(54) Title: INFLATION AND DEFLATION MECHANISMS FOR INFLATABLE MEDICAL DEVICES

(57) Abstract: According to embodiments, disclosed is an inflation and deflation device for an inflatable medical device, comprising: an inflation tubing disposed between an access block and a roller configured to rotate about an axis of a roller head; wherein the inflation tubing provides fluid communication between a container and the inflatable medical device; wherein the access block and the roller are configured to restrict flow through the inflation tubing at the area of pressure between the roller and the access block; and wherein the rotation of the roller about the axis of the roller head is configured to transport a fluid within the inflation tubing.
Published:
— without international search report and to be republished upon receipt of that report (Rule 48.2(gJ)
INFLATION AND DEFLATION MECHANISMS FOR INFLATABLE MEDICAL DEVICES

RELATED APPLICATION

[0001] This application claims the full Paris Convention benefit of and priority to U.S. Provisional Patent Application Serial No. 61/228,031, filed July 23, 2009, the contents of which are incorporated by reference herein in its entirety, as if fully set forth herein.

BACKGROUND

[0003] This disclosure relates to deflation and inflation mechanisms, process, and systems for implantable medical devices. In particular, this disclosure relates to devices and methods for controlling inflation and deflation of inflatable gastric space fillers.

SUMMARY

[0004] According to embodiments, disclosed is a method of controlling inflation of an inflatable medical device, comprising: determining a target volume of a fluid to be transferred to a medical device; determining an initial mass of a container and initial fluid therein; transferring at least a portion of the fluid from the container to the medical device; measuring a resulting mass of the container and remaining fluid therein; calculating the volume of transferred fluid to the medical device; and if the volume of transferred fluid is substantially equal to the target volume, ending the transferring.

[0005] The method may further comprise transferring an excess amount of fluid from the container prior to transferring the fluid from the container to the medical device, whereby the container contains only the target volume of fluid.
[0006] The method may further comprise, if the volume of transferred fluid is less than the target volume, transferring more of the fluid from the container to the medical device. The method may further comprise, if the volume of transferred fluid is greater than the target volume, transferring fluid from the medical device to the container. The method may further comprise, if the volume of transferred fluid is greater than the target volume, ceasing the transferring.

[0007] Calculating the volume of transferred fluid to the medical device may comprise: subtracting the resulting mass of the container and the remaining fluid therein from the initial mass of the container and the initial fluid therein to determine the change in mass; dividing the change in mass by the density of the fluid. The initial mass of a container and fluid therein may be known and provided from a manufacturer. The target volume may be the desired amount of volume to fill the medical device.

[0008] The medical device may be an implantable, inflatable intragastric balloon system.

[0009] The method may further comprise sensing a back pressure corresponding to the inflation state of the inflatable medical device and a resistance to further inflation due to interactions between the inflatable medical device and the walls of the stomach; and ceasing the transferring if the sensed back pressure corresponds to a target inflation state.

[0010] Determining the volume of a fluid in a container may further comprise: determining the mass of the fluid in the container; and dividing the mass of the fluid by the density of the fluid. Determining the mass of the fluid in the container may further comprise: determining a mass of only the container; determining a combined mass of the fluid and the container; and subtracting the mass of only the container from the combined mass of the fluid and the container. Determining the initial mass of the container and initial fluid therein may further comprise filling the container to the target volume. Determining the mass of the fluid in the container may further comprise filling the container to the target volume, wherein the container has markings for measuring volume. Determining the mass of the fluid in the container may further comprise receiving the container from a provider, the container being provided with the target volume.

[0011] According to embodiments, disclosed is a method of controlling deflation of an inflatable medical device, comprising: determining a target volume of a fluid to be transferred from a medical device; determining an initial mass of a container and initial fluid therein;
transferring at least a portion of fluid from the medical device to the container; measuring a resulting mass of the container and resulting fluid therein; calculating the volume of transferred fluid from the medical device; and if the volume of transferred fluid is substantially equal to the target volume, ending the transferring.

[0012] The method may further comprise, if the volume of transferred fluid is less than the target volume, transferring more of the fluid from the medical device to the container. The method may further comprise, if the volume of transferred fluid is greater than the target volume, transferring fluid from the container to the medical device. The method may further comprise, if the volume of transferred fluid is greater than the target volume, ceasing the transferring.

[0013] According to embodiments, disclosed is a system for inflating and deflating a medical device, comprising: a container with fluid therein; a medical device; a pump connecting the container to the medical device, the pump being programmed to determine an initial mass of a container and fluid therein; transfer at least a portion of the fluid to the medical device; measure a mass of the container and remaining fluid therein; calculate the volume of transferred fluid to the medical device; and if the volume of transferred fluid is substantially equal to a target volume, end the transferring.

[0014] The pump may be a roller pump, comprising: an inflation tubing disposed between an access block and a roller configured to rotate about an axis of a roller head; wherein the inflation tubing provides fluid communication between the container and the medical device; wherein the access block and the roller are configured to restrict flow through the inflation tubing at the area of pressure between the roller and the access block; and wherein the rotation of the roller about the axis of the roller head is configured to transport a fluid within the inflation tubing.

[0015] The access block and the roller may be selectively moveable relative to each other such that a selective amount of pressure is imposed upon the inflation tubing.

DRAWINGS

[0016] The above-mentioned features and objects of the present disclosure will become more apparent with reference to the following description taken in conjunction with the accompanying drawings wherein like reference numerals denote like elements and in which:
Figure 1 shows connections between a container, a pump, and a medical device;

Figure 2 shows a roller pump device; and

Figure 3 shows a flow diagram of a method of inflating or deflation a medical device.

DETAILED DESCRIPTION

Various inflatable and variable-volume medical devices exist. Examples include medical devices for the treatment of obesity that entail a single or multiple balloon system to be implanted in the stomach. These balloons may be made of silicone or other biocompatible substances and may be filled with a fluid, such as a saline solution, as part of the implantation process. After a clinically designated or otherwise desired implant period within the stomach, it is desirable to pierce the balloon wall or otherwise access the interior of the balloons so that the balloon contents can be evacuated, such as by aspiration.

Historically, such balloon systems may be inflated manually using a syringe and associated tubing. This method may be physically demanding, time consuming, and complicated with many steps for the user to perform, presenting an increased risk of complications with a prolonged inflation procedure. Also, this method is vulnerable to human error because the user must count multiple syringe injections to track the volume of fluid that had been transferred to the balloon system. According to embodiments, disclosed herein is a method and system to inflate balloon systems that is faster, does not require physical exertion, and accurately transfers the target volume of liquid to the balloon system.

According to embodiments, and as shown in Figure 1, container 1 capable of holding a fluid is provided in connection with pump 10 and inflatable medical device 50. Pump 10 is configured to transfer the fluid between the container and the inflatable medical device 50. Each of container 1, pump 10, and inflatable medical device 50 are connected by fluid-conducting tubing. Pump 10 may be manually operated or an automated machine.

According to embodiments, using a pump that allows easy access to load and unload inflation tubing is particularly advantageous. Figure 2 shows an embodiment of pump 10 that provides easy access to load and unload inflation tubing 20. As illustrated, access block 30 is positioned in pump mode, such that with inflation tubing 20 positioned as shown, pump 10 acts to move fluid through inflation tubing 20 when roller head 40 rotates about an
axis. Roller head 40 includes at least one roller 42 that extends from the axis and compresses inflation tubing 20 against access block 30 when access block 30 is in pump mode.

[0024] According to embodiments, other configurations are contemplated, including other ranges of motion for roller head 40 and accommodating geometries of access block 30 to provide compression of inflation tubing 20 as rollers 42 travel along the path of inflation tubing 20. When the user wants to load or unload inflation tubing 20, access block 30 may be lifted to an "open position.” For example, a hinged access block 30 may facilitate easy access. Such a system allows the user to load and unload inflation tubing 20 in an axis transverse to the linear axis of inflation tubing 20. This is quick and does not risk contamination of the fluid path, as opposed to feeding the inflation tubing into the pump from a tubing end or attaching the inflation tubing to a pump with its own section of pump tubing.

[0025] According to embodiments, inflation tubing 20 includes first end 22 and second end 24. The direction of flow between first end 22 and second end 24 is controlled by the rotation of roller head 40, which may be reversed at will.

[0026] According to embodiments, a method of using pump 10 to aspirate fluid from inflatable medical device 50 prior to removal of inflatable medical device 50 is also disclosed. In one operation, with roller movement (e.g., roller head 40 rotation) as shown and the patient on second end 24 of pump 10, inflatable medical device 50 may be inflated by transferring a fluid from container 1 on first end 22 to inflatable medical device 50 on second end 24. By either switching the direction of roller movement (e.g., roller head 40 rotation) or by switching the location of container 1 to second end 24 and the location of inflatable medical device 50 to first end 22, deflation of inflatable medical device 50 may be accomplished, while filling container 1 with the fluid formerly present in inflatable medical device 50. Flow of the fluid in either direction may be monitored and controlled using the measurement and calculation methods disclosed herein.

[0027] According to embodiments, an example of a powered roller pump is the Klein Pump® by HK Surgical, San Clemente, CA. Powered roller pumps provide reduced inflation time, accurately control the fluid volume, maintain the sterility of the fluid path, and do not require two hands for pumping or reciprocating action to repeatedly fill and evacuate a syringe or reservoir with the inflation fluid.
Other advantages of embodiments include reduced procedure time and personnel. For example, manual inflation rate is about 130 mL/min, compared to the pump inflation rates of about 350 mL/min. As a result, the user would save 3.4 minutes for an inflation volume of 700 cc and 4.4 minutes for 900 cc. The automated inflation also facilitates a single user inflation procedure, as the endoscopist can operate the pump via a remote switch, such as a foot switch, while maintaining control of the scope and observing the patient and monitor. This is different than using a reciprocating syringe technique, which necessitates a second operator and requires two hands for inflation.

According to embodiments, a method of measuring and calculating progress of an inflation or deflation method is disclosed herein. A user may select a container for a fluid (e.g. IV bag or bottle) for use during inflation of the balloon system.

The user may weigh or otherwise determine the mass of the container, \(m_{\text{container}} \), without fluid. Then, the filled container is weighed to determine the total mass, \(m_{\text{total}} \), including the mass of the container, \(m_{\text{container}} \), and the mass of the fluid, \(m_{\text{fluid}} \).

\[
m_{\text{total}} = m_{\text{container}} + m_{\text{fluid}}. \quad \text{Eq. 1}
\]

Expressed differently, the user may determine the mass of the inflation fluid by the measured total mass, \(m_{\text{total}} \), and the known mass of the container, \(m_{\text{container}} \).

\[
m_{\text{fluid}} = m_{\text{total}} - m_{\text{container}}. \quad \text{Eq. 2}
\]

Further, the volume of the fluid, \(V_{\text{fluid}} \), may be determined by dividing the mass of the fluid, \(m_{\text{fluid}} \), by the density of the fluid, \(\rho_{\text{fluid}} \).

\[
V_{\text{fluid}} = \frac{m_{\text{fluid}}}{\rho_{\text{fluid}}}. \quad \text{Eq. 3}
\]

The measurements and calculations performed thus far may be executed prior to connecting the container to a pump or to an inflatable medical device.

According to embodiments, the volume of fluid may be adjusted and verified by measurement and calculation such that the volume of fluid remaining in the container is the target amount to be transferred to an inflatable medical device.

A colorant, medication, or biocompatible sealant (such as mineral oil, silicone oil, or vegetable oil) to improve the function of the balloon valves and/or to reduce the
permeability of the balloon wall to the inflation fluid), may be mixed with the fluid before or after weighing at the discretion of the user. The user may drain excess fluid from the container using a pump or syringe.

[0039] According to embodiments, the above procedure of determining the volume of inflation fluid in the container is useful with aqueous fluid having a density equal or close to 1g/mL. Also, the containers could be manufactured with the desired fluid volume to be provided to or with the target inflatable medical device.

[0040] According to embodiments, an inflation procedure may be performed with an initial volume of fluid, \(V_{\text{initial}} \), followed by an evaluation operation. Where some volume of fluid, \(V_{\text{remaining}} \), remains in the container, the volume transferred, \(V_{\text{transferred}} \), may be determined. The volume remaining, \(V_{\text{remaining}} \), and the volume transferred, \(V_{\text{transferred}} \), are related by:

\[
V_{\text{initial}} = V_{\text{transferred}} + V_{\text{remaining}} \quad \text{Eq. 4}
\]

[0042] The volume remaining, \(V_{\text{remaining}} \), is determinable by

\[
V_{\text{remaining}} = \frac{m_{\text{remaining}}}{\rho_{\text{fluid}}} \quad \text{Eq. 5}
\]

[0044] where \(m_{\text{remaining}} \) is the mass of the fluid remaining. The mass of the fluid remaining is measureable including the mass of the container, \(m_{\text{container}} \). The mass of fluid transferred, \(m_{\text{transferred}} \), is the difference of mass, \(\Delta m \), of the container and contents between two points in time:

\[
m_{\text{transferred}} = \Delta m = m_{\text{final}} - m_{\text{remaining}} \quad \text{Eq. 6}
\]

[0046] Thus, the volume transferred, \(V_{\text{transferred}} \), may be expressed as:

\[
V_{\text{transferred}} = \frac{\Delta m}{\rho_{\text{fluid}}} = \frac{m_{\text{fluid}}}{\rho_{\text{fluid}}} - \frac{m_{\text{container}}}{\rho_{\text{fluid}}} \quad \text{Eq. 7}
\]

[0048] According to embodiments, the volume of fluid transferred to an inflatable medical device may be determined once, multiple times, at regular intervals, or in real-time. As used herein, "real-time" refers to processes that are performed on an ongoing basis, with output based on input values. "Real-time" considers and includes processes where output values are generated with at least nominal lag time from when input values are provided.
According to embodiments, the volume of fluid that had been infused into the balloon system can also be accurately measured during the inflation process. As shown in Figure 3, operations may be sequentially performed to track volume into or out of an inflatable medical device. For example, in operation 102, a target volume, \(V_{\text{arg}} \), may be determined. \(V_{\text{arg}} \) may refer to a target volume to be transferred to or from an inflatable medical device. In operation 104, the initial mass of both the fluid and the container may be measured. In operation 106, a pump may operation to transfer fluid to or from the container and from or to the inflatable medical device. In operation 108, the resulting mass of both the fluid remaining and the container may be taken. In operation 110, the volume of fluid transferred may be calculated using the equations above. For example, this may be achieved by weighing the fluid container at the start and throughout the inflation process to track the loss in mass, and the volume of infused fluid can be calculated by dividing the lost mass by the density of the fluid.

In operation 112, the volume of fluid transferred may be compared to the target volume. If the target volume has been achieved, pumping may end in operation 118. Achievement of target volume may include being within an acceptable range of the target volume. The volume of fluid transferred is substantially equal to the target volume when it is within an acceptable range above or below the target volume. Acceptable ranges are those defined by a user or determined to be effective for a given purpose as demonstrated by knowledge of those having ordinary skill in the relevant art.

If the target volume has not been achieved, then the volume of fluid transferred may be further compared to determine whether it is greater than or less than the target volume, as in operation 114. If the volume of fluid transferred is less than the target volume, pumping may continue as in operation 106. Continuation of pumping may be the same as in previous execution(s) of operation 106 or modified based on the proximity of the volume of fluid transferred to the target volume (i.e., slower pumping as target is approached for greater precision).

If the target volume has been exceeded, then reverse pumping may be executed in operation 116, wherein pumping is in the opposite direction or having the opposite result as in operation 106. Subsequent comparisons to the target volume may be performed, as shown.
According to embodiments, accurate control of the inflation volume may also be achieved by transferring the fluid from bags or bottles to a container with a known volume or graduated markings that allow the user to measure out the volume of fluid to be transferred to the balloon system. Another advantage of such a method is that, in the case of the balloon system being partially filled, the user may determine the amount of fluid transferred to the balloon system using the graduated markings. Direct volume measurements may be primarily relied upon or be used as a backup or verification operation.

According to embodiments, accurate control of the inflation volume may also be achieved with the use of flow meters to track the volume of fluid that has been transferred into the balloon system. Direct flow rate measurements may be primarily relied upon or be used as a backup or verification operation. In both cases, there is continuous feedback of data on the volume of transferred fluid, which may be used to shut off or reverse a pump with a pre-programmed target inflation volume.

According to embodiments, a container of fluid can be provided with the target fluid volume before connecting the fluid source to the medical device. In this way, a user can preset the volume of the fluid source and eliminate risk of over-inflating or under-inflating the medical device.

According to embodiments, fluid can be transferred to a new container with volume markings before the inflation stage. Before the inflation stage, a user can fill the new container with fluid only up to the target inflation volume using the measuring and calculation methods disclosed herein. Thus, there is no risk of over-inflating or under-inflating the gastric balloon. Also, during the inflation stage, the user can use the markings to track how much fluid has been pumped to the gastric balloon.

According to embodiments, excess fluid may be transferred from an original container to a new container such that the original container contains the target volume. Such modifications to the original container may be performed according to the measuring and calculation methods disclosed herein, and such operations may be executed separate from and prior to connection to the medical device.

According to embodiments, a manufacturer can provide containers already filled with the target inflation volume, thereby bypassing such reliance on all of the steps required
to determine the initial fluid volume. The user could simply pump the fluid from the
container to the gastric balloon until the container is empty.

[0059] According to embodiments, devices and methods to monitor the balloon system
during inflation to prevent inflating the balloon beyond what is tolerated by the stomach are
disclosed. For example, this can be accomplished by connecting a manometer to the inflation
tubing for continuous or intermittent pressure measurement. By further example, a
manometer or pressure transducer in communication with the interior of the balloon may be
attached to the inflation or placement portion of the balloon system. As the balloon fills the
stomach and pushes against the stomach wall, the pressure within the balloon may increase at
a rate different than when the balloon system is inflated without resistance. This difference in
pressure rate may be used by the physician as an indication that the balloon system has
reached the maximum tolerable size and the inflation process is complete. A "back pressure"
corresponding to the resistance to further inflation may be present and increasing as the
balloon system pushes against the stomach wall. This back pressure may be sensed as a
function of pressure in the inflation tubing at or near a balloon, elsewhere in the fluid path, or
as a function of the resistance to the movement path of a roller.

[0060] According to embodiments, sensing and response of such parameter and
performance of any or all operations disclosed herein may be automated, performed
manually, or a combination thereof. Where partially or fully automated, supporting
hardware, software, and other devices and systems may be integrated or otherwise included
to perform operations disclosed herein.

[0061] The process described above can be stored in a memory of a computer system as a
set of instructions to be executed. In addition, the instructions to perform the processes
described above could alternatively be stored on other forms of machine-readable media,
including magnetic and optical disks and related media. For example the processes described
could be stored on machine-readable media, such as magnetic disks or optical disks, which
are accessible via a disk drive (or computer-readable medium drive). Further, the instructions
can be downloaded into a computing device over a data network in a form of compiled and
linked version.

[0062] Alternatively, the logic to perform the processes as discussed above could be
implemented in additional computer or machine readable media, such as discrete hardware
components as large-scale integrated circuits (LSI's), application-specific integrated circuits (ASIC's), firmware such as electrically erasable programmable read-only memory (EEPROM's); and electrical, optical, acoustical and other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.).

[0063] According to embodiments, a kit of parts is disclosed, including components disclosed herein, for use by a user. Included in the kit may be instructions for use.

[0064] While the method and agent have been described in terms of what are presently considered to be the most practical and preferred embodiments, it is to be understood that the disclosure need not be limited to the disclosed embodiments. It is intended to cover various modifications and similar arrangements included within the spirit and scope of the claims, the scope of which should be accorded the broadest interpretation so as to encompass all such modifications and similar structures. The present disclosure includes any and all embodiments of the following claims.

[0065] It should also be understood that a variety of changes may be made without departing from the essence of the invention. Such changes are also implicitly included in the description. They still fall within the scope of this invention. It should be understood that this disclosure is intended to yield a patent covering numerous aspects of the invention both independently and as an overall system and in both method and apparatus modes.

[0066] Further, each of the various elements of the invention and claims may also be achieved in a variety of manners. This disclosure should be understood to encompass each such variation, be it a variation of an embodiment of any apparatus embodiment, a method or process embodiment, or even merely a variation of any element of these.

[0067] Particularly, it should be understood that as the disclosure relates to elements of the invention, the words for each element may be expressed by equivalent apparatus terms or method terms — even if only the function or result is the same.

[0068] Such equivalent, broader, or even more generic terms should be considered to be encompassed in the description of each element or action. Such terms can be substituted where desired to make explicit the implicitly broad coverage to which this invention is entitled.
It should be understood that all actions may be expressed as a means for taking that action or as an element which causes that action.

Similarly, each physical element disclosed should be understood to encompass a disclosure of the action which that physical element facilitates.

Any patents, publications, or other references mentioned in this application for patent are hereby incorporated by reference. In addition, as to each term used it should be understood that unless its utilization in this application is inconsistent with such interpretation, common dictionary definitions should be understood as incorporated for each term and all definitions, alternative terms, and synonyms such as contained in at least one of a standard technical dictionary recognized by artisans and the Random House Webster's Unabridged Dictionary, latest edition are hereby incorporated by reference.

Finally, all referenced listed in the Information Disclosure Statement or other information statement filed with the application are hereby appended and hereby incorporated by reference; however, as to each of the above, to the extent that such information or statements incorporated by reference might be considered inconsistent with the patenting of this/these invention(s), such statements are expressly not to be considered as made by the applicant(s).

In this regard it should be understood that for practical reasons and so as to avoid adding potentially hundreds of claims, the applicant has presented claims with initial dependencies only.

Support should be understood to exist to the degree required under new matter laws—including but not limited to United States Patent Law 35 USC 132 or other such laws—to permit the addition of any of the various dependencies or other elements presented under one independent claim or concept as dependencies or elements under any other independent claim or concept.

To the extent that insubstantial substitutes are made, to the extent that the applicant did not in fact draft any claim so as to literally encompass any particular embodiment, and to the extent otherwise applicable, the applicant should not be understood to have in any way intended to or actually relinquished such coverage as the applicant simply may not have been
able to anticipate all eventualities; one skilled in the art, should not be reasonably expected to have drafted a claim that would have literally encompassed such alternative embodiments.

[0076] Further, the use of the transitional phrase "comprising" is used to maintain the "open-end" claims herein, according to traditional claim interpretation. Thus, unless the context requires otherwise, it should be understood that the term "compromise" or variations such as "comprises" or "comprising", are intended to imply the inclusion of a stated element or step or group of elements or steps but not the exclusion of any other element or step or group of elements or steps.

[0077] Such terms should be interpreted in their most expansive forms so as to afford the applicant the broadest coverage legally permissible.
CLAIMS

1. A method of controlling inflation of an inflatable medical device, comprising:
 - determining a target volume of a fluid to be transferred to a medical device;
 - determining an initial mass of a container and initial fluid therein;
 - transferring at least a portion of the fluid from the container to the medical device;
 - measuring a resulting mass of the container and remaining fluid therein;
 - calculating the volume of transferred fluid to the medical device; and
 - if the volume of transferred fluid is substantially equal to the target volume, ending the transferring.

2. The method of claim 1, further comprising:
 - transferring an excess amount of fluid from the container prior to transferring the fluid from the container to the medical device, whereby the container contains only the target volume of fluid.

3. The method of claim 1, further comprising:
 - if the volume of transferred fluid is less than the target volume, transferring more of the fluid from the container to the medical device.

4. The method of claim 1, further comprising:
 - if the volume of transferred fluid is greater than the target volume, transferring fluid from the medical device to the container.

5. The method of claim 1, further comprising:
 - if the volume of transferred fluid is greater than the target volume, ceasing the transferring.

6. The method of claim 1, wherein calculating the volume of transferred fluid to the medical device comprises:
 - subtracting the resulting mass of the container and the remaining fluid therein from the initial mass of the container and the initial fluid therein to determine the change in mass;
 - dividing the change in mass by the density of the fluid.
7. The method of claim 1, wherein the initial mass of a container and fluid therein is known and provided from a manufacturer.

8. The method of claim 1, wherein the target volume is the desired amount of volume to fill the medical device.

9. The method of claim 1, wherein the medical device is an implantable, inflatable intragastric balloon system.

10. The method of claim 1, further comprising:
 - sensing a back pressure corresponding to the inflation state of the inflatable medical device and a resistance to further inflation due to interactions between the inflatable medical device and the walls of the stomach; and
 - ceasing the transferring if the sensed back pressure corresponds to a target inflation state.

11. The method of claim 1, wherein determining the volume of a fluid in a container further comprises:
 - determining the mass of the fluid in the container; and
 - dividing the mass of the fluid by the density of the fluid.

12. The method of claim 11, wherein determining the mass of the fluid in the container further comprises:
 - determining a mass of only the container;
 - determining a combined mass of the fluid and the container; and
 - subtracting the mass of only the container from the combined mass of the fluid and the container.

13. The method of claim 11, wherein determining the initial mass of the container and initial fluid therein further comprises:
 - filling the container to the target volume.

14. The method of claim 11, wherein determining the mass of the fluid in the container further comprises:
filling the container to the target volume, wherein the container has markings for measuring volume.

15. The method of claim 11, wherein determining the mass of the fluid in the container further comprises:
receiving the container from a provider, the container being provided with the target volume.

16. A method of controlling deflation of an inflatable medical device, comprising:
determining a target volume of a fluid to be transferred from a medical device;
determining an initial mass of a container and initial fluid therein;
transferring at least a portion of fluid from the medical device to the container;
measuring a resulting mass of the container and resulting fluid therein;
calculating the volume of transferred fluid from the medical device; and
if the volume of transferred fluid is substantially equal to the target volume, ending the transferring.

17. The method of claim 16, further comprising:
if the volume of transferred fluid is less than the target volume, transferring more of the fluid from the medical device to the container.

18. The method of claim 16, further comprising:
if the volume of transferred fluid is greater than the target volume, transferring fluid from the container to the medical device.

19. The method of claim 16, further comprising:
if the volume of transferred fluid is greater than the target volume, ceasing the transferring.

20. A system for inflating and deflating a medical device, comprising:
a container with fluid therein;
a medical device;
a pump connecting the container to the medical device, the pump being programmed to determine an initial mass of a container and fluid therein; transfer at least a portion of the fluid to the medical device; measure a mass of the container and remaining
fluid therein; calculate the volume of transferred fluid to the medical device; and if the volume of transferred fluid is substantially equal to a target volume, end the transferring.

21. The system of claim 20, wherein the pump is a roller pump, comprising:
 an inflation tubing disposed between an access block and a roller configured to rotate about an axis of a roller head;
 wherein the inflation tubing provides fluid communication between the container and the medical device;
 wherein the access block and the roller are configured to restrict flow through the inflation tubing at the area of pressure between the roller and the access block; and
 wherein the rotation of the roller about the axis of the roller head is configured to transport a fluid within the inflation tubing.

22. The system of claim 21, wherein the access block and the roller are selectively moveable relative to each other such that a selective amount of pressure is imposed upon the inflation tubing.
Fig. 3

102 Determine V_{target}

104 Measure initial mass

106 Pump to/from container

108 Measure resulting mass

110 Calculate $V_{\text{transferred}}$

112 $V_{\text{transferred}} = V_{\text{target}}$? [Yes/No]

114 $V_{\text{transferred}} < V_{\text{target}}$? [Yes/No]

116 Yes

118 No

118 End pumping

116 Pump from/to container

116 Yes