(12) STANDARD PATENT (11) Application No. AU 2015353500 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

(21)
(87)
(30)

(31)

(74)

(56)

Title
Multi-tenancy via code encapsulated in server requests

International Patent Classification(s)
GO6F 21/53 (2013.01) GO6F 9/50 (2006.01)
GOG6F 9/455 (2006.01)

Application No: 2015353500 (22) Date of Filing: 2015.11.25
WIPO No: WO16/086111

Priority Data

Number (32) Date (33) Country
62/084,511 2014.11.25 us
14/951,223 2015.11.24 us
Publication Date: 2016.06.02

Accepted Journal Date: 2020.12.10

Applicant(s)
AuthO, Inc.

Inventor(s)
Janczuk, Tomasz;Woloski, Matias

Agent / Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

Related Art

US 2014/0096221 A1
US 2013/0340028 A1
US 2009/0172792 A1

wO 2016/086111 A 1[I I NPF V00 00O 0000 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

2 June 2016 (02.06.2016)

WIPOIPCT

(10) International Publication Number

WO 2016/086111 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

International Patent Classification:
GO6F 21/53 (2013.01) GO6F 9/455 (2006.01)
GO6F 9/50 (2006.01)

International Application Number:
PCT/US2015/062635

International Filing Date:
25 November 2015 (25.11.2015)

Filing Language: English
Publication Language: English
Priority Data:

62/084,511 25 November 2014 (25.11.2014) US
14/951,223 24 November 2015 (24.11.2015) US

Applicant: AUTHO, INC. [US/US]; 10777 Main Street,
Suite 204, Bellevue, Washington 98004 (US).

Inventors: JANCZUK, Tomasz; c/o AuthO, Inc., 10777
Main Street, Suite 204, Bellevue, Washington 98004 (US).
WOLOSKI, Matias; ¢/o AuthQ, Inc., 10777 Main Street,
Suite 204, Bellevue, Washington 98004 (US).

Agent: DANIEL, Gabriel; Han Santos Reich, PLLC, 1411
4th Avenue, Suite 760, Seattle, Washington 98101 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: MULTI-TENANCY VIA CODE ENCAPSULATED IN SERVER REQUESTS

100
\

FIG. 1

ONLINE FILE

WEBTASK

. STORAGE

~ 132

(57) Abstract: A multitenant infrastructure server (MTIS) is configured to provide an environment to execute a computer routine of
an arbitrary application. The MTIS receives a request from a webtask server to execute the computer routine in a webtask container.
The computer routine is executed in the webtask container at the MTIS. Upon successful execution of the computer routine, a result
set is returned to the webtask server. If the execution of the computer routine is unsuccessfil, an error notification is returned to the
webtask server. The resources consumed during the execution of the computer routine are determined. The webtask container is des -
troyed to prevent persistent storage of the computer routine on the MTIS.

WO 2016/086111 A1 |IIWAIK 00N 00O T

Published:
— with international search report (Art. 21(3))

WO 2016/086111 PCT/US2015/062635

MULTI-TENANCY VIA CODE ENCAPSULATED IN SERVER REQUESTS

BACKGROUND
[0001] Computer application architectures have trended towards distributing different
computing functions across multiple computers. Indeed, a majority of modern mobile and
web applications are based on a distributed architecture. For example, in a client-server
architecture, the split of application functionality between the front end and the backend
helps reuse backend computing resources across several clients. It also creates a trust
boundary between the client and the server, which enables servers to authorize access to
protect data or functionality. In a typical client-server application, the client submits data
for processing after authenticating itself to the backend, and the backend responds after
processing of the client request using protected resources.
[0002] A typical cloud backend of an application (¢.g., mobile or web) provides raw
computing resources (e.g., CPU, memory, disk, network, etc.,) as well as the operating
system and application framework capabilities that are different from that of the client.
The backend encapsulates server code that implements part of the application logic as well
as secrets this code requires to access protected data or functionality, such as database
connection strings, application program interfaces (API), security keys, etc.
[0003] Managing an infrastructure that hosts backend code may involve sizing,
provisioning, and scaling various servers, managing operating system updates, dealing
with security issues, updating hardware as needed, and then monitoring all these elements
for possible malfunctions. Thus, much effort is typically spent just on the logistics of
managing the backend. This effort may be better spent in developing, optimizing and/or
deploying computer applications.
[0004] Over the years, cloud computing has increased in popularity because it reduces

Information Technology (IT) costs, and makes server computing capability available as a

WO 2016/086111 PCT/US2015/062635

commodity/utility. Previously, the main approach to reduce costs was to lower the IT staff
by outsourcing server computing functions to cloud computing vendors. However,
presently there are several competing cloud computing vendors, so cost reductions are
now primarily technical in nature.

[0005] One technical approach to reduce costs, i8 to increase application density.
Specifically, hosting an application has resource costs such as memory and CPU. If there
is a way to share those resource costs across applications, then those resource costs can be
spread over those applications. Accordingly, multi-tenancy techniques have arisen to share
virtual machine resources, thereby increasing application density.

[0006] The cost to provision and allocate a physical machine is greater than the cost to
provision and allocate a virtual machine. In turn, the cost to provision and allocate a
virtual machine is greater than the cost to provision and allocate a multi-tenant container.
Finally, the cost to execute a process in a containers in turn is more expensive than the
cost to exccute a thread. Ideally, for a class of lightweight web applications, application
density could be maximized but running each application on a per thread basis. However,
while operating systems allow processes to manage resources, they do not provide
adequate functionality to manage resources at the thread level. Specifically, information
asscts of different tenants should be isolated from each other, such as in a multi-tenant
container, and resource use should be managed and metered to maintain quality of service
and allow for billing by the cloud computing vendor.

[0007] While platform as a service (PaaS) solutions that allow customers to develop,
run, and manage Web applications without the complexity of building and maintaining the
infrastructure typically associated with developing and launching an app exist, they come
with various concerns. For example, known PaaS platforms may not provide an attractive
cost structure and may run on an asynchronous programming model, requiring polling for

the results of the computation, which adversely affects latency. Further, known PaaS

12 Nov 2020

2015353500

architectures may require the code not only to be uploaded but also persistently stored. The
code then waits for events in order to complete its task. However, such approach includes
security risks in that the code is managed elsewhere, making it vulnerable to copying or
being hacked. It is with respect to these considerations and others that the present disclosure

has been written, and it is desired to provide at least a useful alternative.

BRIEF DESCRIPTION OF THE DRAWINGS
[0008] The drawing figures depict one or more implementations in accord with the present
teachings, by way of example only, not by way of limitation. In the figures, like reference
numerals refer to the same or similar elements.
[0009] FIG. 1 illustrates an example architecture for running a code of an arbitrary
application in a secure multi-tenant environment.
[0010] FIG. 2 illustrates a block diagram of the data framework for executing code in
multi-tenant containers.
[0011] FIG. 3 illustrates an example webtask virtual machine that may be used as the
multi-tenant infrastructure server of FIG. 1.
[0012] FIG. 4 illustrates a high level example call flow processes for executing a code in
a multi-tenant infrastructure environment.
[0013] FIG. 5 illustrates a network or host computer that may be on a cloud.

[0014] FIG. 6 illustrates a computer with user interface elements.

DETAILED DESCRIPTION
[0015] This disclosure generally relates to methods and systems of running a computer
routine in a virtual environment. The computing environment discussed herein receives the
computer routine in the form of computer code from a computer developer. A
determination is made of which computing language or languages are being used in the

routine. A container is created specifically for the routine, such that it is provisioned to

WO 2016/086111 PCT/US2015/062635

support the languages in the routine and any other infrastructure utilized or invoked by the
routine. Accordingly, the container will envelop the routine in a complete environment
that includes the c¢lements to run, such as code or a link thercto, system tools, system
libraries, etc., thereby assuring that that the routine will run in its virtual destination
environment. The virtual destination environment provides the raw resources required to
execute the routine, including memory, processing power, networking, etc. Unlike known
approaches, the routine is not uploaded for storage at rest, mapped to events, and stored at
rest at the destination computing environment (i.¢., virtual machine). Rather, the routine is
routed to a virtual machine with the corresponding environment for execution without an
expectation that the code will run again. Thus, the code is not stored at rest but destroyed
upon completion of the execution of the code.

[0016] A request to exccute the routine may be for an arbitrary application in that it is
independent of the guest operating system of the virtual destination environment.
Computer routine execution requests may be processed in a multi-tenancy infrastructure,
thereby providing isolation and metering capabilities. Requests may be in an arbitrary
programming language, provided that language bindings to the multi-tenancy
infrastructure are available.

[0017] Advantageously, the need to install and run a computer routine (e.g.,
applications) on the user’s own computer(s) is thereby rendered unnecessary, which
simplifies maintenance, scalability, security, and support. Further, in one embodiment, the
use of cloud computing helps avoid upfront infrastructure costs and allows businesses to
have their code executed faster, with improved manageability and less maintenance. Since
the code to be executed is isolated in its container and the container is destroyed upon

completion of the execution, additional security is provided.

WO 2016/086111 PCT/US2015/062635

Example System Architecture

[0018] FIG. 1 illustrates an example architecture for running a routine of an arbitrary
application in a secure multi-tenant environment. System 100 includes a client 102, a
webtask server 107, a multi-tenant infrastructure server (MTIS) 140 that may include
multiple containers, and an online file storage server 132. There is a network 130 that
facilitates communication between the different components of system 100. The network
120 may be, without limitation, a local area network (“LAN”), a virtual private network
(“VPN”), a cellular network, or the Internet. Accordingly, the client can communicate
with the webtask server 107 via the network 130 to send a computer routine of an arbitrary
application to be processed and to receive the corresponding results of the processing
therefrom. In one embodiment, instead of sending the routine to the webtask server 107, a
link is sent to a repository where the routine’s code is stored, such as the online file
storage server 132,

[0019] The webtask server 107 is configured to receive information from the client 102
and wrap the routine in a complete package that includes infrastructure to run in isolation
in the MTIS 140. The webtask server 107 then sends the “package” to the MTIS 140.
The webtask server 107 requests a container that has all the infrastructure to be used by
the computer routine from the MTIS 140. The webtask server 107 then dispatches the
computer routine together with metadata in the form of a package to the container
specified by the MTIS 140. The container then runs the routine in the package according
to the metadata. The container returns the results from running the routine back to the
webtask server 107. The webtask server 107 then returns the results back to the client 102
(e.g., on their browser).

[0020] The MTIS 140 may operate on a cloud and include raw computing resources that

arc used to execute the computer routine received from the webtask server 107. This

WO 2016/086111 PCT/US2015/062635

routine to be executed is non-persistent in that it is not stored in the MTIS 140. Instead,
the routine is discarded upon completion of the execution of the computer routine.
Example Functional Blocks

[0021] Reference now is made to FIG. 2, which illustrates a block diagram of the data
framework for executing code (e.g., a computer routine) in multi-tenant containers.
System 100 illustrates a client 102 communicating with a server 104 via a network 130.
[0022] The server 140 may operate on a cloud and include raw computing resources
142, such as CPU, memory, disk, ¢tc., as well as an operating system 144. Thus, server
140 provides raw computing resources 142 and an operating system, which can be viewed
as a cloud commodity. Server 140 provides the backend for an application in the form of
a computer routine to be run. What is notably missing from the server 140 is server code
that implements part of the application logic as well as secrets this code requires to access
protected data or functionality, such as database connection strings, API keys, etc. Both
server code and the secrets are data that are serialized together into one bundle 108 and
can now be found in the client 102. Further, in one embodiment, instead of storing all of
the server code in the bundle 108 of the client 102, the code is externalized to a location
that can be referenced with a uniform resource identifier (URL) 110, such as GitHub® or
Amazon Simple Storage Service (S3). Thus, the code can be linked to an online file
storage server 132.

[0023] The bundle 108, comprising the code (e.g., computer routine) for an arbitrary
application (or a URL link thereto) 110, and the client secrets 112, is referred to herein as
a webtask token 110, which defines backend application logic along with secrets for its
execution. In one embodiment, it is cryptographically protected 114 from tampering and
disclosure. It can be safely stored or passed through untrusted channels, like network 130.
[0024] It is the webtask server (e.g., 107 in FIG. 1) that decrypts the webtask token 110

and provides the already decrypted material to the server 140 (e.g., MTIS). For example,

WO 2016/086111 PCT/US2015/062635

the decryption is performed by the webtask server 107 because webtask containers in the
server 140 (e.g., MTIS) execute untrusted code and therefore are not given the
cryptographic keys to decrypt webtask tokens 110.

[0025] Since webtask tokens 108 may include an URL link 110 to the server code rather
than the code (e.g., computer routine) itself, the serialized size of the token is relatively
small given today’s bandwidth standards. Accordingly, webtask tokens 108 offer the
flexibility of being able to be passed around as part of the payload in various protocols,
including hypertext transfer protocol (HTTP). In the example of FIG. 1, the webtask
token is stored in the client 102 application itself. Accordingly, by keeping backend
secrets 112 included in the webtask token 108 at the client 102 end, the secrets remain safe
from disclosure due to the encryption 114. Thus, the webtask token is resistant to
tampering and spoofing.

[0026] When a request 124 originates from the client 102 and is sent to the server 140
over the network 130 to execute a computer routine for an arbitrary application, the
request 124 may include the client specific data 106, as well as the webtask token 108,
creating a webtask request. Accordingly, a webtask request is a request 124 from the
client 102, which includes a webtask token 110 in addition to regular client request data
106.

[0027] In one embodiment, the server 140 receives the webtask request 124 (i.e.,
comprising the webtask token 108 and the client data 106), retrieves the computer routine
from the online file storage 132, based on the URL 110 provided in the webtask token
108, and applies the appropriate computing resources 142 to execute the webtask request.
Accordingly, server 140 provides a generic execution environment for executing any
webtask request, instead of being focused on a particular application logic. A server, such
as server 140 that provides a generic and uniform execution environment for webtasks, is

sometimes referred to herein as an MTIS.

WO 2016/086111 PCT/US2015/062635

[0028] In one embodiment, in order to remain generic, the MTIS 140 provides a uniform
execution environment for all webtasks. Thus, backend logic of various applications that
run on the MTIS 140 have access to the same functionality provided by the operating
system (OS) 144 and pre-installed software packages.

[0029] The uniformity of the MTIS 140 together with the lack of an application-specific
state imposed by the webtask model has several advantages over traditional backends. For
example, webtask runtime can easily be scaled 104 by various disparate applications. It
therefore enables an application logic layer to leverage some of the same economics of
scale that large data centers utilize at the hardware level. Accordingly, the MTIS 140
enables commoditization of application logic processing at a higher level of abstraction
than known PaaS.

Example Multi-Tenant Model for Sandboxing Untrusted Computer Routines

[0030] In one embodiment, the MTIS 140 architecture is multi-tenant. Multitenancy
refers to an architecture in which a single instance of a computer routine (e.g., software)
runs on a server while serving multiple tenants. A tenant comprises a group of users who
share a common access with specific privileges to the software. With such a multitenant
architecture, a software application provides every tenant a share of the data,
configuration, user management, tenant individual functionality, as well as non-functional
properties. As noted before, the multitenancy architecture of the MTIS 140 discussed
herein increases application density.

[0031] One consideration in the multi-tenant architecture of the MTIS 140 is how to
prevent malicious (or a simply badly written) computer routine of one tenant from
accessing data of another tenant. In this regard, the webtask request discussed herein may
invoke a sandbox in the MTIS 140. A sandbox is a security mechanism for separating
running programs. It provides a tightly controlled set of resources for guest programs to

run in, such as a dedicated space on a memory. To that end, Docker® may be used to

WO 2016/086111 PCT/US2015/062635

create a secure (CONTAINER) sandbox around the webtask request. For example,
Docker separates applications from the infrastructure using container technology, similar
to how virtual machines scparate the operating system from bare metal. The webtask
request may be implemented as a Docker container that provides a link to a computer
routine and wraps the computer routine in a complete filesystem that essentially includes
the components to run, such as the runtime, system tools, system libraries, etc., thereby
assuring that it will run in its destination environment (i.e., the MTIS 140).

[0032] In onc embodiment the custom computer routine that is executed using webtask
requests 124 is in the context of an HTTP request. Execution time may be limited to the
typical lifetime of an HTTP request. Put differently, webtask requests 124 have a duration
sufficiently short to be satisfied by the HTTP request/response cycle or equivalent cycle.
[0033] For example, the webtask request 124 accepts an HTTP POST request from the
client 102 including the server code (or link thereto) in the webtask request 124 body. In
one embodiment, the webtask request 124 also specifies the webtask container name,
which denotes the isolation boundary the computer routine will execute in at the MTIS
140. There may be a 1:1 map of customer to webtask container, which means the
computer routine related to one subscriber is always isolated from the computer routine of
another subscriber. The MTIS 140 executes the custom computer routine in an isolated
environment, referred to sometimes herein as the webtask container, and sends back a
response with the results. In one embodiment, the response is in JavaScript Object
Notation (JSON). Thus, the custom computer routine provided via the webtask request
124 executes in a uniform environment across all tenants.

[0034] A webtask request 124 includes the computer routine (or a link thereto) as well
as contextual data required during its execution. For example, the client 102 submits a
JavaScript function closure. The MTIS 140 invokes that function and provides a single

callback parameter. When the custom computer routine in the webtask request has

WO 2016/086111 PCT/US2015/062635

finished executing in the webtask container, it calls the callback and provides an indication
of an error or a single result value. In one embodiment, that result value is then serialized
as JSON and returned to the client 102 in the HTTP response.

[0035] In onc embodiment, the MTIS 140 is based on Node.js, which allows a custom
computer routine to utilize a fixed set of Node.js modules pre-provisioned in the webtask
environment. The set of supported modules may be provided by the specific requirements
of various extensibility scenarios. The uniformity of the computing environment across all
tenants in the MTIS 140 allows the keeping of a pool of pre-warmed webtask containers
ready to be assigned to tenants when a request 124 arrives. This reduces the cold startup
latency.

[0036] The MTIS 140 is configured to reduce the amount of overhead in allocating
resources to process the webtask request 124. Resource allocation overhead may come in
the form of spawning virtual machines, spawning processes, spawning threads, and
allocating memory. Accordingly, the MTIS 140 may use resource pooling.

[0037] In one embodiment, computer routine environments can be isolated using third
party infrastructure compartments such as those provided by Docker (an open source).
Docker merely abstracts away environment, but does not provide multi-tenancy. Virtual
machines may also be pooled by the cloud infrastructure of the vendor and/or by a request
by the MTIS 140.

[0038] The MTIS 140 can spawn a process pool, and in licu of de-allocating processes,
can return the process to the pool. However, to reduce cloud overhead, in practice, the
number of processes allocated may be in the single digits, since requests are assumed to be
single threaded. Process management can also be managed by the execution environment
such as the Java Virtual Machine or Node.js® runtime.

[0039] The MTIS 140 may also use isolation and context primitives, such as v8::isolate

and v8::context to ensure execution of the computer routine in an isolated manner. In one

10

WO 2016/086111 PCT/US2015/062635

embodiment, the MTIS 140 may manage its own memory. Alternatively, the execution
environment such as the Java Virtual Machine or Node js® may manage its own memory.
Note that the execution environment may have its own memory allocator and its own
garbage collection.

[0040] In one embodiment, security may be implemented by using isolation primitives.
Specifically, an execution environment may execute the computer routine in a respective
sandbox. Additional security and authentication might be performed by the MTIS 140.
More typically, initial authentication may be to a public account to the cloud
infrastructure. Thus, authentication need not be on a per requests basis, thereby improving
performance.

[0041] In one embodiment, language bindings are managed by the execution
environment (i.c., MTIS 140). Bindings may be native to the execution environment, or
alternatively via an add-on, typically in the form of a dynamically linked library.
Execution environments (with different languages) may also be discovered dynamically
since sandboxes, which may be preconfigured with various execution environments, are
able to enumecrate those execution environments programmatically. Accordingly, the
MTIS 140 can determine what is supported, and quickly respond with an error message
rather than having to spawn/invoke a sandbox.

[0042] Pre-compilation may be an optimization implemented via the MTIS 140. For
example, the computer routine embedded in a webtask request 124 may be byte-code
rather than source code. Where stored procedures are invoked, a server side database may
have precompiled stored procedure (note the stored procedure may be resident on the
MTIS 140). In this way, a webtask request 124 can be made dependent solely on
parameters of the computer routine sent.

[0043] In various embodiments, the multi-tenant system described herein provides

various assurances for secure computer routine execution. First, there is data isolation

11

WO 2016/086111 PCT/US2015/062635

where the computer routine of one tenant is prevented from accessing the computer
routine or data of another tenant. For example, if one tenant runs a computer routine or
data that accesses a custom database using a connection string or URL with an embedded
password, the computer routine of another tenant running in the same system is prevented
from discovering that password.

[0044] Second, a controlled resource consumption to mitigate authenticated Denial of
Service (DOS) attacks is provided. To that end, in one embodiment, the sandbox of the
webtask request 124 limits the amount of memory, CPU, and other system resources any
one tenant can use.

[0045] Reference now is made to FIG. 3, which illustrates an example webtask virtual
machine (VM) that may be used as the MTIS 140 of FIG. 1. To isolate the computer
routine and data of one tenant from another, every tenant’s computer routine is run in its
own webtask container (e.g., Docker) in a sandbox 310. When an HTTP request arrives at
a webtask VM, such as the MTIS 140, it is first processed by a proxy 306. The proxy 306
maintains a state representing the association between tenants and containers. In one
embodiment, the proxy 306 looks at the etcd configuration to determine if a webtask
container is already assigned for a particular tenant. If it is, the proxy 306 forwards the
request to that webtask container 310. If it is not, the proxy assigns a new webtask
container for that tenant from a pool of pre-warmed webtask containers available in the
webtask cluster. The proxy then records that association in etcd (i.e., a daemon that runs
across all computers in a cluster and provides a dynamic configuration registry, allowing
various configuration data to be shared between the cluster members) for the sake of
subsequent requests.

[0046] The pre-warmed pool of webtask containers is made possible by the uniform

execution environment for all tenants. Being able to pick a pre-warmed container from a

12

WO 2016/086111 PCT/US2015/062635

pool reduces cold startup latency compared to provisioning a container on the fly, even if
one takes into account the already low startup latency of Docker containers.

[0047] In one embodiment, any single webtask container is just a simple HTTP server
that allows multiple, concurrent requests to be processed on behalf of a single tenant.
Requests executing within a specific webtask container are not isolated from each other.
The lifetime of the webtask containers is managed by the controller daemon, which runs in
a trusted Docker container and can therefore terminate any webtask container in a cluster
following a pre-configured lifetime management policy.

[0048] In one embodiment, in addition to running every tenant’s computer routine in its
own Docker container 310, egress firewall rules are configured in a webtask cluster. These
rules prevent an untrusted computer routine in one webtask container from communicating
with other webtask containers or the webtask infrastructure. Setting up the firewall rules
is possible because the HTTP server of the webtask container is running on a local
network separated from the host’s network by a bridge 308 (e.g., created by Docker). In
one embodiment, the computer routine running in the webtask container can initiate
outbound calls to the public internet. This enables outbound communication from the
custom computer routine to external data sources and services, such as a customer’s
database or corporate edge services.

[0049] To limit memory and CPU consumption, a control groups (cgroups) mechanism
(e.g., provided by Docker®) may be used. It should be noted that cgroups are mechanisms
supported by Linux, while Docker® is a technology that builds on top of cgroups. In
addition, every webtask container may create a transient Linux user and configures
Pluggable Authentication Modules (PAM) limits for that user on startup. These two
mechanisms together help prevent a range of attacks on memory and CPU such as fork

bombs.

13

WO 2016/086111 PCT/US2015/062635

Example Call Flow Process

[0050] With the foregoing overview of the multi-tenancy via code encapsulated in
server requests system, it may be helpful now to consider a high-level discussion of
example call flow processes. To that end, FIG. 4 illustrates a high level example call flow
process for executing a code (e.g., computer routine) in a multi-tenant infrastructure
environment, wherein the executed computer routine is non-persistent. The call flow
process 400 is illustrated as a collection of steps in a logical call flow, which represents a
sequence of operations that can be implemented in hardware, software, or a combination
therecof. In the context of software, the steps represent computer-executable instructions
that, when executed by one or more processors, perform the recited operations. Generally,
computer-executable instructions may include routines, programs, objects, components,
data structures, and the like that perform particular functions or implement particular
abstract data types. The order in which the operations are described is not intended to be
construed as a limitation, and any number of the described blocks can be combined in any
order and/or in parallel to implement the process. For discussion purposes, the process
400 is described with reference to system 100 of FIG. 1. In the example call flow 400,
there is a client 102, a webtask server 107, and a multi-tenant infrastructure server (MTIS)
140 in a cloud.

[0051] In step 408, a developer prepares a piece of code (e.g., a computer routine) to be
executed on their computing device, represented in flow 400 as the client 102. In one
embodiment, the computer routine is stored in an online file storage server 132.

[0052] In step 410, a connection is established with the webtask server 107 and a request
is sent to a well-defined endpoint a, where the computer routine for an arbitrary
application to be executed is a parameter of the request. The webtask request 124 includes
a webtask token 108 as well as client data 106. In various embodiments, the webtask

token 108 may comprise the computer routine (or a URL link to an online file storage that

14

WO 2016/086111 PCT/US2015/062635

stores the computer routine 130) and client secrets 112 associated with the computer
routine. In one embodiment, if the webtask server 107 cannot be reached by the client
102, then a failed connection error is returned to the client 102. To that end, the computer
routine may have a handler to address this error.

[0053] In step 412, the webtask server 107 receives the webtask token together with the
client data 106 and determines the type of computer routine used. Based on the computer
routine, the webtask server 107 creates a webtask request 124 that includes the webtask
token 108 and the client data. In various embodiments, the webtask token may invoke a
multi-tenant container (e.g., such as Docker) that wraps the computer routine in a
complete environment that includes the components to run in in isolation in the MTIS 140.
This container is sometimes referred to herein as a webtask container.

[0054] In one embodiment, the webtask server 107 is an HTTP server, the connection
during the communication 410 between the client 102 and the webtask server 107 is an
HTTP connection, and the webtask request 124 that includes the webtask token and the
data 106, is an HTTP request. Alternatively, other protocols, or Remote Procedure Calls
(RPCs) may be used, provided that only a single, generalized endpoint is exposed to the
developer.

[0055] In step 414, the webtask server 107 sends the webtask request 124 to the MTIS
140. In this regard, the webtask server 107 requests a container that has all the
infrastructure to be used by the computer routine from the MTIS 140. In one embodiment,
the MTIS 140 may include language bindings for various supported languages. For
example, the MTIS 140 may have JavaScript binding and C# bindings. Where an
unsupported language arrives in a request, the MTIS 140 may provide an appropriate error
message.

[0056] In step 416, the MTIS 140 extracts the computer routine to be executed and

executes the computer routine in an isolated environment (i.e., webtask container) of the

15

WO 2016/086111 PCT/US2015/062635

MTIS 140. The webtask container may be executed in a sandbox environment of the
MTIS 140. The MTIS 140 also constructs a response in a format that is compatible with
the protocols used by the webtask server 107. In various embodiments, the response may
be in XML, JSON, and the like. Thus, the MTIS provides a generic and uniform
execution environment for the received webtask request.

[0057] In one embodiment, the MTIS tracks the resources (e.g., CPU, memory, etc.) that
have been consumed during execution of the computer routine in the webtask container of
the MTIS 140 associated with the request identification (ID), for billing purposes (i.c., step
418). The MTIS 140 may use the webtask server 107 generated request ID and associate
it with a Thread ID either from the JavaScript runtime, from the operating system, or one
internally generated by the MTIS 140. In one embodiment, by associating the thread
resources used with the request ID, metering on resources consumed per request basis are
realized. Resource tracking need not be limited to CPU, memory (e.g., random access
memory (RAM), hard-disk), but can include any meter-able resource such as network
resources utilized during the execution of the computer routine.

[0058] In one embodiment, in step 420, the MTIS sends a response to the webtask server
107. The response may be a calculated result based on the computer routine executed in
the MTIS 140. If the MTIS is not able to satisfy the request, or may not satisfy the request
in time, the MTIS may return a response to the webtask server with an appropriate
response (i.c., error message). Thus, the response from the MTIS may be a calculated
result based on the executed computer routine or an appropriate error message.

[0059] In step 422, the response is forwarded from the webtask server 107 to the client
102. Alternatively or in addition, the response may be forwarded directly from the MTIS
to the client 102.

[0060] Optionally, in step 424, a confirmation may be received by the MTIS 140 from

the webtask server that the result has been received by the webtask server. In step 426 the

16

WO 2016/086111 PCT/US2015/062635

MTIS 140 performs resource de-allocation, as appropriate. In ne embodiment, container
that has been used is not returned to the pool; rather, it is discarded and replaced. The
MTIS 140 destroys the webtask container, thereby assuring that the computer routine is
not stored at rest.

Example Use Cases

[0061] With the foregoing explanation of the system and method of encapsulating
computer routine in a server request, it may be helpful to provide a high level discussion
of some example use cases. The concepts and system discussed herein can be applied to
various use cases. For example, they may be applied to distributed applications, where an
application may be architected into separate components, each designed to operate
independently of others. Those separate components can send the computer routine to be
executed via the MTIS 140 to different instances.

[0062] In on example, the system described herein can be used for offloading. To that
end, an application may execute a routine either locally or remotely using the MTIS 140.
In situations where the local computing resources are not available or are insufficient, the
application may offload computing requests to the cloud via the MTIS 140.

[0063] In one example, the concepts discussed herein can be used for scripting WEB
services. An application may provide a facility for end users to make scripts that avail
themselves to different functionalities embodied in the computer routine. Some of the
scripts, may exccute on the cloud via the MTIS 140.

[0064] In one example, the system described herein can be used in asynchronous
execution applications. In such a scenario, the computer routine executed on the MTIS
140 need not be executed synchronously. In this regard, the webtask server 107 may act
as a dispatcher for long-lived/long-running processes.

[0065] In onc example, the concepts discussed herein may be used for vertical

applications/security. A Security API may be implemented to be executed in a multi-

17

WO 2016/086111 PCT/US2015/062635

tenant infrastructure server application that maintains a sandbox. In one embodiment, the
MTIS 140 may support encryption to secure the connection between a client and the
multi-tenant infrastructure server application. Because the computer routine is not
resident in the MTIS 140 and because all computer routines run in a secure sandbox, the
MTIS 140 provides a secure execution environment for authentication functions as
exposed via a security API. As to security, in one implementation, the MTIS 140 can be
used to implement authentication, authorization, auditing, and/or metering functions at a

proxy level in a multi-tier application.

Example computer platform

[0066] As discussed above, functions for establishing a connection to a webtask server,
sending a request to execute a computer routine, sending and receiving messages, sending
and receiving webtask tokens, creating webtask containers, executing a computer routine
in an isolated environment, and other functions, can be implemented on computers
connected for data communication via network 130, operating as the client server 102,
webtask server 107, and MTIS 140, as shown in FIG. 5. Although special purpose devices
may be used, such devices also may be implemented using one or more hardware
platforms intended to represent a general class of data processing device commonly used
to run “server” programming so as to implement functions such as the functions discussed
herein, albeit with an appropriate network connection for data communication.

[0067] FIGS. 5 and 6 provide functional block diagram illustrations of general purpose
computer hardware platforms that may also be applied for cloud computing. FIG. 5
illustrates a network or host computer platform, as may typically be used to implement a
server, such as a webtask server 107 or MTIS 140. FIG. 6 depicts a device with user
interface elements, as may be used to implement a personal computer or a client

computing device such as client 102. It is believed that the general structure and general

18

WO 2016/086111 PCT/US2015/062635

operation of such equipment as shown in FIGS. 5 and 6 should be self-explanatory from
the high-level illustrations.

[0068] A general purpose computer configured as a server, for example, includes a data
communication interface for packet data communication over the network 130. The server
computer also includes a central processing unit (CPU), in the form of one or more
processors, for executing program instructions. The server platform typically includes an
internal communication bus, program storage and data storage for various data files to be
processed and/or communicated by the server, although the server often receives
programming and data via network communications. The hardware elements, operating
systems and programming languages of such servers are conventional in nature. Of
course, the server functions may be implemented in a distributed fashion on a number of
similar platforms, to distribute the processing load.

[0069] As discussed above, requests to the MTIS may be done from a client machine. A
client machine may be any device with a processor, memory, and a network connection
sufficient to connect to a cloud server, either directly or via the Internet, similar to that of
FIG. 6. Typically there will be an operating system. Typical configurations are a central
processing unit, RAM, and Wi-Fi or Ethernet connectivity. The memory will be
computer-readable media and/or will have access to other computer-readable media, and
will run a client application comprised of computer executable code resident in the
memory and/or other computer-readable media.

[0070] Similarly, a cloud server, such as the one depicted in FIG. 5, may be a device
with a processor, memory, and a network connection sufficient to connect to a client
machine either directly or via the Internet. As with a client machine, typically there will
be an operating system. Typical configurations are a central processing unit, RAM, and
Wi-Fi or Ethernet connectivity. The memory will be computer-readable media and/or will

have access to other computer-readable media, and will run a client application comprised

19

WO 2016/086111 PCT/US2015/062635

of computer executable code resident in the memory and/or other computer-readable
media.

[0071] The cloud server will generally run a virtualization environment that may create
virtual machines. In each virtual machine, there may be an operating system, or system
level environment. Each virtual machine may spawn processes, each of which may spawn
threads. An execution environment such as a Java Virtual Machine, or .NET runtime may
execute in a virtual machine and manage processes and threads.

[0072] Computer-readable media, such as the RAM and ROM depicted in FIGS. 5 and 6
includes, at least, two types of computer-readable media, namely computer storage media
and communications media. Computer storage media includes volatile and non-volatile,
removable and non-removable media implemented in any method or technology for
storage of information such as computer readable instructions, data structures, program
modules, or other data. Computer storage media includes, but is not limited to, RAM,
ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile
disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other non-transmission medium that can
be used to store information for access by a computing device. In contrast, communication
media may embody computer readable instructions, data structures, program modules, or
other data in a modulated data signal, such as a carrier wave, or other transmission
mechanism. As defined herein, computer storage media does not include communication
media.

[0073] The software functionalities involve programming, including executable code as
well as associated stored data, e.g., files used for applications on the webtask server 107
and the MTIS 140 for sending a request to execute a computer routine, sending and
receiving messages, sending and receiving webtask tokens, creating webtask containers,

executing a computer routine in an isolated environment, and other functions. The

20

WO 2016/086111 PCT/US2015/062635

software code is executable by the computing device. In operation, the code is stored
within the computing device. At other times, however, the software may be stored at other
locations and/or transported for loading into the appropriate computing device system.
Execution of such code by a processor of the computing device enables the computing
device to perform various functions, in essentially the manner performed in the
implementations discussed and illustrated herein.

[0074] Hence, aspects of the methods of receiving and processing node data as outlined
above may be embodied in programming. Program aspects of the technology may be
thought of as “products” or “articles of manufacture” typically in the form of executable
code and/or associated data that is carried on or embodied in a type of non-transitory

machine readable medium.

Conclusion

[0075] While the foregoing has described what are considered to be the best mode
and/or other examples, it is understood that various modifications may be made therein
and that the subject matter disclosed herein may be implemented in various forms and
examples, and that the teachings may be applied in numerous applications, only some of
which have been described herein. It is intended by the following claims to claim any and
all applications, modifications and variations that fall within the true scope of the present
teachings.

[0076] Except as stated immediately above, nothing that has been stated or illustrated is
intended or should be interpreted to cause a dedication of any component, step, feature,
object, benefit, advantage, or equivalent to the public, regardless of whether it is or is not
recited in the claims.

[0077] It will be understood that the terms and expressions used herein have the

ordinary meaning as is accorded to such terms and expressions with respect to their

21

12 Nov 2020

2015353500

corresponding areas of inquiry and study except where specific meanings have otherwise
been set forth herein. Relational terms such as first and second and the like may be used
solely to distinguish one entity or action from another without necessarily requiring or
implying any actual such relationship or order between such entities or actions. The terms

LT

“comprises,” “comprising,” or any other variation thereof, are intended to cover a non-
exclusive inclusion, such that a process, method, article, or apparatus that comprises a list
of elements does not include only those elements but may include other elements not
expressly listed or inherent to such process, method, article, or apparatus. An element
proceeded by “a” or “an” does not, without further constraints, preclude the existence of
additional identical elements in the process, method, article, or apparatus that comprises the
element.

[0078] The Abstract of the Disclosure is provided to allow the reader to quickly ascertain
the nature of the technical disclosure. It is submitted with the understanding that it will not
be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing
Detailed Description, it can be seen that various features are grouped together in various
embodiments for the purpose of streamlining the disclosure. This method of disclosure is
not to be interpreted as reflecting an intention that the claimed embodiments require more
features than are expressly recited in each claim. Rather, as the following claims reflect,
inventive subject matter lies in less than all features of a single disclosed embodiment. Thus
the following claims are hereby incorporated into the Detailed Description, with each claim
standing on its own as a separately claimed subject matter.

[0079] The reference in this specification to any prior publication (or information derived
from it), or to any matter which is known, is not, and should not be taken as an
acknowledgment or admission or any form of suggestion that that prior publication (or

information derived from it) or known matter forms part of the common general knowledge

in the field of endeavour to which this specification relates.

22

12 Nov 2020

2015353500

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A multitenant infrastructure server (MTIS) configured to provide an
environment to execute a computer routine of an arbitrary application, the MTIS
comprising:

a processor;

a network interface coupled to the processor configured to enable communications
via a communication network;

a storage device for content and programming; and

a program stored in the storage device, wherein execution of the program
configures the MTIS to perform acts comprising:

receiving a request from a webtask server to execute the computer routine in a
webtask container, wherein the request includes:

client data;

the computer routine in the form of executable computer code or a uniform
resource locator (URL) link to the computer routine; and

at least one client secret associated with the computer routine;

executing the computer routine in the webtask container at the MTIS;

upon successful execution of the computer routine, returning a result set to the
webtask server;

upon unsuccessful execution of the computer routine, returning an error computer
routine to the webtask server;

determining resources consumed during the execution of the computer routine,
wherein determining the resources consumed includes:

obtaining a request identification (ID) associated with the webtask

container, and

23

12 Nov 2020

2015353500

associating the request ID with a thread ID to meter the resources consumed

on a per request basis; and

destroying the webtask container to prevent persistent storage of the computer
routine on the MTIS,

wherein the webtask container includes all dependencies of the computer routine to
run in an isolated environment in the MTIS,

wherein the isolated environment is a sandbox in the MTIS, and

wherein the resources consumed include processing power and memory used

during the execution of the computer routine.

2. The MTIS of claim 1, wherein the request includes a webtask token.

3. The MTIS of claim 1, wherein execution of the program further configures

the MTIS to perform acts comprising: retrieving the computer routine from the URL

provided in the request.

4. The MTIS of claim 2, wherein the webtask token is cryptographically

protected from tampering and disclosure.

5. The MTIS of claim 1, wherein the destroying the webtask container is in

response to receiving a confirmation from the webtask server that the result set or the error

computer routine has been received by the webtask container.

6. The MTIS of claim 1, wherein the computer routine is independent of an

operating system of the MTIS.

24

19 Nov 2020

2015353500

7. The MTIS of claim 1, wherein a time to execute the computer routine is

limited to a period of time it takes for an HTTP request/response cycle.

8. The MTIS of claim 1, wherein the webtask server is an HTTP server and

the request is an HTTP request.

9. The MTIS of claim 1, wherein the returned result set is in JavaScript Object

Notation (JSON).

10. The MTIS of claim 1, wherein the MTIS provides data isolation for each
tenant such that a computer routine of one tenant is prevented from accessing a computer

routine or data of another tenant.

11. A method of executing a computer routine of an arbitrary application, the
method comprising:
receiving a request from a webtask server to execute the computer routine in a
webtask container of a multi-tenant infrastructure server (MTIS), wherein the request
includes a webtask token and client data, wherein the webtask token includes:
the computer routine in the form of executable computer or a uniform
resource locator (URL) link to the computer routine; and
at least one client secret associated with the computer routine;
executing the computer routine in the webtask container at the MTIS, wherein
executing the computer routine in the webtask container includes:
forwarding the request to a first webtask container in response to determining
that the first webtask container has already been assigned for a tenant associated with

the request; and

25

12 Nov 2020

2015353500

assigning a new webtask container for the tenant associated with the request

in response to determining that no webtask container has been assigned to the tenant,

wherein the new webtask container is selected from a pool of pre-warmed webtask

containers;

upon successful execution of the computer routine, returning a result set to the
webtask server;

upon unsuccessful execution of the computer routine, returning an error
notification to the webtask server;

determining resources consumed during the execution of the computer routine; and

destroying the webtask container to prevent persistent storage of the computer
routine on the MTIS,

wherein the webtask container includes all dependencies of the computer routine to
run in an isolated environment in the MTIS,

wherein the isolated environment is a sandbox in the MTIS, and

wherein the resources consumed include processing power and memory used

during the execution of the computer routine.

12. The method of claim 11, further comprising retrieving the computer routine

from the URL provided in the webtask token.

13. The method of claim 11, wherein the destroying the webtask container is in

response to receiving a confirmation from the webtask server that the result set or the error

notification has been received by the webtask container.

14, The method of claim 11, wherein:

26

12 Nov 2020

2015353500

a time to execute the computer routine is limited to a period of time it takes for an
HTTP request/response cycle;
the webtask server is an HTTP server; and

the request is an HTTP request.

15. The method of claim 11, wherein the returned result set is in JavaScript

Object Notation (JSON).

16. The method of claim 11, further comprising providing data isolation for
each tenant such that a computer routine of one tenant is prevented from accessing a

computer routine or data of another tenant.

17. The MTIS of claim 1, wherein the at least one client secret comprises

secrets that the computer routine requires to access protected data or functionality.

18. The MTIS of claim 1, wherein the at least one client secret comprises a
secret selected from the group consisting of: database connection strings, application

program interfaces (API), and security keys.

27

WO 2016/086111 PCT/US2015/062635

1/5

WEBTASK
SERVER

STORAGE

ONLINE FILE

FIG. 1

100
\

PCT/US2015/062635

WO 2016/086111

2/5

¢ DIA

JOVHO1S
3114

26— N\

pLl

1474
oLl

apon
a0

90} —/ IN3MND

ovl

141"

col

/ 00¢

PCT/US2015/062635

WO 2016/086111

3/5

0L —

Q0¢€

£ °OIAd

Vr 00¢

PCT/US2015/062635

WO 2016/086111

4/5

v OIAd

9zy
- Yey—=======~1
ce——————»
ocy >
—>»
8Ly
9Ly
125
Ly
oLy
807
vl 01 20}
SILIN H3IAYIAS HSYLIIAA IN3ND

V(00¥

PCT/US2015/062635

WO 2016/086111

[avi
-
£ %
= 2
S5
-

COM
PORTS
ROM

I

W
H{
>

-

CPU

Keypad

Communication
Interface
RAM

To/From a
Network

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

