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Audio Encoder, Audio Decoder, Method for Encoding an Audio Information, Method
for Decoding an Audio Information and Computer Program
using a Region-Dependent Arithmetic Coding Mapping Rule

Technical Field

Embodiments according to the invention are related to an audio decoder for providing a
decoded audio information on the basis of an encoded audio information, an audio encoder

for providing an encoded audio information on the basis of an input audio information, a

method for providing a decoded audio information on the basis of an encoded audio
information, a method for providing an encoded audio information on the basis of an input
audio information and a computer program.

Embodiments according to the invention are related an improved spectral noiseless coding,
which can be used in an audio encoder or decoder, like, for example, a so-called unified

speech-and-audio coder (USAC).

Background of the Invention

In the following, the background of the invention will be briefly explained in order to
facilitate the understanding of the invention and the advantages thereof. During the past
decade, big efforts have been put on creating the possibility to digitally store and distribute
audio contents with good bitrate efficiency. One important achievement on this way is the
definition of the International Standard ISO/IEC 14496-3. Part 3 of this Standard is related
to an encoding and decoding of audio contents, and subpart 4 of part 3 is related to general
audio coding. ISO/IEC 14496 part 3, subpart 4 defines a concept for encoding and
decoding of general audio content. In addition, further improvements have been proposed
in order to improve the quality and/or to reduce the required bit rate.

According to the concept described in said Standard, a time-domain audio signal is
converted into a time-frequency representation. The transform from the time-domain to the
time-frequency-domain is typically performed using transform blocks, which are also
designated as “frames”, of time-domain samples. It has been found that it is advantageous
to use overlapping frames, which are shifted, for example, by half a frame, because the
overlap allows to efficiently avoid (or at least reduce) artifacts. In addition, it has been
found that a windowing should be performed in order to avoid the artifacts originating
from this processing of temporally limited frames.
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By transforming a windowed portion of the input audio signal from the time-domain to the
time-frequency domain, an energy compaction is obtained in many cases, such that some
of the spectral values comprise a significantly larger magnitude than a plurality of other
spectral values. Accordingly, there are, in many cases, a comparatively small number of
spectral values having a magnitude, which is significantly above an average magnitude of
the spectral values. A typical example of a time-domain to time-frequency domain
transform resulting in an energy compaction is the so-called modified-discrete-cosine-
transform (MDCT).

The spectral values are often scaled and quantized in accordance with a psychoacoustic
model, such that quantization errors are comparatively smaller for psychoacoustically more
important spectral values, and are comparatively larger for psychoacoustically less-
important spectral values. The scaled and quantized spectral values are encoded in order to
provide a bitrate-efficient representation thereof.

For example, the usage of a so-called Huffman coding of quantized spectral coefficients is
described in the International Standard ISO/IEC 14496-3:2005(E), part 3, subpart 4.

However, it has been found that the quality of the coding of the spectral values has a
significant impact on the required bitrate. Also, it has been found that the complexity of an
audio decoder, which is often implemented in a portable consumer device, and which
should therefore be cheap and of low power consumption, is dependent on the coding used
for encoding the spectral values.

In view of this situation, there is a need for a concept for an encoding and decoding of an
audio content, which provides for an improved trade-off between bitrate-efficiency and

resource efficiency.

Summary of the Invention

An embodiment according to the invention creates an audio decoder for providing a
decoded audio information on the basis of an encoded audio information. The audio
decoder comprises an arithmetic decoder for providing a plurality of decoded spectral
values on the basis of an arithmetically-encoded representation of the spectral values. The
audio decoder also comprises a frequency-domain-to-time-domain converter for providing
a time-domain audio representation using the decoded spectral values, in order to obtain
the decoded audio information. The arithmetic decoder is configured to select a mapping
rule describing a mapping of a code value (which may be extracted from a bitstream
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representing the encoded audio information) onto a symbol code (which may be a numeric
value representing a decoded spectral value, or a most significant bitplane thereof) in
dependence on a context state. The arithmetic decoder is configured to determine a
numeric current context value describing the current context state in dependence on a
plurality of previously decoded spectral values and also in dependence on whether a
spectral value to be decoded is in a first predetermined frequency region or in a second
predetermined frequency region.

It has been found that a consideration of the frequency region, in which a spectral value to
be currently decoded lies, allows for a significant improvement of the quality of the
context computation without significantly increasing the computational effort required for
the context computation. Moreover, by taking into consideration the fact that the statistical
dependencies between previously decoded spectral values lying in a neighborhood of a
spectral value to be decoded currently, vary over frequency, the context can be selected to
allow for a high coding efficiency, both for decoding of spectral values associated with
comparatively low frequencies and for decoding of spectral values associated with
comparatively high frequencies. A good adaptation of the context to details of the
statistical dependencies between the spectral value to be decoded currently and previously
decoded spectral values (typically out of a direct or indirect neighborhood of the spectral
value to be decoded currently) brings along the possibility to increase the coding efficiency
while keeping the computational effort reasonably small. It has been found that the
consideration of the frequency region is possible with very little effort, as a frequency
index of the spectral value to be decoded currently is naturally known in the process of the
arithmetic decoding. Thus, the selective adaptation of the context can be performed with

little computational effort and still brings along an improvement of the coding efficiency.

In a preferred embodiment, the arithmetic decoder is configured to selectively modify the
numeric current context value in dependence on whether a spectral value to be decoded is
in a first predetermined frequency region or in a second predetermined frequency region. A
selective modification of the numeric current context value, in addition to a previous
computation (or other determination) of the numeric current context value, allows a
combination of a “normal” computation (or other determination) of the numeric current
context value with a consideration of the frequency region in which the spectral values to
be decoded currently lies. The “normal” computation of the numeric current context value
may be handled separately from the region-dependent adaptation of the numeric current
context value, which typically reduces the complexity of the algorithm and the
computational effort. Also, it is easily possible to upgrade systems comprising a “normal”
computation of the numeric current context value only using this concept.
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In a preferred embodiment, the arithmetic decoder is configured to determine the numeric
current context value such that the numeric current context value is based on a combination
of a plurality of previdusly decoded spectral values, or on a combination of a plurality of
intermediate values derived from a plurality of previously decoded spectral values, and
such that the numeric current context value is selectively increased over a value obtained
on the basis of a combination of a plurality of previously decoded spectral values or on the
basis of a combination of a plurality of intermediate values derived from a plurality of
previously decoded spectfal values, in dependence on whether a spectral value to be
decoded is in a first predetermined frequency region or in a second predetermined
frequency region. It has been found that a selective increase of the numeric current context
value in dependence on the frequency region in which the spectral value to be decoded
currently lies allows for an efficient evaluation of the numeric current context value while
at the same time keepihg the computation effort small.

In a preferred embodiment, the arithmetic decoder is configured to distinguish at least
between a first frequency region and a second frequency region in order to determine the
numeric current context value, wherein the first frequency region comprises at least 15% of
the spectral values associated with a given temporal portion (for example, a frame or a sub-
frame) of the audio content, and wherein the first frequency region is a low-frequency
region and comprises an associated spectral value having a lowest frequency (within the
set of spectral values associated with the given (current) temporal portion of the audio
content). It has been found that a good context adaptation can be achieved by commonly
considering a lower part of a spectrum (comprising at least 15% of the spectral values) as a
first frequency region, because the statistical dependencies between the spectral values do
not comprise a strong variation over this low-frequency region. Accordingly, the number
of different regions can be kept sufficiently small, which in turn helps to avoid the use of
an excessive number of different mapping rules. However, in some embodiments it may be
sufficient if the first frequency region comprises at least on spectral value, at least two
spectral values or at least three spectral values, even though the choice of a more extended
first spectral region is preferred.

In a preferred embodiment, the arithmetic decoder is configured to distinguish at least
between a first frequency region and a second frequency region in order to determine the
numeric current context value, wherein the second frequency region comprises at least
15% of the spectral values associated with a given temporal portion (for example, a frame
or a sub-frame) of the audio content, and wherein the second frequency region is a high-

frequency region and comprises an associated spectral value having a highest frequency



10

15

20

25

30

35

WO 2011/048099 PCT/EP2010/065726

(within the set of spectral values associated with the given (current) temporal portion of the
audio content). It has been found that a good context adaptation can be achieved by
commonly considering an upper part of a spectrum (comprising at least 15% of the spectral
values) as a second frequency region, because the statistical dependencies between the
spectral values do not comprise a strong variation over this high-frequency region.
Accordingly, the number of different regions can be kept sufficiently small, which in turn
helps to avoid the use of an excessive number of different mapping rules. However, in
some embodiments it may be sufficient if the second frequency region comprises at least
on spectral value, at least two spectral values or at least three spectral values, even though

the choice of a more extended first spectral region is preferred.

In a preferred embodiment, the arithmetic decoder is configured to distinguish at least
between a first frequency region, a second frequency region and a third frequency region,
in order to determine the numeric current context value in dependence on a determination
in which of the at least three frequency regions the spectral value to be decoded lies. In this
case, each of the first frequency region, the second frequency region and the third
frequency region comprises a plurality of associated spectral values. It has been found that
for typical audio signals, it is recommendable to distinguish at least three different
frequency regions, because there are typically at least three frequency regions in which
there are different statistical dependencies between the spectral values. It has been found
that it is recommendable (though not essential) to distinguish between three or more
frequency regions even for narrow-band audio signals (for example, for audio signals
having a frequency range between 300 Hz and 3 KHz). Also, for audio signals having a
higher bandwidth, it has been found to be recommendable (though not essential) to
distinguish three or more extended frequency regions (each having more than one spectral
value associated therewith).

In a preferred embodiment, at least one eighth of the spectral values of the (current)
temporal portion of the audio information are associated with the first frequency region,
and at least one fifth of the spectral values of the (current) temporal portion of the audio
information are associated with the second frequency region, and at least one quarter of the
spectral values of the (current) temporal portion of the audio information are associated
with the third frequency region. It has been found that it is recommendable to have
sufficiently large frequency regions, because such sufficiently large frequency regions
bring along a good compromise between coding efficiency and computational complexity.
Also, it has been found that the usage of very small frequency regions (for example, of
frequency regions comprising only one spectral value associated therewith) is
computationally inefficient and may even degrade the coding efficiency. Moreover, it
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should be noted that the choice of sufficiently large frequency regions (for example, of
frequency regions comprising at least two spectral values associated therewith) is

recommendable even when using only two frequency regions.

In a preferred embodiment, the arithmetic decoder is configured to compute a sum
comprising at least a first summand and a second summand, to obtain the numeric current
context value as a result of the summation. In this case, the first summand is obtained by a
combination of a plurality of intermediate values describing magnitudes of previously
decoded spectral values, and the second summand describes to which frequency region, out
of a plurality of frequency regions, a spectral value to be (currently) decoded is associated.
Using such an approach, a separation between a context calculation based on a magnitude
information about previously decoded spectral values and a context adaptation in
dependence on the region to which the spectral value to be decoded currently is associated
can be achieved. It has been found that the magnitudes of the previously decoded spectral
values are an important indication about an environment of the spectral value to be
decoded currently. However, it has also been found that the assessment of the statistical
dependencies, which is based on an evaluation of the magnitudes of the previously
decoded spectral values, can be improved by taking into consideration the frequency
region to which the spectral value to be decoded currently is associated. However, it has
been found that it is computationally sufficient to include the region information into the
numeric current context value as a sum value, and that even such a simple mechanism

brings along a good improvement of the numeric current context value.

In a preferred embodiment, the arithmetic decoder is configured to modify one or more
predetermined bit positions of a binary representation of the numeric current context value
in dependence on a determination in which frequency region out of a plurality of different
frequency regions the spectral value to be decoded lies. It has been found that the use of
dedicated bit positions for the region information facilitates the selection of a mapping rule
in dependence on the numeric current context value. For example, by using a
predetermined bit position of the numeric current context value for a description of the
frequency region to which the spectral value to be decoded currently is associated, the
selection of a mapping rule can be simplified. For example, there are typically a number of
context situations in which the same mapping rule may be used in the presence of a given
neighborhood (in terms of spectral values) of the spectral value to be decoded currently,
irrespective of the frequency region to which the spectral value to be decoded currently is
associated. In such cases, the information regarding the frequency region, to which the
spectral value to be decoded currently is associated, can be left unconsidered, which is
facilitated by using a predetermined bit position for the encoding of the information.
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However, in other cases, i.e. for different environment constellations (in terms of spectral
values) of the spectral value to be decoded currently, the information about the frequency
region associated to the spectral values to be decoded currently can be exploited when
selecting a mapping rule.

In a preferred embodiment, the arithmetic decoder is configured to select a mapping rule in
dependence on a numeric current context value, such that a plurality of different numeric
current context values result in a selection of a same mapping rule. It has been found that
the conéept of taking into consideration the frequency region to which the spectral value to
be decoded currently is associated may be combined with a concept in which the same
mapping rule is associated with multiple different numeric current context values. It has
been found that it is not necessary to consider the frequency, which is associated to the
spectral value to be decoded currently, in all cases, but that it is recommendable to
consider an information about the frequency region, to which the spectral value to be

decoded currently is associated, at least in some cases.

In a preferred embodiment, the arithmetic decoder configured to perform a two-stage
selection of a mapping rule in dependence on the numeric current context value. In this
case, the arithmetic decoder is configured to check, in a first selection step, whether the
numeric current context value is equal to a significant state value described by an entry of a
direct-hit table. The arithmetic decoder is also configured to determine, in a second
selection step, which is only executed if the numeric current context value is different from
the significant state values described by the entries of the direct-hit table, in which interval,
out of a plurality of intervals, the numeric current context value lies. In this case, the
arithmetic decoder is configured to select the mapping rule in dependence on a result of the
first selection step and/or of the second selection step. The arithmetic decoder is also
configured to select the mapping rule in dependence on whether a spectral value to be
decoded is in a first frequency region or in a second frequency region. It has been found
that a combination of the above-discussed concept for the computation of the numeric
current context value with a two-step mapping rule selection brings along particular
advantages. For example, using this concept, it is possible to define different “direct-hit”
context configurations, to which a mapping rule is associated in the first selection step, for
spectral values to be decoded and arranged in different frequency regions. Also, the second
selection step, in which an interval-based selection of the mapping rule is performed, is
well-suited for a handling of those situations (environments of previously decoded spectral
values) in which it is not desired (or, at least, not necessary) to consider the frequency
region to which the spectral value to be decoded currently is associated.
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In a preferred embodiment, the arithmetic decoder is configured to selectively modify one
or more least-significant bit positions of a binary representation of the numeric current
context value in dependence on a determination in which frequency region out of a
plurality of different frequency regions the spectral value to be decoded lies. In this case,
the arithmetic decoder is configured to determine, in the second selection step, in which
interval out of a plurality of intervals the binary representation of the numeric current
context value lies to select the mapping, such that some numeric current context values
result in the selection of the same mapping rule independent from which frequency region
the spectral value to be decoded lies in, and such that for some numeric current context
values the mapping rule is selected in dependence on which frequency region the spectral
value to be coded lies in. It has been found that the mechanism in which the frequency
region is encoded in the least-significant bits of a binary representation of the numeric
current context value is very well suited for an efficient cooperation with the two-step
mapping rule selection.

An embodiment according to the invention creates an audio encoder for providing an
encoded audio information on the basis of an input audio information. The audio encoder
comprises an energy-compacting time-domain-to-frequency-domain converter for
providing a frequency-domain audio representation on the basis of a time-domain
representation of the input audio information, such that the frequency-domain audio
representation comprises a set of spectral values. The arithmetic encoder is configured to
encode a spectral value, or a preprocessed version thereof, using a variable-length
codeword. The arithmetic encoder is configured to map a spectral value, or a value of a
most-significant bit plane of a spectral value, onto a code value (which may be included
into a bitstream representing the input audio information in an encoded form). The
arithmetic encoder is configured to select a mapping rule describing a mapping of a
spectral value or of a most-significant bit plane of the spectral value, onto a code value in
dependence on a context state. The arithmetic encoder is configured to determine a
numeric current context value describing the current context state in dependence on a
plurality of previously encoded spectral values and also in dependence on whether a
spectral value to be encoded is in a first predetermined frequency region or in a second
predetermined frequency region.

This audio signal encoder is based on the same findings as the audio signal decoder
discussed above. It has been found that the mechanism for the adaptation of the context,
which has been shown to be efficient for the decoding of an audio content, should also be
applied at the encoder side, in order to allow for a consistent system.
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An embodiment according to the invention creates a method for providing decoded audio
information on the basis of encoded audio information.

Yet another embodiment according to the invention creates a method for providing
encoded audio information on the basis of an input audio information.

Another embodiment according to the invention creates a computer program for
performing one of said methods.

The methods and the computer program are based on the same findings as the above
described audio decoder and the above described audio encoder.

Brief Description of the Figures

Embodiments according to the present invention will subsequently be described taking
reference to the enclosed figures, in which:

Fig. 1 shows a block schematic diagram of an audio encoder, according to
an embodiment of the invention;

Fig. 2 shows a block schematic diagram of an audio decoder, according to

an embodiment of the invention;

Fig. 3 shows a pseudo-program-code representation of an algorithm
“value_decode()” for decoding a spectral value;

Fig. 4 shows a schematic representation of a context for a state calculation;

Fig. 5a shows a pseudo-program-code representation of an algorithm
“arith_map_context () for mapping a context;

Fig. Sb and 5S¢ show a pseudo-program-code representation of an algorithm

“arith_get context ()” for obtaining a context state value;

Fig. 5d shows a pseudo-program-code representation of an algorithm
“get_pk(s)” for deriving a cumulative-frequencies-table index value
,»pki“ from a state variable;
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shows a pseudo-program-code representation of an algorithm
“arith_get pk(s)” for deriving a cumulative-frequencies-table index
value ,,pki“ from a state value;

shows a pseudo-program-code representation of an algorithm
“get pk(unsigned long s)” for deriving a cumulative-frequencies-
table index value ,,pki* from a state value;

shows a pseudo-program-code representation of an algorithm
“arith_decode ()” for arithmetically decoding a symbol from a

variable-length codeword;

shows a pseudo-program-code representation of an algorithm
“arith_update context ()” for updating the context;

shows a legend of definitions and variables;

shows as syntax representation of a unified-speech-and-audio-coding
(USAC) raw data block;

shows a syntax representation of a single channel element;
shows syntax representation of a channel pair element;
shows a syntax representation of an “ics” control information;

shows a syntax representation of a frequency-domain channel

stream;

shows a syntax representation of arithmetically-coded spectral data;
shows a syntax representation for decoding a set of spectral values;
shows a legend of data elements and variables;

shows a block schematic diagram of an audio encoder, according to
another embodiment of the invention:
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shows a block schematic diagram of an audio decoder, according to
another embodiment of the invention;

shows an arrangement for a comparison of a noiseless coding
according to a working draft 3 of the USAC draft standard with a

coding scheme according to the present invention:

shows a schematic representation of a context for a state calculation,
as it is used in accordance with the working draft 4 of the USAC
draft standard;

shows a schematic representation of a context for a state calculation,

as it is used in embodiments according to the invention;

shows an overview of the table as used in the arithmetic coding
scheme according to the working draft 4 of the USAC draft standard;

shows an overview of the table as used in the arithmetic coding

scheme according to the present invention;

shows a graphical representation of a read-only memory demand for
the noiseless coding schemes according to the present invention and
according to the working draft 4 of the USAC draft standard;

shows a graphical representation of a total USAC decoder data read-
only memory demand in accordance with the present invention and

in accordance with the concept according to the working draft 4 of
the USAC draft standard;

shows a table representation of average bitrates which are used by a
unified-speech-and-audio-coding coder, using an arithmetic coder
according to the working draft 3 of the USAC draft standard and an
arithmetic decoder according to an embodiment of the present

invention;

shows a table representation of a bit reservoir control for a unified-
speech-and-audio-coding coder, using the arithmetic coder according
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to the working draft 3 of the USAC draft standard and the arithmetic
coder according to an embodiment of the present invention;

Fig. 14 shows a table representation of average bitrates for a USAC coder
according to the working draft 3 of the USAC draft standard, and

according to an embodiment of the present invention;

Fig. 15 shows a table representation of minimum, maximum and average
bitrates of USAC on a frame basis;

Fig. 16 shows a table representation of the best and worst cases on a frame
basis;

Figs. 17(1) and 17(2) show a table representation of a content of a table “ari_s_hash[387]";

Fig. 18 shows a table representation of a content of a table
“ari_gs hash[225]";

Figs. 19(1) and 19(2) show a table representation of a content of a table “ari_cf m[64][9]”;
and

Figs. 20(1) and 20(2) show a table representation of a content of a table “ari_s_hash[387];

Fig. 21 shows a block schematic diagram of an audio encoder, according to
an embodiment of the invention; and

Fig. 22 shows a block schematic diagram of an audio decoder, according to
an embodiment of the invention.

Detailed Description of the Embodiments

1. Audio Encoder according to Fig. 7

Fig. 7 shows a block schematic diagram of an audio encoder, according to an embodiment
of the invention. The audio encoder 700 is configured to receive an input audio
information 710 and to provide, on the basis thereof, an encoded audio information 712.

The audio encoder comprises an energy-compacting time-domain-to-frequency-domain
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converter 720 which is configured to provide a frequency-domain audio representation 722
on the basis of a time-domain representation of the input audio information 710, such that
the frequency-domain audio representation 722 comprises a set of spectral values. The
audio encoder 700 also comprises an arithmetic encoder 730 configured to encode a
spectral value (out of the set of spectral values forming the frequency-domain audio
representation 722), or a pre-processed version thereof, using a variable-length codeword,
to obtain the encoded audio information 712 (which may comprise, for example, a plurality
of variable-length codewords).

The arithmetic encoder 730 is configured to map a spectral value or a value of a most-
significant bit-plane of a spectral value onto a code value (i.e. onto a variable-length
codeword), in dependence on a context state. The arithmetic encoder 730 is configured to
select a mapping rule describing a mapping of a spectral value, or of a most-significant bit-
plane of a spectral value, onto a code value, in dependence on a context state. The
arithmetic encoder is configured to determine the current context state in dependence on a
plurality of previously-encoded adjacent spectral values. For this purpose, the arithmetic
encoder is configured to detect a group of a plurality of previously-encoded adjacent
spectral values, which fulfill, individually or taken together, a predetermined condition
regarding their magnitudes, and determine the current context state in dependence on a
result of the detection.

As can be seen, the mapping of a spectral value or of a most-significant bit-plane of a
spectral value onto a code value may be performed by a spectral value encoding 740 using
a mapping rule 742. A state tracker 750 may be configured to track the context state and
may comprise a group detector 752 to detect a group of a plurality of previously-encoded
adjacent spectral values which fulfill, individually or taken together, the predetermined
condition regarding their magnitudes. The state tracker 750 is also preferably configured to
determine the current context state in dependence on the result of said detection performed
by the group detector 752. Accordingly, the state tracker 750 provides an information 754
describing the current context state. A mapping rule selector 760 may select a mapping
rule, for example, a cumulative-frequencies-table, describing a mapping of a spectral
value, or of a most-significant bit-plane of a spectral value, onto a code value.
Accordingly, the mapping rule selector 760 provides the mapping rule information 742 to
the spectral encoding 740.

To summarize the above, the audio encoder 700 performs an arithmetic encoding of a
frequency-domain audio representation provided by the time-domain-to-frequency-domain
converter. The arithmetic encoding is context-dependent, such that a mapping rule (e.g., a
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cumulative-frequencies-table) is selected in dependence on previously-encoded spectral
values. Accordingly, spectral values adjacent in time and/or frequency (or at least, within a
predetermined environment) to each other and/or to the currently-encoded spectral value
(i.e. spectral values within a predetermined environment of the currently encoded spectral
value) are considered in the arithmetic encoding to adjust the probability distribution
evaluated by the arithmetic encoding. When selecting an appropriate mapping rule, a
detection is performed in order to detect whether there is a group of a plurality of

previously-encoded adjacent spectral values which fulfill, individually or taken together, a

predetermined condition regarding their magnitudes. The result of this detection is applied
in the selection of the current context state, i.e. in the selection of a mapping rule. By
detecting whether there is a group of a plurality of spectral values which are particularly
small or particularly large, it is possible to recognize special features within the frequency-
domain audio representation, which may be a time-frequency representation. Special
features such as, for example, a group of a plurality of particularly small or particularly
large spectral values, indicate that a specific context state should be used as this specific
context state may provide a particularly good coding efficiency. Thus, the detection of the
group of adjacent spectral values which fulfill the predetermined condition, which is
typically used in combination with an alternative context evaluation based on a
combination of a plurality of previously-coded spectral values, provides a mechanism
which allows for an efficient selection of an appropriate context if the input audio

information takes some special states (e.g., comprises a large masked frequency range).

Accordingly, an efficient encoding can be achieved while keeping the context calculation

sufficiently simple.

2. Audio Decoder according to Fig. 8

Fig. 8 shows a block schematic diagram of an audio decoder 800. The audio decoder 800 is
configured to receive an encoded audio information 810 and to provide, on the basis
thereof, a decoded audio information 812. The audio decoder 800 comprises an arithmetic
decoder 820 that is configured to provide a plurality of decoded spectral values 822 on the
basis of an arithmetically-encoded representation 821 of the spectral values. The audio
decoder 800 also comprises a frequency-domain-to-time-domain converter 830 which is
configured to receive the decoded spectral values 822 and to provide the time-domain
audio representation 812, which may constitute the decoded audio information, using the
decoded spectral values 822, in order to obtain a decoded audio information 812.
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The arithmetic decoder 820 comprises a spectral value determinator 824 which is
configured to map a code value of the arithmetically-encoded representation 821 of
spectral values onto a symbol code representing one or more of the decoded spectral -
values, or at least a portion (for example, a most-significant bit-plane) of one or more of
the decoded spectral values. The spectral value determinator 824 may be configured to
perform the mapping in dependence on a mapping rule, which may be described by a
mapping rule information 828a.

The arithmetic decoder 820 is configured to select a mapping rule (e.g. a cumulative-
frequencies-table) describing a mapping of a code-value (described by the arithmetically-
encoded representation 821 of spectral values) onto a symbol code (describing one or more
spectral values) in dependence on a context state (which may be described by the context
state information 826a). The arithmetic decoder 820 is configured to determine the current
context state in dependence on a plurality of previously-decoded spectral values 822. For
this purpose, a state tracker 826 may be used, which receives an information describing the
previously-decoded spectral values. The arithmetic decoder is also configured to detect a
group of a plurality of previously-decoded adjacent spectral values, which fulfill,
individually or taken together, a predetermined condition regarding their magnitudes, and
to determine the current context state (described, for example, by the context state
information 826a) in dependence on a result of the detection.

The detection of the group of a plurality of previously-decoded adjacent spectral values
which fulfill the predetermined condition regarding their magnitudes may, for example, be
performed by a group detector, which is part of the state tracker 826. Accordingly, a
current context state information 826a is obtained. The selection of the mapping rule may
be performed by a mapping rule selector 828, which derives a mapping rule information
828a from the current context state information 826a, and which provides the mapping rule
information 828a to the spectral value determinator 824.

Regarding the functionality of the audio signal decoder 800, it should be noted that the
arithmetic decoder 820 is configured to select a mapping rule (e.g. a cumulative-
frequencies-table) which is, on an average, well-adapted to the spectral value to be
decoded, as the mapping rule is selected in dependence on the current context state, which
in turn is determined in dependence on a plurality of previously-decoded spectral values.
Accordingly, statistical dependencies between adjacent spectral values to be decoded can
be exploited. Moreover, by detecting a group of a plurality of previously-decoded adjacent
spectral values which fulfill, individually or taken together, a predetermined condition
regarding their magnitudes, it is possible to adapt the mapping rule to special conditions
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(or patterns) of previously-decoded spectral values. For example, a specific mapping rule
may be selected if a group of a plurality of comparatively small previously-decoded
adjacent spectral values is identified, or if a group of a plurality of comparatively large
previously-decoded adjacent spectral values is identified. It has been found that the
presence of a group of comparatively large spectral values or of a group of comparatively
small spectral values may be considered as a significant indication that a dedicated
mapping rule, specifically adapted to such a condition, should be used. Accordingly, a
context computation can be facilitated (or accelerated) by exploiting the detection of such a
group of a plurality of spectral values. Also, characteristics of an audio content can be
considered that could not be considered as easily without applying the above-mentioned
concept. For example, the detection of a group of a plurality of spectral values which
fulfill, individually or taken together, a predetermined condition regarding their
magnitudes, can be performed on the basis of a different set of spectral values, when

compared to the set of spectral values used for a normal context computation.
Further details will be described below.

3. Audio Encoder according to Fig. 1

In the following, an audio encoder according to an embodiment of the present invention
will be described. Fig. 1 shows a block schematic diagram of such an audio encoder 100.

The audio encoder 100 is configured to receive an input audio information 110 and to
provide, on the basis thereof, a bitstream 112, which constitutes an encoded audio
information. The audio encoder 100 optionally comprises a preprocessor 120, which is
configured to receive the input audio information 110 and to provide, on the basis thereof,
a pre-processed input audio information 110a. The audio encoder 100 also comprises an
energy-compacting time-domain to frequency-domain signal transformer 130, which is
also designated as signal converter. The signal converter 130 is configured to receive the
input audio information 110, 110a and to provide, on the basis thereof, a frequency-domain
audio information 132, which preferably takes the form of a set of spectral values. For
example, the signal transformer 130 may be configured to receive a frame of the input
audio information 110, 110a (e.g. a block of time-domain samples) and to provide a set of
spectral values representing the audio content of the respective audio frame. In addition,
the signal transformer 130 may be configured to receive a plurality of subsequent,
overlapping or non-overlapping, audio frames of the input audio information 110, 110a and
to provide, on the basis thereof, a time-frequency-domain audio representation, which
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comprises a sequence of subsequent sets of spectral values, one set of spectral values

associated with each frame.

The energy-compacting time-domain to frequency-domain signal transformer 130 may
comprise an energy-compacting filterbank, which provides spectral values associated with
different, overlapping or non-overlapping, frequency ranges. For example, the signal
transformer 130 may comprise a windowing MDCT transformer 130a, which is configured
to window the input audio information 110, 110a (or a frame thereof) using a transform
window and to perform a modified-discrete-cosine-transform of the windowed input audio
information 110, 110a (or of the windowed frame thereof). Accordingly, the frequency-
domain audio represeﬁtation 132 may comprise a set of, for example, 1024 spectral values
in the form of MDCT coefficients associated with a frame of the input audio information.

The audio encoder 100 may further, optionally, comprise a spectral post-processor 140,
which is configured to receive the frequency-domain audio representation 132 and to
provide, on the basis thereof, a post-processed frequency-domain audio representation 142.
The spectral post-processor 140 may, for example, be configured to perform a temporal
noise shaping and/or a long term prediction and/or any other spectral post-processing
known in the art. The audio encoder further comprises, optionally, a scaler/quantizer 150,
which is configured to receive the frequency-domain audio representation 132 or the post-
processed version 142 thereof and to provide a scaled and quantized frequency-domain
audio representation 152.

The audio encoder 100 further comprises, optionally, a psycho-acoustic model processor
160, which is configured to receive the input audio information 110 (or the post-processed
version 110a thereof) and to provide, on the basis thereof, an optional control information,
which may be used for the control of the energy-compacting time-domain to frequency-
domain signal transformer 130, for the control of the optional spectral post-processor 140
and/or for the control of the optional scaler/quantizer 150. For example, the psycho-
acoustic model processor 160 may be configured to analyze the input audio information, to
determine which components of the input audio information 110, 110a are particularly
important for the human perception of the audio content and which components of the
input audio information 110, 110a are less important for the perception of the audio
content. Accordingly, the psycho-acoustic model processor 160 may provide control
information, which is used by the audio encoder 100 in order to adjust the scaling of the
frequency-domain audio representation 132, 142 by the scaler/quantizer 150 and/or the
quantization resolution applied by the scaler/quantizer 150. Consequently, perceptually
important scale factor bands (i.e. groups of adjacent spectral values which are particularly
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important for the human perception of the audio content) are scaled with a large scaling
factor and quantized with comparatively high resolution, while perceptually less-important
scale factor bands (i.e. groups of adjacent spectral values) are scaled with a comparatively
smaller scaling factor and quantized with a comparatively lower quantization resolution.
Accordingly, scaled spectral values of perceptually more important frequencies are
typically significantly larger than spectral values of perceptually less important
frequencies.

The audio encoder also comprises an arithmetic encoder 170, which is configured to
receive the scaled and quantized version 152 of the frequency-domain audio representation
132 (or, alternatively, the post-processed version 142 of the frequency-domain audio
representation 132, or even the frequency-domain audio representation 132 itself) and to
provide arithmetic codeword information 172a on the basis thereof, such that the

arithmetic codeword information represents the frequency-domain audio representation
152.

The audio encoder 100 also comprises a bitstream payload formatter 190, which is
configured to receive the arithmetic codeword information 172a. The bitstream payload
formatter 190 is also typically configured to receive additional information, like, for
example, scale factor information describing which scale factors have been applied by the
scaler/quantizer 150. In addition, the bitstream payload formatter 190 may be configured to
receive other control information. The bitstream payload formatter 190 is configured to
provide the bitstream 112 on the basis of the received information by assembling the

bitstream in accordance with a desired bitstream syntax, which will be discussed below.

In the following, details regarding the arithmetic encoder 170 will be described. The
arithmetic encoder 170 is configured to receive a plurality of post-processed and scaled
and quantized spectral values of the frequency-domain audio representation 132. The
arithmetic encoder comprises a most-significant-bit-plane-extractor 174, which is
configured to extract a most-significant bit-plane m from a spectral value. It should be
noted here that the most-significant bit-plane may comprise one or even more bits (e.g. two
or three bits), which are the most-significant bits of the spectral value. Thus, the most-
significant bit-plane extractor 174 provides a most-significant bit-plane value 176 of a
spectral value.

The arithmetic encoder 170 also comprises a first codeword determinator 180, which is
configured to determine an arithmetic codeword acod m [pki][m] representing the most-
significant bit-plane value m. Optionally, the codeword determinator 180 may also provide
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one or more escape codewords (also designated herein with “ARITH_ESCAPE”)
indicating, for example, how many less-significant bit-planes are available (and,
consequently, indicating the numeric weight of the most-significant bit-plane). The first
codeword determinator 180 may be configured to provide the codeword associated with a
most-significant bit-plane value m using a selected cumulative-frequencies-table having
(or being referenced by) a cumulative-frequencies-table index pki.

In order to determine as to which cumulative-frequencies-table should be selected, the
arithmetic encoder preferably comprises a state tracker 182, which is configured to track
the state of the arithmetic encoder, for example, by observing which spectral values have
been encoded previously. The state tracker 182 consequently provides a state information
184, for example, a state value designated with “s” or “t”. The arithmetic encoder 170 also
comprises a cumulative-frequencies-table selector 186, which is configured to receive the
state information 184 and to provide an information 188 describing the selected
cumulative-frequencies-table to the codeword determinator 180. For example, the
cumulative-frequencies-table selector 186 may provide a cumulative-frequencies-table
index ,,pki“ describing which cumulative-frequencies-table, out of a set of 64 cumulative-
frequencies-tables, is selected for usage by the codeword determinator. Alternatively, the
cumulative-frequencies-table selector 186 may provide the entire selected cumulative-
frequencies-table to the codeword determinator. Thus, the codeword determinator 180 may
use the selected cumulative-frequencies-table for the provision of the codeword
acod_m[pki][m] of the most-significant bit-plane value m, such that the actual codeword
acod_m[pki][m] encoding the most-significant bit-plane value m is dependent on the value
of m and the cumulative-frequencies-table index pki, and consequently on the current state
information 184. Further details regarding the coding process and the obtained codeword
format will be described below.

The arithmetic encoder 170 further comprises a less-significant bit-plane extractor 189a,
which is configured to extract one or more less-significant bit-planes from the scaled and
quantized frequency-domain audio representation 152, if one or more of the spectral values
to be encoded exceed the range of values encodeable using the most-significant bit-plane
only. The less-significant bit-planes may comprise one or more bits, as desired.
Accordingly, the less-significant bit-plane extractor 189a provides a less-significant bit-
plane information 189b. The arithmetic encoder 170 also comprises a second codeword
determinator 189c, which is configured to receive the less-significant bit-plane information
189d and to provide, on the basis thereof, 0, 1 or more codewords “acod r” representing
the content of 0, 1 or more less-significant bit-planes. The second codeword determinator
189¢ may be configured to apply an arithmetic encoding algorithm or any other encoding
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algorithm in order to derive the less-significant bit-plane codewords “acod_r” from the

less-significant bit-plane information 189b.

It should be noted here that the number of less-significant bit-planes may vary in
dependence on the value of the scaled and quantized spectral values 152, such that there
may be no less-signiﬁéant bit-plane at all, if the scaled and quantized spectral value to be
encoded is comparatively small, such that there may be one less-significant bit-plane if the
current scaled and quantized spectral value to be encoded is of a medium range and such
that there may be more than one less-significant bit-plane if the scaled and quantized
spectral value to be encoded takes a comparatively large value.

To summarize the above, the arithmetic encoder 170 is configured to encode scaled and
quantized spectral values, which are described by the information 152, using a hierarchical
encoding process. The most-significant bit-plane (comprising, for example, one, two or
three bits per spectral value) is encoded to obtain an arithmetic codeword
“acod_m[pki][m]” of a most-significant bit-plane value. One or more less-significant bit-
planes (each of the less-significant bit-planes comprising, for example, one, two or three
bits) are encoded to obtain one or more codewords “acod_r”. When encoding the most-
significant bit-plane, the value m of the most-significant bit-plane is mapped to a codeword
acod_m[pki][m]. For this purpose, 64 different cumulative-frequencies-tables are available
for the encoding of the value m in dependence on a state of the arithmetic encoder 170, i.e.
in dependence on previously-encoded spectral values. Accordingly, the codeword
“acod_m[pki][m]” is obtained. In addition, one or more codewords “acod_r” are provided

and included into the bitstream if one or more less-significant bit-planes are present.
Reset description

The audio encoder 100 may optionally be configured to decide whether an improvement in
bitrate can be obtained by resetting the context, for example by setting the state index to a
default value. Accordingly, the audio encoder 100 may be configured to provide a reset
information (e.g. named “arith reset flag”) indicating whether the context for the
arithmetic encoding is reset, and also indicating whether the context for the arithmetic
decoding in a corresponding decoder should be reset.

Details regarding the bitstream format and the applied cumulative-frequency tables will be
discussed below.

4. Audio Decoder
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In the following, an audio decoder according to an embodiment of the invention will be
described. Fig. 2 shows a block schematic diagram of such an audio decoder 200.

The audio decoder 200 is configured to receive a bitstream 210, which represents an
encoded audio information and which may be identical to the bitstream 112 provided by
the audio encoder 100. The audio decoder 200 provides a decoded audio information 212
on the basis of the bitstream 210.

The audio decoder 200 comprises an optional bitstream payload de-formatter 220, which is
configured to receive the bitstream 210 and to extract from the bitstream 210 an encoded
frequency-domain audio representation 222. For example, the bitstream payload de-
formatter 220 may be configured to extract from the bitstream 210 arithmetically-coded
spectral data like, for example, an arithmetic codeword “acod_m [pki][m]” representing
the most-significant bit-plane value m of a spectral value a, and a codeword “acod _r”
representing a content of a less-significant bit-plane of the spectral value a of the
frequency-domain audio representation. Thus, the encoded frequency-domain audio
representation 222 constitutes (or comprises) an arithmetically-encoded representation of
spectral values. The bitstream payload deformatter 220 is further configured to extract
from the bitstream additional control information, which is not shown in Fig. 2. In
addition, the bitstream payload deformatter is optionally configured to extract from the
bitstream 210 a state reset information 224, which is also designated as arithmetic reset
flag or “arith_reset flag”.

The audio decoder 200 comprises an arithmetic decoder 230, which is also designated as
“spectral noiseless decoder”. The arithmetic decoder 230 is configured to receive the
encoded frequency-domain audio representation 220 and, optionally, the state reset
information 224. The arithmetic decoder 230 is also configured to provide a decoded
frequency-domain audio representation 232, which may comprise a decoded representation
of spectral values. For example, the decoded frequency-domain audio representation 232
may comprise a decoded representation of spectral values, which are described by the
encoded frequency-domain audio representation 220.

The audio decoder 200 also comprises an optional inverse quantizet/rescaler 240, which is
configured to receive the decoded frequency-domain audio representation 232 and to
provide, on the basis thereof, an inversely-quantized and rescaled frequency-domain audio
representation 242.
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The audio decoder 200 further comprises an optional spectral pre-processor 250, which is
configured to receive the inversely-quantized and rescaled frequency-domain audio
representation 242 and to provide, on the basis thereof, a pre-processed version 252 of the
inversely-quantized and rescaled frequency-domain audio representation 242. The audio
decoder 200 also comprises a frequency-domain to time-domain signal transformer 260,
which is also designated as a “signal converter”. The signal transformer 260 is configured
to receive the pre-processed version 252 of the inversely-quantized and rescaled
frequency-domain audio representation 242 (or, alternatively, the inversely-quantized and
rescaled frequency-domain audio representation 242 or the decoded frequency-domain
audio representation 232) and to provide, on the basis thereof, a time-domain
representation 262 of the audio information. The frequency-domain to time-domain signal
transformer 260 may, for example, comprise a transformer for performing an inverse-
modified-discrete-cosine transform (IMDCT) and an appropriate windowing (as well as
other auxiliary functionalities, like, for example, an overlap-and-add).

The audio decoder 200 may further comprise an optional time-domain post-processor 270,
which is configured to receive the time-domain representation 262 of the audio information
and to obtain the decoded audio information 212 using a time-domain post-processing.
However, if the post-processing is omitted, the time-domain representation 262 may be
identical to the decoded audio information 212.

It should be noted here that the inverse quantizer/rescaler 240, the spectral pre-processor
250, the frequency-domain to time-domain signal transformer 260 and the time-domain
post-processor 270 may be controlled in dependence on control information, which is
extracted from the bitstream 210 by the bitstream payload deformatter 220.

To summarize the overall functionality of the audio decoder 200, a decoded frequency-
domain audio representation 232, for example, a set of spectral values associated with an
audio frame of the encoded audio information, may be obtained on the basis of the encoded
frequency-domain representation 222 using the arithmetic decoder 230. Subsequently, the
set of, for example, 1024 spectral values, which may be MDCT coefficients, are inversely
quantized, rescaled and pre-processed. Accordingly, an inversely-quantized, rescaled and
spectrally pre-processed set of spectral values (e.g., 1024 MDCT coefficients) is obtained.
Afterwards, a time-domain representation of an audio frame is derived from the inversely-
quantized, rescaled and spectrally pre-processed set of frequency-domain values (e.g.
MDCT coefficients). Accordingly, a time-domain representation of an audio frame is
obtained. The time-domain representation of a given audio frame may be combined with
time-domain representations of previous and/or subsequent audio frames. For example, an
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overlap-and-add between time-domain representations of subsequent audio frames may be
performed in order to smoothen the transitions between the time-domain representations of
the adjacent audio frames and in order to obtain an aliasing cancellation. For details
regarding the reconstruction of the decoded audio information 212 on the basis of the
decoded time-frequency domain audio representation 232, reference is made, for example,
to the International Standard ISO/IEC 14496-3, part 3, sub-part 4 where a detailed
discussion is given. However, other more elaborate overlapping and aliasing-cancellation
schemes may be used.

In the following, some details regarding the arithmetic decoder 230 will be described. The
arithmetic decoder 230 comprises a most-significant bit-plane determinator 284, which is
configured to receive the arithmetic codeword acod m [pki][m] describing the most-
significant bit-plane value m. The most-significant bit-plane determinator 284 may be
configured to use a cumulative-frequencies table out of a set comprising a plurality of 64
cumulative-frequencies-tables for deriving the most-significant bit-plane value m from the
arithmetic codeword “acod_m [pki][m]”.

The most-significant bit-plane determinator 284 is configured to derive values 286 of a
most-significant bit-plane of spectral values on the basis of the codeword acod m. The
arithmetic decoder 230 further comprises a less-significant bit-plane determinator 288,
which is configured to receive one or more codewords “acod_r” representing one or more
less-significant bit-planes of a spectral value. Accordingly, the less-significant bit-plane
determinator 288 is configured to provide decoded values 290 of one or more less-
significant bit-planes. The audio decoder 200 also comprises a bit-plane combiner 292,
which is configured to receive the decoded values 286 of the most-significant bit-plane of
the spectral values and the decoded values 290 of one or more less-significant bit-planes of
the spectral values if such less-significant bit-planes are available for the current spectral
values. Accordingly, the bit-plane combiner 292 provides decoded spectral values, which
are part of the decoded frequency-domain audio representation 232. Naturally, the
arithmetic decoder 230 is typically configured to provide a plurality of spectral values in
order to obtain a full set of decoded spectral values associated with a current frame of the
audio content.

The arithmetic decoder 230 further comprises a cumulative-frequencies-table selector 296,
which is configured to select one of the 64 cumulative-frequencies tables in dependence on
a state index 298 describing a state of the arithmetic decoder. The arithmetic decoder 230
further comprises a state tracker 299, which is configured to track a state of the arithmetic
decoder in dependence on the previously-decoded spectral values. The state information
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may optionally be reset to a default state information in response to the state reset
information 224. Accordingly, the cumulative-frequencies-table selector 296 is configured
to provide an index (e.g. pki) of a selected cumulative-frequencies-table, or a selected
cumulative-frequencies-table itself, for application in the decoding of the most-significant
bit-plane value m in dependence on the codeword “acod_m”.

To summarize the functionality of the audio decoder 200, the audio decoder 200 is
configured to receive a bitrate-efficiently-encoded frequency-domain audio representation
222 and to obtain a decoded frequency-domain audio representation on the basis thereof. In
the arithmetic decoder 230, which is used for obtaining the decoded frequency-domain
audio representation 232 on the basis of the encoded frequency-domain audio
representation 222, a probability of different combinations of values of the most-significant
bit-plane of adjacent spectral values is exploited by using an arithmetic decoder 280, which
is configured to apply a cumulative-frequencies-table. In other words, statistic
dependencies between spectral values are exploited by selecting different cumulative-
frequencies-tables out of a set comprising 64 different cumulative-frequencies-tables in
dependence on a state index 298, which is obtained by observing the previously-computed
decoded spectral values.

5. Qverview over the Tool of Spectral Noiseless Coding

In the following, details regarding the encoding and decoding algorithm, which is
performed, for example, by the arithmetic encoder 170 and the arithmetic decoder 230 will
be explained.

Focus is put on the description of the decoding algorithm. It should be noted, however, that
a corresponding encoding algorithm can be performed in accordance with the teachings of

the decoding algorithm, wherein mappings are inversed.

It should be noted that the decoding, which will be discussed in the following, is used in
order to allow for a so-called “spectral noiseless coding” of typically post-processed,
scaled and quantized spectral values. The spectral noiseless coding is used in an audio
encoding/decoding concept to further reduce the redundancy of the quantized spectrum,
which is obtained, for example, by an energy-compacting time-domain to a frequency-
domain transformer,

The spectral noiseless coding scheme, which is used in embodiments of the invention, is
based on an arithmetic coding in conjunction with a dynamically-adapted context. The
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noiseless coding is fed by (original or encoded representations of) quantized spectral
values and uses context-dependent cumulative-frequencies-tables derived, for example,
from a plurality of previously-decoded neighboring spectral values. Here, the
neighborhood in both time and frequency is taken into account as illustrated in Fig. 4. The
cumulative-frequencies-tables (which will be explained below) are then used by the
arithmetic coder to generate a variable-length binary code and by the arithmetic decoder to
derive decoded values from a variable-length binary code.

For example, the arithmetic coder 170 produces a binary code for a given set of symbols in
dependence on the respective probabilities. The binary code is generated by mapping a
probability interval, where the set of symbol lies, to a codeword.

In the following, another short overview of the tool of spectral noiseless coding will be
given. Spectral noiseless coding is used to further reduce the redundancy of the quantized
spectrum. The spectral noiseless coding scheme is based on an arithmetic coding in
conjunction with a dynamically adapted context. The noiseless coding is fed by the
quantized spectral values and uses context dependent cumulative-frequencies-tables
derived from, for example, seven previously-decoded neighboring spectral values

Here, the neighborhood in both, time and frequency, is taken into account, as illustrated in
Fig. 4. The cumulative-frequencies-tables are then used by the arithmetic coder to generate
a variable length binary code.

The arithmetic coder produces a binary code for a given set of symbols and their respective
probabilities. The binary code is generated by mapping a probability interval, where the set

of symbols lies to a codeword.

6. Decoding Process

6.1 Decoding Process Overview

In the following, an overview of the process of decoding a spectral value will be given
taking reference to Fig. 3, which shows a pseudo-program code representation of the
process of decoding a plurality of spectral values.

The process of decoding a plurality of spectral values comprises an initialization 310 of a
context. The initialization 310 of the context comprises a derivation of the current context
from a previous context using the function “arith_ map context (Ig)”. The derivation of the
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current context from a previous context may comprise a reset of the context. Both the reset
of the context and the derivation of the current context from a previous context will be
discussed below.

The decoding of a plurality of spectral values also comprises an iteration of a spectral
value decoding 312 and a context update 314, which context update is performed by a
function “Arith_update context(a,i,lg)” which is described below. The spectral value
decoding 312 and the context update 314 are repeated lg times, wherein lg indicates the
number of spectral values to be decoded (e.g. for an audio frame). The spectral value
decoding 312 comprises a context-value calculation 312a, a most-significant bit-plane
decoding 312b, and a less-significant bit-plane addition 312c.

The state value computation 312a comprises the computation of a first state value s using
the function “arith_get context(i, lg, arith_reset flag, N/2)” which function returns the first
state value s. The state value computation 312a also comprises a computation of a level
value “lev0” and of a level value “lev”, which level values “lev0”, ,,lev*“ are obtained by
shifting the first state value s to the right by 24 bits. The state value computation 312a also
comprises a computation of a second state value t according to the formula shown in Fig. 3
at reference numeral 312a.

The most-significant bit-plane decoding 312b comprises an iterative execution of a
decoding algorithm 312ba, wherein a variable j is initialized to 0 before a first execution of
the algorithm 312ba.

The algorithm 312ba comprises a computation of a state index ,,pki“ (which also serves as
a cumulative-frequencies-table index) in dependence on the second state value t, and also
in dependence on the level values ,,lev* and lev0, using a function “arith_get pk()”, which
is discussed below. The algorithm 312ba also comprises the selection of a cumulative-
frequencies-table in dependence on the state index pki, wherein a variable “cum_freq” may
be set to a starting address of one out of 64 cumulative-frequencies-tables in dependence
on the state index pki. Also, a variable “cfl” may be initialized to a length of the selected
cumulative-frequencies-table, which is, for example, equal to the number of symbols in the
alphabet, i.e. the number of different values which can be decoded. The lengths of all the
cumulative-frequencies-tables from “arith cf m[pki=0][9]” to “arith cf m[pki=63][9]”
available for the decoding of the most-significant bit-plane value m is 9, as eight different
most-significant bit-plane values and an escape symbol can be decoded. Subsequently, a
most-significant bit-plane value m may be obtained by executing a function
“arith_decode()”, taking into consideration the selected cumulative-frequencies-table
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(described by the variable “cum_freq” and the variable “cfl”). When deriving the most-
significant bit-plane value m, bits named “acod m” of the bitstream 210 may be evaluated

(see, for example, Fig. 6g).

The algorithm 312ba also comprises checking whether the most-significant bit-plane value
m is equal to an escape symbol “ARITH_ESCAPE”, or not. If the most-significant bit-
plane value m is not equal to the arithmetic escape symbol, the algorithm 312ba is aborted
(“break”-condition) and the remaining instructions of the algorithm 312ba are therefore
skipped. Accordingly, execution of the process is continued with the setting of the spectral
value a to be equal to the most-significant bit-plane value m (instruction “a=m”). In
contrast, if the decoded most-significant bit-plane value m is identical to the arithmetic
escape symbol “ARITH_ESCAPE”, the level value ,lev“ is increased by one. As
mentioned, the algorithm 312ba is then repeated until the decoded most-significant bit-
plane value m is different from the arithmetic escape symbol.

As soon as most-significant bit-plane decoding is completed, i.e. a most-significant bit-
plane value m different from the arithmetic escape symbol has been decoded, the spectral

13

value variable ,a“ is set to be equal to the most-significant bit-plane value m.
Subsequently, the less-significant bit-planes are obtained, for example, as shown at
reference numeral 312¢ in Fig. 3. For each less-significant bit-plane of the spectral value,
one out of two binary values is decoded. For example, a less-significant bit-plane value r is
obtained. Subsequently, the spectral value variable ,,a“ is updated by shifting the content of
the spectral value variable ,,a“ to the left by 1 bit and by adding the currently-decoded les-
significant bit-plane value r as a least-significant bit. However, it should be noted that the
concept for obtaining the values of the less-significant bit-planes is not of particular
relevance for the present invention. In some embodiments, the decoding of any less-
significant bit-planes may even be omitted. Alternatively, different decoding algorithms

may be used for this purpose.

6.2 Decoding Order according to Fig. 4

In the following, the décoding order of the spectral values will be described.

Spectral coefficients are noiselessly coded and transmitted (e.g. in the bitstream) starting

from the lowest-frequency coefficient and progressing to the highest-frequency coefficient.



10

15

20

25

30

35

28
WO 2011/048099 PCT/EP2010/065726

Coefficients from an advanced audio coding (for example obtained using a modified-
discrete-cosine-transform, as discussed in ISO/IEC 14496, part3, subpart 4) are stored in
an array called “x_ac_quant[g][win][sfb][bin]”, and the order of transmission of the
noiseless-coding-codeword (e.g. acod m, acod r) is such that when they are decoded in
the order received and stored in the array, “bin” (the frequency index) is the most rapidly

incrementing index and “g” is the most slowly incrementing index.

Spectral coefficients associated with a lower frequency are encoded before spectral
coefficients associated with a higher frequency.

Coefficients from the transform-coded-excitation (tcx) are stored directly in an array
x_tex_invquant[win]{bin], and the order of the transmission of the noiseless coding
codewords is such that when they are decoded in the order received and stored in the array,
“bin” is the most rapidly incrementing index and “win” is the slowest incrementing index.
In other words, if the spectral values describe a transform-coded-excitation of the linear-
prediction filter of a speech coder, the spectral values a are associated to adjacent and
increasing frequencies of the transform-coded-excitation.

Spectral coefficients associated to a lower frequency are encoded before spectral

coefficients associated with a higher frequency.

Notably, the audio decoder 200 may be configured to apply the decoded frequency-domain
audio representation 232, which is provided by the arithmetic decoder 230, both for a
“direct” generation of a time-domain audio signal representation using a frequency-domain
to time-domain signal transform and for an “indirect” provision of an audio signal
representation using both a frequency-domain to time-domain decoder and a linear-
prediction-filter excited by the output of the frequency-domain to time-domain signal
transformer.

In other words, the arithmetic decoder 200, the functionality of which is discussed here in
detail, is well-suited for decoding spectral values of a time-frequency-domain
representation of an audio content encoded in the frequency-domain and for the provision
of a time-frequency-domain representation of a stimulus signal for a linear-prediction-filter
adapted to decode a speech signal encoded in the linear-prediction-domain. Thus, the
arithmetic decoder is well-suited for use in an audio decoder which is capable of handling
both frequency-domain-encoded audio content and linear-predictive-frequency-domain-
encoded audio content (transform-coded-excitation linear prediction domain mode).
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6.3. Context Initialization according to Figs. 5a and 5b

In the following, the context initialization (also designated as a “context mapping”), which
is performed in a step 310, will be described.

The context initialization comprises a mapping between a past context and a current
context in accordance with the algorithm “arith map context()”, which is shown in Fig.
5a. As can be seen, the current context is stored in a global variable q[2][n_context] which
takes the form of an array having a first dimension of two and a second dimension of
n_context. A past context is a stored in a variable qs[n_context], which takes the form of a
table having a dimension of n_context. The variable “previous_lg” describes a number of
spectral values of a past context.

The variable “Ig” describes a number of spectral coefficients to decode in the frame. The

variable “previous_lg” describes a previous number of spectral lines of a previous frame.

A mapping of the context may be performed in accordance with the algorithm
“arith_map_context()”. It should be noted here that the function “arith_map context()” sets
the entries q[0][i] of the current context array q to the values gs{i] of the past context array
gs, if the number of spectral values associated with the current (e.g. frequency-domain-
encoded) audio frame is identical to the number of spectral values associated with the

previous audio frame for i=0 to i=Ig-1.

However, a more complicated mapping is performed if the number of spectral values
associated to the current audio frame is different from the number of spectral values
associated to the previous audio frame. However, details regarding the mapping in this
case are not particularly relevant for the key idea of present invention, such that reference
is made to the pseudo program code of Fig. Sa for details.

6.4 State Value Computation according to Figs. 5b and Sc

In the following, the state value computation 312a will be described in more detail.

It should be noted that the first state value s (as shown in Fig. 3) can be obtained as a return
value of the function “arith_get context(i, lg, arith_reset flag, N/2)”, a pseudo program
code representation of which is shown in Figs. 5b and Sc.



10

15

20

25

30

35

30
WO 2011/048099 PCT/EP2010/065726

Regarding the computation of the state value, reference is also made to Fig. 4, which
shows the context used for a state evaluation. Fig. 4 shows a two-dimensional
representation of spectral values, both over time and frequency. An abscissa 410 describes
the time, and an ordinate 412 describes the frequency. As can be seen in Fig. 4, a spectral
value 420 to decode, is associated with a time index t0 and a frequency index i. As can be
seen, for the time index t0, the tuples having frequency indices i-1, i-2 and i-3 are already
decoded at the time at which the spectral value 420 having the frequency index i is to be
decoded. As can be seen from Fig. 4, a spectral value 430 having a time index t0 and a
frequency index i-1 is already decoded before the spectral value 420 is decoded, and the
spectral value 430 is considered for the context which is used for the decoding of the
spectral value 420. Similarly, a spectral value 434 having a time index t0 and a frequency
index i-2, is already decoded before the spectral value 420 is decoded, and the spectral
value 434 is considered for the context which is used for decoding the spectral value 420.
Similarly, a spectral value 440 having a time index t-1 and a frequency index of i-2, a
spectral value 444 having a time index t-1 and a frequency index i-1, a spectral value 448
having a time index t-1 and a frequency index i, a spectral value 452 having a time index t-
1 and a frequency index i+1, and a spectral value 456 having a time index t-1 and a
frequency index i+2, are already decoded before the spectral value 420 is decoded, and are
considered for the determination of the context, which is used for decoding the spectral
value 420. The spectral values (coefficients) already decoded at the time when the spectral
value 420 is decoded and considered for the context are shown by shaded squares. In
contrast, some other spectral values already decoded (at the time when the spectral value
420 is decoded), which are represented by squares having dashed lines, and other spectral
values, which are not yet decoded (at the time when the spectral value 420 is decoded) and
which are shown by circles having dashed lines, are not used for determining the context
for decoding the spectral value 420.

However, it should be noted that some of these spectral values, which are not used for the
“regular” (or “normal”) computation of the context for decoding the spectral value 420
may, nevertheless, be evaluated for a detection of a plurality of previously-decoded
adjacent spectral values which fulfill, individually or taken together, a predetermined
condition regarding their magnitudes.

Taking reference now to Figs. 5b and Sc, which show the functionality of the function
“arith_get context()” in the form of a pseudo program code, some more details regarding
the calculation of the first context value “s”, which is performed by the function
“arith _get context()”, will be described.
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It should be noted that the function “arith_get _context()” receives, as input variables an
index i of the spectral value to decode. The index i is typically a frequency index. An input
variable lg describes a (total) number of expected quantized coefficients (for a current
audio frame). A variable N describes a number of lines of the transformation. A flag
“arith reset flag” indicates whether the context should be reset. The function
“arith get context” provides, as an output value, a variable ,t“, which represents a
concatenated state index s and a predicted bit-plane level lev0.

The function “arith_get context()” uses integer variables a0, c0, c1, c2, ¢3, c4, ¢5, c6, lev0,
and “region”.

The function “arith_get context()” comprises as main functional blocks, a first arithmetic
reset processing 510, a detection 512 of a group of a plurality of previously-decoded
adjacent zero spectral values, a first variable setting 514, a second variable setting 516, a
level adaptation 518, a region value setting 520, a level adaptation 522, a level limitation
524, an arithmetic reset processing 526, a third variable setting 528, a fourth variable
setting 530, a fifth variable setting 532, a level adaptation 534, and a selective return value
computation 536.

In the first arithmetic reset processing 510, it is checked whether the arithmetic reset flag
“arith_reset flag” is set, while the index of the spectral value to decode is equal to zero. In

this case, a context value of zero is returned, and the function is aborted.

In the detection 512 of a group of a plurality of previously-decoded zero spectral values,
which is only performed if the arithmetic reset flag is inactive and the index i of the
spectral value to decode is different from zero, a variable named “flag” is initialized to 1,
as shown at reference numeral 512a, and a region of spectral value that is to be evaluated is
determined, as shown at reference numeral 512b. Subsequently, the region of spectral
values, which is determined as shown at reference number 512b, is evaluated as shown at
reference numeral 512c¢. If it is found that there is a sufficient region of previously-decoded
zero spectral values, a context value of 1 is returned, as shown at reference numeral 512d.
For example, an upper frequency index boundary “lim max” is set to i+6, unless index 1 of
the spectral value to be decoded is close to a maximum frequency index lg-1, in which case
a special setting of the upper frequency index boundary is made, as shown at reference
numeral 512b. Moreover, a lower frequency index boundary “lim_min” is set to -5, unless
the index i of the spectral value to decode is close to zero (i+lim_min<0), in which case a
special computation of the lower frequency index boundary lim min is performed, as
shown at reference numeral 512b. When evaluating the region of spectral values
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determined in step 512b, an evaluation is first performed for negative frequency indices k
between the lower frequency index boundary lim_min and zero. For frequency indices k
between lim_min and zero, it is verified whether at least one out of the context values
q[0][k].c and q[1][k].c is equal to zero. If, however, both of the context values q[0][k].c
and q[1][k].c are different from zero for any frequency indices k between lim min and
zero, it is concluded that there is no sufficient group of zero spectral values and the
evaluation 512c¢ is aborted. Subsequently, context values q[0](k].c for frequency indices
between zero and lim max are evaluated. If it found that any of the context values
q[0][k].c for any of the frequency indices between zero and lim_max is different from zero,
it is concluded that there is no sufficient group of previously-decoded zero spectral values,
and the evaluation 512c is aborted. If, however, it is found that for every frequency indices
k between lim_min and zero, there is at least one context value q[0](k].c or q[1]{k].c which
is equal to zero and if there is a zero context value q[0][k].c for every frequency index k
between zero and lim_max, it is concluded that there is a sufficient group of previously-
decoded zero spectral values. Accordingly, a context value of 1 is returned in this case to
indicate this condition, without any further calculation. In other words, calculations 514,
516, 518, 520, 522, 524, 526, 528, 530, 532, 534, 536 are skipped, if a sufficient group of a
plurality of context values gq[0][k].c, q[1][k].c having a value of zero is identified. In other
words, the returned context value, which describes the context state (s), is determined
independent from the previously decoded spectral values in response to the detection that
the predetermined condition is fulfilled.

Otherwise, i.e. if there is no sufficient group of context values [q][0][k].c, [q][1][k].c,
which are zero at least some of the computations 514, 516, 518, 520, 522, 524,526, 528,
530, 532, 534, 536 are executed.

In the first variable setting 514, which is selectively executed if (and only if) index i of the
spectral value to be decoded is less than 1, the variable ay is initialized to take the context
value q[1][i-1], and the variable c0 is initialized to take the absolute value of the variable
a0. The variable ,,lev0* is initialized to take the value of zero. Subsequently, the variables
,1ev0® and c0 are increased if the variable a0 comprises a comparatively large absolute
value, i.e. is smaller than -4, or larger or equal to 4. The increase of the variables ,,lev0*
and c0 is performed iteratively, until the value of the variable a0 is brought into a range
between -4 and 3 by a shift-to-the-right operation (step 514b).

Subsequently, the variables cO and ,,Jev0* are limited to maximum values of 7 and 3,
respectively (step 514c¢).
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If the index i of the spectral value to be decoded is equal to 1 and the arithmetic reset flag
(“arith_reset_flag”) is active, a context value is returned, which is computed merely on the
basis of the variables cO and lev0 (step 514d). Accordingly, only a single previously-
decoded spectral value having the same time index as the spectral value to decode and
having a frequency index which is smaller, by 1, than the frequency index i of the spectral
value to be decoded, is considered for the context computation (step 514d). Otherwise, i.e.
if there is no arithmetic reset functionality, the variable c4 is initialized (step 514e).

To conclude, in the first variable setting 514, the variables c0O and ,,lev0* are initialized in
dependence on a previously-decoded spectral value, decoded for the same frame as the
spectral value to be currently decoded and for a preceding spectral bin i-1. The variable c4
is initialized in dependence on a previously-decoded spectral value, decoded for a previous
audio frame (having time index t-1) and having a frequency which is lower (e.g., by one
frequency bin) than the frequency associated with the spectral value to be currently
decoded.

The second variable setting 516 which is selectively executed if (and only if) the frequency
index of the spectral value to be currently decoded is larger than 1, comprises an
initialization of the variables c1 and c¢6 and an update of the variable lev0. The variable c1
is updated in dependence on a context value q[1][i-2].c associated with a previously-
decoded spectral value of the current audio frame, a frequency of which is smaller (e.g. by
two frequency bins) than a frequency of a spectral value currently to be decoded. Similarly,
variable ¢6 is initialized in dependence on a context value q[0][i-2].c, which describes a
previously-decoded spectral value of a previous frame (having time index t-1), an
associated frequency of which is smaller (e.g. by two frequency bins) than a frequency
associated with the spectral value to currently be decoded. In addition, the level variable
,lev0“ is set to a level value g[1][i-2].1 associated with a previously-decoded spectral value
of the current frame, an associated frequency of which is smaller (e.g. by two frequency
bins) than a frequency associated with the spectral value to currently be decoded, if q[1][i-
2].1 is larger than lev0.

The level adaptation 518 and the region value setting 520 are selectively executed, if (and
only if) the index i of the spectral value to be decoded is larger than 2. In the level
adaptation 518, the level variable ,,lev0® is increased to a value of g[1][i-3].1, if the level
value q[1][i-3].1 which is associated to a previously-decoded spectral value of the current
frame, an associated frequency of which is smaller (e.g. by three frequency bins) than the
frequency associated with the spectral value to currently be decoded, is larger than the
level value lev0.
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In the region value setting 520, a variable “region” is set in dependence on an evaluation,
in which spectral region, out of a plurality of spectral regions, the spectral value to
currently be decoded is arranged. For example, if it is found that the spectral value to be
currently decoded is associated to a frequency bin (having frequency bin index i) which is
in the first (lower most) quarter of the frequency bins (0 < i < N/4), the region variable
“region” is set to zero. Otherwise, if the spectral value currently to be decoded is
associated to a frequency bin which is in a second quarter of the frequency bins associated
to the current frame (N/4 < i < N/2), the region variable is set to a value of 1. Otherwise,
i.e. if the spectral value currently to be decoded is associated to a frequency bin which is in
the second (upper) half of the frequency bins (N/2 <i < N), the region variable is set to 2.
Thus, a region variable is set in dependence on an evaluation to which frequency region the
spectral value currently to be decoded is associated. Two or more frequency regions may
be distinguished.

An additional level adaptation 522 is executed if (and only if) the spectral value currently
to be decoded comprises a spectral index which is larger than 3. In this case, the level
variable ,,]lev0* is increased (set to the value q[1][i-4].]) if the level value q[i][i-4].1, which
is associated to a previously-decoded spectral value of the current frame, which is
associated to a frequency which is smaller, for example, by four frequency bins, than a
frequency associated to the spectral value currently to be decoded is larger than the current
level ,,lev0* (step 522). The level variable ,,lev0“ is limited to a maximum value of 3 (step
524).

If an arithmetic reset condition is detected and the index i of the spectral value currently to
be decoded is larger than 1, the state value is returned in dependence on the variables c0,
cl, lev0, as well as in dependence on the region variable “region” (step 526). Accordingly,
previously-decoded spectral values of any previous frames are left out of consideration if

an arithmetic reset condition is given.

In the third variable setting 528, the variable ¢2 is set to the context value q[0][i].c, which
is associated to a previously-decoded spectral value of the previous audio frame (having
time index t-1), which previously-decoded spectral value is associated with the same
frequency as the spectral value currently to be decoded.

In the fourth variable setting 530, the variable ¢3 is set to the context value q[0][i+1].c,
which is associated to a previously-decoded spectral value of the previous audio frame
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having a frequency index i+l, unless the spectral value currently to be decoded is

associated with the highest possible frequency index Ig-1.

In the fifth variable setting 532, the variable c5 is set to the context value q[0][i+2].c,
which is associated with a previously-decoded spectral value of the previous audio frame
having frequency index i+2, unless the frequency index i of the spectral value currently to
be decoded is too close to the maximum frequency index value (i.e. takes the frequency
index value 1g-2 or 1g-1).

An additional adaptation of the level variable ,,lev0” is performed if the frequency index i
is equal to zero (i.e. if the spectral value currently to be decoded is the lowermost spectral
value). In this case, the level variable ,,]lev0“ is increased from zero to 1, if the variable ¢2
or c3 takes a value of 3, which indicates that a previously-decoded spectral value of a
previous audio frame, which is associated with the same frequency or even a higher
frequency, when compared to the frequency associated with the spectral value currently to
be encoded, takes a comparatively large value.

In the selective return value computation 536, the return value is computed in dependence
on whether the index i of the spectral values currently to be decoded takes the value zero,
1, or a larger value. The return value is computed in dependence on the variables ¢2, ¢3, ¢5
and lev0, as indicated at reference numeral 536a, if index i takes the value of zero. The
return value is computed in dependence on the variables c0, ¢2, ¢3, ¢4, c5, and ,,lev0* as
shown at reference numeral 536b, if index i takes the value of 1. The return value is
computed in dependence on the variable c0, ¢2, ¢3, ¢4, cl, ¢5, ¢6, “region”, and lev0, if the
index i takes a value which is different from zero or 1 (reference numeral 536¢).

To summarize the above, the context value computation “arith_get context()” comprises a
detection 512 of a group of a plurality of previously-decoded zero spectral values (or at
least, sufficiently small spectral values). If a sufficient group of previously-decoded zero
spectral values is found, the presence of a special context is indicated by setting the return
value to 1. Otherwise, the context value computation is performed. It can generally be said
that in the context value computation, the index value i is evaluated in order to decide how
many previously-decoded spectral values should be evaluated. For example, a number of
evaluated previously-decoded spectral values is reduced if a frequency index i of the
spectral value currently to be decoded is close to a lower boundary (e.g. zero), or close to
an upper boundary (e.g. 1g-1). In addition, even if the frequency index i of the spectral
value currently to be decoded is sufficiently far away from a minimum value, different
spectral regions are distinguished by the region value setting 520. Accordingly, different
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statistical properties of different spectral regions (e.g. first, low frequency spectral region,
second, medium frequency spectral region, and third, high frequency spectral region) are
taken into consideration. The context value, which is calculated as a return value, is
dependent on the variable “region”, such that the returned context value is dependent on
whether a spectral value currently to be decoded is in a first predetermined frequency
region or in a second predetermined frequency region (or in any other predetermined
frequency region).

6.5 Mapping Rule Selection

In the following, the selection of a mapping rule, for example, a cumulative-frequencies-
table, which describes a mapping of a code value onto a symbol code, will be described.
The selection of the mapping rule is made in dependence on the context state, which is
described by the state value s or t.

6.5.1 Mapping Rule Selection using the Algorithm according to Fig. 5d

In the following, the selection of a mapping rule using the function “get pk” according to
Fig. 5d will be described. It should be noted that the function “get pk” may be performed
to obtain the value of “pki” in the sub-algorithm 312ba of the algorithm of Fig. 3. Thus, the
function “get pk” may take the place of the function “arith get pk” in the algorithm of
Fig. 3.

It should also be noted that a function “get_pk™ according to Fig. Sd may evaluate the table
“ari_s_hash[387]” according to Figs. 17(1) and 17(2) and a table “ari gs hash”[225]
according to Fig. 18.

The function ,,get pk“ receives, as an input variable, a state value s, which may be
obtained by a combination of the variable ,,t* according to Fig. 3 and the variables “lev”,
,1ev0* according to Fig. 3. The function ,,get pk® is also configured to return, as a return
value, a value of a variable “pki”, which designates a mapping rule or a cumulative-
frequencies-table. The function ,,get pk™ is configured to map the state value s onto a

mapping rule index value “pki”.

The function ,,get pk“ comprises a first table evaluation 540, and a second table evaluation
544. The first table evaluation 540 comprises a variable initialization 541 in which the
variables i_min, i_max, and i are initialized, as shown at reference numeral 541. The first
table evaluation 540 also comprises an iterative table search 542, in the course of which a
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determination is made as to whether there is an entry of the table “ari_s hash” which
matches the state value s. If such a match is identified during the iterative table search 542,
the function get pk is aborted, wherein a return value of the function is determined by the
entry of the table “ari_s hash” which matches the state value s, as will be explained in
more detail. If, however, no perfect match between the state value s and an entry of the
table “ari_s_hash” is found during the course of the iterative table search 542, a boundary
entry check 543 is performed.

Turning now to the details of the first table evaluation 540, it can be seen that a search
interval is defined by' the variables i min and i max. The iterative table search 542 is
repeated as long as the interval defined by the variables i min and i_max is sufficiently
large, which may be true if the condition i max-i_min > 1 is fulfilled. Subsequently, the
variable i is set, at least approximately, to designate the middle of the interval
(i=i_min+(i_max-i_min)/2). Subsequently, a variable j is set to a value which is
determined by the array “ari_s hash” at an array position designated by the variable i
(reference numeral 542). It should be noted here that each entry of the table “ari s hash”
describes both, a state.value, which is associated to the table entry, and a mapping rule
index value which is associated to the table entry. The state value, which is associated to
the table entry, is described by the more-significant bits (bits 8-31) of the table entry, while
the mapping rule index values are described by the lower bits (e.g. bits 0-7) of said table
entry. The lower boundary i_min or the upper boundary i_max are adapted in dependence
on whether the state value s is smaller than a state value described by the most-significant
24 bits of the entry “ari_s_hash[i]” of the table “ari s _hash” referenced by the variable i.
For example, if the state value s is smaller than the state value described by the most-
significant 24 bits of the entry “ari_s hash[i]”, the upper boundary i max of the table
interval is set to the value i. Accordingly, the table interval for the next iteration of the
iterative table search 542 is restricted to the lower half of the table interval (from i_min to
i_max) used for the present iteration of the iterative table search 542. If| in contrast, the
state value s is larger than the state values described by the most-significant 24 bits of the
table entry “ari_s_hash[i]”, then the lower boundary i_min of the table interval for the next
iteration of the iterative table search 542 is set to value i, such that the upper half of the
current table interval (between i_min and i_max) is used as the table interval for the next
iterative table search. If, however, it is found that the state value s is identical to the state
value described by the most-significant 24 bits of the table entry “ari_s hash[i]”, the
mapping rule index value described by the least-significant 8-bits of the table entry
“ari_s_hash[i]” is returned by the function “get pk”, and the function is aborted.
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The iterative table search 542 is repeated until the table interval defined by the variables
i_min and i_max is sufficiently small.

A boundary entry check 543 is (optionally) executed to supplement the iterative table
search 542. If the index variable i is equal to index variable i_max after the completion of
the iterative table search 542, a final check is made whether the state value s is equal to a
state value described by the most-significant 24 bits of a table entry “ari_s_hash[i_min]”,
and a mapping rule index value described by the least-significant 8 bits of the entry
“ari_s_hash[i_min]” is returned, in this case, as a result of the function “get pk”. In
contrast, if the index variable i is different from the index variable i_max, then a check is
performed as to whether a state value s is equal to a state value described by the most-
significant 24 bits of the table entry “ari_s hash[i max]”, and a mapping rule index value
described by the least-significant 8 bits of said table entry “ari_s_hash[i_max]” is returned
as a return value of the function “get pk” in this case.

However, it should be noted that the boundary entry check 543 may be considered as
optional in its entirety.

Subsequent to the first table evaluation 540, the second table evaluation 544 is performed,
unless a “direct hit” has occurred during the first table evaluation 540, in that the state
value s is identical to one of the state values described by the entries of the table
“ari_s_hash” (or, more precisely, by the 24 most-significant bits thereof).

The second table evaluation 544 comprises a variable initialization 545, in which the index
variables i_min, i and i max are initialized, as shown at reference numeral 545. The
second table evaluation 544 also comprises an iterative table search 546, in the course of
which the table “ari_gs hash” is searched for an entry which represents a state value
identical to the state value s. Finally, the second table search 544 comprises a return value
determination 547.

The iterative table search 546 is repeated as long as the table interval defined by the index
variables i_min and i_max is large enough (e.g. as long as i max — i min > 1). In the
iteration of the iterative table search 546, the variable i is set to the center of the table
interval defined by i_min and i max (step 546a). Subsequently, an entry j of the table
“ari_gs_hash” is obtained at a table location determined by the index variable i (546b). In
other words, the table entry “ari_gs hash[i]” is a table entry at the center of the current
table interval defined by the table indices i min and i max. Subsequently, the table
interval for the next iteration of the iterative table search 546 is determined. For this
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purpose, the index value i_max describing the upper boundary of the table interval is set to
the value 1, if the state value s is smaller than a state value described by the most-
significant 24 bits of the table entry “j=ari_gs hash[i]” (546c). In other words, the lower
half of the current table interval is selected as the new table interval for the next iteration of
the iterative table search 546 (step 546c). Otherwise, if the state value s is larger than a
state value described b'y the most-significant 24 bits of the table entry “j=ari_gs hash[i]”,
the index value i_min is set to the value i. Accordingly, the upper half of the current table
interval is selected as the new table interval for the next iteration of the iterative table
search 546 (step 546d). If, however, it is found that the state value s is identical to a state
value described by the uppermost 24 bits of the table entry “j=ari_gs hash[i]” , the index
variable i_max is set to the value i+1 or to the value 224 (if i+1 is larger than 224), and the
iterative table search 546 is aborted. However, if the state value s is different from the state
value described by the 24 most-significant bits of “j=ari_gs hash[i]”, the iterative table
search 546 is repeated with the newly set table interval defined by the updated index values
i min and i_max, unless the table interval is too small (i_max — i_min < 1). Thus, the
interval size of the table interval (defined by i_min and i_max ) is iteratively reduced until
a “direct hit” is detected (s==(j>>8)) or the interval reaches a minimum allowable size
(i_max —i_min < 1). Finally, following an abortion of the iterative table search 546, a table
entry “j=ari_gs hash[i max]” is determined and a mapping rule index value, which is
described by the 8 least-significant bits of said table entry “j=ari_gs hash[i_max]” is
returned as the return value of the function “get pk”. Accordingly, the mapping rule index
value is determined in dependence on the upper boundary i max of the table interval

(defined by i_min and i_max) after the completion or abortion of the iterative table search
546.

The above-described table evaluations 540, 544, which both use iterative table search 542,
546, allow for the examination of tables “ari_s hash” and “ari_gs hash” for the presence
of a given significant state with very high computational efficiency. In particular, a number
of table access operations can be kept reasonably small, even in a worst case. It has been
found that a numeric ordering of the table “ari_s_hash” and “ari_gs hash” allows for the
acceleration of the search for an appropriate hash value. In addition, a table size can be
kept small as the inclusion of escape symbols in tables “ari_s hash” and “ari_gs hash” is
not required. Thus, an efficient context hashing mechanism is established even though
there are a large number of different states: In a first stage (first table evaluation 540), a
search for a direct hit is conducted (s==(j>>8)).

In the second stage (second table evaluation 544) ranges of the state value s can be mapped
onto mapping rule index values. Thus, a well-balanced handling of particularly significant
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states, for which there is an associated entry in the table “ari_s_hash”, and less-significant
states, for which there is a range-based handling, can be performed. Accordingly, the

function “get_pk™ constitutes an efficient implementation of a mapping rule selection.
For any further details, reference is made to the pseudo program code of Fig. 5d, which
represents the functionality of the function “get pk” in a representation in accordance with

the well-known programming language C.

6.5.2 Mapping Rule Selection using the Algorithm according to Fig. 5e

In the following, another algorithm for a selection of the mapping rule will be described
taking reference to Fig. Se. It should be noted that the algorithm “arith get pk” according
to Fig. Se receives, as an input variable, a state value s describing a state of the context.
The function “arith_get pk™ provides, as an output value, or return value, an index “pki” of
a probability model, which may be an index for selecting a mapping rule, (e.g., a
cumulative-frequencies-table).

It should be noted that the function ,,arith get pk“ according to Fig. 5e may take the
functionality of the function “arith_get_pk” of the function “value_decode” of Fig. 3.

It should also be noted that the function “arith_get pk” may, for example, evaluate the
table ari_s_hash according to Fig. 20, and the table ari_gs_hash according to Fig. 18.

The function “arith_get pk” according to Fig. 5e comprises a first table evaluation 550 and
a second table evaluation 560. In the first table evaluation 550, a linear scan is made
through the table ari_s hash, to obtain an entry j=ari_s hash[i] of said table. If a state
value described by the most-significant 24 bits of a table entry j=ari_s_hash[i] of the table
ari_s_hash is equal to the state value s, a mapping rule index value ,,pki“ desctibed by the
least-significant 8 bits of said identified table entry j=ari_s_hash[i] is returned and the
function “arith_get_pk” is aborted. Accordingly, all 387 entries of the table ari_s_hash are
evaluated in an ascending sequence unless a “direct hit” (state value s equal to the state
value described by the most-significant 24 bits of a table entry j) is identified.

If a direct hit is not identified within the first table evaluation 550, a second table
evaluation 560 is executed. In the course of the second table evaluation, a linear scan with
entry indices i increasing linearly from zero to a maximum value of 224 is performed.
During the second table evaluation, an entry “ari_gs hash[i]” of the table “ari_gs_hash”
for table i is read, and the table entry “j=ari_gs hash[i]” is evaluated in that it is
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determined whether the state value represented by the 24 most-significant bits of the table
entry j is larger than the state value s. If this is the case, a mapping rule index value
described by the 8 least-significant bits of said table entry j is returned as the return value
of the function “arith_get pk”, and the execution of the function “arith_get pk” is aborted.
If, however, the state value s is not smaller than the state value described by the 24 most-
significant bits of the current table entry j=ari_gs hash[i], the scan through the entries of
the table ari_gs hash is continued by increasing the table index i. If, however, the state
value s is larger than or equal to any of the state values described by the entries of the table
ari_gs hash, a mapping rule index value ,,pki* defined by the 8 least-significant bits of the
last entry of the table ari_gs hash is returned as the return value of the function
“arith_get pk”.

To summarize, the function “arith get pk™ according to Fig. Se performs a two-step
hashing. In a first step, a search for a direct hit is performed, wherein it is determined
whether the state value s is equal to the state value defined by any of the entries of a first
table “ari_s hash”. If a direct hit is identified in the first table evaluation 550, a return
value is obtained from the first table “ari s hash” and the function “arith_get pk” is
aborted. If, however, no direct hit is identified in the first table evaluation 550, the second
table evaluation 560 is performed. In the second table evaluation, a range-based evaluation
is performed. Subsequent entries of the second table “ari_gs hash” define ranges. If it is
found that the state value s lies within such a range (which is indicated by the fact that the
state value described by the 24 most-significant bits of the current table entry
“j=ari_gs hash[i]” is larger than the state value s, the mapping rule index value “pki”
described by the 8 least-significant bits of the table entry j=ari_gs hash[i] is returned.

6.5.3 Mapping Rule Selection using the Algorithm according to Fig. 5f

The function “get pk” according to Fig. 5f is substantially equivalent to the function
“arith get pk” according to Fig. 5e. Accordingly, reference is made to the above

discussion. For further details, reference is made to the pseudo program representation in
Fig. 5f.

It should be noted that the function ,,get pk“ according to Fig. 5f may take the place of the
function “arith_get pk” called in the function “value_decode” of Fig. 3.

6.6. Function “arith decode()” according to Fig. 5¢
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In the following, the functionality of the function “arith decode()” will be discussed in
detail taking reference to Fig. Sg. It should be noted that the function “arith_decode()” uses
the helper function “arith first symbol (void)”, which returns TRUE, if it is the first
symbol of the sequence and FALSE otherwise. The function “arith_decode()” also uses the
helper function “arith_get next bit(void)”, which gets and provides the next bit of the
bitstream.

In addition, the function “arith _decode()” uses the global variables “low”, “high” and
“value”. Further, the function “arith_decode()” receives, as an input variable, the variable
“cum_freq[]”, which points towards a first entry or element (having element index or entry
index 0) of the selected cumulative-frequencies-table. Also, the function “arith decode()”
uses the input variable “cfl”, which indicates the length of the selected cumulative-

frequencies-table designated by the variable “cum_freq[]”.

The function “arith_decode()” comprises, as a first step, a variable initialization 570a,
which is performed if the helper function “arith_first symbol()” indicates that the first
symbol of a sequence of symbols is being decoded. The value initialization 550a initializes
the variable “value” in dependence on a plurality of, for example, 20 bits, which are
obtained from the bitstream using the helper function “arith_get next bit”, such that the
variable “value” takes the value represented by said bits. Also, the variable “low” is
initialized to take the value of 0, and the variable “high” is initialized to take the value of
1048575.

In a second step 570b, the variable “range” is set to a value, which is larger, by 1, than the
difference between the values of the variables “high” and “low”. The variable “cum” is set
to a value which represents a relative position of the value of the variable “value” between
the value of the variable “low” and the value of the variable “high”. Accordingly, the
variable “cum” takes, for example, a value between 0 and 2'° in dependence on the value
of the variable “value”.

The pointer p is initialized to a value which is smaller, by 1, than the starting address of the
selected cumulative-frequencies-table.

The algorithm “arith_decode()” also comprises an iterative cumulative-frequencies-table-
search 570c. The iterative cumulative-frequencies-table-search is repeated until the
variable cfl is smaller than or equal to 1. In the iterative cumulative-frequencies-table-
search 570c, the pointer variable q is set to a value, which is equal to the sum of the current
value of the pointer variable p and half the value of the variable “cfl”. If the value of the
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entry *q of the selected cumulative-frequencies-table, which entry is addressed by the
pointer variable q, is larger than the value of the variable “cum”, the pointer variable p is
set to the value of the pointer variable q, and the variable “cfl” is incremented. Finally, the
variable “cfl” is shifted to the right by one bit, thereby effectively dividing the value of the
variable “cfl” by 2 and neglecting the modulo portion.

Accordingly, the iterative cumulative-frequencies-table-search 570c¢ effectively compares
the value of the variable “cum” with a plurality of entries of the selected cumulative-
frequencies-table, in order to identify an interval within the selected cumulative-
frequencies-table, which is bounded by entries of the cumulative-frequencies-table, such
that the value cum lies within the identified interval. Accordingly, the entries of the
selected cumulative-frequencies-table define intervals, wherein a respective symbol value
is associated to each of the intervals of the selected cumulative-frequencies-table. Also, the
widths of the intervals between two adjacent values of the cumulative-frequencies-table
define probabilities of the symbols associated with said intervals, such that the selected
cumulative-frequencies-table in its entirety defines a probability distribution of the
different symbols (or symbol values). Details regarding the available cumulative-
frequencies-tables will be discussed below taking reference to Fig. 19.

Taking reference again to Fig. 5g, the symbol value is derived from the value of the pointer
variable p, wherein the symbol value is derived as shown at reference numeral 570d. Thus,
the difference between the value of the pointer variable p and the starting address
“cum_freq” is evaluated in order to obtain the symbol value, which is represented by the
variable “symbol”.

The algorithm “arith_decode” also comprises an adaptation 570e of the variables “high”
and “low”. If the symbol value represented by the variable “symbol” is different from 0,
the variable “high” is updated, as shown at reference numeral 570e. Also, the value of the
variable “low” is updated, as shown at reference numeral 570e. The variable “high” is set
to a value which is determined by the value of the variable “low”, the variable “range” and
the entry having the index “symbol —1” of the selected cumulative-frequencies-table. The
variable “low” is increased, wherein the magnitude of the increase is determined by the
variable “range” and the entry of the selected cumulative-frequencies-table having the
index “symbol”. Accordingly, the difference between the values of the variables “low” and
“high” is adjusted in dependence on the numeric difference between two adjacent entries
of the selected cumulative-frequencies-table.
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Accordingly, if a symbol value having a low probability is detected, the interval between
the values of the variables “low” and “high” is reduced to a narrow width. In contrast, if
the detected symbol value comprises a relatively large probability, the width of the interval
between the values of the variables “low” and “high” is set to a comparatively large value.
Again, the width of the interval between the values of the variable “low” and “high” is
dependent on the detected symbol and the corresponding entries of the cumulative-
frequencies-table.

The algorithm “arith_decode()” also comprises an interval renormalization 570f, in which
the interval determined in the step 570e is iteratively shifted and scaled until the “break”-
condition is reached. In the interval renormalization 570f, a selective shift-downward
operation 570fa is performed. If the variable “high” is smaller than 524286, nothing is
done, and the interval renormalization continues with an interval-size-increase operation
5701b. If, however, the variable “high” is not smaller than 524286 and the variable “low” is
greater than or equal to 524286, the variables “values”, “low” and “high” are all reduced
by 524286, such that an interval defined by the variables “low” and “high” is shifted
downwards, and such that the value of the variable “value” is also shifted downwards. If,
however, it is found that the value of the variable “high” is not smaller than 524286, and
that the variable “low” is not greater than or equal to 524286, and that the variable “low” is
greater than or equal to 262143 and that the variable “high” is smaller than 786429, the
variables “value”, “low” and “high” are all reduced by 262143, thereby shifting down the
interval between the values of the variables “high” and “low” and also the value of the
variable “value”. If, however, neither of the above conditions is fulfilled, the interval
renormalization is aborted.

If, however, any of the above-mentioned conditions, which are evaluated in the step 570fa,
is fulfilled, the interval-increase-operation 570fb is executed. In the interval-increase-
operation 570fb, the value of the variable “low” is doubled. Also, the value of the variable
“high” is doubled, and the result of the doubling is increased by 1. Also, the value of the
variable “value” is doubled (shifted to the left by one bit), and a bit of the bitstream, which
is obtained by the helper function “arith get next bit” is used as the least-significant bit.
Accordingly, the size of the interval between the values of the variables “low” and “high”
is approximately doubled, and the precision of the variable “value” is increased by using a
new bit of the bitstream. As mentioned above, the steps 570fa and 570fb are repeated until
the “break” condition is reached, i.e. until the interval between the values of the variables
“low” and “high” is large enough.
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Regarding the functionality of the algorithm “arith decode()”, it should be noted that the
interval between the values of the variables “low” and “high” is reduced in the step 570¢ in
dependence on two adjacent entries of the cumulative-frequencies-table referenced by the
variable “cum_freq”. If an interval between two adjacent values of the selected
cumulative-frequencies-table is small, i.e. if the adjacent values are comparatively close
together, the interval between the values of the variables “low” and “high”, which is
obtained in the step 570e, will be comparatively small. In contrast, if two adjacent entries
of the cumulative-frequencies-table are spaced further, the interval between the values of
the variables “low” and “high”, which is obtained in the step 570e, will be comparatively
large.

Consequently, if the interval between the values of the variables “low” and “high”, which
is obtained in the step 570e, is comparatively small, a large number of interval
renormalization steps will be executed to re-scale the interval to a “sufficient” size (such
that neither of the conditions of the condition evaluation 570fa is fulfilled). Accordingly, a
comparatively large number of bits from the bitstream will be used in order to increase the
precision of the variable “value”. If, in contrast, the interval size obtained in the step 570e
is comparatively large, only a smaller number of repetitions of the interval normalization
steps 570fa and 570fb will be required in order to renormalize the interval between the
values of the variables “low” and “high” to a “sufficient” size. Accordingly, only a
comparatively small number of bits from the bitstream will be used to increase the
precision of the variable “value” and to prepare a decoding of a next symbol.

To summarize the above, if a symbol is decoded, which comprises a comparatively high
probability, and to which a large interval is associated by the entries of the selected
cumulative-frequencies-table, only a comparatively small number of bits will be read from
the bitstream in order to allow for the decoding of a subsequent symbol. In contrast, if a
symbol is decoded, which comprises a comparatively small probability and to which a
small interval is associated by the entries of the selected cumulative-frequencies-table, a
comparatively large number of bits will be taken from the bitstream in order to prepare a
decoding of the next symbol.

Accordingly, the entries of the cumulative-frequencies-tables reflect the probabilities of the
different symbols and also reflect a number of bits required for decoding a sequence of
symbols. By varying the cumulative-frequencies-table in dependence on a context, i.e. in
dependence on previously-decoded symbols (or spectral values), for example, by selecting
different cumulative-frequencies-tables in dependence on the context, stochastic
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dependencies between the different symbols can be exploited, which allows for a particular

bitrate-efficient encoding of the subsequent (or adjacent) symbols.

To summarize the above, the function “arith_decode()”, which has been described with
reference to Fig. 5g, is called with the cumulative-frequencies-table “arith cf m[pki][]”,
corresponding to the index “pki” returned by the function “,arith_get pk()” to determine
the most-significant bit-plane value m (which may be set to the symbol value represented
by the return variable “symbol™).

6.7 Escape Mechanism

While the decoded most-significant bit-plane value m (which is returned as a symbol value
by the function “arith_decode ()” is the escape symbol “ARITH_ESCAPE”, an additional
most-significant bit-plane value m is decoded and the variable “lev” is incremented by 1.
Accordingly, an information is obtained about the numeric significance of the most-

significant bit-plane value m as well as on the number of less-significant bit-planes to be
decoded.

If an escape symbol “ARITH_ESCAPE” is decoded, the level variable “lev” is increased
by 1. Accordingly, the state value which is input to the function “arith get pk” is also
modified in that a value represented by the uppermost bits (bits 24 and up) is increased for
the next iterations of the algorithm 312ba.

6.8 Context Update according to Fig. 5h

Once the spectral value is completely decoded (i.e. all of the least-significant bit-planes
have been added, the context tables q and gs are updated by calling the function
“arith_update_context(a,i,lg))”. In the following, details regarding the function
“arith_update context(a,i,lg)” will be described taking reference to Fig. Sh, which shows a
pseudo program code representation of said function.

The function “arith_update_context()” receives, as input variables, the decoded quantized
spectral coefficient a, the index i of the spectral value to be decoded (or of the decoded
spectral value) and the number lg of spectral values (or coefficients) associated with the
current audio frame.
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In a step 580, the currently decoded quantized spectral value (or coefficient) a is copied
into the context table or context array q. Accordingly, the entry q[1][i] of the context table
q is set to a. Also, the variable “a0” is set to the value of “a”.

In a step 582, the level value q[1][i].]1 of the context table q is determined. By default, the
level value q[1][i].] of the context table q is set to zero. However, if the absolute value of
the currently coded spectral value a is larger than 4, the level value g[1][i].l is incremented.
With each increment, the variable “a” is shifted to the right by one bit. The increment of
the level value q[1][i].l is repeated until the absolute value of the variable a0 is smaller
than, or equal to, 4.

In a step 584, a 2-bit context value q[1]{i].c of the context table q is set. The 2-bit context
value q[1][1].c is set to the value of zero if the currently decoded spectral value a is equal to
zero. Otherwise, if the absolute value of the decoded spectral value a is smaller than, or
equal to, 1, the 2-bit context value q[1][i].c is set to 1. Otherwise, if the absolute value of
the currently decoded spectral value a is smaller than, or equal to, 3, the 2-bit context value
q[1][i].c is set to 2. Otherwise, i.e. if the absolute value of the currently decoded spectral
value a is larger than 3, the 2-bit context value q[1][i].c is set to 3. Accordingly, the 2-bit
context value g[1][i].c is obtained by a very coarse quantization of the currently decoded
spectral coefficient a.

In a subsequent step 586, which is only performed if the index i of the currently decoded
spectral value is equal to the number lg of coefficients (spectral values) in the frame, that
is, if the last spectral value of the frame has been decoded) and the core mode is a linear-
prediction-domain core mode (which is indicated by “core mode==1"), the entries
q[1]{j].c are copied into the context table gs[k]. The copying is performed as shown at
reference numeral 586, such that the number g of spectral values in the current frame is
taken into consideration for the copying of the entries q[1][j].c to the context table gs[k]. In
addition, the variable “previous_lg” takes the value 1024,

Alternatively, however, the entries g[1][jl.c of the context table q are copied into the
context table gs[j] if the index i of the currently decoded spectral coefficient reaches the

value of lg and the core mode is a frequency-domain core mode (indicated by
“core_mode==0").

In this case, the variable “previous_lg” is set to the minimum between the value of 1024
and the number 1g of spectral values in the frame.
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6.9 Summary of the Decoding Process

In the following, the decoding process will briefly be summarized. For details, reference is
made to the above discussion and also to Figs. 3, 4 and 5a to 5i.

The quantized spectral coefficients a are noiselessly coded and transmitted, starting from
the lowest frequency coefficient and progressing to the highest frequency coefficient.

The coefficients from the advanced-audio coding (AAC) are stored in the array
“x_ac_quant[g][win][sfb][bin]”, and the order of transmission of the noiseless coding
codewords is such, that when they are decoded in the order received and stored in the
array, bin is the most rapidly incrementing index and g is the most slowly incrementing
index. Index bin designates frequency bins. The index “sfb” designates scale factor bands.

[P

The index “win” designates windows. The index “g” designates audio frames.

The coefficients from the transform-coded-excitation are stored directly in an array
“x_tex_invquant[win]{bin]”, and the order of the transmission of the noiseless coding
codewords is such that when they are decoded in the order received and stored in the array,
“bin” is the most rapidly incrementing index and “win” is the most slowly incrementing
index.

First, a mapping is done between the saved past context stored in the context table or array
“qgs” and the context of the current frame q (stored in the context table or array q). The past
context “qs” is stored onto 2-bits per frequency line (or per frequency bin).

The mapping between the saved past context stored in the context table “qs” and the
context of the current frame stored in the context table “q” is performed using the function

“arith_map_context()”, a pseudo-program-code representation of which is shown in Fig.
Sa.

The noiseless decoder outputs signed quantized spectral coefficients “a”.

At first, the state of the context is calculated based on the previously-decoded spectral
coefficients surrounding the quantized spectral coefficients to decode. The state of the
context s corresponds to the 24 first bits of the value returned by the function
“arith_get context()”. The bits beyond the 24™ bit of the returned value correspond to the
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predicted bit-plane-level lev0. The variable ,,lev* is initialized to lev0. A pseudo program

code representation of the function “arith_get context” is shown in Figs. 5b and 5c.

Once the state s and the predicted level ,,lev0“ are known, the most-significant 2-bits wise
plane m is decoded -using the function “arith decode()”, fed with the appropriated
cumulative-frequencies-table corresponding to the probability model corresponding to the
context state.

The correspondence is made by the function “arith_get pk()”.
A pseudo-program-code representation of the function “arith get pk()”is shown in Fig. Se.

A pseudo program code of another function “get pk”™ which may take the place of the
function “arith_get pk()” is shown in Fig. 5f. A pseudo program code of another function
“get_pk”, which may take over the place of the function “arith_get pk()” is shown in Fig.
5d.

The value m is decoded using the function “arith _decode()” called with the cumulative-
frequencies-table, “arith_cf m[pki][], where ,,pki“ corresponds to the index returned by the
function “arith_get pk()” (or, alternatively, by the function “get_pk()”).

The arithmetic coder is an integer implementation using the method of tag generation with
scaling (see, e.g., K. Sayood “Introduction to Data Compression” third edition, 2006,
Elsevier Inc.). The pseudo-C-code shown in Fig. 5Sg describes the used algorithm.

When the decoded value m is the escape symbol, “ARITH_ESCAPE”, another value m is
decoded and the variable ,lev is incremented by 1. Once the value m is not the escape
symbol, “ARITH_ESCAPE”, the remaining bit-planes are then decoded from the most-
significant to the least-significant level, by calling ,lev times the function
“arith_decode()”with the cumulative-frequencies-table “arith cf r[]”. Said cumulative-

frequencies-table “arith cf r[] may, for example, describe an even probability distribution.

The decoded bit planes r permit the refining of the previously-decoded value m in the
following manner:

a = m;
for (i=0; i<lev;it++) {
r = arith decode (arith_cf r,2);
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a=(a<<1) | (r&1);

Once the spectral quantized coefficient a is completely decoded, the context tables g, or the
stored context gs, is updated by the function “arith update context()”, for the next
quantized spectral coefficients to decode.

A pseudo program code representation of the function “arith _update context()” is shown
in Fig. 5h.

In addition, a legend of the definitions is shown in Fig. 5i.
7. Mapping Tables

In an embodiment according to the invention, particularly advantageous tables
“ari_s_hash” and “ari_gs hash” and “ari_cf m” are used for the execution of the function
“get_pk”, which has been discussed with reference to Fig. 5d, or for the execution of the
function “arith_get pk”, which has been discussed with reference to Fig. 5e, or for the
execution of the function “get_pk”, which was discussed with reference 5f, and for the
execution of the function “arith_decode” which was discussed with reference to Fig. 5g.

7.1. Table “ari s hash[387]” according to Fig. 17

A content of a particularly advantageous implementation of the table “ari_s_hash”, which
is used by the function “get pk” which was described with reference to Fig. 5d, is shown
in the table of Fig. 17. It should be noted that the table of Fig. 17 lists the 387 entries of the
table “ari_s_hash[387]”. It should also be noted that the table representation of Fig. 17
shows the elements in the order of the element indices, such that the first value
“0x00000200” corresponds to a table entry “ari_s_hash[0]” having element index (or table
index) 0, such that the last value “0x03D0713D” corresponds to a table entry
“ari_s_hash[386]” having element index or table index 386. It should further be noted her
that “Ox” indicates that the table entries of the table “ari_s hash” are represented in a
hexadecimal format. Furthermore, the table entries of the table “ari_s hash” according to
Fig. 17 are arranged in numeric order in order to allow for the execution of the first table
evaluation 540 of the function “get pk”.
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It should further be noted that the most-significant 24 bits of the table entries of the table
“ari_s_hash” represent state values, while the least-significant 8-bits represent mapping
rule index values pki.

Thus, the entries of the table “ari_s hash” describe a “direct hit” mapping of a state value
onto a mapping rule index value “pki”.

7.2 Table “ari gs hash” according to Fig, 18

A content of a particularly advantageous embodiment of the table “ari_gs hash” is shown
in the table of Fig. 18. It should be noted here that the table of table 18 lists the entries of
the table “ari_gs hash”. Said entries are referenced by a one-dimensional integer-type
entry index (also designated as “element index” or “array index” or “table index”), which
is, for example, designated with “i”. It should be noted that the table “ari_gs hash” which
comprises a total of 225 entries, is well-suited for the use by the second table evaluation
544 of the function “get pk” described in Fig. 5d.

It should be noted that the entries of the table “ari gs hash” are listed in an ascending
order of the table index i for table index values i between zero and 224. The term “0x”
indicates that the table entries are described in a hexadecimal format. Accordingly, the first
table entry “0X00000401” corresponds to table entry “ari_gs hash[0]” having table index
0 and the last table entry “OXffffff3f* corresponds to table entry “ari_gs hash[224]”
having table index 224.

It should also be noted that the table entries are ordered in a numerically ascending
manner, such that the table entries are well-suited for the second table evaluation 544 of
the function “get pk”. The most-significant 24 bits of the table entries of the table
“ari_gs hash” describe boundaries between ranges of state values, and the 8 least-
significant bits of the entries describe mapping rule index values “pki” associated with the
ranges of state values defined by the 24 most-significant bits.

7.3 Table “ari c¢f m” according to Fig. 19

Fig. 19 shows a set of 64 cumulative-frequencies-tables “ari_cf m[pki][9]”, one of which
is selected by an audio encoder 100, 700, or an audio decoder 200, 800, for example, for
the execution of the function “arith _decode”, i.e. for the decoding of the most-significant
bit-plane value. The selected one of the 64 cumulative-frequencies-tables shown in Fig. 19
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takes the function of the table “cum_freq[]” in the execution of the function
“arith_decode()”.

As can be seen from Fig. 19, each line represents a cumulative-frequencies-table having 9
entries. For example, a first line 1910 represents the 9 entries of a cumulative-frequencies-
table for “pki=0”. A second line 1912 represents the 9 entries of a cumulative-frequencies-
table for “pki=1". Finally, a 64™ line 1964 represents the 9 entries of a cumulative-
frequencies-table for “pki=63”. Thus, Fig. 19 effectively represents 64 different
cumulative-frequencies-tables for “pki=0” to a “pki=63”, wherein each of the 64
cumulative-frequencies-tables is represented by a single line and wherein each of said

cumulative-frequencies-tables comprises 9 entries.

Within a line (e.g. a line 1910 or a line 1912 or a line 1964), a leftmost value describes a
first entry of a cumulative-frequencies-table and a rightmost value describes the last entry
of a cumulative-frequencies-table.

Accordingly, each line 1910, 1912, 1964 of the table representation of Fig. 19 represents
the entries of a cumulative-frequencies-table for use by the function “arith decode”
according to Fig. 5g. The input variable “cum_freq[]” of the function “arith decode”
describes which of the 64 cumulative-frequencies-tables (represented by individual lines of
9 entries) of the table “ari_cf_m” should be used for the decoding of the current spectral
coefficients.

7.4 Table “ari s hash” according to Fig. 20

Fig. 20 shows an alternative for the table “ari_s hash”, which may be used in combination
with the alternative function “arith_get pk()” or “get_pk()” according to Fig. 5¢ or 5f.

The table “ari_s_hash” according to Fig. 20 comprises 386 entries, which are listed in Fig.
20 in an ascending order of the table index. Thus, the first table value “0x0090D52E”
corresponds to the table entry “ari_s_hash[0]” having table index 0, and the last table entry
“0x03D0513C” corresponds to the table entry “ari_s_hash[386]” having table index 386.

The “0x” indicates that the table entries are represented in a hexadecimal form. The 24
most-significant bits of the entries of the table “ari_s_hash” describe significant states, and
the 8 least-significant bits of the entries of the table “ari_s_hash” describe mapping rule
index values.
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Accordingly, the entries of the table “ari_s_hash” describe a mapping of significant states
onto mapping rule index values “pki”.

8. Performance Evaluation and Advantages

The embodiments according to the invention use updated functions (or algorithms) and an
updated set of tables, as discussed above, in order to obtain an improved tradeoff between
computation complexity, memory requirements, and coding efficiency.

Generally speaking, the embodiments according to the invention create an improved
spectral noiseless coding.

The present description describes embodiments for the CE on improved spectral noiseless
coding of spectral coefficients. The proposed scheme is based on the “original” context-
based arithmetic coding scheme, as described in the working draft 4 of the USAC draft
standard, but signiﬁcaﬁtly reduces memory requirements (RAM, ROM), while maintaining
a noiseless coding performance. A lossless transcoding of WD3 (i.e. of the output of an
audio encoder providing a bitstream in accordance with the working draft 3 of the USAC
draft standard) was proven to be possible. The scheme described herein is, in general,
scalable, allowing further alternative tradeoffs between memory requirements and
encoding performance. Embodiments according to the invention aim at replacing the
spectral noiseless coding scheme as used in the working draft 4 of the USAC draft
standard.

The arithmetic coding scheme described herein is based on the scheme as in the reference
model 0 (RMO) or the working draft 4 (WD4) of the USAC draft standard. Spectral
coefficients previous in frequency or in time model a context. This context is used for the
selection of cumulative-frequencies-tables for the arithmetic coder (encoder or decoder).
Compared to the embodiment according to WD4, the context modeling is further improved
and the tables holding the symbol probabilities were retrained. The number of different
probability models was increased from 32 to 64, '

Embodiments according to the invention reduce the table sizes (data ROM demand) to 900
words of length 32-bits or 3600 bytes. In contrast, embodiments according to WD4 of the
USAC draft standard require 16894.5 words or 76578 bytes. The static RAM demand is
reduced, in some embodiments according to the invention, from 666 words (2664 bytes) to
72 (288 bytes) per core coder channel. At the same time, it fully preserves the coding
performance and can even reach a gain of approximately 1.04% to 1.39%, compared to the
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overall data rate over all 9 operating points. All working draft 3 (WD3) bitstreams can be
transcoded in a lossless manner without affecting the bit reservoir constraints.

The proposed scheme according to the embodiments of the invention is scalable: flexible
tradeoffs between memory demand and coding performance are possible. By increasing the
table sizes to the coding gain can be further increased.

In the following, a brief discussion of the coding concept according to WD4 of the USAC
draft standard will be provided to facilitate the understanding of the advantages of the
concept described herein. In USAC WD4, a context based arithmetic coding scheme is
used for noiseless coding of quantized spectral coefficients. As context, the decoded
spectral coefficients are used, which are previous in frequency and time. According to
WD4, a maximum number of 16 spectral coefficients are used as context, 12 of which are
previous in time. Both, spectral coefficients used for the context and to be decoded, are
grouped as 4-tuples (i.e. four spectral coefficients neighbored in frequency, see Fig. 10a).
The context is reduced and mapped on a cumulative-frequencies-table, which is then used
to decode the next 4-tuple of spectral coefficients.

For the complete WD4 noiseless coding scheme, a memory demand (ROM) of 16894.5
words (67578 bytes) is required. Additionally, 666 words (2664 byte) of static ROM per
core-coder channel are required to store the states for the next frame.

The table representation of Fig. 11a describes the tables as used in the USAC WD4
arithmetic coding scheme.

A total memory demand of a complete USAC WD4 decoder is estimated to be 37000
words (148000 byte) for data ROM without a program code and 10000 to 17000 words for
the static RAM. It can clearly be seen that the noiseless coder tables consume
approximately 45% of the total data ROM demand. The largest individual table already
consumes 4096 words (16384 byte).

It has been found that both, the size of the combination of all tables and the large
individual tables exceed typical cache sizes as provided by fixed point chips for low-
budget portable devices, which is in a typical range of 8-32 kByte (e.g. ARM9e, TIC64xx,
etc). This means that the set of tables can probably not be stored in the fast data RAM,
which enables a quick random access to the data. This causes the whole decoding process
to slow down.
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In the following, the proposed new scheme will briefly be described.

To overcome the problems mentioned above, an improved noiseless coding scheme is
proposed to replace the scheme as in WD4 of the USAC draft standard. As a context based
arithmetic coding scheme, it is based on the scheme of WD4 of the USAC draft standard,
but features a modified scheme for the derivation of cumulative-frequencies-tables from
the context. Further on, context derivation and symbol coding is performed on granularity
of a single spectral coefficient (opposed to 4-tuples, as in WD4 of the USAC draft
standard). In total, 7 spectral coefficients are used for the context (at least in some cases).
By reduction in mapping, one of in total 64 probability models or cumulative frequency
tables (in WD4: 32) is selected.

Fig. 10b shows a graphical representation of a context for the state calculation, as used in

the proposed scheme (wherein a context used for the zero region detection is not shown in
Fig. 10b).

In the following, a brief discussion will be provided regarding the reduction of the memory
demand, which can be achieved by using the proposed coding scheme. The proposed new
scheme exhibits a total ROM demand of 900 words (3600 Bytes) (see the table of Fig. 11b
which describes the tables as used in the proposed coding scheme).

Compared to the ROM demand of the noiseless coding scheme in WD4 of the USAC draft
standard, the ROM demand is reduced by 15994.5 words (64978 Bytes)(see also Fig. 12a,
which figure shows a graphical representation of the ROM demand of the noiseless coding
scheme as proposed and of the noiseless coding scheme in WD4 of the USAC draft
standard). This reduces the overall ROM demand of a complete USAC decoder from
approximately 37000 words to approximately 21000 words, or by more than 43% (see Fig.
12b, which shows a graphical representation of a total USAC decoder data ROM demand
in accordance with WD4 of the USAC draft standard, as well as in accordance with the
present proposal).

Further on, the amount of information needed for the context derivation in the next frame
(static RAM) is also reduced. According to WD4, the complete set of coefficients
(maximally 1152) with a resolution of typically 16-bits additional to a group index per 4-
tuple of resolution 10-bits needed to be stored, which sums up to 666 words (2664 Bytes)
per core-coder channel (complete USAC WD4 decoder: approximately 10000 to 17000
words).
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The new scheme, which is used in embodiments according to the invention, reduces the
persistent information to only 2-bits per spectral coefficient, which sums up to 72 words
(288 Bytes) in total per core-coder channel. The demand on static memory can be reduced
by 594 words (2376 Bytes).

In the following, some details regarding a possible increase of coding efficiency will be
described. The coding efficiency of embodiments according to the new proposal was
compared against the reference quality bitstreams according to WD3 of the USAC draft
standard. The comparison was performed by means of a transcoder, based on a reference
software decoder. For details regarding the comparison of the noiseless coding according
to WD3 of the USAC draft standard and the proposed coding scheme, reference is made to
Fig. 9, which shows a schematic representation of a test arrangement.

Although the memory demand is drastically reduced in embodiments according to the
invention when compared to embodiments according to WD3 or WD4 of the USAC draft
standard, the coding efficiency is not only maintained, but slightly increased. The coding
efficiency is on average increased by 1.04% to 1.39%. For details, reference is made to the
table of Fig. 13a, which shows a table representation of average bitrates produced by the
USAC coder using the working draft arithmetic coder and an audio coder (e.g., USAC
audio coder) according to an embodiment of the invention.

By measurement of the bit reservoir fill level, it was shown that the proposed noiseless
coding is able to losslessly transcode the WD3 bitstream for every operating point. For
details, reference is made to the table of Fig. 13b which shows a table representation of a
bit reservoir control for an audio coder according to the USAC WD3 and an audio coder
according to an embodiment of the present invention.

Details on average bitrates per operating mode, minimum, maximum and average bitrates
on a frame basis and a best/worst case performance on a frame basis can be found in the
tables of Figs. 14, 15, and 16, wherein the table of Fig. 14 shows a table representation of
average bitrates for an audio coder according to the USAC WD3 and for an audio coder
according to an embodiment of the present invention, wherein the table of Fig. 15 shows a
table representation of minimum, maximum, and average bitrates of a USAC audio coder
on a frame basis, and wherein the table of Fig. 16 shows a table representation of best and
worst cases on a frame basis.

In addition, it should be noted that embodiments according to the present invention provide
a good scalability. By adapting the table size, a tradeoff between memory requirements,
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computational complexity and coding efficiency can be adjusted in accordance with the
requirements.

9. Bitstream Syntax

9.1.  Payloads of the Spectral Noiseless Coder

In the following, some details regarding the payloads of the spectral noiseless coder will be
described. In some embodiments, there is a plurality of different coding modes, such as for
example, a so-called linear-prediction-domain, “coding mode” and a “frequency-domain”
coding mode. In the linear-prediction-domain coding mode, a noise shaping is performed
on the basis of a linear-prediction analysis of the audio signal, and a noise-shaped signal is
encoded in the frequency-domain. In the frequency-domain mode, a noise shaping is
performed on the basis of a psychoacoustic analysis and a noise-shaped version of the
audio content is encoded in the frequency-domain.

Spectral coefficients from both, a “linear-prediction domain™ coded signal and a
“frequency-domain” coded signal are scalar quantized and then noiselessly coded by an
adaptively context dependent arithmetic coding. The quantized coefficients are transmitted
from the lowest-frequency to the highest-frequency. Each individual quantized coefficient
is split into the most significant 2-bits-wise plane m, and the remaining less-significant bit-
planes r. The value m is coded according to the coefficient’s neighborhood. The remaining
less-significant bit-planes r are entropy-encoded, without considering the context. The
values m and r form the symbols of the arithmetic coder.

A detailed arithmetic decoding procedure is described herein.
9.2.  Syntax Elements

In the following, the bitstream syntax of a bitstream carrying the arithmetically-encoded
spectral information will be described taking reference to Figs. 6a to 6h.

Fig. 6a shows a syntax representation of so-called USAC raw data block
(*usac_raw_data_block()”).

The USAC raw data block comprises one or more single channel elements
(“single_channel_element()”) and/or one or more channel pair elements
(“channel pair_element()”).
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Taking reference now to Fig. 6b, the syntax of a single channel element is described. The
single channel element comprises a linear-prediction-domain channel stream
(“lpd_channel_stream ()”) or a frequency-domain channel stream (“fd_channel_stream ()”)
in dependence on the core mode.

Fig. 6¢c shows a syntax representation of a channel pair element. A channel pair element
comprises core mode information (“core_mode0”, “core_model”). In addition, the channel
pair element may comprise a configuration information “ics_info()”. Additionally,
depending on the core mode information, the channel pair element comprises a linear-
prediction-domain channel stream or a frequency-domain channel stream associated with a
first of the channels, and the channel pair element also comprises a linear-prediction-
domain channel stream or a frequency-domain channel stream associated with a second of
the channels.

The configuration information “ics_info()”, a syntax representation of which is shown in
Fig. 6d, comprises a plurality of different configuration information items, which are not of
particular relevance for the present invention.

A frequency-domain channel stream (“fd_channel stream ()”), a syntax representation of
which is shown in Fig. 6e, comprises a gain information (“global gain”) and a
configuration information (“ics_info ()”). In addition, the frequency-domain channel
stream comprises scale factor data (“scale factor data ()”), which describes scale factors
used for the scaling of spectral values of different scale factor bands, and which is applied,
for example, by the scaler 150 and the rescaler 240. The frequency-domain channel stream
also comprises arithmetically-coded spectral data (“ac_spectral data ()”), which represents
arithmetically-encoded spectral values.

The arithmetically-coded spectral data (“ac_spectral data()”), a syntax representation of
which is shown in Fig. 6f, comprises an optional arithmetic reset flag (“arith_reset flag”),
which is used for selectively resetting the context, as described above. In addition, the
arithmetically-coded spectral data comprise a plurality of arithmetic-data blocks
(“arith_data”), which carry the arithmetically-coded spectral values. The structure of the
arithmetically-coded data blocks depends on the number of frequency bands (represented
by the variable “num_bands”) and also on the state of the arithmetic reset flag, as will be
discussed in the following.
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The structure of the arithmetically-encoded data block will be described taking reference to
Fig. 6g, which shows a syntax representation of said arithmetically-coded data blocks. The
data representation within the arithmetically-coded data block depends on the number Ig of
spectral values to be encoded, the status of the arithmetic reset flag and also on the context,
i.e. the previously-encoded spectral values.

The context for the encoding of the current set of spectral values is determined in
accordance with the context determination algorithm shown at reference numeral 660.
Details with respect to the context determination algorithm have been discussed above
taking reference to Fig. 5a. The arithmetically-encoded data block comprises lg sets of
codewords, each set of codewords representing a spectral value. A set of codewords
comprises an arithmetic codeword “acod_m [pki}[m]” representing a most-significant bit-
plane value m of the spectral value using between 1 and 20 bits. In addition, the set of
codewords comprises one or more codewords “acod r[r]” if the spectral value requires
more bit planes than the most-significant bit plane for a correct representation. The

codeword “acod_r [r]“ represents a less-significant bit plane using between 1 and 20 bits.

If, however, one or more less-significant bit-planes are required (in addition to the most-
significant bit plane) for a proper representation of the spectral value, this is signaled by
using one or more arithmetic escape codewords (“ARITH_ESCAPE”). Thus, it can be
generally said that for a spectral value, it is determined how many bit planes (the most-
significant bit plane and, possibly, one or more additional less-significant bit planes) are
required. If one or more less-significant bit planes are required, this is signaled by one or
more arithmetic escape codewords “acod_m [pki]| ARITH_ESCAPE]”, which are encoded
in accordance with a currently-selected cumulative-frequencies-table, a cumulative-
frequencies-table-index of which is given by the variable pki. In addition, the context is
adapted, as can be seen at reference numerals 664, 662, if one or more arithmetic escape
codewords are included in the bitstream. Following the one or more arithmetic escape
codewords, an arithmetic codeword “acod m [pki][m]” is included in the bitstream, as
shown at reference numeral 663, wherein pki designates the currently-valid probability
model index (taking into consideration the context adaptation caused by the inclusion of
the arithmetic escape codewords), and wherein m designates the most-significant bit-plane

value of the spectral value to be encoded or decoded.

As discussed above, the presence of any less-significant-bit planes results in the presence
of one or more codewords “acod_r [r]”, each of which represents one bit of the least-
significant bit plane. The one or more codewords “acod r[r]” are encoded in accordance
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with a corresponding cumulative-frequencies-table, which is constant and context-

independent.

In addition, it should be noted that the context is updated after the encoding of each
spectral value, as shown at reference numeral 668, such that the context is typically

different for encoding of two subsequent spectral values.

Fig. 6h shows a legend of definitions and help elements defining the syntax of the
arithmetically-encoded data block.

To summarize the above, a bitstream format has been described, which may be provided
by the audio coder 100, and which may be evaluated by the audio decoder 200. The
bitstream of the arithmetically-encoded spectral values is encoded such that it fits the
decoding algorithm discussed above.

In addition, it should be generally noted that the encoding is the inverse operation of the
decoding, such that it can generally be assumed that the encoder performs a table lookup
using the above-discussed tables, which is approximately inverse to the table lookup
performed by the decoder. Generally, it can be said that a man skilled in the art who knows
the decoding algorithm and/or the desired bitstream syntax will easily be able to design an
arithmetic encoder, which provides the data defined in the bitstream syntax and required by
the arithmetic decoder.

10.  Further Embodiments according to Figs. 21 and 22

In the following, some further simplified embodiments according to the invention will be
described.

Fig. 21 shows a block schematic diagram of an audio encoder 2100, according to an
embodiment of the invention. The audio encoder 2100 is configured to receive an input
audio information 2110 and to provide, on the basis thereof, an encoded audio information
2112. The audio encoder 2100 comprises an energy-compacting time-domain-to-
frequency-domain converter 2120, which is configured to receive a time-domain
representation 2122 of the input audio information 2110, and to provide, on the basis
thereof, a frequency-domain audio representation 2124, such that the frequency-domain
audio representation comprises a set of spectral values (for example, spectral values a).
The audio signal encoder 2100 also comprises an arithmetic encoder 2130, which is

configured to encode spectral values 2124, or a pre-processed version thereof, using a
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variable-length code word. The arithmetic encoder 2130 is configured to map a spectral
value, or a value of a most significant bit plane of a spectral value, onto a code value (for

example, a code value representing the variable-length code word).

The arithmetic encoder 2130 comprises a mapping rule selection 2132 and a context value
determination 2136. The arithmetic encoder is configured to select a mapping rule
describing a mapping of a spectral value 2124, or of a most significant bit plane of a
spectral value 2124, onto a code value (which may represent a variable length codeword)
in dependence on a numeric current context value describing a context state. The
arithmetic decoder is configured to determine a numeric current context value 2134, which
is used for the mapping rule selection 2132, in dependence on a plurality of previously
encoded spectral values and also in dependence on whether a spectral value to be encoded
is in a first predetermined frequency region or in a second predetermined frequency region.
Accordingly, the mapping 2131 is adapted to the specific characteristics of the different
frequency regions.

Fig. 22 shows a block schematic diagram of an audio signal decoder 2200 according to
another embodiment of the invention. The audio signal decoder 2200 is configured to
receive an encoded audio information 2210 and to provide, on the basis thereof, a decoded
audio information 2212. The audio signal decoder 2200 comprises an arithmetic decoder
2220, which is configured to receive an arithmetically encoded representation 2222 of the
spectral values and to provide, on the basis thereof, a plurality of decoded spectral values
2224 (for example, decoded spectral values a). The audio signal decoder 2200 also
comprises a frequency-domain-to-time-domain converter 2230, which is configured to
receive the decoded spectral values 2224 and to provide a time-domain audio
representation using the decoded spectral values, in order to obtain the decoded audio
information 2212.

The arithmetic decoder 2220 comprises a mapping 2225, which is used to map a code
value (for example, a code value extracted from a bit stream representing the encoded
audio information) onto a symbol code (which symbol code may describe, for example, a
decoded spectral value or a most significant bit plane of the decoded spectral value). The
arithmetic decoder further comprises a mapping rule selection 2226, which provides a
mapping rule selection information 2227 to be mapping 2225. The arithmetic decoder 2220
also comprises a context value determination 2228, which provides a numeric current
context value 2229 to the mapping rule selection 2226. The arithmetic decoder 2220 is
configured to select a mapping rule describing a mapping of a code value (for example, a
code value extracted from a bit stream representing the encoded audio information) onto a
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symbol code (for example, a numeric value representing the decoded spectral value or a
numeric value representing a most significant bit plane of the decoded spectral value) in
dependence on a context state. The arithmetic decoder is configured to determine a
numeric current context value describing the current context state in dependence on a
plurality of previously decoded spectral values and also in dependence on whether a
spectral value to be decoded is in a first predetermined frequency region or in a second

predetermined frequency region.

Accordingly, different characteristics of different frequency regions are considered in the
mapping 2225, which typically brings along increased coding efficiency without

significantly increasing the computational effort.

11.  Implementation Alternatives

Although some aspects have been described in the context of an apparatus, it is clear that
these aspects also represent a description of the corresponding method, where a block or
device corresponds to a method step or a feature of a method step. Analogously, aspects
described in the context of a method step also represent a description of a corresponding
block or item or feature of a corresponding apparatus. Some or all of the method steps may
be executed by (or using) a hardware apparatus, like for example, a microprocessor, a
programmable computer or an electronic circuit. In some embodiments, some one or more

of the most important method steps may be executed by such an apparatus.

The inventive encoded audio signal can be stored on a digital storage medium or can be
transmitted on a transmission medium such as a wireless transmission medium or a wired
transmission medium such as the Internet.

Depending on certain implementation requirements, embodiments of the invention can be
implemented in hardware or in software. The implementation can be performed using a
digital storage medium, for example a floppy disk, a DVD, a Blue-Ray, a CD, a ROM, a
PROM, an EPROM, an EEPROM or a FLASH memory, having electronically readable
control signals stored thereon, which cooperate (or are capable of cooperating) with a
programmable computer system such that the respective method is performed. Therefore,
the digital storage medium may be computer readable.

Some embodiments according to the invention comprise a data carrier having

electronically readable control signals, which are capable of cooperating with a
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programmable computer system, such that one of the methods described herein is
performed.

Generally, embodiments of the present invention can be implemented as a computer
program product with a program code, the program code being operative for performing
one of the methods when the computer program product runs on a computer. The program
code may for example be stored on a machine readable carrier.

Other embodiments comprise the computer program for performing one of the methods
described herein, stored on a machine readable carrier.

In other words, an embodiment of the inventive method is, therefore, a computer program
having a program code for performing one of the methods described herein, when the

computer program runs on a computer.

A further embodiment of the inventive methods is, therefore, a data carrier (or a digital
storage medium, or a computer-readable medium) comprising, recorded thereon, the
computer program for performing one of the methods described herein.

A further embodiment of the inventive method is, therefore, a data stream or a sequence of
signals representing the computer program for performing one of the methods described
herein. The data stream or the sequence of signals may for example be configured to be

transferred via a data communication connection, for example via the Internet.

A further embodiment comprises a processing means, for example a computer, or a
programmable logic device, configured to or adapted to perform one of the methods
described herein.

A further embodiment comprises a computer having installed thereon the computer

program for performing one of the methods described herein.

In some embodiments, a programmable logic device (for example a field programmable
gate array) may be used to perform some or all of the functionalities of the methods
described herein. In some embodiments, a field programmable gate array may cooperate
with a microprocessor in order to perform one of the methods described herein. Generally,
the methods are preferably performed by any hardware apparatus.
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The above described embodiments are merely illustrative for the principles of the present
invention. It is understood that modifications and variations of the arrangements and the
details described herein will be apparent to others skilled in the art. It is the intent,
therefore, to be limited only by the scope of the impending patent claims and not by the
specific details presented by way of description and explanation of the embodiments
herein.

While the foregoing has been particularly shown and described with reference to particular
embodiments above, it will be understood by those skilled in the art that various other
changes in the forms and details may be made without departing from the sprit and cope
thereof. It is to be understood that various changes may be made in adapting to different
embodiments without departing from the broader concept disclosed herein and
comprehended by the claims that follow.

12. Conclusion

To conclude, it can be noted that embodiments according to the invention create an
improved spectral noiseless coding scheme. Embodiments according to the new proposal
allows for the significant reduction of the memory demand from 16894.5 words to 900
words (ROM) and from 666 words to 72 (static RAM per core-coder channel). This allows
for the reduction of the data ROM demand of the complete system by approximately 43%
in one embodiment. Simultaneously, the coding performance is not only fully maintained,
but on average even increased. A lossless transcoding of WD3 (or of a bitstream provided
in accordance with WD3 of the USAC draft standard) was proven to be possible.
Accordingly, an embodiment according to the invention is obtained by adopting the
noiseless decoding described herein into the upcoming working draft of the USAC draft
standard.

To summarize, in an embodiment the proposed new noiseless coding may engender the
modifications in the MPEG USAC working draft with respect to the syntax of the
bitstream element “arith data()” as shown in Fig. 6g, with respect to the payloads of the
spectral noiseless coder as described above and as shown in Fig. Sh, with respect to the
spectral noiseless coding, as described above, with respect to the context for the state
calculation as shown in Fig. 4, with respect to the definitions as shown in Fig. 5i, with
respect to the decoding process as described above with reference to Figs. 5a, 5b, 5c, Se,
5g, Sh, and with respect to the tables as shown in Figs. 17, 18, 20, and with respect to the
function “get pk™ as shown in Fig. 5d. Alternatively, however, the table “ari s hash”
according to Fig. 20 may be used instead of the table “ari_s hash” of Fig. 17, and the
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function “get_pk” of Fig. 5f may be used instead of the function “get_pk” according to Fig.
5d.
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Claims

An audio decoder (200; 800; 2200) for providing a decoded audio information
(212; 812;2212) on the basis of an encoded audio information (210; 810; 2210) the
audio encoder comprising:

an arithmetic decoder (230;820;2220) for providing a plurality of decoded spectral
values 232; 822; 2224; a) on the basis of an arithmetically-encoded representation
(222; 821;2222; acod_m[pki][m], acod_r[r]) of the spectral values; and

a frequency-domain-to-time-domain converter (260; 830; 2230) for providing a
time-domain audio representation wusing the decoded spectral values
(232;822;2224;a), in order to obtain the decoded audio information;

wherein the arithmetic decoder is configured to select a mapping rule (cum_freq,
ari_cf m[pki][9]) describing a mapping of a code value (acod m[pki][m]; value)
onto a symbol code (symbol) in dependence on a context state;

wherein the arithmetic decoder is configured to determine a numeric current
context value (s) describing the current context state in dependence on a plurality of
previously decoded spectral values (&) and also in dependence on whether a spectral
value (a) to be decoded is in a first predetermined frequency region or in a second
predetermined frequency region.

The audio decoder according to claim 1, wherein the arithmetic decoder is
configured to selectively modify the numeric current context value (s) in
dependence on whether the spectral value (a) to be decoded is in a first

predetermined frequency region or in a second predetermined frequency region.

The audio decoder according to claim 1 or claim 2, wherein the arithmetic decoder
is configured to determine the numeric current context value (s) such that the
numeric current context value (s) is based on a combination of a plurality of
previously decoded spectral values, or on a combination of a plurality of
intermediate values (c0, c1, c2, ¢3, ¢4, c5, ¢6) derived from a plurality of previously
decoded spectral values (a), and such that the numeric current context value (s) is
selectively increased over a value obtained on the basis of a combination of a
plurality of previously decoded spectral values, or on the basis of a combination of
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a plurality of intermediate values (c0, cl, ¢2, c3, ¢4, c5, c6) derived from a plurality
of previously decoded spectral values, in dependence on whether a spectral value to
be decoded is in a first predetermined frequency region or in a second

predetermined frequency region.

The audio decoder according to one of claims 1 to 3, wherein the arithmetic
decoder is configured to distinguish between at least a first frequency region and a

second frequency region in order to determine the numeric current context value

(S)ﬂ

wherein the first frequency region comprises at least 15% of the spectral values
associated with a given temporal portion of the audio content, and wherein the first
frequency region is a low-frequency region and comprises an associated spectral

value having the lowest frequency.

The audio decoder according to one of claims 1 to 4, wherein the arithmetic
decoder is configured to distinguish between at least a first frequency region and a
second frequency region in order to determine the numeric current context value

(s)s

wherein the second frequency region comprises at least 15% of the spectral values
associated with a given temporal portion of the audio content, and wherein the
second frequency region is a high-frequency region and comprises an associated
spectral value having the highest frequency.

The audio decoder according to one of claims 1 to 5, wherein the arithmetic
decoder is configured to distinguish at least between a first frequency region, a
second frequency region and a third frequency region, in order to determine the
numeric current context value (s) in dependence on a determination in which of the
at least three frequency regions the spectral value to be decoded lies; and

wherein each of the first frequency region, the second frequency region and the
third frequency region comprises a plurality of associated spectral values.

The audio decoder according to claim 6, wherein at least one eighth of the spectral
values of a given temporal portion of the audio information are associated with the
first frequency region, and wherein at least one fifth of the spectral values of the
given temporal portion of the audio information are associated with the second
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10.

11.

frequency region, and wherein at least one quarter of the spectral values of the
given temporal portion of the audio information are associated with the third
frequency region.

The audio decoder according to one of claims 1 to 7, wherein the arithmetic
decoder is configured to compute a sum comprising at least a first summand and a
second summand, to obtain the numeric current context value (s) as a result of the

summation,

wherein the first summand is obtained by a combination of a plurality of
intermediate values (c0, cl1, ¢2, c3, c4, c5, c6) describing magnitudes of previously
decoded spectral values (a), and

wherein the second summand (region) describes to which frequency region, out of a
plurality of frequency regions, a spectral value to be decoded is associated.

The audio decoder according to one of claims 1 to 8, wherein the arithmetic
decoder is configured to modify one or more predetermined bit positions of a
binary representation of the numeric current context value (s) in dependence on a
determination in which frequency region out of a plurality of different frequency
regions the spectral value to be decoded lies.

The audio decoder according to one of claims 1 to 9, wherein the arithmetic
decoder is configured to select a mapping rule in dependence on the numeric
current context value (s), such that a plurality of different numeric current context
values (s) result in a selection of a same mapping rule.

The audio decoder according to one of claims 1 to 10, wherein the arithmetic
decoder is configured to perform a two-step selection of a mapping rule in
dependence on the numeric current context value;

wherein the arithmetic decoder is configured to check, in a first selection step,
whether the numeric current context value (s) or a value derived therefrom, is equal
to a significant state value described by an entry of a direct-hit table (ari_s hash);
and

wherein the arithmetic decoder is configured to determine, in a second selection
step, which is only executed if the numeric current context value (s), or a value
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12.

13.

derived therefrom, is different from the significant state values described by the
entries of the direct-hit table, in which interval, out of a plurality of intervals, the

numeric current context value (s) lies; and

wherein the arithmetic decoder is configured to select the mapping rule in

dependence on a result of the first selection step or the second selection step; and

wherein the arithmetic decoder is configured to select the mapping rule, in the first
selection step or in the second selection step, in dependence on whether a spectral

value to be decoded is in a first frequency region or in a second frequency region.

The audio decoder according to claim 11, wherein the arithmetic decoder is
configured to selectively modify one or more least-significant bit portions of a
binary representation of the numeric current context value (s) in dependence on a
determination in which frequency region out of a plurality of different frequency
regions the spectral value to be decoded lies;

wherein the arithmetic decoder is configured to determine, in the second selection
step, in which interval out of a plurality of intervals, the binary representation of the
numeric current context value (s) lies,

to select the mapping, such that some numeric current context values result in a
selection of the same mapping rule independent from which frequency region the
spectral value to be decoded lies in, and

such that for some numeric current context values, the mapping rule is selected in

dependence on which frequency region the spectral value to be decoded lies in.

An audio signal encoder (100; 700; 2100) for providing an encoded audio
information (112; 712; 2112) on the basis of an input audio information (110; 710;
2110), the audio encoder comprising:

an energy-compacting time-domain-to-frequency-domain converter (130; 720;
2120) for providing a frequency-domain audio representation (132; 722; 2124) on
the basis of a time-domain representation (110; 710; 2122) of the input audio
information, such that the frequency-domain audio representation comprises a set
of spectral values (a);
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14.

15.

an arithmetic encoder (170; 730; 2130) configured to encode spectral values (a), or

a preprocessed version thereof, using a variable length codeword (acod_m, acod r),

wherein the arithmetic encoder is configured to map a spectral value (a) or a value
(m) of a most-significant bit plane of a spectral value (a), onto a code value
(acod_m),

wherein the arithmetic encoder is configured to select a mapping rule
(ari_cf _m[pki][9]) describing a mapping of a spectral value (a), or of a most-
significant bit plane (m) of a spectral value (a), onto a code value in dependence on
a context state (s),

wherein the arithmetic encoder is configured to determine a numeric current
context value (s) describing the current context state in dependence on a plurality of
previously encoded spectral values and also in dependence on whether a spectral
value to be encoded is in a first predetermined frequency region or in a second
predetermined frequency region.

A method for providing a decoded audio information on the basis of an encoded
audio information, the method comprising:

providing a plurality of decoded spectral values on the basis of an arithmetically-
encoded representation of the spectral values; and

performing a frequency-domain-to-time-domain conversion, to provide a time-
domain audio representation using the decoded spectral values, in order to obtain
the decoded audio information;

wherein a mapping rule describing a mapping of a code value onto a symbol code is
selected in dependence on a context state; and

wherein a numeric current context value describing the current context state is
determined in dependence on a plurality of previously decoded spectral values and
also in dependence on whether a spectral value to be decoded is in a first

predetermined frequency region or in a second predetermined frequency region.

A method for providing an encoded audio information on the basis of an input
audio information, the method comprising:
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16.

performing an energy-compacting time-domain-to-frequency-domain conversion,
to provide a frequency-domain audio representation on the basis of a time-domain
representation of the input audio information, such that the frequency-domain audio
representation comprises a set of spectral values; and

encoding a spectral value, or a preprocessed version thereof using a variable-length
codeword;

wherein a spectral value, or a value of a most-significant bit plane of a spectral
value, is mapped onto a code value;

wherein a mapping rule describing a mapping of a spectral value, or of a most-
significant bit plane of a spectral value, onto a code value is selected in dependence
on a context state;

wherein a numeric current context value describing the current context state is
determined in dependence on a plurality of previously encoded spectral values and
also in dependence on whether a spectral value to be encoded is in a first

predetermined frequency region or in a second predetermined frequency region.

A computer program for performing one of the methods according to claim 14 or

claim 15 when the computer program runs on a computer.
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value _decode ()

{
310 ——— arith_map_context(lg);

for (i=0;i<lg; i++) {
(s =arith_get context (ilg,arith_reset flag,N/2);
( 312a levl = lev = s> >24;
t = s & OXFFFFFF + 1;
for (j=0;;) {

[ pki = arith_get_pk(t+((lev-lev0) < < 24))
cum_freq = table_start position (pki);
cfl = table_length (pki); -

S < m = arith_decode(); use between 1 and 20 bits
312b4 & of bits acod_m
it (m!= ARITH_ESCAPE)
o break;
R & lev +=1;
s
| a-nm

for (I=lev; I>0; I--) {

cum_freq = arith_cf r;
312¢ il =2
r = arith_decode; use between 1 and 20 bits
of bits acod_r
a=a< <1+
}
N4— Arith_update context(a,i,!g);
}
}

FIG 3
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/*Input variables™/
lg /*number of sepctral coefficients to decode in the frame*/
previous_|g /Previous number of spectral lines of the previous frame™/

arith_map_context()

{
v=w=0
ratio= ((float)previous_lg)/((float)Ig);
for(j=0; j<Ig; j+ +){
k = (int) ((float)) ((j)*ratio);
q[0][v++].c = qs[w+K];
)
previous_Ig=1g;
}

FIG 5A

SUBSTITUTE SHEET (RULE 26)



WO 2011/048099 PCT/EP2010/065726

8/43

/*Input variables™/
FI G 5 B i /*Index of the spectral value to decode in the vector™/

lg /*Number of expected quantized coefficients™/

N /*Number of lines of the transformation*/

ari_reset_flag /*flag indicating whether the context should be reset™/
/*Output value™/

t /*Concatenated state index s and predicted bit-plane level lev0™/

arith_get_context()
int a0,c0,c1,¢2,¢3,c4,¢5,¢6,iev0,region;

if(arith reset flag && i==0)
510 return(0);
if((tarith_reset_flag) && (i!=0)){
int k;
int lim_min,lim_max;
512a— intflag=1;
lim_max = i+6;
if((i+1im_max)>Ig-1)
lim max=1g-1-i,
o1 2b< lim_min = -5;
if((i+1im_min)<0)
lim_min=-i;
for(k=4m_mink<0k+ +)
if(q[0][k]).ct=0 && g[1][k].c!=0)
, flag=0; break;
o1 2C< for(k<=tim_maxk++)
if(q[0][k].c!=0)
\ flag=0; break;

51 { i(flag)
}

512

—

return(1);

if(i>0){
[ a0=q(1](i-1};
514a c0=ABS(a0);
lev0=0;
while((a0 <-4)| | (20> =4)){
a0>>=1;
levl+ +;
c0=4+1ev0;

514b

}
514 if(c0=>7)

c0=7;
d14c if(lev0>3)

lev0=3;

if(arith_reset flag && i==1)
o1 4d{ return((2 +c0) | (lev0 < <24));
514e—  ca=q(0][i-1).c;
} < CONTINUED IN FIG 5C>
SUBSTITUTE SHEET (RULE 26)
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< CONTINUATION FROM FIG 5B>
Hi>1){
¢t=q[1][i-2].c;
516 levO=MAX(q[1][i-2].llevO):
c6=q[0][i-2].c;
}
if(i>2){
518———  lev0=MAX(q[1]{i-3].1.1ev0);
if(i <N/4)
region=0;
else if(i<N /2)
520 © region=1;
else
region=2;
} .
it(i>3)
522{ levO=MAX(q[1][i-4].1,lev0);
if(lev0>3)
524{ lev0=3;
if(arith_reset _flag)
526{ return((10+4*(8*c0+c1)+region) | (lev0< <24));
528—— c2=q[0}{i].c;
( if(i<Ig-1)
¢3=q0}fi+1}.c;
530 glse
-\ ¢3=0;
( if(i<lg-2)
532 ¢5=q(0}[i+2].c;

else
¢5=0;

if(lev0= =0)
f((c2==3 || ¢3 ==3) &&i==0)
lev0=1;

if(i==0)

363—» return((249+4* (4~ ¢2+c3) +¢d) | (lev0< <24));

PCT/EP2010/065726

else if(i==1)
536< 53— retum((313+4*(4*(4*(8"c0+C2)+c3) +c4)+c5) | (lev0 < <24));
else
536c——> return((4212-+4" (4 (4™ (4 (4 (4 *(8*c0+c2)+c3)+c4)+c1)+cd)+cb) +region)
| (lev< <24));

FIG 5C
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unsigned long get_pk(unsigned long s)

{

register unsigned long J;
register long i,i_min,i_max;

ari_get_pk_call_total++; -----------

( i min=-1;

541 i=i_min;
i_max=386;
while((i_max-i_min)>1){
5

42a— i=i_min+((i_max-i_min)/2);
542b— j=ari_s_hashli];

i max=i;
else if(s>(j> >8))
I_min=i;
else
return(j&OxFF);

if(s<(j>>8))
542<

540 \ }
if(i_max==i){
( j=ari_s_hash[i_min];

if(s==(j>>8))
return(j&O0xFF);

}
543§ e

j=ari_s_hash{i_max];

if(s=={(j>>8))
\ return(j& OxFF);

ari_get pk inc++;  -mo-eemooeoe-

ari_get pk inc++4;  --mmeemeoooe-

ari_get pk_inc++;  -----o-------

PCT/EP2010/065726
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optional
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TN\

| min=-1;
545 i=i_min;

i max=224,
while((i_max-i_min)>1){
5463— i=i_min+((i_max-i_min)/2);
__» j=ari_gs_hash(i];
246D ari_get_pk_inc++;
if(s<(j>>8))
546¢c— i max=i;
else if(s>(j> >8))
544 546< 5460— i min=i;
elseq
i max=i+1;
if(i_max=>224)
|_max=224,
break;

}
}

j=ari_gs_hash{i_max]; .
547 ari_get_pk_inc++; oo optional
return(j&OXFF);

}
const unsigned shart ari_pk 2{2] ={(1< <stat_bits)/2, 0};

FIG 5D2 FIG 5D1| Fig
FIG 5D2| 2D
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/*Input variable*/

s /*State of the context™/

/*Output value™/

pki /*Index of the probability model */

arith_get_pk(s)
{

register unsigned long ij;

for (i=0;i<387;i+ +)
{
550 j=ari_s_hashl[i];
if ((j>>8)==s)retun j&255;

b
for (i=0:i<225:i+ +)

560 j=ari_gs_hash{il;
if (s<(j>>8)) return j&255;
}
return {&255;

FIG SE

unsigned long get_pk(unsigned long s)

{
register unsigned longlong j;
register unsigned long i;

for (i=0;i<387;i+ +)

j=ari_s_hash([i];
if ((j>>8)==s)
return j&O0XFF;

}

for(i=0;i< 2251+ +){
j=ari_gs_hash([i];
if (s<(j>>8) ) return j&OxFF;

}
return(j&0xFF);

FIG 5F
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/*helper funtions™/
bool arith_first_symbol(void);

/* Return TRUE if it is the first symbol of the sequence, FALSE otherwise™/

Ushort arith_get_next_bit(void);
/* Get the next bit of the bitstream™/

/* global variables */
low

high

valug

/* Input variables */
cum_freq[); /* cumulative frequencies table™/

cfl: /* length of cum_freq([] */
arith_decode()
{
ifarith_first_symbol())
{
value = 0;
for (i=1:i<=20;i++)
{
570a value = (val<<1) | arith_get_next_bit();
¥
low=0;
high=1048575;
}

range = high-low+1;

PCT/EP2010/065726

57004 cum =((((int4) (value-low+1)) < <16)-((int64) 1))/((int64) range);

p = cum_freg-1,

do

{
q=p+(cfl>>1);
570c it (*q>cum) {p=q; cfl++;}
cfl>>=1;

while  cfl>1 );\/\

FIG 5G1
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570d—> symbol = p-cum_freq+1;
if(symbol)
570e high=low+(((int64) range)*((int64)cum_freq[symbol-1]))>>16 - 1;

low + = (((int64) range)* ((int64) cum_freq[symbol]})>>16;

for ;)

{
[ if (high<524286) { }
else if ( low>=524286)

value -=524286;
low -=524286;
high -=524286;

570fa< }

570f {

value -= 262143;
low -= 262143,;
high -= 262143;

}

else break;

low + = low,
57Ofb{ high + = high+1;

value = (value< <1) | arith_get_next_bit();

return symbol;

}

FIG 5G2
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/*input variables*/

a /*Decoded quantized spectral coefficient */

i /*Index of the quantized spectral coefficient to decode™/
lg /*number of coefficients in the frame*/

arith_update_context()
{ inta0;

580 —— a[1]li}=2a0=1;
q(1]{il.1=0;
while(ABS(a0)>4){

582 a0=a0>>1;
q[1{i].1++;
}
it(a==0)
q[1][i].c=0;
else if(ABS(a) < =1)
q{1jfij.c=1

else lf(ABS(a) =3)

q[1][i].c=

else
\ aMile=3

[ if(i==1g && core_mode==1){
' ratio= ((float) Ig)/((float)1024);
for(j=0; j<1024; j+ +){

k = (int) ((float) j*ratio);
586< \ asfj] = a[1]k).c;
previous lg = 1024,

584{

—

1
if(i==1g/4 && core_mode==0){
for(j=0; j<MIN(lg,1024; j+ +){
. i1 = a[1}{j].c,
588 } as(j] = af1}lil.c;
previous _lg = MIN(1024,1g);
}
}

FIG 5H
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Definitions

d

m

lev

lev0
arith_s_hashf}

arith_gs_hash(]

arith_cf_m[pki][9]

arith_ct r{]

previous g

a[2][]
gs(]

arith_reset_flag

PCT/EP2010/065726
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The quantized coefficient to decode

The most significant 2-bits wise plane of the quantized
spectral coefficient to decode.

The most significant 2-bits wise plane of the quantized
spectral coefficient to decode.

Level of the remaining bit-planes. it corresponds to
number the bit planes less significant than the most
significant 2 bits-wise plane.

Predicted bit-plane level

Hash table mapping states of the context to a cumulative
frequencies table index pki.

Hash table mapping group of states of context to a
cumulative frequencies table index pki.

Models of the cumulative frequencies for the most
significant 2-bits wise plane m and the ARITH_ESCAPE

symbol.

Cumulative frequencies for the least significant bit-planes
symbol r |

number of transmitted spectral coefficients previously
decoded by the arithmetic decoder

Window length. For AAC it is deduced from the

window_sequence (see section 6.8.3.1) and for TCX N=2.1g.

The current context for the spectral coefficient to decode.

The past context stored for the next frame.

Flag which indicates if the spectral noiseless context must be reset.

FIG 5
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usac_raw data_block ()

{

single_channel _element (); and/or
channel_pair_element ();

}

FIG 6A

Syntax of single_channel_element()

PCT/EP2010/065726

}

Syntax No. of bits ~ Mnemonic
single_channel_element()
{
core_mode 1 uimsbf
if (core_mode == 1) {
Ipd_channel_stream();
}
else {
fd_channel_stream();
}

FIG 6B
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Syntax of channel_pair_element()

Syntax No. of bits ~ Mnemonic
channel _pair_element()
{
core_mode0 1 uimsbf
core_mode1 1 uimsbf
ics_info(); optional: common ics_info for

two channels

if (core_mode0 == 1) {
Ipd_channel_stream();

}

else {
fd_channel_stream();

}

if (core_model ==1){
Ipd_channel_stream();

}

else {
fd_channel_stream();

FIG 6C
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Syntax of fd_channel_stream()

Syntax No. of bits ~ Mnemonic

fd_channel stream()

{ |
global_gain; 8 uimsbf
ics_info(); (unless included in

channel pair element)
scale_factor data ();

ac_spectral_data ();

}
FIG 6E
Syntax of ac_spectral_data()
Syntax No. of bits ~ Mnemonic
ac_spectral_data()
{ .
arith_reset_flag 1 uimsbf

for (win=0; win<num_windows; win+ +){
arith_data(num_bands, arith_reset_flag)
}

}

FIG 6F
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Definitions
arith_data()

arith_reset_flag

acod cf m{pki}[a]

arith_cf_rf]

Help elements
a

m

pki

arith_get_pk ()

t

arith_get_context ()
lev0

S

lev

ARITH_ESCAPE

PCT/EP2010/065726
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Data element to decode the spectral noiseless coder data

Flag which indicates if the spectral noiseless context must be
reset.

Arithmetic codeword necessary for arithmetic decoding of the
most significant 2-bits wise plane a of the quantized spectral
coefficient.

Arithmetic codeword necessary for arithmetic decoding of the
residual bit-planes of the quantized spectral coefficient.

The spectral quantized coefficient to decode

The most significant 2-bits wise plane of the quantized spectral
caefficient to decade.

The most significant 2-bits wise plane of the quantized spectral
coefficient to decode.

Window length. For AAC it is deduced from the
window_sequence (see section 6.8.3.1) and for TCXN=2.1g.

Number of quantized coefficients to decode.
Index of the quantized coefficients to decode within the frame.

Index of the cumulative frequencies table used by the arithmetic
decoder for decoding a.

Function that returns the index pki of cumulative frequencies table
necessary to decode the codeword acod _nglpkij[a].

State of context

Function that retumns the state of the context.

Predicted bit-plane level

State of the context combined with predicted bit-plane level lev0.

Level of bit-planes to decode beyond the most significant 2-bits
wise plane.

Escape symbol that indicates additional bit-planes to decode
beyond the predicted bit-plane level lev0.

FIG 6H
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800
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context for state calculation,
as used in USAC WD4

?

5| R N\ P71 4-tuples already decoded not
S [ e U i considered for the context
(N ~ e
2| A\ { '} 4-tuples not yet decoded

"""""""" 'E \ Ve’

\ 4-tuples already decoded
N T considered for the context
ANUTLE SO £ AN £ D R @ 4-tuple to decode
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context for state calculation,
as used in the proposed scheme
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ROM demand noiseless coding scheme as
proposed and in WD4

spectral noiseless coding ROM demand
(32 bit words)

16894.5
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6000-
4000- 900
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total USAC decoder data ROM demand,
WD4 and present proposal

USAC decoder data ROM demand

(32 bits)
s
25000: / ] @9% / Brgztén\t/v p[gzposal
N
wm X%
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average bitrates produced by USAC coder using WD

arithmetic coder and new proposal

new difference

difference after

: WD after ,
operating mode : proposal . transcoding
(KOIS) | piys) ”a(”ksbﬁgg')“g (% of total bitrate)

Test 1, 64kbps stereo |  64.00 63.34 -0.66 -1.04
Test 2, 32kbps stereo | 32.00 31.66 -0.34 -1.05
Test 3, 24kbps stereo | 24.00 23.73 -0.27 -1.11
Test 4, 20kbps stereo | 20.00 19.78 -0.22 -1.11
Test 5, 16kbps stereo | 16.00 15.82 -0.18 -1.10
Test 6, 24kbps mono |  24.00 23.68 -0.32 -1.32
Test 7, 20kbps mono |  20.00 19.72 -0.28 -1.39
Test 8, 16kbps mono | 16.00 15.79 -0.21 -1.3]
Test 9, 12kbps mono | 12.00 11.86 -0.14 -1.19

FIG 13A

bitreservoir control for USAC WD3 and new proposal

operating bitreservoir control
mode new proposal WD

min max avg min max avg
Test 1, 64kbps stereo | 3653 | 9557 | 8137 | 2314 | 9557 | 7018
Test 2, 32kbps stereo | 1808 | 4505 | 4196 [ 581 4505 | 3530
Test 3, 24kbps stereo | 1538 | 4704 | 4408 | 957 | 4704 | 3871
Test 4, 20kbps stereo | 2367 | 4864 | 4600 | 712 | 4864 | 3854
Test 5, 16kbps stereo | 2712 | 5006 | 4804 724 5006 | 4234
Test 6, 24kbps mono | 2185 [ 4704 | 4457 | 1002 | 4704 | 3927
Test 7, 20kbps mono | 2599 | 4864 | 4630 | 1192 | 4864 | 3935
Test 8, 16kbps mono | 2820 | 5006 | 4876 | 1434 | 5006 | 4450
Test 9, 12kbps maono | 3529 | 5184 | 5081 | 2256 | 5184 | 4787

FIG 13B
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average bitrates for USAC WD3 and new proposal

operating average bitrate in kbit/s
mode new proposal WD
WLPT WLPT
FD mode mode total [FD mode mode fotal
Test 1, 64kbps stereo | 53.73 -——- | 5373 [ 5440 | --- | 54.40
Test 2, 32kbps stereo | 25.31 | 26.34 | 25.60 | 25.80 | 26.61 | 26.02
Test 3, 24kbps stereo | 18.27 | 19.17 | 18.50 [ 18.66 | 19.40 | 18.85
Test 4, 20kbps stereo | 15.50 | 15.93 | 15.61 | 15.83 | 16.12 | 15.90
Test 5, 16kbps stereo | 12.45 | 12.60 | 12.52 | 12.80 | 12.73 | 12.77
Test 6, 24kbps mono | 19.94 | 19.51 [ 19.73 | 20.41 | 19.42 | 20.15
Test 7, 20kbps mono | 16.15 | 15.91 | 16.08 | 16.56 | 16.12 | 16.45
Test 8, 16kbps mono | 13.02 | 1259 | 12.81 | 13.45 | 12.73 | 13.09
Test 9, 12kbpsmono | 9.35 | 9.66 | 951 | 968 [ 971 | 9.70
FIG 14
minimum, maximum and average bitrates of USAC
on a frame basis
operating minimum maximum average
mode bitrate (Kbit/s) | bitrate (kbit/s) | bitrate (kbit/s)
Test 1, 64kbps stereo 15.26 101.79 63.34
Test 2, 32kbps stereo 13.13 48.61 31.66
Test 3, 24kbps stereo 11.69 36.58 23.73
Test 4, 20kbps stereo 3.09 30.94 19.78
Test 5, 16kbps stereo 4.02 26.47 15.82
Test 6, 24kbps mono 1.47 37.35 23.68
Test 7, 20kbps mono 1.38 31.13 19.72
Test 8, 16kbps mono 11.40 24.64 15.79
Test 9, 12kbps mono 8.72 18.91 11.86
FIG 15
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operating best case worst case

mode (bit/s) (%) (bit/s) (%)
Test 1, 64kbps stereo |  -30.87 -33.06 6.14 9.0/
Test 2, 32kbps stereo |  -10.33 -28.63 2.17 6.7/
Test 3, 24kbps stereo | -11.86 -30.75 1.85 7.71
Test 4, 20kbps stereo -7.45 -30.27 1.67 8.36
Test 5, 16kbps stereo -5.43 -27.89 1.50 9.42
Test 6, 24kbps mono -17.06 -45.83 1.25 4.36
Test 7, 20kbps mono | -15.86 -41.46 0.88 3.38
Test 8, 16kbps mono -4.75 -24.85 1.11 7.3
Test 9, 12kbps mono -3.95 -26.33 0.82 6.99

FIG 16




WO 2011/048099 PCT/EP2010/065726

35/43
/*
Entropy:
fu mem.: 1.2792 bit (100.00 %) FIG 17(1)
no mem. : 1.6289 bit (127.34 %)
split: : 1.2971 bit (101.40 %)
*/

/* 1224 States, Entropy increase: (0.000384 */ FIG FIG 17(1)
/*Final Entropy : 1.297556 */ 17 FIG 17(2)

/*Total states = 612;*/

/*Signicant states = 387;%/

/*Pseudo states = 225;*/

/*Proba models = 64;*/

unsigned long long ari get_pk_inc=0;
unsigned long long ari_get_pk_call_total=0;

static unsigned long ari_s_hash[387] = {

0x00000200, 0x00000B0O1, 0x00000C02, 0x00000D03, 0x00000F25, 0x0000101C, 0x0000110B,
0x00001327,

0x0000142F, 0x00002B25, 0x00002C22, 0x00002D14, 0x00002F2D, 0x0000302B, 0x0000312B,
0x00003330,

0x00003432, 0x00003532, 0x00004C32, 0x00005031, 0x00005131, 0x0000FAO2, 0x0000FBO1,
0x0000FC1C,

0x0000FE1C, OXOOOOFFlc 0x0001001E, 0x00010A2E, 0x00010B25, 0x00010E25, 0x00010F25,
0x00013938,

0x00013204, Ox00013802,0x00013C01,0x0010393D,Ox00107504,0x00107605,0x00107706,
0x0010790D, '
0x00107A07,0x00107B08, 0x0010850D, 0x00108609, OxOOlO87OA,0xOOlOSBOE O0x0010B50B,
0x0010B60C,

0x0010BR70D, OXOOIOB9OB 0x0010BA1D, O0xQQ10BB16,0x0010CE15,0x0010C70C, 0x0010F521,
0x0010F628,

0x0010F728,0x00110528,0x00117516, 000117608, 0x0011770F, 0x00117A12,0x00117B0O7,
0x0011870E,

0x0011B514, 0x0011B615, 0x0011B70C, 0x0011B914, 0x0011BA15, 0x0011BB1D, OxOOllC619,
0x0011C715,
0x00147516,0x00147610,0x00147711,0x0014791D, 0x00147A0C, 0x00147B0OE, 0x0014851B,
0x00148616,

0x00148707,0x0014890B, 0x00148A1D, OxOOl48816 0x0014950B, 0x0014961D, O0x0014B615,
0x0014BR71D,

0x0014BRA14,0x0014BB15,0x0014C614,0x0014C715, 0x0015052D 0x0015750B, 0x0015760C,
0x00157710,

0x0015790B, 0x00157A1D, 0x00157B16, 0x00158508, 0x0015861D, 0x0015870C, 0x00158914,
0x00158A15,

0x00158B1D, 0x0015B619, 0x0015B714,0x0020751D, 0x00207612, 0x00207713, 0x0020791D,
0x0020740C,

0x00207BOE, 0x00208508B, 0x0020860C, 0x00208710, 0x00208A1D, 0x00208B0C, 0x0020B615,
0x0020B71D,

0x0021750B, 0x0021760C, 0x0021770E, 0x0021790B, 0x00217Aa1D, 0x00217B12, 000218514,
0x00218615,

0x0021870C, 0x0021891¢C, 0x00218A15, 0x00218B1D, 0x0021B619, 0x0021B715, 0x0021BA22,
0x0021BB19,

0x00247514, 000247610, 0x0024770E, 0x00247914, 0x00247215, 0x00247B0C, 000248514,
0x0024861D,
0x00248716,0x0024891C, 00024815, 0x00248B1D, 0x0024RB619, 0x0024B715, 0x0025751C,
0x00257608B,
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0x0025771B, 0x0025791C, 0x00257A0B, 0x00257B1B, Ox0025851C 0x0025860B, 0x0025871B,
0x0025890B,

0x00258A1D, 0x00258B1B, 0x0025B618, 0x0025B722, 0x0025BA1F, 0x0025BB18, 0x0025C61F,
0x0025C718,

0x0025CALF, OxOOZSCBlF 0x003A9D1C, 0x003A9EQB, 0x003A9FOB, 0x004FB125, 0x004FB21C,
0x004FB31C,
0x00907514,0x00907615, 0x00907716, 0x00907919, 0x00907A15, 0x00907B1D, 0x00907D1C,
0x00907E1C,

0x00907F14,0x00908522, 0x00908614,0x0090871D, 0x00908918, 0x00908A19, 0x00908B14,
0x00908D24,

000909523, 0x0090961F, 0x0090992B, 0x0090B517, 0x0020B618, 0x0090B719, O0x0090BO1F,
0x0090BAZ22,

0x00380BB19,0x0090BD1C, 0x0090BELC, 0x0050BF1C, 0x00390C528, 0x0050C61F, Ox0050C718,
0x0090C917,

0x0090CA1F, 0x0090CB1F, 0x0090CD23, 0x0090D52E, 0x0090D62C, 0x0090D32C, 0x0090F52D,
0x0090F62D,

0x0090F72F, 0x0090F925, 0x0090FA2E, 0x0090FB2D, 0x0090FD1E, O0x0090FE1E, 0x0091052F,
0x0091062F,

0x00910928,0x00910D25, 0x00917519, 0x00917615, OxOO91771D 0x00917922, 0x00917A14,
0x00917B15,

0x00918619,0x00918714, 0x00918A18,0x00918B18, OxOO9lB618 0x0091B722, 0x0091BA1S,
0x0091BB18,

0x00947518,0x00947614,0x0094771D, 0x0094791F, OXOO947A19 0x00947B14, 0x00948520,
0x00948619,
0x00948714,0x00948A18, 0x00248B18, 0x0094B61F, 0x0094B718, 0x0094BA17, 0x0094BRB1F,
0x0094C617,

0x0094C717, 000957520, 0x00957622,0x00957714, Ox00957924 0x00957A18, 0x00957B18,
0x00958524,

0x00958618,0x00958718, 0x0095892B, 0x00958A17, OXOO958B1F 0x0095B52B, 0x0095B617,
0x0095B71F,

0x0095B92B, 0x0095BA17, 0x0095BB17, 0x00385C52C, 0x0095C617, 0x0095C717, OxOO95C92C
0x0095CAZB,

0x0095CB2C, 0x00A0751F, 0x00A07614,0x00A07715, 0x00A0791F, 0x00A07A19, 0x00A07B14,
0x00A0851F,

0x00A08622, OxOOA08714 0x00A08917,0x00A08A18, 0x00A08B18, 0x00A0B52B, 0x00A0B61F,
0x00A0B718,

0x00A0BA17, Ox00AOBB1F, 0x00R0C617, 0x00A0C717, 0x00A17524, 0x00A17622, 0x00A17714,
0x00A17924, _

0x00A17A18,0x00A17818, Ox00A1861F,0x00A18718, 0x00A18A17, 0x00A18B17, 0x00A1B617,
0x00A1B71F,

0x00A1BA17, 0x00A1BB17, 0x00A47524,0x00R47618, 0x00RA47714, 0x00A4792B, 0x00A47A18,
0x00R47B18,

0x00A4852B, 0x00A4861F, 0x00A48718, 0x00A4892B, Ox00A48A17, 0x00A48B17, 0x00A4B52C,
0x00A4B617,

0x00A4B717, OxOOA4B92C 0x00A4BA17,0x00A4BB17, 0x00A4C52E, O0x00AR4C62B, 0xO00RA4ACT 2B,
0x00RA4CO2E, _

0x0024CA2C, 0x00A4CB2C, Ox00A5752C, 0x00A57617, 0x00A57718, Ox00A5792B, O0x00A57AL17,
0x00A57B1F,

0x00A5852C, 0x00A58617, Ox00A5871F, 0x00A5892C, 0x00A58A17, 0x00A58B17, 0x00A5BS52E,
0x00A5B62B,

0x00R5B717, 0x00A5B92E, Ox00A5BA2C, 0x00A5BB2C, 0x00A5C52E, 0x00A5C62C, 0x00A5C72C,
0x00RA5CO92E,

0x00A5CAZC, 0x00A5CB2C, 0x00BASD2D, 0x00BASE2E, 0x00BAOF2E, 0x00CDD938, 0x00CE2D38,
0x00CEE938,

0x00CF2D38, 0x00D02D38, 0x00D0O313A, 0x00D0713A, 0x0110762F, 0x0110B632, 0x0110B731,
0x03D0113B,

0x03D0213C, 0x03D02D3D, 0x03D0313D, 0x03D0413C, 0x03D04D3D, 0x03D0513C, 0x03D05D3D,
0x03D06139,

(})>I.<O3DO693D,Ox03D06D3D,O%O3DO713D FIG F|G 17(1)
FIG 17(2) 17 |FIG17(2)
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static unsigned long ari_gs_hash([223] = {

0x00000401, 0x0001491a, 0x0001590B,0x00017621, 0x0001891C, 0x0009492A, 0xQ000DFA38,
0x000F6D3D,

0x0010003B, Ox0010B21R, 0x0011321C,0x00116B29,0x0011B31D, 0x00126B1E, 0x00136623,
0x00146729,

0x00146F3B, 0x0015321F, 0x00156E27, 0x00163320, 000182725, 0x00186727, 0x00196323,
0x001C4721,

Ox001E3F30, Ox001E433B, 0x00203F24a, 0200204638, 0x0020F322, 0x00216AZE, 0x00226723,
0x00245625,

0x00256724, 0x00286625, 0x002D3726, 0x002D573A, 0x00316627, 0x00326628, 0x00344729,
0x00366628,

0x003D4329,0x00416A2A, 0x0042533A,0x00916A2A, 0x00926R2B, 0x0093E72E, 0x00956B2C,
0x009D362D,

0x009D3B39, 0x009E4330, 0x00A2672E, 0x00AD372F, 0x01145630,0x01146B27, 0x011C8231,
0x01226732,

0x012CC333,0x01413B34, 0x019CA335,0x019CB338, 0x01ACB736, 0x01AD823D, 0x01C37F37,
0x02156738,

0x0218AB3BE, Ox021C9B35 0x021E0738,0x021FB73D, 0x0220E335, 0x02216B3C, 0x02217234,
0x0222B33C,

0x02239B3B, 0x0223B23Aa, 0x0224673RB, 0x0238A739, Ox024OB23D 0x024CBF38, 0x024CC23D,
0x024D8738,

O0x0297AF34, Ox02986727 0x0298BA33B, 0x0298A738, OX029CAF3B 0x029CC33A, 0x02A0AB35,
0x02A3E736,

0x02RC773B, OXOZBOB335,0x0283A73B,Ox02COD73C,OxOZC1E735,0XO3108E3D,OXO3109737,
0x0311D639,

0x03147F3C,0x0314R236, 0x0317A639,0x0317D629,0x0317DB33,0x03187627, 0x0318AF3B,
0x0318F61A,

0x0319D739, 0x031C953B, 0x031D633C, 0x031FCF39, 0x0320873B, 0x0320963A, 0x03222639,
0x0323833C,

0x03239227, 0x0323EAZF, 0x03242631,0x03242B38, 0x03248727, 0x3325AB39, 0x0327A73C,
0x0327C728,
0x03287727,0x03287E3A,0x03288737,0x0328AA39,0x032C7527}Ox032D2337,0X032E9B39,
0x032EA23B,

0x032ERF3C, 0x032F7E39, 0x0330C63C, 0x0332B23R, 0x0332F230, 0x03339F3B, O0x0333EE27,
0x03348F30,

0x0336AR3C, 0x0338A73B, 0x033A7639,0x033A7F1A, 0x033C793R, Ox033C9A34 0x033CA33B,
0x033CA738,

0x033D0A3C, 0x033DBR339, 0x033DFF3C, 0x033E9739, 0x0340CB3C, 0x0344573B, 0x0344AA3C,
0x0348263B,

0x034C7B3C, 0x034CBB3A, 0x034CD33C, 0x0390B73D, 0x0330E937, 0x0393653D, 0x0394B73B,
0x0394E33D,

0x0394FA38, 0x03950A3C, 0x0396CF3D, 0x03971A36, 0x0398673C, 0x0398E13B, 0x03994E39,
0x039C733B,

0x039D191A, 0x039D4536, 0x039E053C, 0x039E6E3D, 0x039E9D34, 0x039F8D39, 0x03A0CI93B,
0x03n67939,

0x03269D29, 0x03A6D637, 0x03A85A3C, 0x03AESB3B, 0x03AEDR3D, 0x03AF2E3C, 0x03BOAL3B,
0x03B2B139,

0x03B3123B, Ox03836339 0x03B3AD3C, Ox03R42E33, 0x03B4733R, Ox03B4F53C, Ox03B51F36,
0x03B59139, _
0x03B5CB3C, 0x03B61737, 0x03B93A3C, 0x03B98F39, 0x03BSF53C, 0x03BA063B, 0x03BA2A3C,
0x03BB2739,

0x03BD3B3B, O0x03BDCS39, 0x03BDF534, 0x03BFI9A39,0x03C16538, O0x03C19E2A, 0x03C20527,
0x03C3633B,

0x03C3823C, 0x03C3A527, 0x03C45A3B, 0x03C4993C, 0x03C5B23B, 0x03C5D527, O0x03C9563R,
0x03C9A93C,

0x03CA063B, 0x03CBOE3C, 0x03CCB53B, 0x03CD1E3C, 0x03CED23D, 0x03CEDF3C, Ox03CFFA39,
0x40BC673E,

OxFFFFFF3F

b
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unsigned short ari_cf m[64])[9] =

{65535,65534,65532,65215, 321,
{65490, 65339, 64638, 58133, 7463,
{65530, 65509, 65319, 60216, 5308,
(65534,65528, 65470, 62535, 3012,
{65533,65524,65435,62110, 3434,
(65535,65533, 65499, 62363, 3173,
{65535, 65534, 65522, 63164, 2371,
{65535, 65530, 65448,59939, 5612,
{65535,65533,65500,61498, 4044,
{65535,65530,65444, 59855, 5667,
(65535,65532, 65495, 61386, 4140,

{65522,65458,64905,55424,10056,
{65532,65511,65238,57072, 8457,
{65534,65522,65364,59096, 6461,
{65535,65530, 65426, 59204, 6342,
{65535,65533,65492, 61008, 4512,
{65535,65529,65417,58998, 6519,
{65535,65533,65490, 60856, 4679,
{65535,65528,65384,58400, 7127,
{65535,65532,65483, 60544, 4984,
{65517,65413,64537,53269,12264,
{65531,65503,65125,55553, 9985,
{65534,65518,65303,57889, 7650,
{65490, 65288, 63679, 49500,159%949,
{65522,65428,64429,51580,13957,
{65526,65447,64600,52808,12743,
{63814,60228,53108,40709,26294,1
{65526,65486,65133,57227, 8244,
{65500,65346,64297,52845,12477,
{65528,65486,65077,56652, 8871,
{65464,65186,63581,50731,14351,
{65489,65278,63861,51225,14185,
{65485,65249,63632,50425,14933,
{65292,64495,61270,47805,17600,
{65519,65421,64478,52517,12971,
{65470,65181,63344,49862,15299,
{65472,65197,63407,49933,15445,
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{65376,64781, 62057, 48496, 16676, 3614, 923, 340, 0},
{65259, 64356, 60836,47316,18158, 4979, 1517, 623, 0},
164883, 63190, 58260, 45006,21034, 8378, 3559, 1909, 0},
{65261,64180,60126,46710,18694, 5578, 1582, 531, 0},
{64933, 63355,58991,46299,19470, 7245, 2989, 1449, 0},
{63999, 61383,56309,44712,24964,14237, 9489, 7028, 0},
{65451,65091,62953,48747,16324, 2626, 522, 168, 0},
{65400, 64870,62109,47037,18198, 3526, 794, 278, 0},
{65200,64074,59673,44322,20692, 6133, 1836, 739, 0},
{65376,64798,61822,46437,18673, 3881, 932, 368, 0},
{65151, 63887,59083,43617,21491, 6768, 2081, 841, 0},
{64592,62314,56211,42184,24450,11142, 5265, 3075, 0},
(64908, 62840, 56205,41474,23652, 9844, 3388, 1379, 0},
{65021,63308,57341,42286,22972, 8709, 2895, 1232, 0},
{64790, 62474,55461,40843,24327,10719, 3921, 1677, 0},
{64053,60476,52429, 39583,26962,15208, 7592, 4166, 0},
{63317,58934,51305,40469,29263,19682,12661, 8553, 0},
{63871,59872,52031,39473,26093,15132, 7866, 4080, 0},
{63226,58553,50425,39191,28586,18779,11388, 7035, 0},
{62219,57006,49569,40492,32376,24784,18716,14447, 0},
{62905,58273,50651,39619,28123,18379,11633, 7478, 0},
{63420,59073,51922,41516,29863,20328,13529, 9237, 0},
{63582,59263,51165,37880,24026,13893, 7771, 4535, 0},
{63223,58418,49833,37279,25503,15421, 9122, 5802, 0},
{62322,56878,48746,39095,30723,22195,15849,11887, 0},
{61826,47222,47123,47015,46913,46806,13713, 6895, 0}, '

1964~ (60678, 44085, 44084, 44083, 44082, 44061, 16715, 9222, 0} +—pki=63

yi

FIG 19(2)
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static unsigned long ari_s hash[387] = {

0x0090D52E, 0x0090CB1F, 0x00A4CB2C, 0x00003330, 0x00107A07,0x00%07A15, 0x00207A0C,
0x00147A0C,

0x00247A15,0x00A07A19, 0x00947A19,0x00A47A18, 0x0010B70D, 0x0090B719, 0x0020B71D,
0x0014B71D,

0x00A0B718, 0x0094B718, 0x0024B715, 0x00A4B717, 0x0110B731, 0x0000FE1C, OX0090FE1E,
0x000138B02,

0x00ABCO92E, 0x0095C92C, 0x003A9E0B, 0x00000B01, 0xO00BASE2E, 0x0090992B, 0x0011B514,
Ox00A5B52E,

0x0095B528, 0x0090D62C, 0x0010850D, 0x0014851B, 0x00248514, 0x0020850B, 0x00908522,
0x00848520,

0x00A4852B, OxOOA0851F 0x00003432,0x00107B08, 0x00207B0E, 0x00907B1D, 0x00147B0OE,
0x00247R0C,

0x00A07B14, OxOO947Bl4,0xOOA47818,0x00910,¢8,0xO3DO713D,OxOODO713A,OxOuOOczlc,
0x0090F52D,

0x0010F521, 0x00013C01, 0x03D05D3D, 0x00A5CA2C, 0x0025CA1F, 0x0095CAZB, 0x003A9F0B,
0x00000C02,

0x00217908B, 0x0025791C, 0x00917922,0x0015790B, 0x00A17924, 0x00A57928B, 0x00957924,
0x0OO0BAYSF2E,

0x00CF2D38,0x00000200, 0x00118615,0x0091B618, 0x0021B619, 0x0015B619, 0x00A1B617,
0x0095B617,

0x0025B618, 0x00A5B62B, 0x004FB125, 000108609, 000148616, 0x0020860C, 0x00908614,
0x0024861D,

0x00948619, 0x00A08622, 0x00A4861F, 0x0090CD23, 0x00003532, 0x00010A2E, 0x00002B25,
0x0010B90B,

0x0090B91F, 0x00A4B32C, 0x0001001E, 0x03D0213C, 0x0090F62D, 0x0010F628, 0x00A5CB2C,
0x0025CB1F,

0x0095CB2C, 0x00000D03, 0x00117A12, 0x00217A1D, 0x00917A14, 0x00257A0B, 0x00157A1D,
0x00a17A18, ‘

0x00a57a17, 0x00957A18, 0x0011B70C, Dx0091B722, OxD021B715, 0x0015B714, Ox00A1B71F,
0x0025B722,

0x0095B71F, OxOOA5B717 0x004FB21C, 0x0010870A, 0x00148707,0x00208710,0x0090871D,
0x00248716,

0x00248714, 0x00A08714 0x00Rr48718,0x00907D1C, 0xk00010B25, Ox00002C22 Ox0010BALD,
0x0090BA22Z,
0x0014BA14VOxOOAOBA17,OxOO94BA17,0xOOA4BA17,0x03D0693D,Ox0090F72F,OxOOlOF728,
0x0025851C,

0x0015850B, 0x00218514, 0xD0A5852C, 0x00958524, 0x00117807 Ox00217R12, 0x00257B1B,
0x00917B15,

0x00157B16, 0x00A17B18, 0x00A57B1F, 0x00957B18, OxOO90D92C 0x004FB31C, 0x03D0413C,
0x00907E1C,

0x0090C52B, 0x00A4C52E, 0x00002D14, 0x00D02D38, 0x03D02D3D, 0x0010BB16, O0x0030BB19,
0x0014BB15,

0x00A0BB1F, 0x0094BB1F, 0x00A4BB17, 0x0025860B, 0x0015861D, 0x00218615, 0x00918619,
0x00A58617,

0x00958618, 0x00A1861F, 0x00000F25, Dx0O0OCEE938, 0x00004C32, 0x0011B914, Ox00ASBS2E,
0x0095B92B,

0x00148908B, 0x0024891C, 0x00908918, 0x00A4892B, 0x00A08917, 0x00907F14, 0x0010C615,
0x0090C61F,

0x0014Ce614, OxOO94C617 Ox00RA4C62B, 0x00A0C617, 0x00910D25, 0x00107504, 0x00907514,
0x00147516,

0x0020751D, 0x00247514, 0x00A0751F, 0x00947518, 0x00A47524, 0x0090F925, 0x0011870E,
0x0025871B,

0x0015870C, 0x0021870C, 0x00918714, 0x00A5871F, 0x00A18718,0x00958718, 0x03D06139,
0x0000101C,
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