser type or version. This may be
achieved by designing the management object code to query a web
browser specification (a document or file that may be parsed to
determine how the web browser operates and may be interfaced by
other programs) associated with said browser for a set of functions
(browser-specified functions) and to execute said management object
code via said browser-specified functions. The management object
code may be further designed according to a set of standards. These
standards may include Document Object Model, Hypertext Markup
Language, Cascading Style Sheets, JavaScript and other web-

based/user-defined standards.

In another embodiment, said management class may comprise at least
one abstract superclass. A set of subclasses may be derived from the at
least one abstract superclass to provide management functionality for a
set of respective HTML elements. An additional subclass may be
derived from said abstract superclass to extend said framework to
provide functionality for an additional HTML element. Alternatively
or in combination, the additional subclass may be derived from said
abstract superclass to customize said framework to provide additional

functionality for said set of respective HTML elements.

In another embodiment, the management classes may be designed to
manage a set of display objects associated with a web-based customer
care user interface and/or a web-based call center user interface. A
customer care user interface is an interface designed for the use of a
customer end user to allow them to obtain information about a
company or issues concerning their account. Customer care websites
may also include contemporary text chat with a customer service

representative through the website. A call center user interface is
- 14-

WO 03/005189 PCT/US02/21218

designed for use by customer service representatives receiving orders,
inquiries, etc. via the Internet or through the phone. Call center user
interfaces sometimes include scripting prompts for the customer

service representative to follow in their dealings with a customer.

[0029] In another embodiment, the management object may be implemented
with a set of methods and attributes for the design of a web-based

customer-care interface and/or a web-based call-center interface.

[0030] In another embodiment, the display object comprises an HTML
element. The display object may include one or more of the following
elements: window, navigator, event, collectiton, document, form,
input, select, label, background, foreground, pane, tab, option, textarea,
table, DIV, tablerow, tablecell, anchor, image, frameset, and frame.
The input element may include buttons, checkboxes, files, hidden,

image, password, radio buttons, resets, submits, and text entries.

[0031] In another embodiment, the management object may be associated
with the display object by defining the management object as an

attribute of said display object.

[0032] In another embodiment, the management object may manage at least
one validation, masking, state management, and/or help function for
said display object. The validation function may include credit

verification, address verification, and identity verification.

[0033] In another embodiment, the framework may also include at least one
tracing mechanism,; at least one DOM component searching

mechanism; at least one math rounding feature; at least one sniffing

- 15-

WO 03/005189

[0034]

[0035]

[0036]

PCT/US02/21218

function; at least one comment stripping function; and at least one

cookie function.

In another embodiment the management class and said display class

may be related through a common superclass.

In another embodiment, there is provided a method for creating web-
based user interfaces comprising utilizing a framework encoded on a
computer readable medium wherein said framework comprises at least
one management class that is not derived from a class associated with a
respective display object; instantiating at least one object from said
management class (management object); associating said at least one
management object with said respective display object; creating a web-
based user interface wherein said management object manages said
display object by executing a set of programming instructions
associated with said management object within a browser associated

with a user of said web-based user interface.

In another embodiment, there is provided a method for creating client-
side user interfaces comprising separating at least one web component
into a display component and a management component; designing a
set of classes (framework) comprising at least one display class and at
least one management class; associating said at least one display class
with said at least one management class through a common superclass;
implementing at least one method and at least one attribute through
said management class; instantiating an object from said management
class (management object); instantiating an object from said display
class (display object); associating said management object as an

attribute of said display object; designing a client-side user interface

WO 03/005189

[0037]

[0038]

PCT/US02/21218

with said at least one set of associated management and display

objects.

In another embodiment, there is provided a method for creating client-
side user interfaces comprising the steps of providing a framework
wherein said framework provides a set of management objects to
manage the behavior of a web-based component; composing a display

object comprising at least one of said set of management objects as an

. attribute; executing a set of computer executable instructions

associated with said management object within a browser associated
with a user of said client-side user interface. The set of management
objects may be extended to include one or more of the following
advanced management objects: a composite component, a validator

component, and a hierarchical component

In another embodiment, there is provided a method for creating web-
based user interfaces comprising the steps of designing a web-based
user interface according to a framework wherein said framework
provides a set of management objects which manage a set of behavior
associated with a set of web-based components associated with a web-
based user-interface; allowing a user to request said web-based user
interface from a server wherein a set of computer executable
instructions associated with said web-based user interface comprises
the steps of: creating a set of display objects; creating a set of
management objects; associating said management objects with said
set of display objects; loading a set of computer executable instructions
associated with said management objects in a browser associated with
said user; manipulating said display objects via said management
objects within said browser in response a user action in said web-based

user interface.
- 17-

WO 03/005189

[0039]

[0040]

[0041}

PCT/US02/21218

In another embodiment, there is provided a framework embodied on a
computer-readable medium for designing a web-based user interface
comprising: means for displaying a web element; means for managing
a behavior associated with said web element; and means for
associating said means for managing with said means for displaying;
wherein said means for managing said behavior executes within a
client-side computer means in response to a user’s manipulation of said
web element. The means for managing the behavior may include

accessing a server.

In another embodiment, there is provided a framework embodied on a
computer-readable medium for designing a web-based user interface
comprising a set of management classes, wherein each management
class within said set is respectively designed to manage a specific type
of web element; wherein an object instantiated from said management
class (management object) is associated with a respective web element;
wherein said management class does not derive from a class associated
with said web element; wherein said management object manages said
display object; wherein said web-based user interface is developed
using said set of management objects along with their respective web
elements; and wherein a set of computer-executable instructions
associated with said management object (management object code)
executes within a browser associated with a user of said web-based

user interface when said user manipulates said web elements.

In another embodiment, the composite components may take
advantage of the original BF shadow objects. Instead of creating
composite components using JavaScript embedded in the HTML

document, the Composite Components may use an HTML interface.

- 18-

WO 03/005189 PCT/US02/21218

Therefore, composite components may be created using JavaScript as

follows:

<body onload="initBF(document,0,0);" > .. <script language="JavaScript1.2"
type="text/javascript"><!--BFdate] = new BFDate("datel", "MDY", "1998", "2004",

"datelgroup"); //--></script>..

[0042] Or, composite components may be created using HTML in the

- following manner:

<body onload="BF.init()">..<span id="myDate" BFclass="BFcdate"
BFstartyear="1999" BFendyear="2006" BFsubjectgrp="group1"
BFFormatType="LONG"BFValue="current">

[0043] " The latter method may provide a consistent interface for all BF
elements as well as easy integration with other BF functionality such

as state management observer behavior and context sensitive help.

BRIEF DESCRIPTION OF THE DRAWINGS

[0044] While the invention is claimed in the concluding portions hereof,
preferred embodiments are provided in the accompanying detailed
description which may be best understood in conjunction with the
accompanying diagrams where like parts in each of the several

diagrams are labeled with like numbers, and where:

[0045] Figure 1 is a diagram illustrating the Relationship of HTML
Document Object Model (DOM) components on a Web page and their

associated framework shadow objects.

[0046] Figure 2 illustrates the blank notecard jpeg.

- 19-

WO 03/005189

[0047]
[0048]
[0049]
[0050]

[0051]

[0052]
[0053]
[0054]

[0055]

[0056]

[0057]

[0058]
[0059]
[0060]

[0061]

PCT/US02/21218

Figure 3 illustrates the tab pane widget.

Figure 4 illustrates the tab label.

Figure 5 illustrates a tab composite widget.
Figure 6 illustrates a multi-tab composite widget.

Figure 7 and 8 illustrates diagrams, which show the interaction of the

components of the framework classes and the DOM
Figure 9 is a diagram illustrating the Validator.
Figure 10 is a diagram that shows form validation
Figure 11 is a diagram of the composite components.

Figure 12 diagrams the hierarchical subset of the composite

components.

Figure 13 diagrams the hierarchical structure of one embodiment of

framework Shadow.

Figure 14 diagrams the hierarchical structure of one embodiment of

framework Hierarchical Widget.

Figure 15 is a table of the one embodiment’s set of shadow objects.
Figure 16 is a table of one embodiment’s set of framework attributes.
Figure 17 is a table of one embodiment’s set of validator objects.

Figure 18 is a diagram illustrating how composite components may
take advantage of base shadow objects to provide an HTML interface

to their construction.

WO 03/005189

[0062]

[0063]

[0064]

[0065]

PCT/US02/21218

Figure 19 is an extension of Figure 8, which displays how the web
element, editable table, interacts with the other web components and

the DOM.

DETAILED DESCRIPTION OF THE EMBODIMENTS

Embodiments of the invention are provided for a Browser Framework
(BF) for web-based client-side user interface development. One
skilled in the art should preferably have a working knowledge of Web
browsers (i.e., Microsoft Internet Explorer, Netscape Navigator, etc.),
Hypertext Markup Language (HTML), Javascript (a client-side
programming language), the use of cascading style sheets (CSS) or
equivalent skills, and a Web page development tool such as Microsoft's
FrontPage, Macromedia's Dreamweaver, Allaire's HomeSite or

equivalents thereof.

The DOM or Document Object Model comprises the objects created
when a browser displays a web page. The DOM provides a common
organization and method of accessing HTMLElements and Objects
(i.e., button; checkbutton; form; radiobutton; select; table; editable
table, text). Various embodiment of the invention provide a method
and system for interfacing with these DOM components to achieve
greater reusability for components in a web page by separating their

appearance from their functionality via a shadow object.

Referring to Figure 7, shadow objects are objects associated with a
DOM object or component. Shadow objects are derived from a class
separate from the class governing the DOM component. Therefore,

shadow objects are not instantiated from the class governing the DOM

- 21-

WO 03/005189

[0066]

[0067]

PCT/US02/21218

component. The DOM components’ classes and the shadow objects’
classes may, however, have a common super-class. Referring to
Figure 1, in one embodiment the shadow object may be specified as an
attribute of an HTMLElement/DOM component such as an <INPUT>
box. Events affecting the HTML component invoke methods in the
shadow object to do work, i.e., validating user input in the <INPUT>
box. Not only may the specific class of shadow object be specified as
a data element of the component but other attributes can be specified .
that define how that shadow object behaves and interacts with its
partner display component. Figure 1 illustrates the relationship of
HTML components on 2 Web page and their associated BF shadow
objects. Separating the data structure from its visual representation
allows the same data structure to be rendered differently depending on

the clients needs.

Referring to Figure 15, webpages may take advantage of at least one
embodiment of this invention by associating at least one HTML
component (and as many as desired) with a shadow object contained in
the BF . To fully exploit the advantages inherent in client-side
scripting, the BF code may be included as part of the web page when
the page loads. In this embodiment, only those objects that are

associated with a BF shadow object will use the BF functions.

To create a BF shadow object and associate it with an HTML
component on a Web page, a BF class attribute may be added to the
HTML code of the component. For example, this line of code, <input
type="text" name="zip5" size="5" maxlength="5" framework
class="framework text" framework helpfile="sample4help.htm">,
creates a BF text shadow object for an <INPUT> text box and declares

the BF helpfile attribute value. When the user places the cursor in the
- 22-

WO 03/005189

[0068]

[0069]

[0070]

PCT/US02/21218

BF text box and presses F1, a Help window opens, displaying the file
sampledhelp.htm.

Referring to Figure 13, BF class objects may have a root class: BF
shadow. This may be an abstract base class to allow the development
of additional classes that are not provided in a given BF . Additional
child classes may also comprise abstract classes for further
extensibility. The attributes and methods within a given class may be
public, private, static, etc. Figures 8, 16, and 19 depict two
embodiments for a BF . These classes may define the templates for all

shadow objects and their interaction with their DOM counterparts.

The classes may include a variety of functionality. For instance, a
shadow object BF Select may be instantiated and associated with any
<SELECT> components embedded in the webpage or <OPTION>
components embedded in a given <SELECT> component. This
shadow class may include its constructor; methods to unselect rows;
gather the rows in a “selected” state; count the number of rows
selected; set a particular row to a selected/unselected state; sort options
within a select component by the attributes ID, numerically,
alphabetically, etc.; process a selection; compare attributes within a

<SELECT> component numerically, alphabetically, etc.

In another embodiment, the shadow object, BF Table, may be
instantiated for a <TABLE> component in a web browser page. It also
operates on any components embedded in the <TABLE> component.
It may include its constructor and methods which return the number
rows selected in the BF table; select/unselect row(s) in BF table;
populate an array with identifiers of rows in a selected state;

highlight/backlight/unhighlight rows; and process selections.

- 23-

WO 03/005189

[0071]

[0072]

[0073]

2

PCT/US02/21218

Referring to Figure 19, an editable table component is diagrammed
including the methods pertaining to that element. This element may be

derived from the <TABLE> component.

The shadow object, BF Text, may be instantiated for the <INPUT
type="text"> component and/or the <INPUT type="password">
component in a web browser page. Methods included with this
shadow object may include its constructor; setting the value of the
textbox to an argument provided; and extracting data from the textbox

(including the skipping of dead/mask characters).

The TabWgt shadow class may provide control to a "tab" component
by working with <DIV> components provided by the DOM. W3C
introduced the <DIV> component in the DOM Level 1 HTML
specification. It contains a list of references to the <DIV> "labels" that
appear across the top of the tab, a list of references to the <DIV>
"panes" that appear in the main area of each tab, and a reference to a
<DIV> background component. A shadow object may be instantiated
for each <DIV> tag, which specifies a BF Class attribute with a value
corresponding to that component. There may be provided constructors
and methods to add a label, add a pane, set the background, set the
current tab, and query the current, next, and previous tab; go to the
next and previous tabs; static clickTab method used as a response to a
onclick event receive by a BF TabLabel's <DIV> component; and

make a tab component invisible or visible.

The base shadow class and the other shadow classes, provided within
the BF , may be used to create a new shadow class with specified
methods and attributes. For instance, <FORM> components generally

contain <DIV> components. Ordinarily, information inside <DIV>

- 24-

WO 03/005189

[0074]

[0075]

[0076]

PCT/US02/21218

components is ignored when the <FORM> is submitted. The base
shadow class may be extended to process each <DIV> component
when the submit event is received by the associated DOM component.
Note that any new BF class should preferably have either the root

shadow class or one of the root’s children as its parent.

In another embodiment, referring to Figure 13, the BF may provide a
BF Item class and a BF HierWgtltem class. These classes may have
associated child classes that may be used to create new types of classes

such as drop-down menus.

Referring to Figure 14, these item classes are organized using classes
that are children of the BF HierWgt class. This inheritance
relationship allows the subsequent child classes to inherit the
data/attributes and methods/functions present in the BF HierWgt class.
Data/attributes may include the name attribute; item attribute; prefixes
to distinguish one menu instance from another on the same web page; a
string of HTML text that is written out to the document, which creates
the physical menu; and rootElement; etc. The methods/functions may
include initialization functions, html generation to create the menu on
the web page; returning the value of the root element; returning the BF
object that is associated with the rootElement; writing an item; drawing
a separator, header, trailer, Compositeltem or Actionltem (may be
provided by the new menu class), drawing the root item; and drawing a

line of a menu item.

For a new drop down menu, it may be necessary to implement or
override methods provided by the parent class. Of course, new
attributes and/or methods required for the new menu class could also
be added.

WO 03/005189

[0077]

PCT/US02/21218

BF shadow objects may be further integrated with server applets so
client applications can communicate with server applets to accomplish
work that can only happen on the server such as credit verification;
address verification; and error logging that may be stored in the

application server logs.

State Management

[0078]

[0079]

[0080]

Referring to Figure 9, specialized BF shadow classes may be provided
for validating and formatting their corresponding DOM components.

In one embodiment, form validation is illustrated using Figure 10.

The BF may provide attributes that can be specified for the shadow
objects associated with HTML/DOM components. These attributes
may be used by BF to manage the state of certain components based on
the state of other components on the page. State may refer to the look
and feel of an HTML component; for example, whether it is enabled or
disabled, visible or invisible, or has a color or other appearance
change. State may also mean the status of a component’s validation.

A component may be in either a true/valid, false/invalid or greater than

gtrue/valid state.

The greater than true state value may be used for components such as
the <SELECT> list or a <TABLE>, where more than one item is
selected at the same time. With one item selected, these components
may have a state value of true. If more than one item is selected at the
same time, these components may have a state value of gtrue. State
management shadow objects may comprise subjects, observers and
groups. A subject object may have a state value and may belong to a
group object. An observer object may detect the state of a group object

that contains a subject object. A group object may collect the states of
- 26-

WO 03/005189

" [0081]

[0082]

[0083]

[0084]

PCT/US02/21218

its subject objects and may report the aggregate state to its observer

objects so the state of the observer objects can change.

For example, a BF form may contain five BF text boxes and one BF
button. The BF button may be disabled until all five BF text boxes
contain valid data. This may be accomplished by declaring each BF
text box as a subject of a group object and declaring the BF button as
an observer of that group object. A component can be a subject object
in one group object and an observer object in another group object,

allowing for some very complex state management situations.

As the user interacts with a state-managed ‘Web pages, the state of each
subject shadow object may change and may be updated on an
associated group object. The observer shadow objects may be notified
of the aggregate group state value, and they may implement specific
behaviors associated with each state value. In one embodiment, the BF
may include six attributes that may specify the state management
details of the BF shadow object associated with the HTML/DOM
components: subject group attribute; observer group object; false
behavior attribute; true behavior attribute girue behavior attribute; and

protocol attribute.

The Subject Group Attribute may indicate that it is a subject object in
the unique state group. Its status will be observed and used to

determine the behavior of observer components in the same group.

The Observer Group Attribute attribute of a component may indicate
that it is an observer object in a unique state group. It may receive
statuses from the group object and will perform various behaviors

accordingly.

WO 03/005189

[0085]

[0086]

[0087]

[0088]

PCT/US02/21218

The False Behavior Attribute; True Behavior Attribute; and gTrue
Behavior Attribute attributes of an observer component may indicate
what the behavior of the component should be when the subject
object(s) in the group are in a false/invalid, true/valid, or gtrue state,
according to the state management rules. Behavior atiribute values for
these attributes may allow control over the enable/disable,
visible/invisible, and inheritance behavior (set the observer component
to inherit its behavior from the parent component) of the observer
component in response to subject components in the State group.
Additional Javascript functions may be written to cause the required
behavior, and the name of such functions may be listed as the value of

the attribute.

The Protocol Attribute may be related to a subject component. Values
for this attribute may include an indicator of when validation should
occur (i.e., upon keystroke or upon the component losing focus); what
validation should be based upon (i.e., the number of rows in a
<SELECT> or <TABLE> component, the number of items selected
from the <SELECT> or <TABLE> component; whether a user may
continue to the next component without entering valid data in the

current component; etc.

Several state management attributes may be created for DOM
components to more fully control their behavior, or the behavior of
related components, depending on its state (that is, whether or not

items are selected from it).

State management methods may include a constructor and methods
such as associating a shadow observer/subject/group object with a

DOM component; seating for a particular DOM component in a

- 28-

WO 03/005189

[0089]

[0090]

[0091]

[0092]

PCT/US02/21218

subject/observer array; notifying observers of a change in a subject’s
state; initializing the state of a subject; executing the changes required
of each observer when its subject group is in a particular state; and/or

validating a group of subjects in a particular State group.

In one embodiment the behaviors provided by shadow objects for a
<TABLE> DOM component include changing the color of <TABLE>
rows when the mouse is moved over them, selecting/deselecting one or
more rows, limiting how many rows may be selected; specifying
whether more than one row of the <TABLE> can be selected at one
time; finding out which rows are selected;
highlighting/unhighlighting/color inverting rows; keeping track of
which rows are in a “selected state”’; determining whether a row must

be selected; etc.

In another embodiment, a shadow object may be associated with an
<INPUT> component that provides validation methods such as
determining whether user input contains numeric, alphabetic, or
alphanumeric text that is either fixed or variable in length, a correctly
formatted 10-digit telephone number, a Social Security Number, and/or

a calendar date in various formats.

In another embodiment, a shadow object may be associated with a
<SELECT> component to sort a list (alphabetically, numerically, or
otherwise) or implement customized behavior when an item is selected

or deselected from the list.

Although various attributes are illustrated here for the <TABLE>,
<INPUT>, and <SELECT> components, these and other attributes

may be assigned to other DOM components where applicable.

- 29.-

WO 03/005189

[0093]

[0094]

[0095]

PCT/US02/21218

In another embodiment, the behaviors provided by the shadow objects
for a <FORM> DOM component may include validation behaviors
that are triggered when the BF form is submitted. These functions may
validate each component of the BF form according to their default
validations or any other validation specified for a particular
component. The BF form validation functions return either true or
false. Iftrue is returned, the <FORM> may be submitted to the server.
If false is returned, the BF form may not be submitted to the server,

and the BF form's error handling function may be called. Customized

- validation functions may be coded and integrated into the BF .

The BF provides attributes that may be added to DOM component
shadow objects to mask user input so that punctuation is automatically
inserted; for example, if the user types "5137915555" in a masked
telephone number text box, the text box may display "(513) 791-5555".

The BF may further provide a method for the shadow object associated
with a <SELECT> component that allows options to be added to the
<SELECT> list. Options in a <SELECT>list may be displayed in the
exact order that the <OPTIONS> tags are displayed in the HTML file.
Options may be sorted alphabetically, numerically, by value and/or by
label. BF provides several sorting methods, along with methods to
select items from lists, to find out how many items are selected, and to
find out which items are selected. Script may also be prepared to sort
options in another manner. BF provides atiributes and methods that
allow selection or deselection of all items in a list, or individual items.
You can sort <SELECT> lists in response to a load event, button

clicks, change events, and more.

- 30-

WO 03/005189

[0096]

[0097]

PCT/US02/21218

The BF may use Regular Expressions from Javascript (or other
equivalent programming techniques) to develop the shadow objects
which further comprise validation/masking objects which
validate/mask user input. These sub-objects may include component
BF validators (validator components) (i.e., for a <SELECT> list) and
BF text validators. They may also be sorted in an extensible object
array. A BF validator atiribute, with a value equal to one of the object
names, may be added to each HTML component. Referring to Figure
17, the BF may include a number of predefined ValidatorData objects
that can be used to validate various types of user input (this is an
illustrative but not conclusive list of these predefined shadow objects).
The validator shadow objects are used as values for the BF validator
attribute. An object may be selected according to the type of
component being validated and what validation or masking the BF
should perform. The ellipses in the table indicate ranges of objects.
For example, "FixedNum1 ... FixedNum18" refers to objects
FixedNum1, FixedNum?2, FixedNum3, and so on, up to FixedNum18.
During masking process, raw text is tested against a RegExp object

that was created using the formatStr argument.

A regular expression is a way for a computer user to express how a
computer i)ro gram should look for a specified pattern in text. The user
of a regular expression can then tell the program what it is to do when
matching patterns are found. When the required validation rules are
too specific and cannot be generalized into a regular expression, BF 's
validation mechanism can run a customized validation function. This
may be done by creating the ValidatorData object and setting its

validateFn attribute to the name of that function.

WO 03/005189

[0098]

PCT/US02/21218

The BF may also provide the
addFormatAndMaskStr(formatStr,maskStr) method to specify pairs of
strings used by the BF to format and mask text data for a custom
ValidatorData object. Uses for this functionality may include a
function for removing dead characters from the native string,
instantiating the RegExp object, and testing the component data with
it; invoking any external function specified; and returning the value

returned by that function.

Complex Widgets for Web Clients

[0099]

[0100]

[0101]

[0102]

In addition to the shadow object classes that may be added to the
HTML code, there are a number of other BF classes that can actually

generate HTML code and make it part of a Web page.

The generated HTML code includes page components that are "glued"
together to perform a specific function. These components can include
the shadow objects and attributes previously discussed to control their
behavior. They can also include additional shadow objects only used

with page components that are generated by BF.

Referring to Figure 11, the Composite Components are combinations
of other BF objects that work in conjunction to provide a specific
service. An example is the BF Date class which combines three BF
select objects (one for month, one for day, and one for year) to

comprise the date object.

When a composite component is created, the required html is
automatically created and written into the html document. The user is
saved time by not being required to generate (and regenerate) the code.

Hundreds of lines of html and JavaScript code are replaced by only a

- 32.

WO 03/005189 PCT/US02/21218

few simple lines of code. Additionally, the HTML is generated with
all of the necessary BF hooks to take full advantage of the BF

functionality.

[0103] Referring to Figure 18, the composite components may take advantage
of the original BF shadow objects. Instead of creating composite
components using JavaScript embedded in the HTML document, the
Composite Components may use an HTML interface. Therefore,

composite components may be created using JavaScript as follows:

<body onload="initBF(document,0,0);" > .. <script language="JavaScriptl.2"
type="text/javascript"><!--BFdatel = new BFDate("datel", "MDY", "1998", "2004",
"datelgroup"); //--></script>..

[0104] Or, composite components may be created using HTML in the

following manner:

<body onload="BF.init()">..<span id="myDate" BFclass="BFcdate"
BFstartyear="1999" BFendyear="2006" BFsubjectgrp="group1"
BFFormatType="LONG"BFValue="current">

The latter method may provide a consistent interface for all BF elements as well as
easy integration with other BF functionality such as state management observer

behavior and context sensitive help.

[0105] Some of the new shadow objects include BF Tab, BF Date, BF Time,
BF SSN, BF USPhone, BF Accum, BF Item, BF Menu, and BF Tree.

[0106] The BF provides a new composite component, named TabWgt. This
‘component displays a tab or notebook control on Web pages. The
component manages multiple panes or groups of information, only one

of which is visible at a time. On top of each pane is a label. When a
- 33.

WO 03/005189 PCT/US02/21218

label is clicked, its corresponding pane becomes visible. Each pane
can also use a common background pane. The <DIV> components in
HTML may be positioned and used as panes and labels. The TabWgt
component of the BF serves as the "glue" that holds all of the <DIV>

components together, and manages the visibility of the active pane.

[0107] To create the new TabWgt composite component, a BF class shadow
object may be specified with values for the various HTML components

that make up the TabWgt:

e BF tabbg - value of the BF class attribute for a <DIV> component to be used as
the background pane.

e BF tabpane - the value of the BF class attribute for a <DIV> component to be used

as one of the visible panes.

e BF tablabel - the value of the BF class attribute for a <DIV> component to be
used as one of the labels at the top or side of the panes; clicking on a label makes

the corresponding pane visible and others invisible.

[0108] Other attributes that may be specified for HTML components of the

TabWgt composite component are:

e BF tab - attribute used to identify the HTML components that belong to a specific
TabWgt component.

* BF default - attribute used to specify which pane will be active (in front) when the
page loads; this attribute can be specified on the <DIV> component that has the

BF class attribute of BF tabpane or BF tablabel.

[0109] You should preferably have as many labels as panes, so the number of

<DIV> components that have a BF class value of BF tablabel may

- 34-

WO 03/005189 PCT/US02/21218

match the number of <DIV> components that have a BF class value of

BF tabpane.

[0110] Referring to Figures 2-6, three <DIV> components with BF shadow
objects: BF tabbg, BF tabpane, and BF tablabel are combined together
into a single TabWgt composite component. Referring to Figure 6,
clicking the "Butler" tab will make its corresponding pane visible

while making the "Adams" pane invisible.

[0111] The BF may further provide functionality to find the application-
specified name of a complex tab component; activate a tab upon some
pre-defined action; get the index number of the current tab; get/goto

the index number of the next/previous tab.

[0112] " In another embodiment; the BF may provide a composite component
named AccumList. This component displays accumulator list boxes
(an "available" list and a "selected" list) along with associated push
buttons to move entries between the lists. The AccumList is a
collection of BF select and BF button objects that are combined to
create an accumulator list box widget. The BF may also provide
associated methods to use this composite component such as adding
items to the list, selecting items from the list, getting selected items
from the list, removing items from the list, populating a list with
selected items, validating selected items, resetting the list; preparing

the selected items for posting to the server; etc.

[0113] User selections from one list box or the other cause the push BF

buttons to be enabled or disabled:

e Add - one or more rows selected in the "available" list box enables Add.

WO 03/005189

[0114]

[0115]

PCT/US02/21218

Remove - one or more rows selected in the "selected" list box enables the

Remove.
Add All - any items present in "available" enables Add All
Remove All - any items present in "selected" enables Remove All

Reset - always enabled - makes each list reset itself to contain its original

l_ist of items.

The BF may also provide additional functions may be used to
manipulate AccumList components once they are created including:
finding the application-specified name of an AccumList; creating the
composite accumulator list component; setting the "available" list of
option components; setting the "selected" list of option components;
examining an array of options; adding new options to an array of
“available” items or a specialized array of “selected” items; preparing
selected items in list boxes to be posted to a server; resetting the list to
“available”/ “selected” items to their original state; getting a reference

to the array in the “available” / “selected” lists; etc.

The BF Date is a collection of BF Select objects that are combined to
create a widget for entering the date. The BF Time is a collection of
BF Select objects and radio BF buttons that are combined to create a
widget for entering a time. The BF may provide a composite
component that can be used to specify a date by manipulating (up to)
three <SELECT> components that represent the month, day and year.
The BF provides numerous functions that allow both getting and
setting the month/day/year/hour/minute/second/AM value/PM value
<SELECT>> lists created by the date component including constructors

and methods for getting the index value or label value of the selected
- 36-

WO 03/005189

[0116]

PCT/US02/21218

month/day/year/hour/minute/second/AM value/PM value; setting the
value of the month/day/year hour/minute/second/AM value/PM value
to be selected from the list; populating a JavaScript date/time object
with values specified in a BF date component; populating the list boxes
in a BF date/time object from values specified in a JavaScript date
object; obtaining a reference to the month/day/year <SELECT>
component in a BF date component; determining whether the selected
year is a leap year; populating a JavaScript Date object from the values
selected in a BF time component; and making selections in a BF time
component based on the values in a JavaScript date object where the

JavaScript date object also contains time information.

The BF USPhone is a collection of BF Text objects that are combined
to create a widget for entering‘an U.S. Phone Number. The BF may
also provide a composite component that can be used to specify a 10-
digit U.S. telephone number by manipulating three <INPUT> text box
components that contain the area code, exchange, and line number
parts of the telephone number. The BF provides functions and
methods that allow both getting and setting the three parts of a U.S. 10-
digit telephone number using the BF telephone number composite
component. The methods include creating the telephone number
composite component; retrieving the complete 10-digit telephone
number displayed the component; retrieving the area code or NPA
portion of the telephone number displayed in the component (the first
three digits); retrieving the exchange or NXX portion of the telephone
number displayed in the component (the second three digits);
retrieving the line number portion of the telephone number displayed
in the component (the last four digits); retrieving the entire formatted

telephone number contained in the component (for example, if the

- 37-

WO 03/005189 PCT/US02/21218

NPA box contains "513", the NXX box contains "675", and the line
box contains "3320", this method returns "(513) 675-3320"); setting
the value of the area code or NPA portion of the telephone number
displayed in the component (the first three digits); setting the value of
the exchange or NXX portion of the telephone number displayed in the
component (the second three digits); setting the value of the line
number portion of the telephone number displayed in the component
(the last four digits); and setting the value of the entire 10-digit U.S.

telephone number displayed in the component.

[0117] The BF SSN is a collection of BF Text objects that are combined to
create a widget for entering a social security number. The BF may also
provide a composite component that can be used to specify a 9-digit
U.S. social security number (SSN) by manipulating three <INPUT>
text box components that contain the first three, second two, and last
four parts of the SSN. The methods provided may include creating a
BF SSN Component; retrieving the 9-digit SSN displayed in the
component; retrieving a string containing the displayed 9-digit social
security number, formatted with hyphens; specifying the value of the

BF text boxes in the BF SSN component.

Style Sheets

[0118] - For some components, the BF uses style sheets (.css files) to control
the appearance and placement of the components on the Web page.
The BF 's HTML component processing features do not prohibit Web
page designers from integrating style sheets with their pages, even

though style sheets are an integral part of the BF .

- 38-

WO 03/005189

[0119]

[0120]

[0121]

[0122]

[0123]

[0124]

PCT/US02/21218

BF 's data validation and state management features are designed to
change the look and feel of HTML components in response to their
validation status. However, these features work correctly regardless of

the component's original appearance.

For example, if a style sheet is used independently of the BF to specify
that text in an <INPUT> text box should be displayed in size 10 point
Arial, this specification will not prevent the BF from detecting whether

there is valid text in the box.
Styles can be implemented in a Web page in three ways:

By including a “style=" attribute in the HTML component's tag.

By including a <STYLE> block in the <HEAD> section of the Web page
and providing style specifications inside the block for all components on

the page.

By including a <LINK> tag in the <HEAD?> section of the Web page that
"pulls in" a separate .css ﬁle this file contains style sheet specifications for

all components on all Web pages that “include” that .css file.

Some BF composite components, such as the menus and the
accumulator list box, include specific style specifications based on the
component's className attribute value. However, these values may be

overridden with user-defined values.

For the BF composite components such as the BF menus, the style
sheet specifications define what icon is drawn, how text appears, and

also where components display on the Web page.

The style sheets provided by the BF use inheritance to efficiently

define when to apply certain style sheet values so that these values do
- 39.

WO 03/005189 PCT/US02/21218

not interfere with other styles. Inheritance means that one object

inherits the styles of an object higher in the style hierarchy, and can be

further customized.
Modifying BF Styles
[0125] Modifying the default BF styles to customize the look and feel of BF -

generated objects making changes directly to the default BF tree.css
style sheet file or by modifying the contents of another BF style sheet
and linking the BF pages to the modified sheet.

Overview of BF Menu Jtems

[0126] In one embodiment, the BF provides six types of menu items used to
build menus.
[0127] BF Rootltem - a required menu item that serves as the root of the

menu, but is not visible.

[0128] BF Headerltem - a menu item that is not selectable and cannot have

child menu items, but displays text and/or an image at the beginning of

the menu.
[0129] BF Compositeltem - a menu item that can contain child menu items.
[0130] BF Separatorltem - an item that serves as a separator between menu

items (usually a horizontal line).

[0131] BF Actionltem - a menu item that performs an action when selected,
such as displaying another page in a target window or frame, or

executing an application JavaScript function.

WO 03/005189

[0132]

[0133]

[0134]

PCT/US02/21218

BF Trailerltem - a menu item that is not selectable and cannot have
child menu items, but displays text and/or an image at the end of the

menu.

The BF menu item classes provide only the organizational structure of
the application information. Menu objects may be created using these
classes and parent-child relationships between menu objects may be
specified. Once menu objects are created, another class draws the

menu on the page.

BF Menu: This component renders the BF menu item components as a
pop-up menu. With a pop-up menu, mousing over a menu item allows

a user to display more menu items.

BF Tree: This component renders the BF menu items as a tree menu, in which levels

of the menu can be expanded and collapsed. Another feature of this tree menu is the

ability to specify that only one child menu path can be expanded at any one time.

BF Menu Jtem Methods

[0135]

The BF may also provide several methods for finding information
about menu items. These methods include finding the name of an item
in a menu; finding the label of an item in a menu; adding child items to
other menu items in a menu structure. This fnethod may work for root
and composite menu items but may not work for header, trailer,
separator, or action menu items; finding the parent menu item of a
child menu item. This method may only work after specification of
parent-child relationships among menu items; and specifying the name
of the frame where the browser should load the URL specified in the

action argument of an action menu item.

WO 03/005189

PCT/US02/21218

BF Pop-Up Menu Constructor and Methods

[0136]

[0137]

The BF may provide a pop-up menu constructor and some methods to
be used after creation of a pop-up menu object. These methods may
include its constructor; generating the HTML code that makes the BF
pop-up menu component visible on the page; making the pop-up menu
component visible; making the pop-up menu component invisible;
displaying the pop-up menu component on the page; and getting a
reference to the BF shadow object associated with the HTML
component that is created by the create () method to display the pop-up

menu component on the page.

The BF provides a tree menu constructor and some methods to be used
after creation of a tree menu object including a constructor and
methods for the tree menu object. These methods include generating
the HTML code that makes the BF tree menu component visible on the
page; collapsing all the composite items currently expanded in the BF
tree menu component; expanding all the composite items in the BF tree
menu component; getting a reference to the HTML component that is
created to display the tree menu component on the page; and getting a
reference to the BF shadow object associated with the HTML

component created to display the tree menu component on the page.

BF Menu Style Class Descriptions

[0138]

When BF menu items are constructed, the styles for these items may
be automatically applied to the HTML <DIV> components used to
display the menu on the page. These items include menu action items;
menu boxes, open / closed composite items; collections or composites
of menu items; menu connectors; connector icons; header items;

header item icons; icon for the last connector (i.e., an angle); tree tag
- 42- .

WO 03/005189

[0139]

[0140]

PCT/US02/21218

for the left/right of the menu item and icon thereof; individual menu
lines; states of menu items when the mouse is over the item; menu
prefixes (i.e., indentations) and icons thereof; tag for the root item of a
menu/tree component; menu separators for drawing lines between
groupings of objects on a menu; tag for a menu item text area; trailer

item for a collection of menu items and icons thereof.

These styles are stored in BF menu.css and/or BF tree.css, depending
on whether a developer is building a pop-up or a tree menu. The BF

menu style classes are listed and described below.

In addition to the BF style classes, one can add their own class names
and styles and use them with BF menu objects. One can do this by
adding class names and styles to the HTML code of your page, or by

creating their own .css file and linking it to their page.

Setting Styles Based on Class Combinations

[0141]

When setting up a style sheet, combinations of the class names based
on inheritance are used to vary the style of an object based on its type
or state. The current Web browsers support only general inheritance,
meaning that the second item is some level of "descendent” of the first,
and should inherit its styles. Some style sheet combinations include:
the BF MenuOpen and the BF MenuConnectorIcon; the BF
MenuClosed and the BF MenuConnectorIcon; the BF MenuOpen and
BF MenuLastConnectorlcon; BF MenuClosed and BF
MenuLastConnectorIcon; BF MenuOpen and BF MenuLeftIcon; BF
MeunClosed and BF MenuLeftlcon; BF MenuActionltem and BF
MenuConnectorlcon; BF MenuActionltem and BF

MenuLastConnectorIcon; BF MenuActionltem and BF MenuLeftIcon,

- 43-

WO 03/005189 PCT/US02/21218

BF MenuOpen and BF MenuRightIcon; BF MenuClosed and BF
MenuRightlcon; and BF MenuActionltem and BF MenuRightIcon.

Hierarchical Components

[0142] Referring to Figure 12, Hierarchical Components are a specialized
version of composite components that are used to visually represent
hierarchically organized data structures. The hierarchical components

- may be broken out into two distinct objects: BF Item, which contains
the hierarchical data structure, and BF HierWgt, which determines how
the data structure is rendered in the Browser (i.e. a tree or a menu). A
concrete specialization of the BF HierWgt is created using a
preexisting BF Item. The BF Item is an abstract base class used to
define a hierarchical collection of data. The BF HierWgt is an abstract
base class used to provide a common method for displaying and
controlling hierarchical widgets. The newly created BF HierWgt
automatically generates the necessary HTML and writes it into the
HTML Document. The generated HTML is written in a manner that
takes full advantage of the available BF functionality. The BF
HierWgtltem is a specialized derivation of the BF Shadow class that
defines the common functionality of hierarchical widget items. BF

Item specializations include:

[0143] BF Actionltem: The BF Actionltem is a specialized class of the BF
Item. It is a leaf type node meaning that it doesn't have any children
and may be used to represent data that can perform an action when

selected.

[0144] BF Compositeltem: The BF Compositeltem is a specialized class of

the BF Item. It is a collection of other BF Item objects.

- 44-

WO 03/005189

[0145]

[0146]

[0147]

[0148]

PCT/US02/21218

BF Headerltem: The BF Headerltem is a specialized class of the BF

Item. It is used provide a non-selectable header to a collection BF

Items at the same hierarchical level.

BF Rootltem: The BF Rootltem is a specialized class of the BF Item. It
is the base node of the hierarchical data element and is required.
Similar to the BF Compositeltem, it is a collection of other BF Item

objects.

BF Separatorltem: The BF Separatorltem is a specialized class of the

BF Item. It is used to represent a logical grouping of data at the same
hierarchical level. It is typically displayed as a horizontal line between

other items on a menu.

BF TrailerItem: The BF Trailerliem is a specialized class of the BF
Ttem. It is used provide a non-selectable trailer to a collection BF Items

at the same hierarchical level.

BF HierWgt specializations include:

[0149]

[0150]

[0151]

BF Menu: The BF Menu is a concrete class of the BF HierWgt. It is
displayed as the common menu format where children menus are

displayed adjacent to the selected item.

BF MenuManager: The BF MenuManager is a singleton object that

keeps track of all of the menus that are created and collapses all of the

menus when the user clicks outside of the menus.

BF Tree: The BF Tree is a concrete class of the BF HierWgt. It is
displayed as the common tree format that expands and collapses

children inline with the other items in the menu.

WO 03/005189

[0152]

[0153]

[0154]

PCT/US02/21218

BF Menuactionitem: The BF menuactionitem is a concrete class of the

BF HierWgtltem. It is a shadow object and provides the functionality

for performing the action associated with the action item.

BF Menucompositeitem: The BF menucompositeitem is a concrete

class of the BF HierWgtltem. It is a shadow object and provides the

functionality for displaying submenus.

BF Menurootitem: The BF menurootitem is a concrete class of the BF

HierWgtltem.

Other Components of the BF

Browser Independence

[0155]

New versions of the most popular Web browsers are constantly under
development, and these browser versions often support different
versions of the Document Object Model (DOM), the Hypertext
Markup Language (HTML), Cascading Style Sheets (CSS), and the
JavaScript language. In‘addition, different browser applications (such
as Microsoft Internet Explorer and Netscape Navigator) support these
standards differently. Rather than continually updating the BF code
when new browsers are released, the BF is preferably coded in
compliance with the following standards, although any standards may

be used:

Document Object Model (DOM) 1.0, Level 1
Hypertext Markup Language (HTML) 4.0
Cascading Style Sheets (CSS2, which also supports CSS1)

JavaScript 1.3

WO 03/005189

[0156]

Tracing

[0157)

[0158]

PCT/US02/21218

Instead of detecting which browser and browser version are in use, the
BF checks for specific functions. If those functions exist in the
browser environment, the associated BF code will run. If the functions
don't exist, BF checks for other non-standard functions until one is
found that does exist, and the appropriate BF code runs. As a result,
users of Web pages that contain BF features should preferably use a

browser that supports the standards selected:

The Trace Functions are used to allow tracing information to be
displayed from within JavaScript code. The tracing information
displayed is filtered based on the trace level specified on the trace
command and the internal trace levels. The level specified on the trace
command is bitwise compared to the appropriate internal trace. If a

match is found, that level of tracing information is displayed.

Five tracing levels are predefined, but the application can add more
levels: 1) function entry and exit, 2) argument values, 3) debug
information, 4) detailed debug information and 5) alert window.
Tracing can be displayed for BF code, application code, or both.

Functions used to trace BF code are:

e BF trace (text : String, level : int) : Function for writing trace information for the

BF . This method should only be used from within the BF.

WO 03/005189 PCT/US02/21218

e BF tracein (text : String) : Method provided to log BF -based trace messages that
trace entry into a BF function. Since the lone argument with this method is the

text to be traced, the level will default to FUNC_LEVEL.

e BF traceout (text : String) : Method provided to log BF -based trace messages
that trace exit out of a BF function. Since the lone argument with this method is
the text to be traced, the level will default to FUNC_LEVEL.

e BF tracarg (label : String, arg : attribute, level : int) : Method for writing

argument trace information for the BF.

[0159] Functions used to trace application code are:

e appltrace (text : String, level : int) : Function for writing trace information for the

application.

e appltracein (text : String) : Method provided to log application-based trace
messages that trace entry into an application function. Since the lone argument

with this method is the text to be traced, the level will default to FUNC_LEVEL.

¢ appltraceout (text : String) : Method provided to log application-based trace
messages that trace exit out of an application function. Since the lone argument

with this method is the text to be traced, the level will default to FUNC_LEVEL.

e appltracearg (label : String, arg: attribute, level : int) : Method for writing
argument trace information for the application. This information will be displayed

as follows:

BF Math Functions

[0160] The BF provides functions that can be used to correct minor

mathematical rounding errors that are present, in the JavaScript engine

- 48-

WO 03/005189

PCT/US02/21218

of a given Web browser, including a roundToNPlaces(number, places)
function that can be included in Javascript to round a number to a
specific number of decimal places and the roundToCents(number)
function that can be included in Javascript to round a number to two

decimal places.

BF Sniffing Functions

[0161] -

[0162]

When developing application-specific JavaScripts for a Web pages, it
may be necessary to write customized code (or entire pages) for
specific browsers, browser versions, operating systems, or platforms.

While this is strongly discouraged, sometimes it cannot be avoided.

The BF provides a class named “Sniff”, and a pre-created global object
instance of this class named "sniff," that may be used to obtain
information about the user’s system. The BF provides numerous
properties for the sniff object to determine the user's browser, version,

platform, operating system, and/or system settings.

Stripping Comments

[0163]

It is good design practice to minimize the size of the JavaScripts put
into production. During development, one may want to include a lot of
"comment" text as a way of documenting your application JavaScripts,
but this text makes scripts larger and slower to download. The BF
provides a Perl script which will remove specified types of comments
(i.e., C, C++, and/or other programming languages’ commenting
protocols) in production JavaScript code that is included with a Web

page.

WO 03/005189

Conclusion

[0164]

PCT/US02/21218

The foregoing is considered as illustrative only of the principles of the
invention. Further, since numerous changes and modifications will
readily occur to those skilled in the art, it is not desired to limit the
invention to the exact construction and operation shown and described,
and accordingly, all such suitable changes or modifications in structure
or operation which may be resorted to are intended to fall within the

scope of the claimed invention.

WO 03/005189 PCT/US02/21218

10

CLAIMS

We claim:

A framework embodied on a computer-readable medium for designing a web-

based user interface comprising:
- at least one management class associated with a display class;

wherein said at least one management class is not derived from said at least one

display class;

wherein an object instantiated from said at least one mangement class
(management object) is associated with an object instantiated from said display

class (display object);
wherein said management object manages said display object;

wherein said web-based user interface is developed using said at least one

management object and said at least one display object; and

wherein a set of computer-executable instructions associated with said
management object (management object code) executes within-a browser

associated with a user of said web-based user interface.

A framework as claimed in claim 1 wherein said management object code is

included as part of a web page when said web page loads into a browser.

A framework as claimed in claim 2 wherein said at least one management class

comprises at least one subclass.

WO 03/005189 PCT/US02/21218

10.

A framework as claimed in claim 2 wherein said display class is associated with a
web element’s appearance and said management class is associated with a web

element’s behavior.
A framework as claimed in claim 4 wherein:

- at least two management objects are combined to create at least one composite

management object; and

&

- said composite management object is associated with a display object.

A framework as claimed in claim 5 wherein said at least one composite
management object includes one or more of the following: social security number
input; telephone number input; accumulator list box; date input; time input;
multiplé pane tab control; drop-down menu; pop-up menu; hierarchical

component, and tree menu.

A framework as claimed in claim 6 wherein said at least one composite
management object is created by using JavaScript embedded in the HTML

document.

A framework as claimed in claim 6 wherein said at least one composite

management object is created by using an HTML interface.

A framework as claimed in claim 4 wherein said management object code
executes within said browser and said management object code is independent of

a specific browser type or version.

A framework as claimed in claim 9 wherein said management object code queries
a web browser specification associated with said browser for a set of functions
(browser-specified functions) and executes said management object code via said

browser-specified functions.

- 52-

WO 03/005189 PCT/US02/21218

1.

12.

13.

14.

15.

16.

17.

18.

19.

A framework as claimed in claim 10 wherein a set of methods associated with said

management object code is designed according to a set of standards.

A framework as claimed in claim 11 wherein said set of standards includes
Document Object Model, Hypertext Markup Language, Cascading Style Sheets,

and JavaScript.

A framework as claimed in claim 4 wherein said at least one management class

comprises at least one abstract superclass.

A framework as claimed in claim 13 wherein a set of subclasses are derived from
said at least one abstract superclass to provide management functionality for a set

of respective HTML elements.

A framework as claimed in claim 14 wherein an additional subclass may be
derived from said abstract superclass to extend said framework to provide

functionality for an additional HTML element.

A framework as claimed in claim 13 wherein an additional subclass may be
derived from said abstract superclass to customize said framework to provide

additional functionality for said set of respective HTML elements.

A framework as claimed in claim 4 wherein said management classes are designed
to manage a set of display objects associated with a web-based customer care user

interface.

A framework as claimed in claim 4 wherein said management classes are designed

to manage a display object associated with a web-based call center user interface.

A framework as claimed in claim 4 wherein said management object is
implemented with a set of methods and attributes for the design of a web-based

customer-care interface.

- 53.

WO 03/005189 PCT/US02/21218

20. A framework as claimed in claim 4 wherein said management object is

21.

22.

23.

24.

25.

26.

27.

28.

implemented with a set of methods and attributes for the design of a web-based

call-center interface.

A framework as claimed in claim 4 wherein said display object comprises an
HTML element.

A framework as claimed in claim 21 wherein said display object includes one or
more of.the following elements: window, navigator, event, collection, document,
form, input, select, label, background, foreground, pane, tab, option, textarea,

table, DIV, tablerow, tablecell, anchor, image, frameset, and frame.

A framework as claimed in claim 22 wherein said input comprises one or more of
the following input elements: buttons, checkboxes, files, hidden, image, password,

radio buttons, resets, submits, and text entries.

A framework as claimed in claim 4 wherein said management object is associated
with said display object by defining said management object as an attribute of said

display object.

A framework as claimed in claim 4 wherein said management object manages at

least one validation function for said display object.

A framework as claimed in claim 25 wherein said at least one validation function
includes one or more of the following: credit verification, address verification, and

identity verification.

A framework as claimed in claim 4 wherein said management object manages at

least one masking function for said display object.

A framework as claimed in claim 4 wherein said management object manages at

least one state management function for said display object.

. 54-

WO 03/005189 PCT/US02/21218

29. A framework as claimed in claim 4 wherein said management object implements a

help function for said display object.

30. A framework as claimed in claim 4 further comprising at least one tracing
mechanism; at least one DOM component searching mechanism,; at least one math
rounding feature; at least one sniffing function; at least one comment stripping

function; and at least one cookie function.

31. A framework as claimed in claim 4 wherein said management class and said

display class are related through a common superclass.
32. A method for creating web-based user interfaces comprising:

- utilizing a framework encoded on a computer readable medium wherein said
framework comprises at least one management class that is not derived from a

class associated with a respective display object;

5 - instantiating at least one object from said management class (management

object);

- associating said at least one management object with said respective display

object;

- creating a web-based user interface wherein said management object manages
10 said display object by executing a set of programming instructions associated
with said management object within a browser associated with a user of said

web-based user interface.
33. A method for creating client-side user interfaces comprising:

- separating at least one web component into a display component and a

management component;

WO 03/005189 PCT/US02/21218

- designing a set of classes (framework) comprising at least one display class

and at least one management class;

- associating said at least one display class with said at least one management

class through a common superclass;

- implementing at least one method and at least one attribute through said

- management class;
- inst:mtiating an object from said management class (management object);
- instantiating an object from said display class (display object);
- associating said management object as an attribute of said display object;

- designing a client-side user interface with said at least one set of associated

management and display objects.
34. A method for creating client-side user interfaces comprising the steps of:

- providing a framework wherein said framework provides a set of management

objects to manage the behavior of a web-based component

)
- composing a display object comprising at least one of said set of management

objects as an attribute;

- executing a set of computer executable instructions associated with said
management object within a browser associated with a user of said client-side user

interface.

35. A method for creating client-side user interfaces as claimed in Claim 34 further

comprising the steps of extending said set of management objects to include one

WO 03/005189 PCT/US02/21218

10

15

or more of the following advanced management objects: a composite component,

a validator component, and a hierarchical component.
36. A method for creating web-based user interfaces comprising the steps of:

- designing a web-based user interface according to a framework wherein said
framework provides a set of management objects which manage a set of behavior
associated with a set of web-based components associated with a web-based user-

interface;

- allowing a user to request said web-based user interface from a server wherein a
set of computer executable instructions associated with said web-based user

interface comprises the steps of:

creating a set of display objects;

- creating a set of management objects;
- associating said management objects with said set of display objects;

- loading a set of computer executable instructions associated with said

management objects in a browser associated with said user;

- manipulating said display objects via said management objects within said

browser in response a user action in said web-based user interface.

37. A framework embodied on a computer-readable medium for designing a web-

based user interface comprising:
- means for displaying a web element;

- means for managing a behavior associated with said web element; and

WO 03/005189 PCT/US02/21218

38.

39.

- means for associating said means for managing with said means for

displaying;

wherein said means for managing said behavior executes within a client-side

computer means in response to a user’s manipulation'of said web element.

A framework as claimed in claim 37 wherein said means for managing said

behavior includes accessing a server.

A ﬁamework embodied on a computer-readable medium for designing a web-

based user interface comprising a set of management classes:

wherein each management class within said set is respectively designed to manage

a specific type of web element;

wherein an object instantiated from said management class (management object)

is associated with a respective web element;

wherein said management class does not derive from a class associated with said

web element;
wherein said management object manages said display object;

wherein said web-based user interface is developed using said set of management

objects along with their respective web elements; and

wherein a set of computer-executable instructions associated with said
management object (management object code) executes within a browser
associated with a user of said web-based user interface when said user

manipulates said web elements.

PCT/US02/21218

WO 03/005189

| 2inbi4

(L 2i9oH9

usuodwod
3y} Jo Joiaeyaq ay} jusuwidwod
ul pajeald sjosldqo Mopeys, 49

opdweg

[°POIN

5O Jusumoo(q

1/16

PCT/US02/21218

WO 03/005189

¥ ainbi4

¢ aunbi4

]
M

P SuEry

e

ziz1-655 (2oa)

B5P50 1A UMD BWOS—
auUET alaYAAIWDS FEZL |
slepy Auajj

2 2inbi4

B T T —

216

PCT/US02/21218

WO 03/005189

g ainbiy

8SYS0 1A Tumo)Bliog
BUET] Biay\alIOgG pETL
swepy Auag,

A b

S N et o o e 5 B b

suepy

- ;Nww,.mmmﬁmmwif.

G ainbi4

e s s, gt

o o e

ziziess &”@
85r50 WA ums{aWos

auRT BIBYMABWOS pETL
swepy Aiusj

“suiepy

ssuop h Emc%ah hmumwxﬁ iBng sulepy

¥

siepy

3/16

PCT/US02/21218

WO 03/005189

sjuauodwo)
jeiyoliesaiy

sasse|)
mopeys

/ ainbiy

[|

(sessen
MOpEYS WoLY)

JOJEDIEA

sjusuoduion)

L

sysodwon

[

4/16

PCT/US02/21218

WO 03/005189

g am31g

Oqeppl
PR e
Qgesaaiqolty
(e gxanofey
(Oqesaarglaby
Oqegixanably
0qe juaungtabey _
Ogeiuaungiesy, Omopap
Otarpedy oﬂaowﬁglaxn_m.é@w_
Mw...uu%v.& ogmus_.@uw
12QETPPEY, Ossooouany)
0i6mae. OuoganEpwnid
_ 10 | N Qsmoyaiqe ivioajast OnosemeAENdi % .
N oglage N
= a«._._._uw&@_ [——— cw-“mﬂ_a“ﬂ:a_
e am Qrowarae sl ewsxuz__uiuu_a..%
eny : { Jsiaqe] S OXDUOMOYSSAI0IAND o__u_usumu_vun@
feuy : :mu__mm ?suzn____::q& cusunn_t?:omuxus
fuing . swe OsomosuawoNalI) Dossumposeyest,
65; L
[”Bn«y Quouauef) c_unn._»muu.nmmm:ao
3 ¢ OanEAfgioatesJguot
\ / SsmontvR2rSU cuu_nwumcuwm
anentosy Onopmsesyy (IequnNAGRONRBIRTy
Qsmo; nNIo
Qaneaenunasagy HpapsESWINIIRY (sMoyPANIBSWINNIIRY
w:& [lsreqe; swap{lared punalfyoeq Oeieamenialsd| Oagelnd % ol
. \ [EUTEN 0
utt wp Sums : 01006801570 & ;
: OsesIy vonn, Ouuo4ey
OrpqeTae LIy OsuedaeRy 3 Bums . nemz...._@ Suuns 4010052 Quomneidy
06gorLTy vogoun; | uSoNZERYE . Losus__m@ BRI : UUOREDNEA <<uopUR> LR ueatoog : aneaEendS voroun) : _Eecmuuu._“@
w . uuuc_Wm W X3PUF; Lt S_mw._nbm - eydie = 1abapuy : 35»:5& JoepieAdion uuﬁv:u& J01BPNEAULD S © JOIEpIS
gy : faone el 1 [40q WaeL faoaefd w1 waRsia uowrgia woua
i aueqqElg Bgaeniq <<palqo mopeys>> <<1wsio mopeys>> <30 MopRYS>> <<193lqa mopeys>> <<i0a[qo MOPEKS>>
Qswadolpunody
Os9aejdNoLpUnaRy
Ques
SuOIsUaXT YIEW
ooum:ﬂ:@ <<iEiBop>
Q Qa2
Qbseacesivgy (Bseasespddny
(15MAB1196 <<unnounisxg, Oasesmgy [ULESLTLT SN
0dnIDIRISIIB <<UDHILN>Y. droaiels : n:EﬂSuﬁ%g@ Opraddvioty Ouanesnidday
0lGOIE1a6 <<UBHIUNY>y daaipelels | drotoslEigign: Qipandgiagy Qesenddesy
R0 : fa {20811 43y Qbreadmydy
Aeuy © Aeuyaeya m > Buuls : JowneyRgIn) X
feuy : Aeuydinaeisiq sway faosq vl Buing : 30MBY2R3S|E) uufounmwmuuu.a Quioseny®d
feny : Aeuvkione Guylg : Jomeyagan] 12 AR o
12 PASjIdd FIEELTIE G
SUDROUNS JOSSEOTY T Suuig : apdiat Wi jeAsy
<<jgaibop>> Mopsysiq uejsuoo . prm._lkmwd(H AA-:n«mtoovb suojpUng 8IRSL
“Su00 1 TIATT ONEIA QI NVIA S <<uzisuon>L <ateoiBor>>
mopEyss wejsueo 13ATT ONEsa s L
WEISUCD : TANTT MV § <<itzisuoa>
« swep dnoIgslels 1UBIsu00 1 13ATT INAH § <aveisuoa>L
)
weg (a0} wod ojjay laoa w18
JUETTLIT N
Osaimspaloxy LY " ; 136
o%wﬁwm“w”“ﬂﬁw Kavapuadag uonezjeiu) 43 Oheuvigto ooyl
Ounasgalanspiony Buns * jeaeTae L) cv;mamus.m_u&
QenasqQIouIEaRy Bups suegqend? , QawenAgheiyzI
Bus : mmnut% Oawer gl ol
Oalgnsiodaieagyy 6ums : sseif Osajfigaiearonuap o»mus_m_uw,wu
o_.ww_uumaoi.mw“w Suwis . usrouzAepEAIS Qsanieppuvy g6 Ancn_ﬁcevw Qussoyues:
. Buuis : soieprens® L . 5 ou;m..m_u&
<= H [y anje, 26 <<utHILn) ww LR NAY £l
poyre—— T ra s 4 e pandeni o
963y} : RISl y Qa1auul =au un) Onaizy
ansasq mm_Ew .._wswnommahm.% SBUU) <<UDHILNI>Ay o
L N__ s @,E...m%_u&% wron
Aewy ° | Ispalan s - usﬂcumuat% NoUNJUONEZHENY) SUORUN . UD(IEBINEN
Bums : sweleD Bupis : altdeL <<iedjfol>> <<jEbol>>
- (woa wox)
dnagae
DNEIS alao

516

PCT/US02/21218

WO 03/005189

A (=nizA1egy
: {ysntenenu)asey,
(ereOMeyety
' Owa, tMm M (Juopng:fosyDarepiens,
: — : (uonngjan, (uiodiay
A : anjepEmES
uopoung : :m.ozmmumv__mg i ueajoeg - m:_mZm_“_c_,\\.m uonauny : c%o.:m..m_mn:m%m
soleplieAXa] Joleplek i Joepyeadwon : soepyes’d oepEALLICS :SofEpied
{sasse|n 49 woig) ! ! {sass3)) 49 won) : (sasse}) 49 woyy) s
Xaliq “ J uonngiq : uno-iq !
<<}08[q0 MOpEYS>> : i <<}03[qo MOpeLS>> i <<198[g0 MOpEYS>> !
H H e - - <
7 i .
{
i
G 2In31g “ M
10 4,
' ocn:mc.:ohomm B
(1oreplEAX IS ek _ ow
; = (J1ojepieAdwoTy !t (JoleplBALLIOSY i
‘U n:mc:o%mnw s T ; . :
. Buig : sieugpeag- E— : :
as P “ loepyeAdiuod : ¢ JoEpieAwIod |

! i ¢

JorEpieAIXaL i

Y

i 1uaAa dnkay #

=4 uo uoioun} E:.:m._l__m

JUQNS JuBLOALID:
uo poylaw;
= jusuodwod sjepier’

JuaAs injg ._ow
Juans abueyd jusuodiwod}

— uD jUBSUOCLIND SjepiIBA

Oerepieryd

?Emuﬁsmg_m@ oaﬁgm%ag_m%.
Bums : POWdxI6eOR | _ yopoungs> | (ueuodwodsiEpye
Bung : dx36aL% :

(AeiIyIoIEPIEACLPPEY |

L —{)siepien—{
I 103q0 : Jueuoduiod i | T
i . H suoRounjuCHeRlEA
. AeuymeUOjEPiEA Buwg : ased R ! o mw_mo_vv
Bumg : swew’y :
10)EpIBA

<<jeoibops> . '

6/16

PCT/US02/21218

WO 03/005189

0T ‘N9I14

!

. : !
] H i
. f :
o : :
3 &
t H Lus0j tusans "prma]
§
i { i
'
] il !
: i |
T - =
s 3y o8 X043 Uades 01 wem dzur T
voszur; Burpuey oua PSS 1531 343 R3O UC o QNI uISN _
: !
i 1
5 i
i
f
h
;
i
H
I
i
H
4 !
: wousdwos sRpws f
H
: 5
i
[
i
H
'
i

m
i

4t

i
1
|
}
G

t ISPttt ME]
W poegy | H
: § mapres amad ¢ H M
i i ; i
i 13380 mopRyS 31633 i
H i Jﬂ‘ : m
; m . S =
m ' LRt £
m : u..nuwssgu_ﬂ...n
: =]
; i [|
w i abeg zeo7
H m :
m _ L4
: afeq pandey
3 T 3 :
i T WTWRGSREER, | i e P o I g i i I
L it | B D ol OO KO WL B o ——
L

(e e

e

o

i
i
i
3
i
H
H
i
“ iy g 0 Juaucdied |
: 7 oes sawpiea,
—_— Bt peCIaord b POVIDL
L, Wiy MToREA YIERD Y
|
i

woarge E_zw
poresorsy Aiwnzn 3w |
e aeT W))

4q posy 5t 1u3n8 Wumins v

sop wonzuey £andéns wsn |
A

i zoqwonta
vonzaidxs wybes |
1
cnenwaipars
3Q POUE A B R
- smua vevp |

i
DM €Y SURRA

[
wonLny
PR P—

{uovepses s cambaly |
uecgen suns = oepes |

{zambe))
VB1IQ = §SVION

s 19i60 %2 1 WOTH

7/16

PCT/US02/21218

WO 03/005189

{sasse)) 48 woy)

»oliq
<<}73[qo MOpPBYS>>

Q=iequaqunNssatepens?
c:mkEmO
(JequnNSSIEPIERY
(JeqUINNSSIay
(Jsquinngspaieulc-giat,
(HequnNSSIaicy
()piaidmoeieary
(Jpjaidom Lajeaixy
(pisigaeuylsieard
ONSSIa)

waq : nofeD
®aL1q " oMl
™R1Jq : BRIUKLY)
Jaqunuss
BweLs)

NSSIq

SSvi0I®

(woa wouy)
8

7
[e
7

7
I

/
/
/

\

i

e
e

3

|

L2

(Jeiegauoydsnaiepiens?

(uionady
{Jaurpesd
(xxNIesey
(vdNiesgy
()auoydsnpanenuoiabe
(Yaurnety

[NELS
(vdNisty
(Yauoudsmiatdy
(Jauoydsneiepiesy
(Ipieijaurieleasny

14YdNeleasdy
(Jauouasnias,

auoydsiud

(sasse|) 4g woy) (sasseD 4@ woy)
uonngq walegia
<<j03lqo mopeys>> <<}0alqo MOpPBYS>>.
[
i
N 11 9m31g
Ammﬁww_w] ssviod® ssvioif
OGS (Wog woy) (woq wos)
uolngq 10898
f so 7 7 / 3
| \ -/
(¢ / / “ £ /.
{aguInasyysudy \\ |
(Jsuopngsiesixy / ;
(Jxogiegeiearty / /
{xogieAyaiERIy, v
(nquinsoyuibagy, / / \
(hsodoasedaidy «
(MeLiv5010P%] /\ \
c»m:<_a_m><okuua /1 1 St
cwm ﬂﬁ_wwwuu \\ (eeqeyaigewntsiepyesST
c?.__._h“__mm\iww / (enleAndyPaReEgieey (eeguepidaegaienieets
(eiryiagiosats / (Janieppuasagpaioaiasiagy (relqomegereindody,
(hetreryiossey / (Jenjepasinuinpawalagiatdy \ {JanjepleaApaloalssIey,
RemypsH oo \. (JanjepsnoHpaloejagiey \ 1] (sneadegpaissiesiagy
Okenyiesviwg, |/ (1998 NdNYPaRalsSIieRy \| (eneauuoppanalasiogy,
c\ﬂmsﬂmv;.m Q / (lsqeipuoagpspalegiaty (YisqeeaApapalasiay,
()suondoreseiefdody I (isqe1einuiNpealagisty (ieqeafeqpansjesioly
Omcoznoq_w%m“m":nnno (JisqeinoHpaparesialy (reqeTuoNpeRalaSIERy
(uoungIaseNa {JenieAndWYPare]agiaily (Janiepvea Apapalagiaiy
Qo gy Eumﬁmw (JeneApucosspanslesiely, (Jenjedegpera)agialy,
c:om._.“<m>oEo - (JenieAsinunpaaegIsdy (JeneAuiuonpapalasialy
g B e
o:osumm bSmM (JuonngoipEyNIRED (uapighegiaily
(xog SR (JuonngoipEuWNYISRY (apiduiuopyeity
(oG envIsRy [(IENSIRITTRSEIS TS ()Jeapdesisny
S\ (Mo3p1geInuiNIaEyy ()sheqiagy,
d (Mo¥oignoHiety, (Ouuopadsiery,
(Jsuonngwdwveieaty Dequapideiegiosady
Wnﬁwﬂw”wm (Mayoidpucosgaleaiy (r=spidieaABiEaly
uoyngj[yanouwases) (apigainuwalearty L
uoynganowafs) (iepiginopateaity Qrapidoiyaieaity
uonnglVPPEL) Naiind ferars
- . Ay
UoINaPPEL) Reuguopngudwies Rewgieah
12j85pUdaéy Aeuyhep
10BBSINUILLE) Aessgpruows

B

Bejdednnwiads)
Bej4a 1eAgss)
smoyunise)
J1apeaHIese)
JapezaHiiea ‘\m
ssepuonnde)

jun
awely

15/ Wnasy

Pajpgnod)
Sejgwdweles
By quuie)
18pi6ey

awedg)
Aeingspuooas €45
feugsapun €63
Aeuysinoy §¢3)

ewilyq

108[eSiq : PaaSies

wajasq ¢ nm—mﬂm@
123198)q : J0R(AGUUO!

1eaApuAy)

1eaxbed s

39pI64L3)

awed(s)

eq)q

8/16

PCT/US02/21218

WO 03/005189

v

T ———
dnoinelels a:o._wm_ﬂw_n_:ﬁ

slap : 19673
Suwg . JoineyagannBO

fqo) Juauodwog WO o} 8y 130,

OpioppecEd|

(Qweruonoy gnugdy
Ouajuonoviay,

uuoHoESH)
AFuHuoNRER)
wajuonsyiq

Buwg * Joiaeyageses,

Bug : somneysgany,
Buis : syadiouPy

(sasse[d 4g woy)
MOPEYSIT

opeys+

Bung : jpqeTqeLI
Buug : suedqe g
Guws : Baqe
Bumng : ssej0)e

g Buns : ugouzeEprend
i Buing :JojEPIENIG |
>, Bug “Ew.maumugﬁu 1<
euodindss BUMiS : dipoalangye®
Buing : Jomeyagany hw:%
Suig | Jomeyagasie 4§’
Buing : someyeganiyd?
Bung : ajiidjaHif®

JWiga J00+ JBYONUOD; DM+

(woa woy)
welgo

{wayjepsodwoleiumg

Opluopp 1
& czfu%n@ D2y cuw,ﬂmwummv sy
Dausmg Qwaiooyanund (uensepesp .._mnuwm Owaieusodwodgiueh
Queppoesedagidy (weinooHay (wayepsodwod)
(uejusie LiQy Quaispeaticy L) I 20k oo
walaneI g waipojeiedegsa 1ooNIq wiBlepeaHiq wayysodwoD)a
(esoy 21 a8y Y
(Juaday, . e
()aradwozy oen !
(aiEAmoELRy PIOPPR
(mienyoeugy Oerenmmy ieazE
o csm%uuw (wsyensodwonnusIguuE, ccﬂm_%Eﬁ Aﬁ“m@
UOIDFULIOHS! livesdey
Quajuoioynuaigiuy, (uanagsodusanuady ucmamw (hway 3giued
(uanuojoenUBWIRY GousIpy (rwaioonuaiiay Ousmacd
faQsesdi
| faouomely laguepuedx EE T el
wayuonoenUaL)q fagpasoy <<192iq0 mopeis>> P . 2 /
<<I0a[q0 MopeUS>> faguadaly m_m_nm 3 ™~
ways)isodwosnuaw)q =
<<}08[qo MOpPEYS>> waig //
1
\
(Jerejdwoy
DPIYOBADYSSOIR, cww_mw__mcummwsawm
Y OTAN |9 1
ww__;o:w.mn_«“mw (eurinuspaieard (wayuonoyallmg
QwaIRBAIBIAaN fysnus <del (hwsiicoyspmwdy (hwaysusodwogeimd
?:%:,«_M\E%E,M ! E_Jmm_m__mww (Quaiuonoyaime, (nvpuedxag,
(eSeusnusyuay Owaysusodwoganne Quvesdegoasy
X0IABY3gIaG0BsNONUILY Oepi> easLiqugy
JOIBYBENYIUELD feamusuda |t ?cm%"mﬁmw (aa1019y
QWENSSE[YS L
uadoaupAudey ._mmm:mcmc::mgn (nuappad JaBajut : yippiuepufes)
pIIDBANED) <<uoisiOuls>> ues|ooq : uadOBUQAILKE)
faoiusieddD nuajyiq 18623 : pdsrfy)
mcmszmgm s Aesse 1 15eLQ)
wanbpisiq 32111
]
| v
_ DuawensurnuseraRy
(ujpojesedasaus

ueysaesoisy
(uapsspeayaiusy 4
(uaiooyeime, \\
(uatuondvaimg,

Qwenenmet,

(Mlaoaaioouiey
{(uewsjgioodiehy
{eieaiy
(iBpBIHaIUR
(OiBmeiHIgy

EmEm_mEo@
Butngjun
weyq - went
mEm@

1BAAIBIIG

9/16

PCT/US02/21218

WO 03/005189

woj eIl g |

wol-uonoy g |

wsjpansoduwo))

kil €1 amsLg
wojpiojeredag
A4d
twsiiooy wogool | woaeiisoduios
d4d nusuy g nuouyg W9 TUOTORNUS UL
WoJ[1opBo
d4d
W)
suedqey 1°qeiqe) 1B MIOTH 100708 uopnq | jxopyIom
weijidgd A9 49 8qqeigg | wuoydg o[qerdd dd Ad 1 g

mopeygsqggq

10/16

PCT/US02/21218

WO 03/005189

nuwenNAgd

-

19

| 1BmeHAd

_

1 om31g

11/16

PCT/US02/21218

WO 03/005189

1 o3y

‘jofjuoo
QE} g SUl Yiim pasn usym

jusuodwod <AlQ> @Yl SMOpPBYS suedgelqg
pleliiiee]
(e} 49 3U] Ulim pasn usym @
jusuodwod <Ad> 8y} SMOpeys [oqeiqeldqd
glel)ii]ele]
qge) 49 sul yym pasn usym
juauodwod <AlG> @y} SMOpeUS Bggei4g
<uOSTIR}{IOMNDWEIT
ISSMOIH, =SSeTOYIOMDWRI]
"Jusuodwon xosmoxg ,oTgeleTdurg,=2ueu
<371gV.1> @y} sSmopeys u Tu=I8PI0q ,&GL,=U3PTM STJeR3> o|qeldd a|qel
A:W:"@Nﬂm
STdTITNW ,, 3OS TOSYIOMDWRIT
.EchQEoo IDSMOIH,=SSBTOIIOMBWRI, ISSMOIH
X0q 181 <103 19S> oY smopeys w109T9ggeTdurg, =2WRU 109TaS> 1009849 Xog 18I
‘sjusuodwod
uonng opel <} NdNi> <pUOFANYIOMDWRE,T
pue 'Xoq xo8yo <j NdNi> I9SMOIY,, =SSeTDYIOMSWRI]
‘19sa) <1 NdNI> ‘Nuagns <1 NdNi> assmoxg ,30,=3NTeBA
‘UOHNG < LNdNI> 8y} SMOpeys u¥0,=8uRU ,uo3ang,=adk1 ndur> uonng-g uoung ysnd
, <p3XS1{IOMSWRIF
. ‘sjusuoduiod IDSMOIH,,=SSBTO{IOMNDSURIT
X0q 1xa} piomssed <) NdNI> pue Iegsmoag ,G,=yjbusTxeu ,G,=9ZTS
X0(q X8} <1NdNI> 84} smopeys #6dTz,=2weu ,3xa3,=edA3 andut> xaldg Xod Xa1,
pamopeys spusuodwon JNLH apoo NLH | 192lq0 mopeys juauodwion

12/16

PCT/US02/21218

WO 03/005189

91 2m31g

Iojoo-a}y g

josjes-jinu4g

ynejsp4g

&

qel4g

jooojoid4g

upos|esig

poylsWHOoS g

X

lepowi4g

pannbailg

>

X | X

difseniesqog

X

X

dib-jo8fqns4g

uuoLs-sieplendg

lojepiiendg

Jomeysg-annb4g

X | X X X

Jojreyeg-ani4g

XX | | X X]| X| X[X

XX | XX] X[xX]X

x

KX X XX X| XX

X X1 X X X

JoiABYag-a8iellg

x

X

X x| x| x| x| x| x|x]|x
X x| x| xfx]| xtx]x

X

X

ajudjpy4g

auedqe) 4g

joqe]
-qe} 49

Baqges 49 9|qe) 49

o8je8
44

uonng
-3I0M

49

Xapom
49

sonquURY 49

s190[q0 mopeys 49

13/16

PCT/US02/21218

WO 03/005189

L1 231

u200dwod < YO I> U 10J 193[Q0 BIR(TI0IEPIR A 1NRIIP 9Y) Swiio] i 01 uiduo)aq Justoduiod Yoes SolBpiEA o]
‘Jusuodwod < IgV.I> 9yl 10§ 103lqo

RIR(JI0IEPIR A 1NELIP D) ST SIY) TXOQ ISI[Y U SWUNT [2I0) Y1 10 X0 15T < LDFTIS> © Ul SWAY pago}as JO IDQUIMU 2y} SATPIEA 109]08
usuodwod < IV 1> o1l 103 100[qo vleqI0/epI[B A

}NEJp 943 S1 SIUL 2{qe) Y] UI SMOQI JO JAqUINU [B30}) 10 103{G0 <F €V I> B UL SMOI pajoa]as Jo oquinl Y1 sajepi[e A JrqeL,

-papiaoid jou st uonemdund 1021100 10F SUDSepy 1eULI0) Pagaads S SYOIRI 1BULIOJ 1R

AAAAQAUOW AXAXUOWAT WNA,
AANWNAALAX AAWNW TAAd
‘AAAINN AAAANNAA ‘AAAC

*(SAISNOU ‘CE7 PR () US9MISG I9QUINT B 2 ISOUT SAMBA. SUISUWINT INOJ Y1 JO Yoka) $SoIppe JI paunbal v soy0Iewl JBULIOT JX3], IPPVJL
“PITRA SI JIOS1I SSOIPPR [IRIU-0 311 Y] 91EPIjRA 10U S0P 192[q0 S$oIppk Jew-o Ue 10] TerLioy paanbal sagolew 18UiI0] 1X3], jreursy
"6666-66-666 Aridsip susydAy 1B 0 YSew Yim JqUmN AJLN00g [0S UROLIAWY USIP-6 NSSSN
. 6666 :
666 (666) s&ejdsip uoyeniound TRyl 08 X0q TX9] 91} SYSLUI 0S]2 (oW] Pue ‘Y XN “VJIN) JPqumnu suoydsje) weoLswy Hap-01 JUOYJSN
‘(soxoq promssed pue 1¥01 <IN INI> PU8 <VITIVIXAL>)
%913 Jo 102{qo mopeys e sey jey) usuodwroo TN LH AUe Jo 103[qo »IRQI0IEPI[E A [NEIop ndur 1x9) SWOS JO 90UdSAL] LdwgioN

‘WMUIXEW PoIf10ads 34} 01 [WOY SISORIBYD JO Iaquing Lug ST 1By} %21 suewnueydly

grumpeydpviea o junneydivie A

(81 01 [) sio10vmmyd supuwinueydle Jo JoqUInU Py ¥

grwnNeydry ** jumneydyy

‘e paiyoads oy 03 | WO SINNOBIRYD 10 equinu Aug SI 1B 1X2) oneqeqdyy

givydyres - JeydiyIeA

(81 01 1) SH1oRIRYD onaqRydiR JO JequInU paxy v

g1eydyy “ eydry

-ugis (-) snuwt 1o (+) snpd v £q papadaid pue [IFua] W SJQELIBA S TR} 1X9) 1983UI OUIWIN

UIPAUBISIEA WERA

-saoe]d [pUIOSp OM) YITM SIdqUINU 0SB Tudis {~) snurur o (+) sryd v Lq papeoaid srequnu
rewtoop osye ‘Fuikiea saou(d [EWIOAp oY1 puk SHSIP JO IOQUINY DY GIOQ Yilm GISUS] UT S[qRLIBA ST JRY] 1¥S) [RUI0DD JLIOUINN

7IO(QIROLJIBA TROLIPIUSISICA RO JIBA

wnrveu pagioads oys 03 T woy spSip jo Jequinu Aue 9¢ UBd e 1%0) LGl ouswnN

QIUNALIBA 77 JUMNIBA

‘(g1 01 1) sL2821u1 OLIOWINY JO JAQUINY PAXY Y

TUWINNPAXE] " [WNNXLL

14/16

PCT/US02/21218

WO 03/005189

Qanmatesy
Qanfenrehy
Fauidm: wap
81 JuNSI4 asesago
— N
Qaeue T R
. OqeL \; Lo
ogsnae 98 U@ / .
(Oepardoty, /
0e®1xXaN06y, T -
Qe paigjaby, | . 9%:%:@?. \\\\ .,
Oge1raniafy, . . eeawﬂuo -]
Ogeimauno)ety . o “p S i
?snum_@:o o ISRIIRALG,, Y ! 05 Ut g
Diy, e) Oatepa s 4 QiojopmAIaty
- Oousaping) ey oAy p { L ey
Boewe R aivesing Gz |/ \ Do
. 5 18040 Jared: . Os1opieny: 1 argAIasy,
ekl Wﬁm_m._wmwhhu.” ey : : . DarmAlely
. . _S&uus‘. OanfeAlshy, . Quessngey, (pelgoarquasspndody,
KRS AR GOy . . oEQGowiiu__f QoadeaTsly Qussatg Opshosegsendody
otus B A et B - Qemiasp Gpajaoasg dody Oirapscnialy T Onwniasy
mﬁ%ﬂuﬁﬁmﬁ.ﬁcigqm?e,ﬂuaﬂ Qsﬂ_gﬁowo (atag dy. . Ou. Rty {IPuorsiasy
. fatiy s 518 Gar) ’ Privaiaieid Quoapjacy . (hoppApDy. - (aopimng . (Pinuniasy
Auuy 5 soundy) . = e J Oy + - (rgiou3s " QanieNssy, O S M
. E:m“.ussw‘ T Pemweerye o Kemas, - oww_uwﬁ(cun_muamwnmo %Eq.sg_wﬂ
DT <o (300109 A106, MeAISy, FUANSTas, BqePUCRS)
UORNGEIIUEUOH LI 1 UORIGIIS:) . v dria: . -
AU Tefiasaur T E:Jaﬁs,ssms”sgmi?eew Do jguony t OanrAmty Oaguniissocme wodaty TP . Oleaopinuat
o .._Suﬂ " JUA S, EEaﬂM“M“Mﬂ&SuS_n%Ru o Wity || ; WIH : Wnegy ¥OHG MouRduIcD : MOy) _wwwuwwmu (prieAmcoasIaty
\4 swoy{joued Y Lu,euu-_uhﬂ~5:3§ v cﬂ._&&me&o FAFHOCWE UDIPIRR) TRpuaERa- - KIG2IUA04 100 16Ky, Davougsmiste T - QenjeAeinumel,,
/ suethelgaul N : w d X0q04 33 e <=pelomopous>s uuuﬁwu:mnu_vﬁuﬁﬁm& — — L Omowonsty
|oqekeyaaL y - koiwI3 PRSP juaLodued: e Bl B » fuus i Rqunussey: [T P L —]
A 4 JviomesioS) | S w5 7 R e T R gy e
— ’ Powdsara. T Osuec . Aeuy st Rengpesy: | PP ST PSUpowey h/ usssmye. | mpcivewoducs. sduget | PIRSIAYANCAY S
_ Dbgasiory | . Qqnuﬁ%wﬂ. - .ees_zﬁmm R ?ﬁ.& 5 mu_ﬁuseaﬁﬁ / . . <<PIqOMOpRISE> | SETRY o Ruodwm : DIPSINY UKy
Dioisananaty, OuANuITRTIRNg, 0USOUIIBPIRAG, ORIy P3ISSUORCH) > 1§ usanBangy| /. A § <Epaliomopes s> B e
Quiouoppiog - ORpleAy - T Oorpimg L St Xy wp \ H : UREpOY : fio]4 wd Ny
+ (JaRpltng Qousdause o - (roae(aecy, .o suim ajepdc. \ 1 i - bnapoq: By
ogiaq,tm . B il _ B fuus o P / \ M p) JU1 1P 00y
[rremmemermr—— . S i xopupty . | XOpIECE . Bius : et) Vo 3 i / 7 L
luoy 100010008081 { Qs oy :Rowws| | Lo Asodwor nucdwsd . [goaues! | I < / Y i / K . xepalgosopeysss
Baoq. j B auedauie. - . |_ RIT R T ” ~ i { / 4 i / Fa
EﬁL <IAAMOPRS 55, * [fo.. . <paljomopmysn ©o e<pslpmopaysss. :/ Y i / y i /
T . ——r 3 3 3 i i \ \
_ i I W \ VoA \ j /
A\ \ Y /

i g/
W\ H . i o 7
\ 4 . (v, \
/ " (NBUSITUA Jowaled o
. / 3l . Pgugcgw%cow e \
\ (suorsuopInug? Emu_uu. /

AN / PEasTRl DUoIsUBKIAEB ccMBiSasg [

\ / \\\\

A\ T T dewrstsustakesigapa.
/ // Paps+ ety N de Suas PRy zo

.,_. L P " ke si” dnomsRigkansoy

\

\ } g HIWAFWIHKOQ 1a00y
\ uvopnge §'C Guis :sonsljagannsoy
,MY\.\\\\;I&.\ Buins : 10peyaQasIgeg
Buuis . Jonsuagandy|
X Buins © Atoeu
creadie. gt

HOPEYSK,.

15/16

PCT/US02/21218

WO 03/005189

T QaqEpC g
R g,
Oras g, 05103 |0 uRg
6T FN9I4 QstpajaouEcy Osuipg anrse,
Om_vmo«,u! < - y Oupog,
< Qupsy Ozigelpas
Onwostamupgr 3 lfeolqeupNq 2yl+ oohne »
- - | Amurgsf: s|1eg Znn.:_va@.
1i3®1qeip3q - PIGRIPHC .
<<pelqo mopeys>»
L]
Y
. Qanienioty,”
oo Osmpierg o
UGS SNIEA Wiy XYG gy s - . Osmoy313e L 1109
- - Duosameasyd; w0 pIEALS: Qrumuey gy » 230913 § 41 WA EIAF 31E) 1 o d
Qaﬂwnz.owae.uoo - DUOSTaqE WUy o,_%p.muﬁn:nm" QuozepijeAtaty, ¢ &n_zuvouza_aw“ &ﬁusu_umswe“m
— PUEN O . QuesiaqeIRydiey O2iepieng, Ouglauziepiey . Omoy GRS
Quondazq: 3 Quisaigy siepiieny Osin o3 1GE L | K03 36 Ung]) [ELITYRE Oaeplieng o 11 dfl.
Quoieprignialby, Qoiepreng _ Quoalagalpueyy’ Oanensy, Qaepjieng .__miom.l..__;c:‘m
ocmhpcnmuw”u“xui . %-...,__.8.“" 03nagEUdinosTieuy, OMEA I 1Sy, Oastegiasy . Omo 241yl
Ouiepiiorg Ouzpiitng OouIWNNL DS ey Orizg mey12Bed) QLT || Osusquini monpRioelR UL N Elky 2izindode,”
ot - Quonnwq OPQZIAEDIAITIE Uise Ow3ugay - - - * Osmoyyion| tune,
Ry G g ~ A - OBNEAAGBRI85a oSy, - — { yompuny: ::u.mwmlw.uﬁu:ww‘m lwenpe : 1iend . Omorion]esy,
ki . Op3esda uosyd Buws : anjenieROs T umaygs | L i L uEs|00q: piendy CEmo peadd{egWwniyiae,
uopdopar - woungq QsaquiniAgm 1950y pung: ugiolg 1enC8 ¢<pfae mopeE>> | i JaweRoy g B - TO2qRYE &
< o G0 MOPRYS > "o3(Qo MOpeYSyy i - - OSmoy P a0 195 UNN 1By, wKaYQ d <<PI(GO MOPEIEIY i ~
Oss2.qUSTN MmOoL PEOB[RS WA eindody | <<PI30 MopRYEy> - © Buwmg IYBbuSp
: Ra@m_ﬂsv. k] \\ Buuas ;03185 KINWSY
s RIS & Sqeq]
oL ¢ LILOSEPLEA ¢ < UONOULYS O] <<P? [0 MOPEYS> >
£ydiE = Bulis PoUIAAeSO]
4 Ay
/ Z
OA BINFHRS o UE SSfl
. CplAaA enrig 35 B |-
0 WENAGA EUYIH 19 B}
Oyl euyi[i Bgl)
. C < OuZIYuE Weh
Cdnoigmims a g Onigie 3 0ad
1 C (g CowENASIE 12 Bl
OoniEAltE,, - Gsviaciong ooy ORI YIB 1P Gl
mite it A
(dnasgpalqn sA 10Uy, i]) &o_bfmwwhuﬁ.
AGIBIXNAS Qsonazsqiog yasesy . -Omopeusy, ¢ | Guokiong
O Opeaigng tod yuesy, Quo%au:gwgo.:ém .. Otu —wwa‘
Qe a0 ppRgy BN P W BASI ALY IGRALR
0192(GS ppey jo, SpansF up 3 APy s (&3 ngrawn
TQdhaigaimgiaty |0 B 1 ’illlllfl: OuorguomaasIB < cOnes: ey Otewxsw i3 uso @3 e
O&uogo,vuﬂmvﬁr . SwelgnsH— : P2 [:suofs! . O»Emﬁ:vﬁv.ﬂﬂ.m..
- 1o wgl - L S piy’ A ICRaTI Owisu 332N 3o By,
= - . - e 35S : pf = B (Rusurrg 32 By
3 o dnunaieis; ¥ uaucdwoo : dnojl BIRgAsSqolY] .
NaIQ MLISIIUBS QD+ canscqp Renrs|: dnaiosiess E.uuo N swoy Foos) WMMHMMWM"
| HSWSEALLI W00 : koD : 01u Lo A1 03us 031 90 363 3= Bg,
e T i e < Ofapigo e,
Buuis :4OREYYG 1L 0IQ0IGI PP ey,
dhaig 11550 BuLlg © JOMENDE Sy 0% NoSILP €O 1,
Suwyg : SpidR Q2w nes3yp €0 jg,
0313w 4 #QpeYF A N]
e e TN o R
" =i 5
Osporuia S Deepiey OsEamime
Ouuig] Bums : sbegdirugy (09 s SuSdWOD OGS I 43 OE = cmv:_ucﬂ
T diogq: wpugdusoor SR TS—— OuyrghIE QN Sy,
uogUR o; - - seEps . v
EURIF MOP EYKL Fo T ———y sHEEpIE Y Ouu iy
O - O Buyis -yt Gy
p0e mUoRt REicEl: AE 1G oy
WDWLIZT INIH EL3 s

16/16

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

