(19) **日本国特許庁(JP)**

(12) 特 許 公 報(B2)

(11)特許番号

特許第6356555号 (P6356555)

(45) 発行日 平成30年7月11日(2018.7.11)

(24) 登録日 平成30年6月22日(2018.6.22)

(51) Int.Cl. F I

 B 6 1 D
 19/00
 (2006.01)
 B 6 1 D
 19/00

 E O 5 F
 15/632
 (2015.01)
 E O 5 F
 15/632

 E O 5 D
 15/10
 (2006.01)
 E O 5 D
 15/10

請求項の数 15 (全 24 頁)

(21) 出願番号 特願2014-191902 (P2014-191902)

(22) 出願日 平成26年9月19日 (2014.9.19) (65) 公開番号 特開2016-60442 (P2016-60442A)

(43) 公開日 平成28年4月25日 (2016. 4. 25) 審査請求日 平成29年8月18日 (2017. 8. 18) ||(73)特許権者 503405689

ナブテスコ株式会社

Α

東京都千代田区平河町二丁目7番9号

||(74)代理人 100105957

弁理士 恩田 誠

(74)代理人 100068755

弁理士 恩田 博宣

(72)発明者 山口 敦仁

兵庫県神戸市西区高塚台7丁目3番地の3 ナブテスコ株式会社 神戸工場内

審査官 長谷井 雅昭

最終頁に続く

(54) 【発明の名称】プラグドア開閉装置およびプラグドア装置

(57)【特許請求の範囲】

【請求項1】

車両のドアが取り付け可能なドアハンガと、

前記ドアハンガの前記車両の前後方向への移動をガイドするとともに、前記車両の幅方向に移動するガイド部材と、

前記幅方向における前記ガイド部材の移動をガイドするガイド支持部材と、

前記ガイド部材における第1の部分の移動量と、前記ガイド部材における第2の部分の移動量とを一致させる移動量連動手段と

を備える

プラグドア開閉装置。

10

20

【請求項2】

前記移動量連動手段は前記前後方向に延びる回転軸線まわりで前記車両に対して回転可能な連動軸と、前記連動軸と前記第1の部分および前記第2の部分のそれぞれとを連結する連結機構とを備える

請求項1に記載のプラグドア開閉装置。

【請求項3】

前記連結機構は前記連動軸と連結されて前記連動軸と一体的に回転する第1のリンクと 、前記ガイド部材と連結される第2のリンクとを備え、

前記第1のリンクと前記第2のリンクとが回転対偶により連結されるリンク機構である 請求項2に記載のプラグドア開閉装置。

【請求項4】

前記第1の部分は前記前後方向における前記ガイド部材の一方の端部であり、前記第2の部分は前記前後方向における前記ガイド部材の他方の端部である 請求項3に記載のプラグドア開閉装置。

【請求項5】

前記第2のリンクは前記ガイド部材に対して回転可能に設けられている 請求項3または4に記載のプラグドア開閉装置。

【請求項6】

前記連動軸は前記ガイド部材よりも前記幅方向の車両内側に配置される 請求項3~5のいずれか一項に記載のプラグドア開閉装置。

10

【請求項7】

前記連動軸の周方向における前記第1のリンクの取り付け位置を示す位相決め部をさら に備える

請求項3~6のいずれか一項に記載のプラグドア開閉装置。

【請求項8】

前記位相決め部は、前記第1のリンクおよび前記連動軸にそれぞれ形成された穴と、各穴に挿入される、前記第1のリンクおよび前記連動軸を互いに固定するねじとを含む 請求項7に記載のプラグドア開閉装置。

【請求項9】

前記第1のリンクは、クランク形状の機械要素であって、前記連動軸と連結されて前記連動軸と一体的に回転する第1の柄、前記第2のリンクと連結される第2の柄、および、前記第1の柄と前記第2の柄とを接続する接続部を備え、

20

前記第1の柄が前記第2の柄に対して前記連動軸の長手方向の外側に配置され、

前記前後方向において前記第2のリンクが前記第2の柄に対して前記第1の柄と同じ側に配置される

請求項3~8のいずれか一項に記載のプラグドア開閉装置。

【請求項10】

前記幅方向および前記前後方向に対して傾斜する傾斜部分、および、前記前後方向に沿う直線部分を含む傾斜レールを支持するレールプレートをさらに備え、

前記レールプレートは、前記前後方向に延びるフランジを備える 請求項9に記載のプラグドア開閉装置。 30

【請求項11】

前記ガイド支持部材は前記幅方向に延びるレールであり、

前記レール上を転がる回転体が前記ガイド部材に設けられている

請求項1~10のいずれか一項に記載のプラグドア開閉装置。

【請求項12】

前記ガイド部材は回転可能に設けられており、

前記回転体は前記ガイド部材に固定されている

請求項11に記載のプラグドア開閉装置。

【請求項13】

40

前記レールとの間に前記回転体を挟む踊り止めをさらに備える 請求項11または12に記載のプラグドア開閉装置。

【請求項14】

前記前後方向に延びるねじ軸とこれと結合するとともに前記ドアハンガを前記前後方向に移動させるナットとを備えたドア駆動機構と、

前記ねじ軸と前記ガイド部材とを連結する連結部材と

をさらに備える

請求項1~13のいずれか一項に記載のプラグドア開閉装置。

【請求項15】

車両に設けられるドアと、

前記ドアが取り付けられるドアハンガと、

前記ドアハンガの前記車両の前後方向への移動をガイドするとともに、前記車両の幅方向に移動するガイド部材と、

前記幅方向における前記ガイド部材の移動をガイドするガイド支持部材と、

前記ガイド部材における第1の部分の移動量と、前記ガイド部材における前記第1の部分とは異なる第2の部分の移動量とを一致させる移動量連動手段と

を備える

プラグドア装置。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、車両のドアを車両の前後方向および幅方向に移動させるプラグドア開閉装置、および、このプラグドア開閉装置を備えるプラグドア装置に関する。

【背景技術】

[0002]

従来のプラグドア装置は、ドアを鉄道車両の前後方向に移動させながら幅方向に移動させる動作、いわゆるプラグ動作をさせるプラグドア開閉装置を備えている。特許文献1に記載されるプラグドア装置はその一例であり、プラグドア開閉装置の他に、前後方向においてプラグドア開閉装置を挟むように配置され、車体側壁に固定される一対の固定ベースと、プラグドア開閉装置が載せられ、一対の固定ベースに対して幅方向に移動可能なスライドベースとを備えている。スライドベースはその前後方向の両端部に取り付けられる車輪を備えている。この車輪は、固定ベースに形成されて幅方向に延びるレールに取り付けられている。

[0003]

上記プラグドア装置によれば、スライドベースを車両の幅方向に押す力がスライドベースに加えられることにより車輪がレール上を転がり、スライドベースおよびドアが固定ベースに対して車両の幅方向に移動する。

【先行技術文献】

【特許文献】

[0004]

【特許文献 1 】特開 2 0 1 2 - 1 8 8 8 5 8 号公報

【発明の概要】

【発明が解決しようとする課題】

[0005]

車輪およびレールを含む装置によれば、多くの場合、車輪とレールとの間には所定の隙間がある。このため、特許文献1のプラグドア装置によれば、プラグ動作においてドアが車両の幅方向に移動するとき、スライドベースが車両の前後方向に対して傾き、車輪とレールが固渋(しゅう動部分、リンク機構、ボルトとナットのような機械構造物中の可動部分が固着し、その滑らかな動きが妨げられた状態となること)するおそれがある。

[0006]

本発明の目的は、車両の幅方向においてドアを安定して移動させることが可能なプラグドア開閉装置およびプラグドア装置を提供することである。

【課題を解決するための手段】

[0007]

(1) 本発明の一形態に従うプラグドア開閉装置は、車両のドアが取り付け可能なドアハンガと、前記ドアハンガの前記車両の前後方向への移動をガイドするとともに、前記車両の幅方向に移動するガイド部材と、前記幅方向における前記ガイド部材の移動をガイドするガイド支持部材と、前記ガイド部材における第1の部分の移動量と、前記ガイド部材における第2の部分の移動量とを一致させる移動量連動手段とを備える。

[0008]

10

20

30

上記構成によれば、移動量連動手段が第1の部分の移動量と第2の部分の移動量を一致させるので、ガイド支持部材に支持されたガイド部材が車両の幅方向に移動するときにガイド部材が車両の前後方向に固渋することが無い。したがって、ガイド部材が幅方向に円滑に移動し、幅方向におけるドアの移動が安定する。なお、第1の部分および第2の部分は、ガイド部材における前後方向の位置が互いに異なる部分を示す。また、一致とは完全に一致する場合のほか、車両の幅方向の移動に支障が無い範囲でのずれ量も含む概念である。

[0009]

(2)上記プラグドア開閉装置の一例によれば、前記移動量連動手段は前記前後方向に延びる回転軸線まわりで前記車両に対して回転可能な連動軸と、前記連動軸と前記第1の部分および前記第2の部分のそれぞれとを連結する連結機構とを備える。

[0 0 1 0]

上記構成によれば、電気的な要素を用いることなく第1の部分の移動量と第2の部分の 移動量とを一致させることができる。このため、電力が無くても移動量連動手段が機能す る。

[0011]

(3)上記プラグドア開閉装置の一例によれば、前記連結機構は、前記連動軸と連結されて前記連動軸と一体的に回転する第1のリンクと、前記ガイド部材と連結される第2の リンクとを備え、前記第1のリンクと前記第2のリンクとが回転対偶により連結される。

[0012]

例えば、移動量連動手段がラックアンドピニオン機構を用いて力を伝達する構造を備える場合には、それぞれのラックのピッチの位置を合わせる必要があり、高い組立精度が求められ、手間がかかる。一方、本プラグドア開閉装置は、複数のリンクにより力を伝達する移動量連動手段を備えるため、ラックアンドピニオン機構を用いる場合と比較して組み立てが容易である。

[0013]

(4)上記プラグドア開閉装置の一例によれば、前記第1の部分は前記前後方向における前記ガイド部材の一方の端部であり、前記第2の部分は前記前後方向における前記ガイド部材の他方の端部である。

[0014]

上記構成によれば、複数のリンクが連結されるガイド部材の前後方向の両端部の間でドアハンガが移動するため、複数のリンクが前後方向におけるガイド部材の中間部分に連結される場合と比較して、ガイド部材上におけるドアハンガの移動範囲を広く取ることができる。つまり、前後方向におけるプラグドア開閉装置のサイズを大きくすること無く、ドアの開口幅を広く取ることができる。

[0015]

(5)上記プラグドア開閉装置の一例によれば、前記第2のリンクが前記ガイド部材に対して回転可能である。

[0016]

上記構成によれば、第1のリンクと第2のリンクとの連結時に第2のリンクをガイド部材に対して回転させることができる。このため、第2のリンクをガイド部材とともに回転させつつ第1のリンクと連結させる場合と比較して各リンクの組み立ての作業性が向上する。

[0017]

(6)上記プラグドア開閉装置の一例によれば、前記連動軸は前記ガイド部材よりも前記幅方向の車両内側に配置される。

[0018]

上記構成によれば、第1のリンクと第2のリンクとの連結部分がガイド部材の幅方向の 車両内側に配置される。このため、作業者が幅方向の車両内側から各リンクを組み立てる とき、各リンクを組み立てやすい。 10

20

30

40

[0019]

(7)上記プラグドア開閉装置の一例は、前記連動軸の周方向における前記第1のリン クの取り付け位置を示す位相決め部をさらに備える。

[0020]

上記構成によれば、連動軸の周方向における、連動軸に対する各第1のリンクの取付位 置、すなわち取り付けの位相を合わせるための位相決め部により、複数のリンクの各第1 のリンクの位相を容易に一致させることができる。

[0021]

(8)上記プラグドア開閉装置の一例によれば、前記位相決め部は、前記第1のリンク および前記連動軸にそれぞれ形成された穴と、前記穴に挿入される、前記第1のリンクお よび前記連動軸を互いに固定するねじとを含む。

[0022]

上記構成によれば、連動軸に対する第1のリンクの位相、および、前後方向における連 動軸に対する第1のリンクの位置がねじにより決められる。このため、ねじをねじ込む作 業により上記位相および車両の前後方向の位置合わせと、固定とを同時に行うことができ るので、組み立ての手間が減る。

[0023]

(9)上記プラグドア開閉装置の一例によれば、前記第1のリンクは、クランク形状の 機械要素であって、前記連動軸と連結されて前記連動軸と一体的に回転する第1の柄、前 記第2のリンクと連結される第2の柄、および、前記第1の柄と前記第2の柄とを接続す る接続部を備え、前記第1の柄が前記第2の柄に対して前記連動軸の長手方向の外側に配 置され、前記前後方向において前記第2のリンクが前記第2の柄に対して前記第1の柄と 同じ側に配置される。

[0024]

上記構成によれば、前後方向において第2のリンクが第2の柄に対して第1の柄と反対 側に配置される場合と比較して、ガイド部材上におけるドアハンガの移動範囲を広くする ことができる。つまり、プラグドア開閉装置を車両の前後方向において大きくすることな く、ドアの開口幅を広く取ることができる。

[0025]

(10)上記プラグドア開閉装置の一例は、前記幅方向および前記前後方向に対して傾 斜する傾斜部分、および、前記前後方向に沿う直線部分を含む傾斜レールを支持するレー ルプレートをさらに備え、前記レールプレートは、前記前後方向に延びるフランジを備え る。

[0026]

上記構成によれば、レールプレートの剛性がフランジにより高められるため、傾斜レー ルが変位しにくい。このため、ドアの移動が安定する。また、第1の柄が連動軸の長手方 向の外側に配置されるため、前後方向におけるフランジの寸法を長く設定してもフランジ が第1の柄に接触することが抑制される。このため、レールプレートの剛性が一層高めら れる。

[0027]

(11)上記プラグドア開閉装置の一例によれば、前記ガイド支持部材は前記幅方向に 延びるレールであり、前記レール上を転がる回転体が前記ガイド部材に設けられている。

[0028]

上記構成によれば、ガイド部材とレールとの間の摩擦が低減されるため、幅方向におけ るガイド部材の移動が一層円滑化される。

[0029]

(12)上記プラグドア開閉装置の一例によれば、前記ガイド部材は回転可能に設けら れており、前記回転体は前記ガイド部材に固定されている。

[0030]

上記構成によれば、ガイド部材と回転体との間に回転軸や軸受構造を備える必要がない

10

20

40

ため、構造が簡素化される。

[0031]

(13)上記プラグドア開閉装置の一例は、前記レールとの間に前記回転体を挟む踊り止めをさらに備える。

[0032]

回転体がレールから離れた場合には、それに起因して複数のリンクが互いに異なる曲げ角度を持つことがある。その場合には複数のリンクの動作も異なるため、ガイド部材が傾くおそれがある。本プラグドア開閉装置によれば、回転体がレールから離れることが踊り止めにより抑えられ、複数のリンクの曲げ角度が実質的に同じ角度に維持されるため、幅方向におけるガイド部材の移動が安定する。

[0033]

(14)上記プラグドア開閉装置の一例は、前記前後方向に延びるねじ軸とこれと結合するとともに前記ドアハンガを前記前後方向に移動させるナットとを備えた駆動機構と、前記ねじ軸と前記ガイド部材とを連結する連結部材とをさらに備える。

[0034]

上記構成によれば、ガイド部材とねじ軸とが一体的に車両の幅方向に移動するため、移動量連動手段により得られるガイド部材に関する効果がねじ軸にももたらされる。このため、ねじ軸が幅方向に円滑に移動し、幅方向におけるドアの移動が一層安定する。

[0035]

なお、ガイド部材が回転しながら幅方向に移動するような場合には、ガイド部材を連結 部材に対して回転可能に設けるだけで、連結部材がガイド部材の回転を妨げることが抑制 される。したがって、ガイド部材を幅方向に円滑に移動させることができる。

[0036]

(15)本発明の一形態に従うプラグドア装置は、車両に設けられるドアと、前記ドアが取り付けられるドアハンガと、前記ドアハンガの前記車両の前後方向への移動をガイドするとともに、前記車両の幅方向に移動するガイド部材と、前記幅方向における前記ガイド部材の移動をガイドするガイド支持部材と、前記ガイド部材における第1の部分の移動量と、前記ガイド部材における前記第1の部分とは異なる第2の部分の移動量とを一致させる移動量連動手段とを備える。

[0037]

上記構成によれば、移動量連動手段が第1の部分の移動量と第2の部分の移動量を一致させるので、ガイド支持部材に支持されたガイド部材が車両の幅方向に移動するときにガイド部材が車両の前後方向に固渋することが無い。したがって、ガイド部材が幅方向に円滑に移動し、幅方向におけるドアの移動が安定する。なお、第1の部分および第2の部分は、ガイド部材における前後方向の位置が互いに異なる部分を示す。また、一致とは完全に一致する場合のほか、車両の幅方向の移動に支障が無い範囲でのずれ量も含む概念である。

【発明の効果】

[0038]

本発明にかかるプラグドア開閉装置およびプラグドア装置によれば、車両の幅方向にお 'いてドアを安定して移動させることができる。

【図面の簡単な説明】

[0039]

- 【図1】一実施形態のプラグドア装置の正面図。
- 【図2】図1のプラグドア開閉装置の底面図。
- 【図3】図2のドア駆動機構の一部の分解斜視図。
- 【図4】図2のフレームおよびその周辺の背面図。
- 【図5】図2の移動量伝達手段の一部の分解斜視図。
- 【図6】プラグドア開閉装置の側面図。
- 【図7】図2のフレームおよびその周辺の正面図。

10

20

30

40

【図8】(a)ドアが全閉状態のときのプラグドア開閉装置の模式底面図、(b)ドアが全閉状態のときの移動量連動手段の斜視図。

【図9】(a)ドアが車体側壁の外側に移動した状態におけるプラグドア開閉装置の模式 底面図、(b)ドアが車体側壁の外側に移動した状態における移動量連動手段の斜視図。

【図10】ドアが全開状態のときのプラグドア開閉装置の模式底面図。

【図11】変形例のプラグドア開閉装置の模式底面図。

【図12】変形例のプラグドア開閉装置の模式底面図。

【図13】変形例の移動量連動手段の一部の模式平面図。

【図14】(a)ドアが全閉状態のときの変形例の移動量連動手段の一部の模式側面図、

(b)ドアが車体側壁の外側に移動した状態における変形例の移動量連動手段の一部の模式側面図。

【図15】変形例の移動量連動手段の一部の斜視図。

【図16】変形例の連動軸および第1のリンクの斜視図。

【図17】変形例のガイド部材の幅方向の移動を支持する構造を示す正面図。

【図18】変形例のガイド部材の幅方向の移動を支持する構造を示す正面図。

【図19】変形例のプラグドア開閉装置におけるフレームおよびその周辺の正面図。

【発明を実施するための形態】

[0040]

図1を参照して、プラグドア装置1の構成について説明する。なお、以下の説明において、車両200の幅方向を「幅方向X」とし、車両200の前後方向を「前後方向Y」とし、車両200の上下方向を「上下方向Z」とする。

[0041]

車両2000の車体側壁210には、乗降口211が形成されている。車体側壁210において乗降口211と前後方向Yに隣り合う部分には、上下方向Zに延びる支持柱5が取り付けられている。プラグドア装置1は、車体側壁210において乗降口211の周辺部分に取り付けられている。

[0042]

プラグドア装置1は、乗降口211を開閉する片引きのドア2と、ドア2を幅方向 X および前後方向 Y に移動させるためのプラグドア開閉装置10とを備えている。プラグドア装置1は、ドア2が乗降口211の全体を塞ぐ全閉状態のとき、車体側壁210の外面とドア2の外面とが面一となるようにドア2を支持している。プラグドア開閉装置10は、ドア2の上端部に配置されている。

[0043]

またプラグドア装置 1 は、ドア 2 の幅方向 X および前後方向 Y への移動を制限する 3 個のロック装置 3 A ~ 3 C と、ドア 2 の幅方向 X および前後方向 Y への移動をガイドするスイングアーム機構 4 とを備えている。

[0044]

ロック装置3Aは支持柱5の上方部分に取り付けられ、ロック装置3Bは支持柱5の上下方向Zの中央部分に取り付けられ、ロック装置3Cは支持柱5の下方部分に取り付けられている。ロック装置3Aおよび3Cは、電動モータと、ドア2を拘束するためのロック片(ともに図示略)とを備えている。ロック装置3Aおよび3Cは、ドア2が全閉状態のとき、電動モータを駆動させてロック片をドア2に向けて移動させることにより、幅方向Xおよび前後方向Yにおいてドア2を拘束する。ロック装置3Bは、ソレノイドとドア2を施錠するためのロック片(ともに図示略)とをさらに備えている。ロック装置3Bはドア2が全閉するとロック片がかかり施錠状態となる。

ドア2を開けるときは、上記とは逆にソレノイドや電動モータを駆動する。

[0045]

スイングアーム機構4は、ロック装置3Cよりも下側に配置されている。ドア2が幅方向Xの車両外側に移動するとき、ドア2の下方部分を支持するスイングアーム機構4のアームがドア2とともに幅方向Xの車両外側に回転することによりドア2が車体側壁210

20

10

30

40

よりも外側に移動するようにドア2をガイドする。

[0046]

図2~図7を参照して、プラグドア開閉装置10の構成について説明する。なお、図2~図7では、ドア2(図1参照)が全閉状態のときのプラグドア開閉装置10の各構成要素の配置状態を示している。

[0047]

図2に示されるように、プラグドア開閉装置10は、ドア2を幅方向Xおよび前後方向Yに移動させる機構であるドア駆動機構20と、ドア2の幅方向Xおよび前後方向Yへの移動をガイドするレールブロック30と、ドア駆動機構20を支持する一対のフレーム40とを備えている。

[0048]

レールブロック30は、車体側壁210(図1参照)に固定されたレールプレート50により支持されている。レールブロック30には、外側に向けて開口する溝である傾斜レール31が形成されている。傾斜レール31は、前後方向Yのドア開き側に向かうにつれて幅方向Xの車両外側に傾斜する傾斜部分32と、前後方向Yに延びる直線部分33とを含んで構成されている。

[0049]

ドア駆動機構20は、前後方向Yに延びるねじ軸21と、ねじ軸21と結合され、ねじ軸21上を移動するナット22と、ナット22を回転させる電動のモータ23とを備えている。ねじ軸21、ナット22、および、モータ23は、レールブロック30よりも幅方向Xの車両内側に配置されている。モータ23は、ナット22を内蔵している。

(0 0 5 0)

またドア駆動機構20は、前後方向Yに延び、フレーム40に対して幅方向Xに移動可能なガイド部材24と、ドア2の上端部が取り付けられ、前後方向Yにおいてガイド部材24に対して移動可能な状態でガイド部材24に支持されるドアハンガ25とを備えている。ガイド部材24の一例はパイプであり、ねじ軸21に対して間隔をおいて幅方向Xの車両外側、かつ、ねじ軸21に平行するように配置されている。ドアハンガ25は、傾斜レール31内をドアハンガ25の移動とともに転動するローラ(図示略)を備えている。またドアハンガ25は、連結板26によりモータ23と連結されている。

[0051]

一対のフレーム40は、プラグドア開閉装置10の前後方向Yの両端部を構成し、車体側壁210に固定されている。

図3に示されるように、フレーム40は、幅方向Xに延びる基部41と、基部41の幅 方向Xの車両外側の部分において上側に延びる上方部分42とを有している。

[0052]

基部41はL字状に形成されている。基部41の上端部において幅方向Xの車両外側の部分には、前後方向Yにおけるプラグドア開閉装置10の中央側に向けて突出するカバー43が形成されている。基部41においてカバー43よりも下側の部分には、幅方向Xにおけるガイド部材24の移動をガイドするガイド支持部材の一例であるレール44が取り付けられる。レール44は、幅方向Xに延び、ボルト(図示略)により基部41に取り付けられる板状の取付部分45を有している。また取付部分45の下端部には、幅方向Xに延びる支持部分46が形成されている。

[0053]

支持部分46上には、ガイド部材24の中心軸を中心としてガイド部材24とともに回転可能な回転体の一例である戸車27が配置される。また戸車27は、ガイド部材24の前後方向Yの端部に取り付けられた接続部材28に固定される。接続部材28は、円筒状に形成され、ガイド部材24の中空部分24Aに嵌め合わせられる。接続部材28において前後方向Yの戸車27側の端部には、フランジ28Aが形成されている。

なお、戸車27をガイド部材24に対して、ガイド部材24の中心軸を中心として、回転可能に設けてもかまわない。

10

20

30

[0054]

接続部材28には、ガイド部材24とねじ軸21とを連結する連結部材29が前後方向Yにおいてフランジ28Aと接触するように取り付けられる。連結部材29は、円環状に形成されたガイド連結部29Aと、ガイド連結部29Aから延びるクランク状のプレート29Bとを備えている。ガイド連結部29Aは、接続部材28に対して回転可能な状態で接続部材28に取り付けられる。プレート29Bにおいてねじ軸21が取り付けられる先端部は、プレート29Bにおいてガイド連結部29A側の端部よりも前後方向Yにおいてレール44の取付部分45に近づく。プレート29Bの幅方向Xの内端部には、ねじ軸21がプレート29Bに対して回転不能な状態で取り付けられる。

[0055]

フレーム40の上方部分42は、基部41の上端部から前後方向Yにおけるプラグドア開閉装置10の中央側に向けて突出している。上方部分42の下端部には、幅方向Xに延びる踊り止め47が固定されている。上下方向Zにおいて踊り止め47の下面の位置は、カバー43の下面の位置と等しい。それぞれの下面を等しくすることで、戸車27がカバー43や踊り止め47の角部に当たって戸車27が壊れないようにしている。

[0056]

上方部分42において幅方向 X の車両内側の端面には、保持部材48が固定されている。保持部材48は、上下方向 Z においてカバー43よりも上側かつカバー43と重なるように配置される。保持部材48には、前後方向 Y において保持部材48を貫通する貫通孔48Aが形成されている。貫通孔48Aの内周面には、ボールベアリング62の外輪が取り付けられている。

[0057]

図4に示されるように、レール44の取付部分45は、前後方向Yにおいて基部41と接触している。取付部分45の下端部は、上下方向Zにおいて基部41と接触している。またレール44の支持部分46に取り付けられた戸車27の下方部分は、前後方向Yにおいて取付部分45と僅かに隙間をおいて対向している。また戸車27は、踊り止め47および支持部分46により上下方向Zにおいて挟まれている。戸車27と踊り止め47との上下方向Zの間には、僅かな隙間が形成されている。

[0058]

図2に示されるように、プラグドア開閉装置10は、ガイド部材24の両端部の幅方向Xで同じ側の移動量を一致させる移動量連動手段60を備えている。移動量連動手段60は、前後方向Yに延びる連動軸61と、連動軸61の前後方向Yの両端部と前後方向Yに隣り合う部分とガイド部材24の前後方向Yの両端部とを連結する連結機構の一例である2つのリンク機構70とを備えている。なお、ガイド部材24の前後方向Yの両端部は、第1の部分および第2の部分に相当する。このため、移動量連動手段60は、ガイド部材24の第1の部分の移動量と、第2の部分の移動量と、第2の部分の移動量とは、幅方向Xにおいて同じ側の移動量を示す。

[0059]

以下の説明において、連動軸61の前後方向Yの両端部およびその周辺の構成、ならびに、2つのリンク機構70の構成が共通であるため、図5~図7において連動軸61の前後方向Yの一方の端部および一方のリンク機構70の構成を示して説明し、連動軸61の前後方向Yの他方の端部および他方のリンク機構70の構成の説明を省略する。

[0060]

図6に示されるように、連動軸61は、ガイド部材24よりも上側かつ幅方向Xの車両内側に配置され、かつ、モータ23およびねじ軸21よりも上側かつ幅方向Xの車両外側に配置されている。また連動軸61は、レールプレート50の幅方向Xの内端部から下側に折り曲げられることにより形成されたフランジ51よりも幅方向Xの車両内側に配置されている。

[0061]

図5に示されるように、連動軸61の前後方向Yの端部には、ボールベアリング62の

10

20

30

40

内輪が取り付けられている。ボールベアリング62は、前後方向Yに延びる回転軸線まわりで連動軸61を保持部材48に対して回転可能に支持する。

[0062]

連動軸61には、連動軸61の中心軸と直交する方向に貫通する貫通孔61Aが形成されている。

リンク機構70は、連動軸61に連結されて連動軸61と一体的に回転するクランク形状の第1のリンク71と、ガイド部材24に対して回転可能な状態でガイド部材24に連結される平板状の第2のリンク72とを備えている。第1のリンク71と第2のリンク72とは、回転対偶により連結されている。

[0063]

第1のリンク71は、連動軸61に連結される第1の柄71Aと、第2のリンク72に連結される第2の柄71Bと、第1の柄71Aと第2の柄71Bとを接続する接続部71 Cとを備えている。第2の柄71Bには、ピン73が固定されている。

[0064]

第1の柄71Aは、第2の柄71Bに対して連動軸61の長手方向の外側に配置されている。第1の柄71Aの先端部には、第1の柄71Aを前後方向Yに貫通した貫通孔である挿入部71Dが形成されている。挿入部71Dには、連動軸61が挿入されている。第1の柄71Aにおいて挿入部71Dの周囲部分には、その端部の外面と挿入部71Dの内面とを貫通する貫通孔71Eが形成されている。第1の柄71Aにおいて貫通孔71Eと対向する部分には、第1の柄71Aの長手方向に延びるねじ穴71Fが形成されている。第1の柄71Aの貫通孔71Eにねじ74が通され、ねじ74がねじ穴71Fにねじ込まれることにより連動軸61に固定される。なお、本実施形態では、連動軸61の貫通孔61A、第1の柄71Aの貫通孔71E、および、ねじ74により、連動軸61の周方向における第1のリンク71の取り付け位置を示す位相決め部を構成している。このように構成することにより、ねじ74にかかるせん断力が緩和されるので、連動軸61および第1の柄71Aをより確実に固定することができる。

一方、貫通孔 6 1 A やねじ穴 7 1 F の代わりにねじ穴を設け、ねじ 7 4 をねじ込むようにしてもよい。この場合、組み立ての手間が軽減される。

さらに、ねじの代わりにピンを圧入するようにしてもよい。

[0065]

第2のリンク72は、ガイド部材24に連結される円環状のガイド連結部72Aを有している。ガイド連結部72Aには、第2の柄71Bに連結されるアーム部72Bが延びている。ガイド連結部72Aは、ガイド部材24の前後方向Yの端部に取り付けられたボールベアリング63の外輪に取り付けられる。これにより、第2のリンク72がガイド部材24に対して回転可能となる。アーム部72Bは、ピン73に対して回転可能な状態でピン73に取り付けられる。

[0066]

図6に示されるように、リンク機構70は、ねじ軸21および電動のモータ23よりも幅方向Xの車両外側に配置されている。第1のリンク71は、下側に向かうにつれて幅方向Xの車両内側に傾斜している。第2のリンク72は、幅方向Xの車両外側に向かうにつれて上側に傾斜している。ピン73は、ねじ軸21の中心軸およびガイド部材24の中心軸よりも下側に配置され、連動軸61の中心軸よりも幅方向Xの車両内側に配置されている。

[0067]

図 7 に示されるように、第 1 のリンク 7 1 は、レールプレート 5 0 のフランジ 5 1 に対して連動軸 6 1 の前後方向 Y の端部側に連結されている。レールプレート 5 0 において第 1 のリンク 7 1 と幅方向 X に対向する位置には、第 1 のリンク 7 1 やねじ 7 4 とレールプレート 5 0 との干渉を回避するための切欠部 5 2 が形成されている。

[0068]

40

20

10

10

20

30

40

50

第2のリンク72は、第1のリンク71の第2の柄71Bに対して第1の柄71Aと同じ側に配置されている。連結部材29は、前後方向Yにおいて第2のリンク72よりも戸車27側に位置している。ガイド連結部29Aは、幅方向Xにおいてピン73と重なっている。プレート29Bは、前後方向Yにおいて第2の柄71B、第2のリンク72のアーム部72B、および、ピン73と対向している。

[0069]

図8~図10を参照して、プラグドア開閉装置10の動作について作用とともに説明する。なお、以下の説明において、「ドア閉じ側リンク機構70A」は、前後方向Yにおいてドア閉じ側に配置されたリンク機構70を示し、「ドア開き側リンク機構70B」は、前後方向Yにおいてドア開き側に配置されたリンク機構70を示す。また、図8~図10は、プラグドア開閉装置10の動作を明確に示すため、図2のプラグドア開閉装置10の寸法関係とは異なる寸法関係により示したプラグドア開閉装置10の模式図である。

[0070]

図8(a)は、ドア2が全閉状態のときのプラグドア開閉装置10を示し、図8(b)は、ドア2が全閉状態のときの移動量連動手段60を示している。図8(a)に示されるように、ドアハンガ25は、ガイド部材24において前後方向Yのドア閉じ側の端部に位置している。ドアハンガ25のローラ(図示略)は、傾斜レール31の傾斜部分32に位置している。モータ23はねじ軸21において前後方向Yのドア閉じ側の部分に位置している。

[0071]

プラグドア装置 1 は、ドア 2 の位置が図 8 (a) の全閉位置から図 1 0 の全開位置となるようにモータ 2 3 を駆動させてドア 2 を幅方向 X および前後方向 Y に移動させる一方、ドア 2 の位置が全開位置から全閉位置となるようにモータ 2 3 を駆動させてドア 2 を前後方向 Y および幅方向 X に移動させる。

[0072]

プラグドア装置1は、ドア2を全閉状態から開けるとき、モータ23によりナット22を正回転させる。これにより、ナット22およびモータ23がねじ軸21に対して前後方向Yのドア開き側に移動する。モータ23は連結板26によりドアハンガ25と連結されているため、モータ23の移動にともないドアハンガ25が前後方向Yのドア開き側に移動する力がドアハンガ25に付与される。そして、ドアハンガ25に付与された力によりドアハンガ25のローラが傾斜レール31の傾斜部分32に沿って幅方向Xの車両外側に移動しつつ前後方向Yのドア開き側に移動する。これにより、ドア2が幅方向Xの車両外側に移動しつつ前後方向Yのドア開き側に移動する。このようなドアハンガ25の移動にともない、ガイド部材24が幅方向Xの車両外側に移動する。このとき、ガイド部材24の両端部に取り付けられた戸車27がレール44上を転がる。

[0073]

そしてガイド部材 2 4 の幅方向 X の車両外側への移動にともない、ガイド部材 2 4 の両端部のリンク機構 7 0 が次のように動作する。すなわち、図 8 (b)に示されるように、ドア閉じ側リンク機構 7 0 A の第 2 のリンク 7 2 がガイド部材 2 4 の幅方向 X の車両外側に移動することにより、ピン 7 3 が幅方向 X の車両外側に移動することにより、ピン 7 3 が幅方向 X の車両外側に移動することにより、ピン 7 3 が幅方向 X の車高外側に移動する。これにより、第 1 のリンク 7 1 において第 2 のリンク 7 2 との連結部分が幅方向 X の車両外側に引っ張られ、第 1 のリンク 7 1 が連動軸 6 1 とともに白抜き矢印の方向に回転する。そして、連動軸 6 1 の回転にともない、ドア開き側リンク機構 7 0 A の第 1 のリンク 7 1 と同方向に回転する。これにより、ドア開き側リンク機構 7 0 B の第 2 のリンク 7 2 が幅方向 X の車両外側に移動する。これにより、ドア開き側リンク機構 7 0 B の第 2 のリンク 7 2 がガイド部材 2 4 において前後方向 Y のドア開き側の端部が幅方向 X の車両外側に移動する。このように、連動軸 6 1 と、ドア閉

側リンク機構70Aおよびドア開き側リンク機構70Bとにより、ガイド部材24の前後方向Yのドア閉じ側の端部の移動量がガイド部材24の前後方向Yのドア開き側の端部の移動量と一致するため、ガイド部材24が前後方向Yに対して傾きにくくなり、その結果、固渋することが無い。

なお、一致とは完全に一致する場合のほか、ガイド部材 2 4 の幅方向 X の移動に支障が無い範囲でのずれ量も含む概念である。ガイド部材 2 4 が固渋することなく、幅方向 X に移動できればよいからである。

ここではドア閉じ側リンク機構70Aを起点にして動作を例示したが、ドア開き側リンク機構70Bを起点にした動作も同様となる。

[0074]

また、図8(a)に示されるように、ガイド部材24が幅方向Xの車両外側に移動するとき、モータ23に加え、連結部材29によりガイド部材24に連結されたねじ軸21がガイド部材24とともに幅方向Xの車両外側に移動する。

[0075]

図9(a)に示されるように、電動のモータ23が前後方向Yのドア開き側にさらに移動してドアハンガ25のローラが傾斜レール31の傾斜部分32を通過したとき、ガイド部材24およびドアハンガ25の幅方向Xの車両外側への移動が規制される。これにともない、ドア2の幅方向Xの車両外側への移動が規制される。このとき、図9(b)に示されるように、ドア閉じ側リンク機構70Aおよびドア開き側リンク機構70Bの曲げ角度が増加している。なお、曲げ角度は、リンク機構70の前後方向Yの側面視において、連動軸61の中心軸とピン73の中心軸とを結ぶ直線と、ピン73の中心軸とガイド部材24の中心軸とを結ぶ直線との成す角度を示す。

[0076]

そして、モータ23が前後方向Yのドア開き側にさらに移動することにともない、ドアハンガ25のローラが傾斜レール31の直線部分33に沿って移動する。これにともない、ドア2が前後方向Yのドア開き側に移動する。

[0077]

そして、図10に示されるように、モータ23は、ねじ軸21において前後方向Yのドア開き側の端部に移動して停止する。ドアハンガ25は、モータ23の移動にともないガイド部材24において前後方向Yのドア開き側の端部に移動する。このとき、ドア2が全開位置となる。なお、ドア2が前後方向Yのみに移動するとき、ドア閉じ側リンク機構70Aおよびドア開き側リンク機構70Bは、図9(b)のドア閉じ側リンク機構70Aおよびドア開き側リンク機構70Bの状態から変更されない。

[0078]

プラグドア装置 1 は、図 1 0 に示される全開位置のドア 2 を閉じるとき、モータ 2 3 によりナット 2 2 を逆回転させる。これにより、モータ 2 3、ドアハンガ 2 5、および、ドア 2 が前後方向 Y に沿ってドア閉じ側に移動する。そして、ドアハンガ 2 5 のローラが傾斜レール 3 1 の傾斜部分 3 2 を走行することにともない、モータ 2 3、ドアハンガ 2 5、および、ドア 2 が前後方向 Y のドア閉じ側かつ幅方向 X の車両内側に移動して全閉状態となる。

[0079]

本実施形態のプラグドア装置1は、以下の効果を奏する。

(1)プラグドア開閉装置10は、ガイド部材24の両端部の移動量を一致させる機能を有する移動量連動手段60を備えている。このため、レール44に支持されたガイド部材24が幅方向Xに移動するときにガイド部材24が固渋することが無い。したがって、ガイド部材24が幅方向Xに円滑に移動し、幅方向Xにおけるドア2の移動が安定する。

[0800]

(2)移動量連動手段60は、前後方向Yに延びる連動軸61と、連動軸61とガイド部材24の両端部とを連結するリンク機構70とを備えている。このため、電力が無くてもガイド部材24の移動量を一致させることができる。つまり、車両200に電力が供給

10

20

30

40

されていなくても移動量連動手段 6 0 が機能し、スムーズなドア 2 の開閉を行うことができる。

[0081]

(3) 例えば、移動量連動手段がラックアンドピニオン機構を用いて力を伝達する構造を備える場合には、それぞれのラックのピッチの位置を合わせる必要があり、高い組立精度が求められ、手間がかかる。一方、プラグドア開閉装置10は、2個のリンク機構70により力を伝達する移動量連動手段60を備え、各リンク機構70が第1のリンク71と第1のリンク71に対して回転可能に連結される第2のリンク72で連動軸61とガイド部材24とを連結している。このため、ラックアンドピニオン機構を用いる場合と比較して組み立てが容易である。

[0082]

(4)2個のリンク機構70がガイド部材24の前後方向Yの両端部に連結されている。これにより、ドアハンガ25は、ガイド部材24の前後方向Yの両端部の間で移動する。このため、2個のリンク機構70が前後方向Yにおけるガイド部材24の中間部分に連結される場合と比較して、ガイド部材24上におけるドアハンガ25の移動範囲を広く取ることができる。つまり、前後方向Yにおけるプラグドア開閉装置10のサイズを大きくすること無く、ドア2の開口幅を広く取ることができる。

[0083]

(5)第2のリンク72がガイド部材24に対して回転可能に連結されている。このため、第1のリンク71と第2のリンク72との連結時に第2のリンク72をガイド部材24に対して回転させることができる。このため、第2のリンク72をガイド部材24とともに回転させつつ第1のリンク71と連結させる場合と比較して各リンク機構70の組み立ての作業性が向上する。

[0084]

(6)連動軸61がガイド部材24よりも幅方向Xの車両内側に配置されているため、第1のリンク71と第2のリンク72との連結部分がガイド部材24の幅方向Xの車両内側に配置される。このため、作業者が幅方向Xの車両内側から各リンク機構70を組み立てるとき、各リンク機構70を組み立てやすい。

[0085]

(7)移動量連動手段60は、連動軸61に対する第1のリンク71の取付位置(周方向および前後方向Y)を決める位相決め部を備えている。このため、位相決め部により複数のリンク機構70の各第1のリンク71を容易に一致させることができる。

[0086]

(8)移動量連動手段60の位相決め部は、連動軸61の貫通孔61Aと、第1のリンク71の貫通孔71Eと、各貫通孔61A,71Eに通され、連動軸61および第1のリンク71を固定するねじ74とからなる。このため、連動軸61に対する第1のリンク71の位相、および、前後方向Yにおける連動軸61に対する第1のリンク71の位置がねじ74により決められる。このため、ねじ74をねじ込む作業により上記位相および前後方向Yの位置合わせと固定とを同時に行うことができるので、組み立ての手間が軽減される。

[0087]

(9)前後方向Yにおいて第2のリンク72が第1のリンク71の第2の柄71Bに対して第1の柄71Aと同側に配置されている。このため、前後方向Yにおいて第2のリンク72が第2の柄71Bに対して第1の柄71Aと反対側に配置される場合と比較して、ガイド部材24上におけるドアハンガ25の移動範囲を広くすることができる。つまり、プラグドア開閉装置10を車両200の前後方向Yにおいて大きくすることなく、ドア2の開口幅を広く取ることができる。

[0088]

(10) レールプレート 50 は、前後方向 Y に延びるフランジ 51 を備えている。このため、レールプレート 50 の剛性がフランジ 51 により高められるため、レールプレート

10

20

30

40

(14)

50が支持するレールブロック30の傾斜レール31が変位しにくい。このため、ドア2の移動が安定する。また、第1のリンク71の第1の柄71Aが連動軸61の長手方向の外側に配置されるため、前後方向Yにおけるフランジ51の寸法を長く設定してもフランジ51が第1の柄71A、特にねじ74のねじ頭74Aに接触することが抑制される。このため、レールプレート50の剛性が一層高められる。

[0089]

(11)ガイド部材24の両端部には、ガイド部材24に対して回転可能に連結される 戸車27が取り付けられている。これにより、ガイド部材24とレール44との間の摩擦 が低減されるため、幅方向Xにおけるガイド部材24の移動が一層円滑化される。

[0090]

(12) 戸車27がレール44から離れた場合には、それに起因して2個のリンク機構70が互いに異なる曲げ角度を持つことがある。その場合には2個のリンク機構70の動作も異なるため、ガイド部材24が前後方向Yに対して傾いて、固渋するおそれがある。一方、プラグドア開閉装置10は、レール44との間で戸車27を挟む踊り止め47を備えている。これにより、戸車27がレール44から離れることが抑えられ、2個のリンク機構70の曲げ角度が実質的に同じ角度に維持される。したがって、幅方向Xにおけるガイド部材24の移動が安定する。

[0091]

(13)プラグドア開閉装置10は、ねじ軸21とガイド部材24とを連結する連結部材29を備えている。ガイド部材24は、連結部材29に対して回転可能である。このため、ガイド部材24とねじ軸21とが一体的に幅方向Xに移動するため、移動量連動手段60により得られるガイド部材24に関する効果がねじ軸21にももたらされる。このため、ねじ軸21が幅方向Xに円滑に移動し、幅方向Xにおけるドア2の移動が一層安定する。また、ガイド部材24が回転しながら幅方向Xに移動するような場合には、連結部材29がガイド部材24の回転を妨げることが抑制される。したがって、ガイド部材24を幅方向Xに円滑に移動させることができる。

[0092]

(14)レール44の取付部分45の下端部は、上下方向2においてフレーム40の基部41に接触している。このため、上下方向2においてフレーム40に対するレール44の位置が容易に決められる。また戸車27からレール44の支持部分46に加えられる力が取付部分45の下端部に接触した基部41により支持されるため、戸車27からレール44の支持部分46に加えられる力により支持部分46が変形することが抑制される。

[0093]

またレール44の取付部分45は、前後方向Yにおいてフレーム40の基部41に接触している。このため、前後方向Yにおいてフレーム40に対するレール44の位置が容易に決められる。

[0094]

(15)レール44の取付部分45は、前後方向Yにおいて戸車27と僅かな隙間をおいて対向している。このため、戸車27が上下方向Zに対して傾くこと、および、戸車27が前後方向Yにおいてプラグドア開閉装置10の端部側に移動することが規制される。

[0095]

(16)フレーム40のカバー43は、連結部材29の上側を覆っている。このため、カバー43により連結部材29の上側への移動が規制される。したがって、ガイド部材24に対してねじ軸21の前後方向Yの両端部が上側に移動しにくくなる。

[0096]

(17)連結部材29のプレート29Bは、幅方向Xの車両外側の端部が幅方向Xの車両内側の端部よりもガイド部材24の前後方向Yの端部側に位置するクランク形状である。このため、プレート29Bの幅方向Xの車両外側の端部と前後方向Yに対向する各リンク機構70のピン73がガイド部材24の前後方向Yの端部側に配置されやすい。このため、ガイド部材24上におけるドアハンガ25の移動範囲がより広くなる。

10

20

30

40

[0097]

(18)連動軸61がガイド部材24よりも上側かつガイド部材24よりも内側に配置されている。このため、連動軸61がガイド部材24よりも下側に配置される場合、および、連動軸61が幅方向Xにおいてガイド部材24と同じ位置に配置される場合よりも上下方向Zにおいてプラグドア開閉装置10の大型化を抑制し、コンパクトに構成することができる。また連動軸61がガイド部材24と上下方向Zにおいて同じ位置に配置される場合よりもガイド部材24とモータ23との幅方向Xの間の空間を小さくすることができる。このため、幅方向Xにおいてプラグドア開閉装置10の大型化を抑制し、コンパクトに構成することができる。

[0098]

本プラグドア開閉装置および本プラグドア装置が取り得る具体的な形態は、上記実施形態に例示された形態に限定されない。本プラグドア開閉装置および本プラグドア装置は、上記実施形態とは異なる各種の形態を取り得る。以下に示される上記実施形態の変形例は、本プラグドア開閉装置および本プラグドア装置が取り得る各種の形態の一例である。なお、以下に示される上記実施形態の変形例は、技術的に可能な範囲において互いに組み合わせることができる。

[0099]

(変形例1)

移動量連動手段60の形態は任意に変更可能である。図11は移動量連動手段60の別の形態の一例を示している。この移動量連動手段60は、幅方向Xに作用する力をガイド部材24に与えるアクチュエータ90と、ガイド部材24の位置を検出する第1の位置センサ91および第2の位置センサ92と、アクチュエータ90を制御する制御装置(図示略)とを備える。

[0100]

アクチュエータ90は直動シリンダであり、空圧シリンダ、電動シリンダ、または油圧シリンダを用いることができる。アクチュエータ90はガイド部材24のドア開き側の端部に双方向(幅方向 X の車両内側と車両外側)の力が与えられるように、連結されている。第1の位置センサ91は、ガイド部材24のドア閉じ側の端部の幅方向 X の位置を検出する。第2の位置センサ92は、ガイド部材24のドア開き側の端部の幅方向 X の位置を検出する。各位置センサ91、92の一例は光学センサである。

[0101]

制御装置は、各位置センサ91、92の検出結果に応じてアクチュエータ90をフィードバック制御する。このフィードバック制御では、ガイド部材24のドア閉じ側の端部の位置とドア開き側の端部の位置とのずれが検出されたとき、そのずれが小さくなるようにアクチュエータ90が位置制御される。アクチュエータ90がガイド部材24のドア開き側の端部に力を与えることにより、その端部がアクチュエータ90から与えられる力によっても幅方向Xに進行するため、ガイド部材24のドア開き側の端部の位置とドア閉じ側の端部の位置とのずれが小さくなる。

[0102]

(変形例2)

移動量連動手段60のさらに別の形態によれば、ガイド部材24の両端部に図11に示されるアクチュエータ90が配置される。制御装置は各位置センサ91、92の検出結果に応じて2つのアクチュエータ90をフィードバック制御する。この場合、それぞれのアクチュエータ90は一方向(幅方向Xの車両外側)の力を与えられれば、連結されていなくてもかまわない。

[0103]

(変形例3)

図12は、移動量連動手段60のさらに別の形態の一例を示している。この移動量連動手段60のアクチュエータ90は、ガイド部材24のドア閉じ側の戸車27に双方向(幅方向Xの車両内側と車両外側)の力を与えられるように、連結されている。その他の点は

10

20

30

40

図11に示される移動量連動手段60と実質的に同一である。

[0104]

ところで、ドア2が全開位置から全閉位置に移動することにともないガイド部材24が幅方向Xの車両外側に移動するとき、ガイド部材24のドア閉じ側の移動量がガイド部材24のドア開き側の移動量よりも大きくなる場合がある。そこで、図12のアクチュエータ90は、ガイド部材24が幅方向Xの車両外側に移動するとき、ガイド部材24を幅方向Xの車両外側に押す力または車両内側に引く力をガイド部材24のドア閉じ側の端部に与える。このため、ガイド部材24のドア開き側の端部の位置とドア閉じ側の端部の位置とのずれが小さくなる。

[0105]

(変形例4)

図11および図12の移動量連動手段60の制御装置は、アクチュエータ90をフィードバック制御することに代えて、試験等により予め設定された力をガイド部材24に与えるようにアクチュエータ90を制御してもかまわない。

[0106]

(変形例5)

移動量連動手段60のさらに別の形態の一例は、図12の移動量連動手段60に代えて、フレーム40の幅方向Xの車両外側の端部と、ガイド部材24のドア閉じ側の端部およびドア開き側の端部とをそれぞれ連結する弾性部材を備える。弾性部材の一例はコイルばねである。コイルばねは、ガイド部材24が幅方向Xの車両外側に移動するにつれて圧縮される。この構成によれば、コイルばねは、ガイド部材24が幅方向Xの車両外側に移動するとき、ガイド部材24を幅方向Xの車両内側に押す力をガイド部材24のドア閉じ側の端部およびドア開き側の端部に与える。このとき、両端部で位置がずれていれば、一方の端部より他方の端部の力が大きくなる。この力の差により、ガイド部材24のドア開き側の端部の位置とドア閉じ側の端部の位置とのずれが小さくなる。

[0107]

(変形例6)

移動量連動手段60のさらに別の形態の一例によれば、図12の移動量連動手段60に代えて、各戸車27に制動手段を設け、ガイド部材24が幅方向Xの車両外側に移動するとき、両端部で位置がずれていれば、一方の端部の戸車27の制動力を他方の端部の戸車27の制動力よりも高める制御を行う。これにより、ガイド部材24のドア開き側の端部の位置と、ドア閉じ側の端部の位置とのずれを小さくすることができる。制御手段としては電磁ブレーキを用いることができる。

[0108]

(変形例7)

図13の移動量連動手段100は、移動量連動手段60のさらに別の形態の一例を示している。この移動量連動手段100は、レール44に沿って配置されるラックギヤ101と、ガイド部材24に固定される第1のピニオンギヤ102と、ガイド部材24と平行する連結軸103と、連結軸103に固定される第2のピニオンギヤ104と、ガイド部材24および連結軸103は連結プレート105に対して回転可能である。各ピニオンギヤ102、104はラックギヤ101に噛み合わせられる。

[0109]

このドア駆動機構 2 0 は、ガイド部材 2 4 の両端部に取り付けられるピニオンギヤと、フレーム 4 0 に取り付けられ、幅方向 X に延びるラックギヤをさらに備える。ピニオンギヤはラックギヤに噛み合わせられる。

[0110]

(変形例8)

移動量連動手段 6 0 は、リンク機構 7 0 に代えて、図 1 4 (a)に示されるギヤ列 1 1 0 およびラックギヤ 1 1 4 を備える。このギヤ列は、ガイド部材 2 4 の両端部に固定され

10

20

30

40

る第1のギヤ111と、連動軸61の両端部に固定される第2のギヤ112と、各ギヤ111、112に噛み合わせられる第3のギヤ113を備える。第1のギヤ111はラックギヤ114に噛み合わせられる。

[0111]

この移動量連動手段60によれば、ガイド部材24の幅方向Xの移動にともない第1のギヤ111が白抜き矢印の方向に回転し、図14(b)に示されるとおり第3のギヤ113が第1のギヤ111のまわりを公転する。

[0112]

(変形例9)

移動量連動手段60は、ガイド部材24の第1の部分および第2の部分として、ガイド部材24の前後方向Yの両端部以外の部分の移動量を一致させてもよい。要するに、移動量連動手段60は、ガイド部材24において前後方向Yの異なる少なくとも2箇所の部分の移動量を一致させればよい。

[0113]

(変形例10)

移動量連動手段60が備えるリンク機構70の数は、3つ以上のいずれかに変更可能である。リンク機構70の数が3つ以上の場合、移動量連動手段60は、ガイド部材24において前後方向Yの位置が異なる3つ以上の部分について、幅方向Xの同じ側の移動量を一致させる。

[0114]

(変形例11)

リンク機構 7 0 の第 2 のリンク 7 2 を、ガイド部材 2 4 に対して、回転不能に設けてもよい。第 2 のリンク 7 2 をガイド部材 2 4 に回転可能に設ける場合に比べて、ガイド連結部 7 2 A の内周面の加工が不要となり、加工の手間が減る。なお、この場合、戸車 2 7 はガイド部材 2 4 に対して回転可能に設けられる。

[0115]

(変形例12)

リンク機構70をガイド部材24の前後方向Yの中央側に追加してもかまわない。この場合、連動軸61のねじりに対して強くすることができる。

[0116]

(変形例13)

また、リンク機構70において、図15に示されるように第1のリンク71の形状が平板であり、第2のリンク72の形状がクランク状であってもかまわない。

[0117]

(変形例14)

第1のリンク71および第2のリンク72の長さは任意である。ドア2が全閉状態のときの幅方向Xにおける第1のリンク71と第2のリンク72との連結部分の位置は各リンクの長さと位置に基づいて幾何学的に定まる。その連結部分の位置の一例は、連動軸61 およびガイド部材24の少なくとも一方よりも幅方向Xの車両外側となる。ドア2が全閉状態のときに第1のリンク71が鉛直方向下向きに配置されるとき、幅方向Xにおけるプラグドア開閉装置10のサイズを小さくすることができる。

[0118]

(変形例15)

移動量連動手段60は、ガイド部材24に対する第2のリンク72の前後方向Yの位置を決める位置決め部材を有してもよい。位置決め部材の一例は、スナップリングである。

[0119]

(変形例16)

連動軸 6 1 に対する第 1 のリンク 7 1 の周方向における位置である位相を決める位相決め部の構造は、例えば次のようにすることができる。

図16に示される変形例によれば、位相決め部は、連動軸61の端部に形成される凹部

20

10

30

40

61 Bと、第1のリンク71に形成される凸部71 Gとにより構成される。この構造によれば、凸部71 Gが凹部61 Bに嵌め合わせられることにより、周方向における連動軸61に対する第1のリンク71の位相が決められる。また、凸部71 Gが凹部61 Bの端に突き当てられることにより、軸方向における連動軸61に対する第1のリンク71の位相が決められる。なお、上記に関わらず、連動軸61に凸部が形成され、第1のリンク71に凹部を形成してもかまわない。

[0120]

(変形例17)

第1のリンク71を連動軸61に固定するための手段は任意に変更可能である。その手段の一例は、溶接、接着、圧入、または、ピンである。なお、第1のリンク71が溶接、接着、または圧入により連動軸61に固定される場合、位相決め部を連動軸61から省略してもよい。

[0121]

(変形例18)

連動軸61の貫通孔61A、第1のリンク71の貫通孔71E、および、ねじ74の個数は任意に変更可能である。

[0122]

(変形例19)

連動軸 6 1 の位置は任意に変更可能である。その一例によれば、連動軸 6 1 がガイド部材 2 4 よりも幅方向 X の車両外側に配置される。

[0123]

(変形例20)

ドア駆動機構20の戸車27がガイド部材24に対して回転できないようにガイド部材24に固定されていてもよい。このとき、ガイド部材24と戸車27との間の軸受が省略されるため、構造が簡素化される。

[0124]

(変形例21)

幅方向Xにおけるガイド部材24の移動をガイドするためのドア駆動機構20の構造は、例えば以下のようにしてもよい。

ドア駆動機構20は、レール44および戸車27に代えて、フレーム40に固定されるパイプ120、および、ガイド部材24の端部に固定されるスライド軸121を備えてもよい(図17)。パイプ120およびスライド軸121はそれぞれ幅方向Xに延びる。スライド軸121は、パイプ120内に挿入され、パイプ120に対して幅方向Xに移動可能である。パイプ120がガイド支持部材に相当する。

[0125]

(変形例22)

ドア駆動機構20は、レール44および戸車27に代えて、フレーム40に固定されるガイドレール130、および、ガイド部材24の端部に取り付けられるローラ131を備えていてもよい(図18)。ガイドレール130は幅方向Xに延びる。ローラ131は、ガイドレール130に配置され、ガイド部材24に対して回転可能である。この場合、ガイドレール130がガイド支持部材に相当し、ローラ131が回転体に相当する。

[0126]

(変形例23)

ドア駆動機構20は、戸車27に代えてレール44の支持部分46に載せられる凹部24Bがガイド部材24の両端部の外周に形成されていてもよい(図19)。ガイド部材24の両端部は、上下方向2においてレール44と踊り止め47とにより挟み込まれる。これにより戸車27を省略することができる。この場合、凹部24Bが回転体に相当する。

[0127]

(変形例24)

図19において、ガイド部材24の凹部24Bおよびレール44に代え、ガイド部材2

20

10

. .

30

40

4の両端部がそれぞれフレーム40の支持面に載せられていてもかまわない。これにより 、戸車27およびレール44を省略することができる。この場合、フレーム40の支持面 がガイド支持部材に相当し、ガイド部材24の両端部が回転体に相当する。

[0128]

(変形例25)

フレーム40のカバー43の長さは任意の長さに変更可能である。例えば、カバー43 が基部41の内側の端部から外側の端部までの範囲に形成されることにより、踊り止め4 7を省略することができる。

連結部材29の形状は任意の形状に変更可能である。その一例は平板である。

[0129]

(変形例26)

10

[0130]

(変形例27)

ドアハンガ25を前後方向に移動させるためのドア駆動機構20は、モータ23がねじ 軸 21を回転させる方式でも、巻き掛け伝導装置でも、ラックアンドピニオン方式でもよ

[0131]

(変形例28)

プラグドア装置1のドア開閉方式は両引分けであってもかまわない。この場合、一対の ドア2、ならびに、幅方向Xおよび前後方向Yにおける各ドア2の移動をガイドする一対 のスイングアーム機構4を備える。

【符号の説明】

[0132]

:プラグドア装置 1

2 : ドア

10:プラグドア開閉装置

20:ドア駆動機構

2 1 :ねじ軸

2 2 : ナット

:ガイド部材 2 4

2 5 :ドアハンガ

2 7 : 戸車(回転体)

29 :連結部材

3 1 : 傾斜レール

3 2 :傾斜部分

3 3 :直線部分

4 4 : レール(ガイド支持部材)

4 7 :踊り止め

5 0 : レールプレート

5 1 :フランジ

6 0 :移動量連動手段

:連動軸 6 1

6 1 A:貫通孔(穴、位相決め部) 70:リンク機構(連結機構)

71:第1のリンク

71A:第1の柄

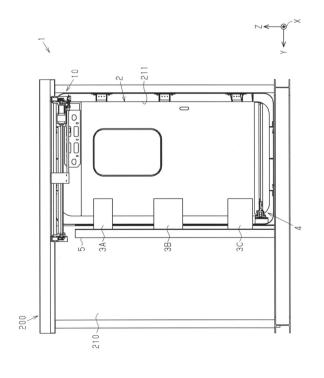
71B:第2の柄

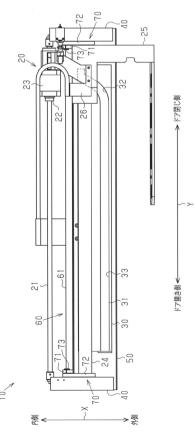
7 1 C : 接続部

71 E:貫通孔(穴、位相決め部)

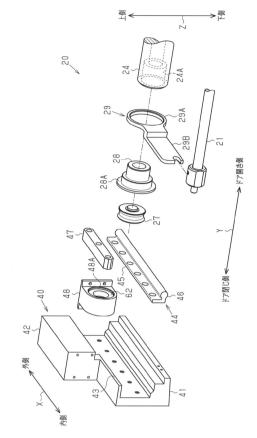
72:第2のリンク

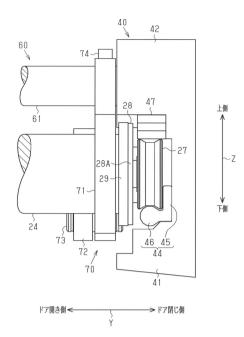
20

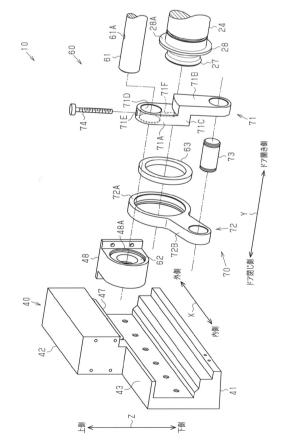

30

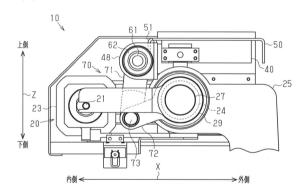

40

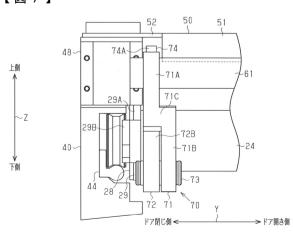
74 :ねじ(位相決め部)

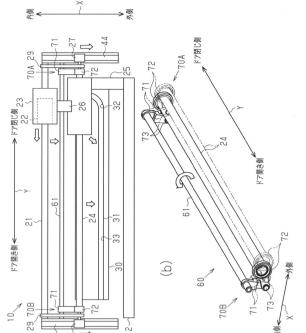

2 0 0 : 車両 X : 幅方向 Y : 前後方向

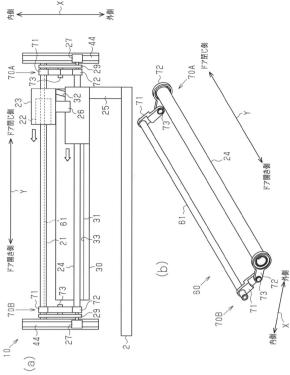



【図3】

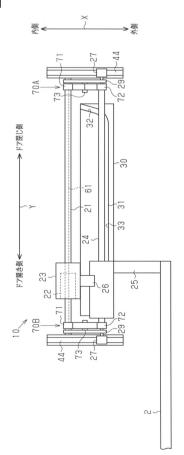

【図4】


【図5】

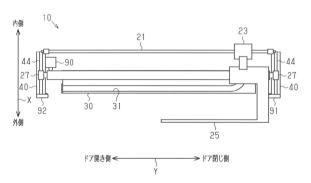

【図6】


【図7】

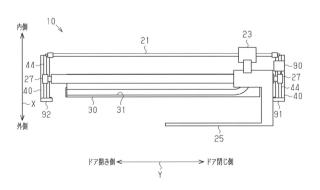
【図8】

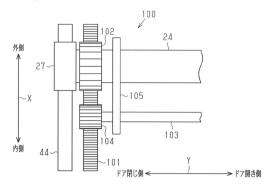


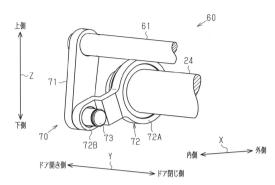
【図9】

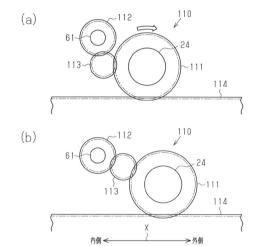


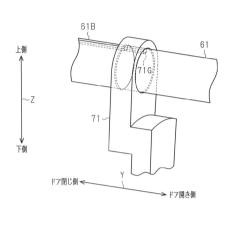
【図10】

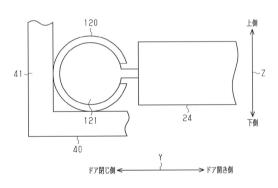

(B)

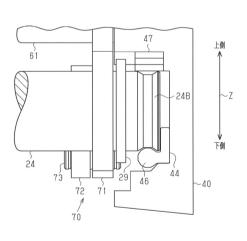

【図11】

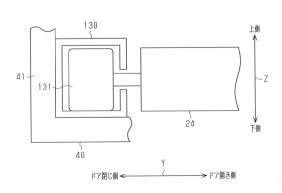

【図12】


【図13】


【図15】


【図14】


【図16】


【図17】

【図19】

【図18】

フロントページの続き

(56)参考文献 特開2002-180731(JP,A)

国際公開第2013/183699(WO,A1)

特開2012-188858(JP,A)

特開2010-095940(JP,A)

特開2011-241655(JP,A)

米国特許出願公開第2014/0130705(US,A1)

(58)調査した分野(Int.CI., DB名)

B61D 19/00

E 0 5 D 1 5 / 1 0

E 0 5 F 1 5 / 6 3 2