
JP 6500869 B2 2019.4.17

10

20

(57)【特許請求の範囲】
【請求項１】
　楽曲を第１長で区切った第１区間の構成音に基づいて第１調を推定し、前記第１区間と
少なくとも部分的に重なる区間であって、前記楽曲を前記第１長と異なる長さの第２長で
区切った第２区間の構成音に基づいて第２調を推定する調推定処理と、
　前記推定された前記第１調及び前記第２調を比較することにより最適な調を決定する調
決定処理と、
　を実行するコード解析装置。
【請求項２】
　前記最適な調に基づいて前記楽曲の前記第１区間のコードを判定するコード判定処理を
実行し、更に前記コード判定処理は、前記楽曲の小節を区分した拍毎に、当該拍の構成音
を判定し、当該構成音に基づいて当該拍のコードを判定する、請求項１に記載のコード解
析装置。
【請求項３】
　前記第１区間、前記第２区間、又は前記拍毎の構成音の判定は、当該第１区間、当該第
２区間、又は当該拍の期間内でノートオンしている前記楽曲の楽音毎に、当該楽音のベロ
シティと当該期間内での発音時間長とに基づいて決定されるパワー情報値を当該楽音のピ
ッチに対応するピッチクラスに累算することにより、当該第１区間、当該第２区間、又は
当該拍における前記ピッチクラス毎のパワー情報累算値を算出する処理である、請求項２
に記載のコード解析装置。

(2) JP 6500869 B2 2019.4.17

10

20

30

40

50

【請求項４】
　前記第１区間、前記第２区間、又は拍毎に、前記第１調、前記第２調、又はコードの候
補に対応して、前記ピッチクラスの各々が前記第１調、前記第２調の候補の音階音又はコ
ードの候補の構成音と一致する場合に当該ピッチクラスに対して算出されている前記パワ
ー情報累算値を第１のパワー評価値に累算し、一致しない場合に当該ピッチクラスに対し
て算出されている前記パワー情報累算値を第２のパワー評価値に累算し、前記第１調、前
記第２調、又はコードの候補毎に算出される前記第１のパワー評価値及び前記第２のパワ
ー評価値を比較することにより、当該第１区間、当該第２区間、又は拍における前記第１
調、前記第２調、又は前記コードを判定する、請求項３に記載のコード解析装置。
【請求項５】
　前記第１区間の区間長は１小節の長さであり、前記第２区間の区間長は１小節の倍数で
あり、前記調決定処理は、前記第１区間と前記第２区間とで重なる小節毎に、当該小節毎
に判定された前記第１調及び前記第２調を比較することにより、当該小節に対応する前記
最適な調を決定する、請求項１に記載のコード解析装置。
【請求項６】
　前記調決定処理は、区間開始位置を１小節ずつずらしながら前記第１区間の区間長又は
前記第２区間の区間長で楽曲を区切って前記第１区間又は前記第２区間を決定する、請求
項５に記載のコード解析装置。
【請求項７】
　前記判定されたコードを表示する表示処理を更に実行する、請求項２乃至６の何れかに
記載のコード解析装置。
【請求項８】
　コード解析装置の処理部が、
　楽曲を第１長で区切った第１区間の構成音に基づいて第１調を推定し、前記第１区間と
少なくとも部分的に重なる区間であって、前記楽曲を前記第１長と異なる長さの第２長で
区切った第２区間の構成音に基づいて第２調を推定し、
　前記推定された前記第１調及び前記第２調を比較することにより最適な調を決定する、
　処理を実行するコード解析方法。
【請求項９】
　コード解析を行うコンピュータに、
　楽曲を第１長で区切った第１区間の構成音に基づいて第１調を推定し、前記第１区間と
少なくとも部分的に重なる区間であって、前記楽曲を前記第１長と異なる長さの第２長で
区切った第２区間の構成音に基づいて第２調を推定するステップと、
　前記推定された前記第１調及び前記第２調を比較することにより最適な調を決定するス
テップと、
　を実行させるためのプログラム。
【発明の詳細な説明】
【技術分野】
【０００１】
　本発明は、入力する楽曲のコードを解析するコード解析装置、方法、及びプログラムに
関する。
【背景技術】
【０００２】
　楽曲からコードを抽出したいという要請がある。例えば、スタンダードＭＩＤＩ（Ｍｕ
ｓｉｃａｌ　Ｉｎｓｔｒｕｍｅｎｔ　Ｄｉｇｉｔａｌ　Ｉｎｔｅｒｆａｃｅ）ファイルは
、一般的にメロディパートがあって伴奏パートがある。そのような楽曲を、例えば電子鍵
盤楽器で弾こうとする場合、メロディは右手で比較的容易に弾けるが、左手で伴奏も楽し
みたいというような場合がある。しかし、スタンダードＭＩＤＩファイルにおいては、左
手用の適当な楽曲パートのデータがあればよいが、ほとんどの場合そのようなデータは含
まれていない。しかし、せっかく電子鍵盤楽器があるのだからやはり両手で弾きたいとい

(3) JP 6500869 B2 2019.4.17

10

20

30

40

50

うような場合がある。このような場合に、楽曲のスタンダードＭＩＤＩファイルからコー
ドを判定して提示できれば、演奏者はそのコードに応じた左手演奏等を行えて便利である
。
【０００３】
　従来、楽曲のコードを判定するいくつかの技術が知られている（例えば、特許文献１～
４に記載の技術）。
【先行技術文献】
【特許文献】
【０００４】
【特許文献１】特開２０００－２５９１５４号公報
【特許文献２】特開２００７－２８６６３７号公報
【特許文献３】特開２０１５－４０９６４号公報
【特許文献４】特開２０１５－７９１９６号公報
【発明の概要】
【発明が解決しようとする課題】
【０００５】
　しかし、上述の従来技術はいずれも、コードの和音の構成音以外の音についての配慮が
十分でないため判定の精度が落ちる場合があるという課題があった。
【０００６】
　また、コードの和音を判定するのに十分な発音がなく適切な判定ができない場合がある
という課題があった。
【０００７】
　更に、調性、特に転調についての配慮がないために、適切なコード判定ができない場合
があるという課題があった。
【０００８】
　そこで、本発明は、転調も適切に判定できる調判定の結果からより適切なコード判定が
行えるようにすることを目的とする。
【課題を解決するための手段】
【０００９】
　態様の一例では、楽曲を第１長で区切った第１区間の構成音に基づいて第１調を推定し
、第１区間と少なくとも部分的に重なる区間であって、楽曲を第１長と異なる長さの第２
長で区切った第２区間の構成音に基づいて第２調を推定する調推定処理と、推定された第
１調及び第２調を比較することにより最適な調を決定する調決定処理と、を実行する。
【発明の効果】
【００１０】
　本発明によれば、転調も適切に判定できる調判定の結果からより適切なコード判定を行
うことが可能となる。
【図面の簡単な説明】
【００１１】
【図１】コード解析装置の一実施形態のハードウェア構成例を示す図である。
【図２】ＭＩＤＩシーケンスデータの構成例と調判定の結果得られる調データを示す図で
ある。
【図３】コード判定の結果得られるコード進行データの構成例を示す図である。
【図４】コード解析装置の全体処理の例を示すメインフローチャートである。
【図５】コード判定処理の詳細例を示すフローチャートである。
【図６】調判定処理の詳細例を示すフローチャートである。
【図７】小節と拍及び調判定の説明図である。
【図８】調判定の動作結果例を示す図である。
【図９】調判定処理におけるキー判定処理の詳細例を示すフローチャートである。
【図１０】スケールノートの説明図である。

(4) JP 6500869 B2 2019.4.17

10

20

30

40

50

【図１１】ピッチクラスパワー作成処理の例を示すフローチャートである。
【図１２】ピッチクラスパワー作成処理の説明図である。
【図１３】調判定処理における結果保存処理の詳細例を示すフローチャートである。
【図１４】コード判定処理におけるマッチング＆結果保存処理の詳細例を示すフローチャ
ートである。
【図１５】コードトーンの説明図である。
【図１６】最小コスト計算処理と経路確定処理の説明図である。
【図１７】最小コスト計算処理の詳細例を示すフローチャートである。
【図１８】コスト計算処理の詳細例を示すフローチャートである。
【図１９】経路確定処理の詳細例を示すフローチャートである。
【発明を実施するための形態】
【００１２】
　以下、本発明を実施するための形態について図面を参照しながら詳細に説明する。図１
は、コード解析装置１００の一実施形態を、ソフトウェア処理として実現できるコンピュ
ータのハードウェア構成の一例を示す図である。
【００１３】
　図１に示されるコンピュータは、ＣＰＵ１０１、ＲＯＭ（Ｒｅａｄ　Ｏｎｌｙ　Ｍｅｍ
ｏｒｙ：読出し専用メモリ）１０２、ＲＡＭ（Ｒａｎｄｏｍ　Ａｃｃｅｓｓ　Ｍｅｍｏｒ
ｙ：ランダムアクセスメモリ）１０３、入力手段１０４、表示手段１０５、サウンドシス
テム１０６、及び通信インタフェース１０７を有し、これらがバス１０８によって相互に
接続された構成を有する。図１に示される構成はコード解析装置を実現できるコンピュー
タの一例であり、そのようなコンピュータはこの構成に限定されるものではない。
【００１４】
　ＣＰＵ１０１は、当該コンピュータ全体の制御を行う。ＲＯＭ１０２は、後述する図４
、図５、図８～図１０、図１３、図１４のフローチャートで示されるコード解析処理プロ
グラムや、複数楽曲分のスタンダードＭＩＤＩファイル等を記憶する。ＲＡＭ１０３は、
コード解析処理プログラムの実行時に作業用メモリとして使用される。ＣＰＵ１０１は、
ＲＯＭ１０２からコード解析処理プログラムをＲＡＭ１０３に読み出して実行する。コー
ド解析処理プログラムは、例えば特には図示しない可搬記録媒体に記録して配布してもよ
く、或いは通信インタフェース１０７によりインターネットやローカルエリアネットワー
ク等のネットワークから取得できるようにしてもよい。
【００１５】
　入力手段１０４は、ユーザによるキーボードやマウス等による入力操作を検出し、その
検出結果をＣＰＵ１０１に通知する。入力操作は、例えば楽曲の選択操作、コード解析の
指示操作、楽曲の再生装置等である。また、ユーザによる入力手段１０４の操作により、
楽曲のスタンダードＭＩＤＩファイルがネットワークから通信インタフェース１０７を介
してＲＡＭ１０３にダウンロードされるようにしてもよい。
【００１６】
　表示手段１０５は、ＣＰＵ１０１の制御によって出力されるコード判定データを液晶デ
ィスプレイ装置等に表示する。
【００１７】
　サウンドシステム１０６は、ユーザが入力手段１０４により、ＲＯＭ１０２やネットワ
ークから取得した楽曲のスタンダードＭＩＤＩファイルの再生を指示したときに、当該ス
タンダードＭＩＤＩファイルのシーケンスを順次読み込んで解釈することにより、ユーザ
が指定した楽器音で楽音信号を生成し、スピーカ等から発音する。
【００１８】
　図２（ａ）は、ＲＯＭ１０２からＲＡＭ１０３に読み込まれ、又はネットワークから通
信インタフェース１０７を介してＲＡＭ１０３にダウンロードされるスタンダードＭＩＤ
Ｉファイルに格納されている、ＭＩＤＩシーケンスデータの構成例を示す図である。楽曲
は複数パート（＝トラック）で構成され、各パートの先頭のノートイベントへのポインタ

(5) JP 6500869 B2 2019.4.17

10

20

30

40

50

情報が、ｍｉｄｉｅｖ［０］、ｍｉｄｉｅｖ［１］、ｍｉｄｉｅｖ［２］、・・・として
保持される。ＣＰＵ１０１は、ポインタ情報ｍｉｄｉｅｖ［ｉ］（ｉ＝０，１，２，・・
・）を参照することにより、ｉパートのＲＡＭ１０３に記憶されている最初のノートイベ
ントにアクセスすることができる。
【００１９】
　このノートイベントは、次の構造体データを保持する。ｌＴｉｍｅは発音開始時刻を保
持する。ｌＧａｔｅはゲートタイム（発音時間長）を保持する。これらの時刻の単位とし
ては、例えばティック（ｔｉｃｋ）が使われる。この場合、４分音符は例えば４８０ティ
ックの時間長を有し、４分の４拍子の楽曲の場合、１拍＝４８０ティックとなる。ｂｙＤ
ａｔａ［０］はステータスを保持する。ｂｙＤａｔａ［１］は発音されるノートのピッチ
を保持する。ｂｙＤａｔａ［２］は発音されるノートのベロシティを保持する。ｂｙＤａ
ｔａ［３］はその他ノートの発音を制御するために必要な情報を保持する。ｎｅｘｔは次
のノートイベントへのポインタ、ｐｒｅｖは１つ前のノートイベントへのポインタである
。ＣＰＵ１０１は、ｎｅｘｔやｐｒｅｖを参照することにより、ＲＡＭ１０３に記憶され
ている次の又は１つ前のノートイベントにアクセスすることができる。
【００２０】
　また、ＣＰＵ１０１がサウンドシステム１０６を制御して楽曲を再生するために必要な
、テンポや拍子などのメタ情報は、ポインタ情報ｍｅｔａｅｖ［０］、ｍｅｔａｅｖ［１
］、ｍｅｔａｅｖ［２］、・・・から参照することができる。
【００２１】
　図２（ｂ）は、後述する調判定処理の結果得られる調データの構成例を示す図である。
調情報は、ポインタ情報ｔｏｎａｌｉｔｙ［０］、ｔｏｎａｌｉｔｙ［１］、ｔｏｎａｌ
ｉｔｙ［２］、・・・からアクセスされる。ｔｏｎａｌｉｔｙ［ｉ］（ｉ＝０、１、２、
・・・）は、小節番号ｉに対応する調情報へのポインタである。これらのポインタから参
照される調情報は、次の構造体データを保持する。ｌＴｉｃｋは楽曲のメロディに対する
調の開始の時刻を保持する。ｌＴｉｃｋの時間単位は、前述したティックである。ｉＭｅ
ａｓＮｏは調が開始される小節の番号を保持する。ｉＫｅｙは調のキーを保持する。ｉＳ
ｃａｌｅは調のタイプを保持するが、本実施形態では未使用である。ｄｏＰｏｗｅｒＶａ
ｌｕｅは調判定時のパワー評価値を保持する。ｉＬｅｎｇｔｈは調判定時の区間長を保持
し、後述するように小節を単位とする区間長を示す１、２、又は４である。
【００２２】
　図３は、後述するコード判定処理の結果得られるコード進行データの構成例を示す図で
ある。コード進行データは、楽曲を構成する各小節の拍毎に、例えば第１候補、第２候補
、第３候補、・・・の複数候補を持つことができる。いま、楽曲の先頭からの拍番号の通
番を第１要素番号ｌＣｎｔ（ｌＣｎｔ＝０、１、２、・・・）、各拍における候補番号を
第２要素番号ｉ（ｉ＝０、１、２、・・・）とすれば、各コード進行データは、ポインタ
情報ｃｈｏｒｄＰｒｏｇ［ｌＣｎｔ］［ｉ］によってアクセスすることができる。このポ
インタ情報からアクセスされるコード情報は、次の構造体データを保持する。ｌＴｉｃｋ
はメロディに対するコードの開始の時刻を保持する。ｌＴｉｃｋの時間単位は、前述した
ティックである。ｉＭｅａｓＮｏは調の小節の番号を保持する。ｉＴｉｃｋＩｎＭｅａｓ
は小節内でのコードの開始の時刻を保持する。ｉＴｉｃｋＩｎＭｅａｓの時間単位も、前
述したティックである。本実施形態では、コードは拍毎に判定されるため、ｉＴｉｃｋＩ
ｎＭｅａｓの時間単位も拍単位となり、１拍目、２拍目、３拍目、又は４拍目の何れかと
なる。図２（ａ）の説明で前述したように、１拍は一般的に４８０ティックであるため、
ｉＴｉｃｋＩｎＭｅａｓは、０、４８０、９６０、１４４０の何れかの値となる。ｉＲｏ
ｏｔはコード判定結果（ルート）を保持する。ｉＴｙｐｅはコード判定結果（タイプ）を
保持する。ｄｏＰｏｗｅｒＶａｌｕｅｎはコード判定時のパワー評価値を保持する。
【００２３】
　図４は、図１のＣＰＵ１０１が実行するコード解析装置の全体処理の例を示すメインフ
ローチャートである。例えば、図１のコード解析装置１００がスマートフォン等の汎用の

(6) JP 6500869 B2 2019.4.17

10

20

30

40

50

コンピュータであった場合、ユーザがコード解析装置１００のアプリをタップすることに
より、ＣＰＵ１０１が、図４のフローチャートで例示されるコード解析処理プログラムを
スタートする。ＣＰＵ１０１はまず、レジスタやＲＡＭ１０３に記憶される変数の初期化
等の初期化処理を実行する（ステップＳ４０１）。その後、ＣＰＵ１０１は、ステップＳ
４０２からＳ４０８までの一連の処理を、繰り返し実行する。
【００２４】
　ＣＰＵ１０１はまず、ユーザがアプリ上の特定のボタンをタップすることによりアプリ
の終了が指示されたか否かを判定する（ステップＳ４０２）。ステップＳ４０２の判定が
ＹＥＳになると、ＣＰＵ１０１は、図４のフローチャートで例示されるコード解析処理を
終了する。
【００２５】
　ステップＳ４０２の判定がＮＯならば、ＣＰＵ１０１は、ユーザが入力手段１０４を介
して楽曲の選曲を指示したか否かを判定する（ステップＳ４０３）。
【００２６】
　ステップＳ４０３の判定がＹＥＳならば、ＣＰＵ１０１は、ＲＯＭ１０２又は通信イン
タフェース１０７を介してネットワークから、図２（ａ）のデータフォーマットを有する
楽曲のスタンダードＭＩＤＩファイルのＭＩＤＩシーケンスデータを、ＲＡＭ１０３に読
み込む（ステップＳ４０４）。
【００２７】
　その後、ＣＰＵ１０１は、後述するコード判定処理を実行することにより、読込みが指
示された楽曲のＭＩＤＩシーケンスデータの全体に渡って、コードを判定する処理を実行
する（ステップＳ４０５）。その後、ＣＰＵ１０１は、ステップＳ４０１の処理に戻る。
【００２８】
　ステップＳ４０３の判定がＮＯならば、ＣＰＵ１０１は、ユーザが入力手段１０４を介
して楽曲の再生を指示しているか否かを判定する（ステップＳ４０６）。
【００２９】
　ステップＳ４０６の判定がＹＥＳならば、ＣＰＵ１０１は、ＲＡＭ１０３に読み込まれ
ているＭＩＤＩシーケンスデータを解釈しながら、サウンドシステム１０６に発音指示を
出力することにより、楽曲の再生を行わせる（ステップＳ４０７）。その後、ＣＰＵ１０
１は、ステップＳ４０１の処理に戻る。
【００３０】
　ステップＳ４０６の判定がＮＯならば、ＣＰＵ１０１は、ステップＳ４０１の処理に戻
る。
【００３１】
　図５は、図４のステップＳ４０５のコード判定処理の詳細例を示すフローチャートであ
る。
【００３２】
　始めに、ＣＰＵ１０１は、調判定処理を実行することにより、楽曲の小節毎に調を判定
する（ステップＳ５０１）。この結果、ＲＡＭ１０３に、図２（ｂ）に例示されるデータ
構成を有する調データが得られる。
【００３３】
　次に、ＣＰＵ１０１は、全ての小節毎に、以下のステップＳ５０３からＳ５０５までの
一連の処理を繰り返し実行する（ステップＳ５０２）。
【００３４】
　この全ての小節毎の繰返し処理において、ＣＰＵ１０１は、更に小節内の全ての拍毎に
、以下のステップＳ５０４とＳ５０５の処理を繰り返し実行する。この拍毎の繰返しにお
いてＣＰＵ１０１はまず、ピッチクラスパワー作成処理を実行する（ステップＳ５０４）
。ここでは、ＣＰＵ１０１は、拍の構成音をピッチクラスパワーとして判定する。この処
理の詳細については図１０及び図１１の説明で後述する。
【００３５】

(7) JP 6500869 B2 2019.4.17

10

20

30

40

50

　次に、ＣＰＵ１０１は、マッチング＆結果保存処理を実行する（ステップＳ５０５）。
ここでは、ＣＰＵ１０１は、ステップＳ５０４で算出した現在の拍におけるピッチクラス
毎のパワー情報累算値に基づいてその拍の構成音を判定し、その構成音に基づいてその拍
のコードを判定する。この処理の詳細については図１４の説明で後述する。その後、ＣＰ
Ｕ１０１は、ステップＳ５０３の処理に戻る。
【００３６】
　小節内の全ての拍について、ステップＳ５０４とＳ５０５の処理の実行が終了し、その
小節内の全ての拍に対応するコード進行データが生成されると、ＣＰＵ１０１はステップ
Ｓ５０２の処理に戻る。
【００３７】
　楽曲の全ての小節について、ステップＳ５０２からＳ５０５の一連の処理の実行が終了
し、楽曲の全ての小節内の全ての拍に対応するコード進行データが生成されると、ＣＰＵ
１０１はステップＳ５０６の処理に移行する。
【００３８】
　ステップＳ５０６において、ＣＰＵ１０１は、楽曲の全ての小節及び小節内の全ての拍
に対して図３に例示されるデータフォーマットで得られる複数候補からなるコード進行デ
ータの全ての組合せの中から、楽曲全体でコストが最小となるコードの組合せを算出する
。この処理の詳細については、図１６から図１８の説明において後述する。
【００３９】
　この結果、ＣＰＵ１０１は、楽曲全体に渡るコード進行の経路を確定し、これにより最
適コードが確定する（ステップＳ５０７）。この処理の詳細については、図１６及び図１
９の説明において後述する。この最適なコード進行は、特には図示しないが、ユーザによ
る入力手段１０４からの指示に基づいて、表示手段１０５に表示される。ユーザの指示に
応じて、図４のステップＳ４０７の再生処理によるサウンドシステム１０６からの楽曲再
生に同期して、表示手段１０５に表示される最適なコード進行が進んでゆく。その後、Ｃ
ＰＵ１０１は、図５のフローチャートで示される図４のステップＳ４０５のコード判定処
理を終了する。
【００４０】
　次に、図５のステップＳ５０１の調判定処理の詳細について、以下に説明する。図６は
、図５のステップＳ５０１の調判定処理の詳細例を示すフローチャートである。また、図
７（ａ）は小節と拍の説明図、図７（ｂ）は調判定の説明図である。
【００４１】
　いま、読み込まれている楽曲が４拍子の楽曲の場合、図７の（ａ－２）に示されるよう
な楽曲（Ｓｏｎｇ）の進行に従って、図７の（ａ－３）に示されるように小節番号ｉＭｅ
ａｓＮｏが、０、１、２、・・・というように進んでゆく。そして、図７（ａ－１）に示
されるように、各小節内で、拍番号ｉＢｅａｔＮが０、１、２、３というように繰り返さ
れる。
【００４２】
　図６のフローチャートで例示される調判定処理において、ＣＰＵ１０１は、図７（ｂ－
１）の楽曲（Ｓｏｎｇ）及び（ｂ－２）の小節番号（ｉＭｅａｓＮｏ）の進行に合わせて
、図７（ｂ－３）（ｂ－４）（ｂ－５）に示されるように、１小節長、２小節長、４小節
長という１小節の倍数の単位を有する複数の区間長から区間長を選択しながら、次の処理
を実行する。以下の説明で、１小節の区間長をｉＦｒａｍｅＴｙｐｅ＝０、２小節の区間
長をｉＦｒａｍｅＴｙｐｅ＝１、４小節の区間長をｉＦｒａｍｅＴｙｐｅ＝２と記載する
。なお、区間長の選択は、１、２、４小節に限られたものではなく、例えば２、４、８小
節であってもよい。ＣＰＵ１０１は、ｉＦｒａｍｅＴｙｐｅ＝０、１、２の各区間長で楽
曲を区切った区間（図７（ｂ－３）（ｂ－４）（ｂ－５）の各直線矢印が示す区間）毎に
（ステップＳ６０１）、区間の開始小節を１小節ずつずらしながら（ステップＳ６０２）
、以下の処理を実行する。
【００４３】

(8) JP 6500869 B2 2019.4.17

10

20

30

40

50

　ＣＰＵ１０１は、ｉＦｒａｍｅＴｙｐｅにより規定される各区間毎に、その区間の構成
音を判定し、その構成音に基づいて調を判定するキー判定処理を実行する（ステップＳ６
０３）（調判定手段として動作）。この処理の詳細については、図９から図１２の説明に
おいて後述する。
【００４４】
　図８は、調判定の動作結果例を示す図である。この結果例において、図８（ａ）は小節
番号（ｉＭｅａｓＮｏ）を示している。また、図８（ｂ）において、図８（ａ）の各小節
番号に対応して記載されている音名群は、各小節番号に対応する小節毎にＭＩＤＩシーケ
ンスデータからのノートイベントにより実際に発音が行われる楽音の各構成音の音名を示
している。
【００４５】
　図８の結果例において、例えばｉＦｒａｍｅＴｙｐｅ＝０（１小節区間長）に対しては
、図８（ｃ）に示されるように、図８（ａ）の各小節番号（ｉＭｅａｓＮｏ）の１小節ず
つを単位として、判定区間が１小節ずつずらされながら、Ｂ♭、Ｂ♭、Ｇ、Ｂ♭、Ａ♭、
Ｅ♭というように調が判定される。このとき、例えば「Ｂ♭：３」という記載は、Ｂ♭の
調判定時にパワー評価値＝３という評価値が得られていることを示している。この評価値
については後述するが、この値が大きいほど調判定の信頼性が高いことを示している。
【００４６】
　次に、例えばｉＦｒａｍｅＴｙｐｅ＝１（２小節区間長）に対しては、図８（ｄ）の上
下上下・・・の順で、図８（ａ）の各小節番号（ｉＭｅａｓＮｏ）の連続する２小節ずつ
を単位として、判定区間が１小節ずつずらされながら、Ｂ♭、Ｃ、Ｃ、Ｂ♭、Ａ♭、Ｅ♭
というように調が判定される。
【００４７】
　更に、例えばｉＦｒａｍｅＴｙｐｅ＝２（４小節区間長）に対しては、図８（ｅ）の左
上から右下に向かって、図８（ａ）の各小節番号（ｉＭｅａｓＮｏ）の連続する４小節ず
つを単位として、判定区間が１小節ずつずらされながら、Ｂ♭、Ｃ、Ｃ、Ａ♭、Ａ♭、Ａ
♭というように調が判定される。
【００４８】
　図６のステップＳ６０３によるキー判定処理の動作の後、ＣＰＵ１０１は、ステップＳ
６０１によりｉＦｒａｍｅＴｙｐｅ＝０（１小節）、１（２小節）、２（４小節）という
ように順次指定される区間長で繰り返されるステップＳ６０３のキー判定処理の結果、現
在までに計算されている区間長間で重なる区間毎に、その区間に対して各区間長で判定さ
れた調同士を比較することにより現時点での最適な調を決定する、結果保存処理を実行す
る（ステップＳ６０４）（調決定手段として動作）。この処理の詳細については、図１３
の説明において後述する。
【００４９】
　図８の例においては、例えば図８（ａ）の小節番号（ｉＭｅａｓＮｏ）＝０において、
ｉＦｒａｍｅＴｙｐｅ＝１までのキー判定処理（ステップＳ６０３）が終了した時点で、
図８（ｃ）のｉＦｒａｍｅＴｙｐｅ＝０の調判定はキー音名がＢ♭でパワー評価値が３、
図８（ｄ）のｉＦｒａｍｅＴｙｐｅ＝１の調判定はキー音名がＢ♭でパワー評価値が４と
なっている。従って、このキー判定処理に続く結果保存処理（ステップＳ６０４）におい
て、パワー評価値が大きいほうの調として、その時点での最適な調はキー音名がＢ♭でパ
ワー評価値は４と決定される。更に、ｉＦｒａｍｅＴｙｐｅ＝２までのキー判定処理が終
了した時点で、その時点での最適な調は上述のようにキー音名がＢ♭でパワー評価値は４
、図８（ｅ）のｉＦｒａｍｅＴｙｐｅ＝２の調判定はキー音名がＣでパワー評価値は７と
なっている。従って、このキー判定処理に続く結果保存処理において、最終時点での最適
な調はキー音名＝Ｃと決定される。この結果、ＣＰＵ１０１は、ＲＡＭ１０３に、図２（
ｂ）のデータフォーマットの調情報を生成する。この調情報において、ｌＴｉｃｋにはｉ
ＭｅａｓＮｏ＝０の小節の先頭の開始時刻が格納される。また、ｉＭｅａｓＮｏには小節
番号として０が格納される。ｉＫｅｙには最適な調として決定されたキー音名Ｃに対応す

(9) JP 6500869 B2 2019.4.17

10

20

30

40

50

るキー値＝０が格納される。ｄｏＰｏｗｅｒＶａｌｕｅには最適な調が決定されたときの
パワー評価値７が格納される。そして、ｉＬｅｎｇｔｈには最適な調が決定されたときに
採用されたｉＦｒａｍｅＴｙｐｅの値２が格納される。
【００５０】
　図８の例において、例えば図８（ａ）の小節番号（ｉＭｅａｓＮｏ）＝１～３までは、
上述の場合と同様にして、各小節毎に最適な調がキー音名＝Ｃと決定されパワー評価値７
が得られ、図２（ｂ）に例示されるデータフォーマットで調データが生成される。続いて
、小節番号（ｉＭｅａｓＮｏ）＝４では、ｉＦｒａｍｅＴｙｐｅ＝１（２小節長）から最
も高いパワー評価値＝６を有するとしてキー音名＝Ｂｂの調が選択される。以下、小節番
号（ｉＭｅａｓＮｏ）＝５、６では、やはりｉＦｒａｍｅＴｙｐｅ＝１から最も高いパワ
ー評価値＝７を有するとしてキー音名＝Ｅ♭の調が選択される。これは、小節番号（ｉＭ
ｅａｓＮｏ）が３から４に変わるときに、転調が発生したことを示している。
【００５１】
　このように、本実施形態では、複数の区間長（ｉＦｒａｍｅＴｙｐｅ）での調判定結果
が総合的に判断されることにより、例えば転調が発生した場合には、パワー評価値に基づ
いて１小節区間長や２小節区間長の短い区間長の判定結果が採用されることにより、転調
を検知することが可能となる。また、１小節だけではコードを判定するのに十分な発音が
ないような場合であっても、パワー評価値に基づいて２小節区間長や４小節区間長のより
長い区間長の判定結果が採用されることにより、適切な判定を行うことが可能となる。更
に、本実施形態では、後述するようにパワー評価値を算出するときに、調の音階音以外の
音についての配慮も行われるため、判定の精度を維持することが可能となる。
【００５２】
　図６のステップＳ６０４の処理の後、ＣＰＵ１０１は、ステップＳ６０２の処理に戻る
。ＣＰＵ１０１は、ひとつのｉＦｒａｍｅＴｙｐｅの値に対して区間の開始小節を１小節
ずつずらしながら楽曲の全ての小節について、ステップＳ６０３のキー判定処理及びステ
ップＳ６０４の結果保存処理を繰り返し実行する。全ての小節に対する上記繰返し処理が
終了すると、ステップＳ６０１の処理に戻る。そして、ＣＰＵ１０１は、ｉＦｒａｍｅＴ
ｙｐｅ＝０、１、２の全ての値（小節区間長）に対してステップＳ６０２からＳ６０４ま
での一連の処理を繰り返し実行する。３種類全てのｉＦｒａｍｅＴｙｐｅの値に対する上
記繰返し処理が終了すると、図６のフローチャートで例示される図５のステップＳ５０１
の調判定処理を終了する。
【００５３】
　図９は、図６の調判定処理におけるステップＳ６０３のキー判定処理の詳細例を示すフ
ローチャートである。ＣＰＵ１０１はまず、ピッチクラスパワー作成処理を実行する（ス
テップＳ９０１）。ここでは、ＣＰＵ１０１は、現在設定されている１小節、２小節、又
は４小節の区間長を有する区間内でノートオンする楽曲のノートイベント毎に、そのノー
トイベントのベロシティとその区間内での発音時間長とに基づいて決定されるパワー情報
値をそのノートのピッチに対応するピッチクラスに累算することにより、その区間におけ
るピッチクラス毎のパワー情報累算値を算出する。ここで、ピッチクラスとは、１オクタ
ーブを１２半音で１２分割したときの各半音に対して与えられている整数値をいい、例え
ば１オクターブ内の音名Ｃは整数値０、Ｃ＃又はＤ♭は１、Ｄは２、Ｄ＃又はＥ♭は３、
Ｅは４、Ｆは５、Ｆ＃又はＧ♭は６、Ｇは７、Ｇ＃又はＡ♭は８、Ａは９、Ａ＃又はＢ♭
は１０、Ｂは１１に、それぞれ対応している。本実施形態では、調が、１小節、２小節、
又は４小節の区間長を有する区間毎に判定される。ここで、調を表すキー音名及び音階音
は、オクターブに依存しない音名の組合せとして決定される。従って、本実施形態では、
ＣＰＵ１０１が、区間内で発音されるノートを、ＲＡＭ１０３に記憶されている図２（ａ
）のデータフォーマットを有する各ノートイベントの発音時刻ｌＴｉｍｅ及びゲートタイ
ム（発音時間）ｌＧａｔｅから検索し、検索されたノートのピッチ（図２（ａ）のｂｙＤ
ａｔａ［１］）を、その値を１２で除算したときの０から１１の何れかの剰余値として、
ピッチクラスに変換する。そして、ＣＰＵ１０１は、そのノートのベロシティとその区間

(10) JP 6500869 B2 2019.4.17

10

20

30

40

50

内での発音時間長とに基づいて決定されるパワー情報値をそのノートのピッチに対応する
ピッチクラスに累算することにより、その拍におけるピッチクラス毎のパワー情報累算値
を算出する。いま、ピッチクラスをｉＰｃ（０≦ｉＰｃ≦１１）として、ステップＳ９０
１のピッチクラスパワー作成処理により作成された各ピッチクラスｉＰｃ（０≦ｉＰｃ≦
１１）におけるパワー換算値を、ピッチクラスパワーｌＰｉｃｈＣｌａｓｓＰｏｗｅｒ［
ｉＰｃ］とする。この処理の詳細については図１０及び図１１の説明で後述する。
【００５４】
　次に、ＣＰＵ１０１は、調のキー値を示す全てのｉｋｅｙの値０から１１について、以
下のステップＳ９０３からＳ９１０の一連の処理を実行する（ステップＳ９０２）。まず
、ＣＰＵ１０１は、ステップＳ９０３からＳ９０８の一連の処理を実行する。
【００５５】
　具体的には、ＣＰＵ１０１は始めに、共にＲＡＭ１０３に記憶される変数である第１の
パワー評価値ｌＰｏｗｅｒと第２のパワー評価値ｌＯｔｈｅｒＰｏｗｅｒの各値を０にク
リアする（ステップＳ９０３）。
【００５６】
　次に、ＣＰＵ１０１は、０から１１までの値を有する全てのピッチクラスｉＰｃ毎に、
以下のステップＳ９０５からＳ９０７の処理を実行する（ステップＳ９０４）。
【００５７】
　まず、ＣＰＵ１０１は、ステップ９０４で指定された現在のピッチクラスｉＰｃが、ス
テップＳ９０２で指定された現在のキー値ｉｋｅｙに基づいて定まる調の音階音に含まれ
るか否かを判定する（ステップＳ９０５）。この判定は、「ｓｃａｌｅｎｏｔｅ［（１２
＋ｉＰｃ－ｉｋｅｙ）％１２］の値が１であるか否か」を判定する演算である。図１０は
、スケールノートの説明図である。図１０において、（ａ）ｍａｊｏｒ、（ｂ）ｈｍｉｎ
ｏｒ、及び（ｃ）ｍｍｉｎｏｒの各行は、調のキー値がピッチクラス＝０（音名＝Ｃ）で
ある場合における、メジャースケール、ハーモニックマイナースケール、及びメロディッ
クマイナースケールの各スケールの音階を構成するピッチクラス及び音名を示している。
各行で、値「１」が記載されているピッチクラス及び音名が、その行に対応するスケール
の音階を構成する構成音である。値「０」が記載されているピッチクラス及び音名は、そ
の行に対応するスケールの音階を構成しない音である。本実施形態では、処理の簡単化及
び安定性確保のために、図１０の（ａ）、（ｂ）、及び（ｃ）の各スケールの音階音が比
較対象とされるのではなく、これらのスケールを統合した図１０の（ｄ）のスケール（以
下これを「統合スケールｓｃａｌｅ」と記載する）の音階音が比較対象とされる。図１０
（ｄ）の統合スケールｓｃａｌｅの音階音又は音階を構成しない音は、図１０の（ａ）、
（ｂ）、及び（ｃ）の各スケールの音階音又は音階を構成しない音に対してピッチクラス
（音名）毎に論理和を演算して得られるものである。すなわち、ピッチクラス（音名）毎
に、図１０の（ａ）、（ｂ）、及び（ｃ）の各スケールの値が「１」であれば統合スケー
ルｓｃａｌｅの値は「１」であり、図１０の（ａ）、（ｂ）、及び（ｃ）の全てのスケー
ルの値が「０」であれば統合スケールｓｃａｌｅの値は「０」である。図１のＲＯＭ１０
２は、キー値がピッチクラス＝０（音名＝Ｃ）であるときの図１０（ｄ）の統合スケール
ｓｃａｌｅに対応する配列定数ｓｃａｌｅ［ｉ］を記憶している。ここで、ｉは図１０の
０から１１までのピッチクラスの値をとり、配列要素値ｓｃａｌｅ［ｉ］には、図１０（
ｄ）の統合スケールｓｃａｌｅの行のピッチクラスｉにおける値１又は０が格納されてい
る。ＣＰＵ１０１は、ステップＳ９０５において、まず、「（１２＋ｉＰｃ－ｉｋｅｙ）
％１２」の値を演算する。この演算では、ステップＳ９０４で指定されているピッチクラ
スｉＰｃとステップＳ９０２で指定されているキー値ｉｋｅｙとの差分値が、どのピッチ
クラスになるかが算出されている。括弧内で１２が加算されているのは「ｉＰｃ－ｉｋｅ
ｙ」の値がマイナス値にならないようにするためである。また、「％」は、剰余を求める
剰余演算を示している。ＣＰＵ１０１は、この演算結果を配列要素引数として、ＲＯＭ１
０２から読み出した配列要素値ｓｃａｌｅｎｏｔｅ［（１２＋ｉＰｃ－ｉｋｅｙ）％１２
］の値が１であるか否かを判定する。これにより、ＣＰＵ１０１は、ステップＳ９０４で

(11) JP 6500869 B2 2019.4.17

10

20

30

40

50

指定されているピッチクラスｉＰｃが、図１０（ｄ）に示されるキー値がピッチクラス＝
０（音名＝Ｃ）のときの統合スケールｓｃａｌｅをキー値がステップＳ９０２で指定され
ているキー値ｉｋｅｙであるときの統合スケールｓｃａｌｅに変換したときの音階音に含
まれているか否かを判定することができる。
【００５８】
　ステップ９０４で指定された現在のピッチクラスｉＰｃが、ステップＳ９０２で指定さ
れた現在のキー値ｉｋｅｙに対応する統合スケールｓｃａｌｅの音階音に含まれている場
合（ステップＳ９０５の判定がＹＥＳの場合）には、ＣＰＵ１０１は、そのピッチクラス
ｉＰｃに対応してステップＳ９０１で算出されているピッチクラスパワーｌＰｉｃｈＣｌ
ａｓｓＰｏｗｅｒ［ｉＰｃ］を、第１のパワー評価値ｌＰｏｗｅｒに累算する（ステップ
Ｓ９０６）。図６のステップＳ９０６において、演算記号「＋＝」は、その左辺の値にそ
の右辺の値を累算する演算を示している。後述するステップＳ９０７、図１４のステップ
Ｓ１４０６、及びステップＳ１４０７の各「＋＝」記号も同様である。
【００５９】
　一方、ステップ９０４で指定された現在のピッチクラスｉＰｃが、ステップＳ９０２で
指定された現在のキー値ｉｋｅｙに対応する統合スケールｓｃａｌｅの音階音に含まれて
いない場合（ステップＳ９０５の判定がＮＯの場合）には、ＣＰＵ１０１は、そのピッチ
クラスｉＰｃに対応してステップＳ９０１で算出されているピッチクラスパワーｌＰｉｃ
ｈＣｌａｓｓＰｏｗｅｒ［ｉＰｃ］を、第２のパワー評価値ｌＯｔｈｅｒＰｏｗｅｒに累
算する（ステップＳ９０７）。
【００６０】
　ＣＰＵ１０１は、０から１１までの値を有する全てのピッチクラスｉＰｃについて、上
述のステップＳ９０５からＳ９０７の処理の実行を終えると（ステップＳ９０４の判定が
「終了」になると）、第１のパワー評価値ｌＰｏｗｅｒを第２のパワー評価値ｌＯｔｈｅ
ｒＰｏｗｅｒで除算して得られる値として、ステップＳ９０２で現在指定されているキー
値ｉｋｅｙに対応するパワー評価値ｄｏＫｅｙＰｏｗｅｒを算出する（ステップＳ９０８
）。ステップＳ９０８の実行時点で、第１のパワー評価値ｌＰｏｗｅｒはステップＳ９０
２で現在指定されているキー値ｉｋｅｙに対応する統合スケールｓｃａｌｅの音階音がど
れくらいの強さで発音されるかを示している。また、第２のパワー評価値ｌＯｔｈｅｒＰ
ｏｗｅｒは、キー値ｉｋｅｙに対応する統合スケールｓｃａｌｅの音階音以外の音がどれ
くらいの強さで鳴っているかを示している。従って、「ｌＰｏｗｅｒ÷ｌＯｔｈｅｒＰｏ
ｗｅｒ」として算出されるパワー評価値ｄｏＫｅｙＰｏｗｅｒは、現在の区間で鳴ってい
る楽音（ノート）がどのくらい、現在のキー値ｉｋｅｙに対応する統合スケールｓｃａｌ
ｅの音階音らしいかを示す指標となる。
【００６１】
　続いて、ＣＰＵ１０１は、ステップＳ９０８で算出した現在のキー値ｉｋｅｙに対応す
るパワー評価値ｄｏＫｅｙＰｏｗｅｒを、現時点の直前までに指定されたキー値に対応す
るパワー評価値最高値ｄｏＭａｘと比較する（ステップＳ９０９）。そして、ＣＰＵ１０
１は、ｄｏＫｅｙＰｏｗｅｒがｄｏＭａｘｅｒ以上であれば、パワー評価値最高値ｄｏＭ
ａｘとパワー評価値最高キー値ｉｍａｘｋｅｙを、現在のパワー評価値ｄｏＫｅｙＰｏｗ
ｅｒとキー値ｉＫｅｙにそれぞれ置き換える（ステップＳ９１０）。その後、ＣＰＵ１０
１は、ステップＳ９０２の処理に戻って、次のキー値ｉｋｅｙに対する処理に移行する。
【００６２】
　図１１は、図９のステップＳ９０１のピッチクラスパワー作成処理の例を示すフローチ
ャートであり、図１１は、ピッチクラスパワー作成処理の説明図である。ＣＰＵ１０１は
まず、図４のステップＳ４０４でＲＡＭ１０３に読み込んだ図２（ａ）のデータフォーマ
ット例を有するＭＩＤＩシーケンスデータにおいて、全てのトラック毎に、以下のステッ
プＳ１１０２からＳ１１１１までの一連の処理を繰り返し実行する（ステップＳ１１０１
）。以下、ＣＰＵ１０１は、ステップＳ１１０１において、各トラックを、ＲＡＭ１０３
に記憶される変数であるトラック番号ｉＴｒａｃｋの値として順次指定する。ここでは、

(12) JP 6500869 B2 2019.4.17

10

20

30

40

50

ＣＰＵ１０１は、図２（ａ）の例のＭＩＤＩシーケンスデータにおいて、トラック番号ｉ
Ｔｒａｃｋに対応するポインタ情報ｍｉｄｉｅｖ［ｉＴｒａｃｋ］を参照することにより
、トラック番号ｉＴｒａｃｋに対応するパートのＲＡＭ１０３に記憶されている最初のノ
ートイベントにアクセスする。
【００６３】
　そして、ＣＰＵ１０１は、上記最初のノートイベントから順次、各ノートイベント内の
図２（ａ）のｎｅｘｔポインタを参照しながら辿ることにより、トラック番号ｉＴｒａｃ
ｋのパート内の全てのノートイベント毎に、以下のステップＳ１１０３からＳ１１１１ま
での一連の処理を繰り返し実行する（ステップＳ１１０２）。ここで、現在のノートイベ
ントへのポインタを「ｍｅ」と記載する。そして、現在のノートイベント内のデータ、例
えば図２（ａ）の発音開始時刻ｌＴｉｍｅへの参照は、「ｍｅ－＞ｌＴｉｍｅ」などと記
載する。
【００６４】
　ＣＰＵ１０１は、図６のステップＳ６０１により定まる１小節長、２小節長、又は４小
節長の区間長を有してステップＳ６０２で指定される開始小節から始まる区間（以下これ
を「現在の該当範囲」と記載する）に、ステップＳ１１０２で指定されている現在のノー
トイベントが含まれるか否かを判定する（ステップＳ１１０３）。いま、ＣＰＵ１０１は
、楽曲先頭から計時した現在の該当範囲の先頭時刻を計算して、その時刻を、変数である
該当範囲開始時刻ｌＴｉｃｋＦｒｏｍとしてＲＡＭ１０３に記憶する。前述したように、
拍及び小節の時間単位としては、何れも前述したティックが使用され、１拍は一般的に４
８０ティックで、４分の４拍子の楽曲の場合、１小節は４拍である。従って、例えば４分
の４拍子の楽曲の場合では、楽曲の先頭を０小節目として図６のステップＳ６０２で指定
される区間の開始小節番号をカウントした場合、区間の開始小節の開始時刻は（４８０テ
ィック×４拍×区間の開始小節番号）となり、これが該当範囲開始時刻ｌＴｉｃｋＦｒｏ
ｍとして算出される。同様に、ＣＰＵ１０１は、楽曲先頭から計時した現在の該当範囲の
終了時刻を計算して、その時刻を、変数である該当範囲終了時刻ｌＴｉｃｋＴｏとしてＲ
ＡＭ１０３に記憶する。該当範囲終了時刻ｌＴｉｃｋＴｏは、該当範囲開始時刻ｌＴｉｃ
ｋＦｒｏｍ＋（４８０ティック×４拍×ステップＳ６０１で指定されている区間長）であ
る。そして、ＣＰＵ１０１は、現在のノートイベントのポインタｍｅから参照される現在
のノートイベントの発音開始時刻ｌＴｉｍｅと発音時間長ｌＧａｔｅ（共に図２（ａ）参
照）とから定まる現在のノートイベントの発音区間が、上記該当範囲開始時刻ｌＴｉｃｋ
Ｆｒｏｍ及び該当範囲終了時刻ｌＴｉｃｋＴｏに対して、図１２の１２０１、１２０２、
又は１２０３の何れかの関係にあるか否かを判定する。これらの何れかの関係が成立すれ
ば、現在指定されているノートイベントによる発音は、現在の該当範囲に含まれる（かか
っている）ことになる。これが成立する場合、ＣＰＵ１０１は、ステップＳ１１０３の判
定をＹＥＳとする。具体的には、図１２の関係より、ＣＰＵ１０１は、該当範囲終了時刻
ｌＴｉｃｋＴｏが現在のノートイベントの発音開始時刻ｍｅ－＞ｌＴｉｍｅより後であっ
て、かつ該当範囲開始時刻ｌＴｉｃｋＦｒｏｍが現在のノートイベントの発音終了時刻で
ある（発音開始時刻ｍｅ－＞ｌＴｉｍｅ＋発音時間長ｍｅ－＞ｌＧａｔｅ）より前であれ
ば、ステップ Ｓ１１０３の判定をＹＥＳとする。
【００６５】
　ステップＳ１１０３の判定がＮＯであれば、ＣＰＵ１０１は、現在のノートイベントは
現在の該当範囲に含まれていないと判定して、ステップＳ１１０２の処理に戻り、次のノ
ートイベントに対する処理に移行する。
【００６６】
　ステップＳ１１０３の判定がＹＥＳであれば、ＣＰＵ１０１は、該当範囲開始時刻ｌＴ
ｉｃｋＦｒｏｍが、現在のノートイベントの発音開始時刻ｍｅ－＞ｌＴｉｍｅよりも後で
あるか否かを判定する（ステップＳ１１０４）。
【００６７】
　ステップＳ１１０４の判定がＹＥＳならば、図１２の１２０１の状態が判定されたこと

(13) JP 6500869 B2 2019.4.17

10

20

30

40

50

になるので、ＣＰＵ１０１は、ＲＡＭ１０３に記憶される変数である現在のノートイベン
トの現在の該当範囲内での発音開始時刻ｌＴｉｃｋＳｔａｒｔに、該当範囲開始時刻ｌＴ
ｉｃｋＦｒｏｍをセットする（ステップＳ１１０５）。
【００６８】
　一方、ステップＳ１１０４の判定がＮＯならば、図１２の１２０２又は１２０３の状態
が判定されたことになるので、ＣＰＵ１０１は、現在のノートイベントの現在の該当範囲
内での発音開始時刻ｌＴｉｃｋＳｔａｒｔに、現在のノートイベントの発音開始時刻ｍｅ
－＞ｌＴｉｍｅをセットする（ステップＳ１１０６）。
【００６９】
　ステップＳ１１０５又はＳ１１０６の処理の後、ＣＰＵ１０１は、該当範囲終了時刻ｌ
ＴｉｃｋＴｏが、現在のノートイベントの発音終了時刻である（発音開始時刻ｍｅ－＞ｌ
Ｔｉｍｅ＋発音時間長ｍｅ－＞ｌＧａｔｅ）よりも後であるか否かを判定する（ステップ
Ｓ１１０７）。
【００７０】
　ステップＳ１１０７の判定がＹＥＳならば、図１２の１２０１又は１２０２の状態が判
定されたことになるので、ＣＰＵ１０１は、ＲＡＭ１０３に記憶される変数である現在の
ノートイベントの現在の該当範囲内での発音終了時刻ｌＴｉｃｋＥｎｄに、現在のノート
イベントの発音終了時刻である（発音開始時刻ｍｅ－＞ｌＴｉｍｅ＋発音時間長ｍｅ－＞
ｌＧａｔｅ）をセットする（ステップＳ１１０８）。
【００７１】
　一方、ステップＳ１１０７の判定がＮＯならば、図１２の１２０３の状態が判定された
ことになるので、ＣＰＵ１０１は、現在のノートイベントの現在の該当範囲内での発音終
了時刻ｌＴｉｃｋＥｎｄに、該当範囲終了時刻ｌＴｉｃｋＴｏをセットする（ステップＳ
１１０９）。
【００７２】
　ステップＳ１１０８又はＳ１１０９の処理の後、ＣＰＵ１０１は、ＲＡＭ１０３に記憶
される変数である現在のノートイベントのピッチｉＰｉｔｃｈに、現在のノートイベント
のポインタｍｅから参照されるピッチｂｙＤａｔａ［１］（図２（ａ）参照）の値を格納
する（ステップＳ１１１０）。
【００７３】
　そして、ＣＰＵ１０１は、現在のノートイベントのピッチｉＰｉｔｃｈを１２で除算し
たときの剰余（ｉＰｉｔｃｈ％１２）として算出される現在のノートイベントに対応する
ピッチクラスにおけるＲＡＭ１０３に記憶される配列要素値であるピッチクラスパワーｌ
ＰｉｃｈＣｌａｓｓＰｏｗｅｒ［ｉＰｉｔｃｈ％１２］に、以下の計算値を格納する。Ｃ
ＰＵ１０１は、現在のノートイベントのベロシティとパート情報とから定まるベロシティ
情報ｌＰｏｗｅｒＷｅｉｇｈｔに、現在のノートイベントの現在の該当範囲における発音
時間長（ｌＴｉｃｋＥｎｄ－ｌＴｉｃｋＳｔａｒｔ）を乗算した値として、上記ピッチク
ラスパワーｌＰｉｃｈＣｌａｓｓＰｏｗｅｒ［ｉＰｉｔｃｈ％１２］を算出する。ここで
、ベロシティ情報ｌＰｏｗｅｒＷｅｉｇｈｔは例えば、現在のノートイベントのポインタ
ｍｅから参照されるベロシティｍｅ－＞ｂｙＤａｔａ［２］（図２（ａ）参照）に、現在
のトラック番号ｉＴｒａｃｋ（ステップＳ１１０１参照）に対応するパートに対して予め
規定されＲＯＭ１０２に記憶されている所定のパート係数を乗算した値として算出される
。このようにして、現在のノートイベントに対応するピッチクラスパワーｌＰｉｃｈＣｌ
ａｓｓＰｏｗｅｒ［ｉＰｉｔｃｈ％１２］の値は、現在の該当範囲内での現在のノートイ
ベントの発音時間が長ければ長いほど、また発音の強さを示すベロシティが大きければ大
きいほど、そして現在のノートイベントが属するパートに応じて、現在のノートイベント
に対応するピッチクラス（ｉＰｉｔｃｈ％１２）の音の現在の該当範囲での構成割合が大
きいことになる。
【００７４】
　ステップＳ１１１１の処理の後、ＣＰＵ１０１は、ステップＳ１１０２の処理に戻り、

(14) JP 6500869 B2 2019.4.17

10

20

30

40

50

次のノートイベントに対する処理に移行する。
【００７５】
　上述のステップＳ１１０３からＳ１１１１までの一連の処理が繰り返し実行されること
により、現在のトラック番号ｉＴｒａｃｋに対応する全てのノートイベントｍｅに対応す
る処理が終了すると、ＣＰＵ１０１は、ステップＳ１１０１の処理に戻り、次のトラック
番号ｉＴｒａｃｋに対する処理に移行する。更に、上述のステップＳ１１０２からＳ１１
１１の処理が繰り返し実行されることにより、全てのトラック番号ｉＴｒａｃｋに対応す
る処理が終了すると、ＣＰＵ１０１は、図１１のフローチャートで例示される図９のステ
ップＳ９０１のピッチクラスパワー作成処理を終了する。
【００７６】
　図１３は、図５の調判定処理の詳細例である図６のフローチャートの処理におけるステ
ップＳ６０４の結果保存処理の詳細例を示すフローチャートである。ここでは、ＣＰＵ１
０１は、図６のステップＳ６０３のキー判定処理により、現在の該当範囲（ステップＳ６
０１で定まる区間長を有してステップＳ６０２で指定される開始小節から始まる区間）に
対して算出されたパワー評価値ｄｏＫｅｙＰｏｗｅｒを、他の区間長に対して得られてい
る重なる区間のパワー評価値と比較することにより、その区間に対して現時点での最適な
調を決定する。
【００７７】
　ＣＰＵ１０１はまず、楽曲を構成する全ての小節毎に、ステップＳ１３０２からＳ１３
０４までの一連の処理を繰り返し実行する（ステップＳ１３０１）。以下、ＣＰＵ１０１
は、ステップＳ１３０１において、楽曲の先頭の小節の小節番号を０としてそこから順次
カウントされるＲＡＭ１０３に記憶される変数である小節番号ｉの値として、各小節を順
次指定する。
【００７８】
　この繰返し処理で、ＣＰＵ１０１はまず、図６のステップＳ６０２で指定される区間の
開始小節番号から、それを含んで図６のステップＳ６０１で指定されている区間長分の現
在の該当範囲の小節番号のグループに、小節番号ｉが含まれるか否かを判定する（ステッ
プＳ１３０１）。
【００７９】
　ステップＳ１３０２の判定がＮＯならば、ＣＰＵ１０１は、ステップＳ１３０１の処理
に戻り、次の小節番号に対する処理に移行する。
【００８０】
　ステップＳ１３０２の判定がＹＥＳならば、ＣＰＵ１０１は、図６のステップＳ６０３
のキー判定処理（図９のフローチャートの処理）により、現在の該当範囲に対して算出さ
れたパワー評価値ｄｏＫｅｙＰｏｗｅｒが、ＲＡＭ１０３に記憶されている図２（ｂ）の
データフォーマット例を有する調データにおいて、小節番号ｉに対応するポインタ情報ｔ
ｏｎａｌｉｔｙ［ｉ］から参照される調情報として記憶されているパワー評価値ｔｏｎａ
ｌｉｔｙ［ｉ］．ｄｏＰｏｗｅｒ以上であるか否かを判定する（ステップＳ１３０３）。
【００８１】
　ステップＳ１３０３の判定がＮＯならば、ＣＰＵ１０１は、ステップＳ１３０１の処理
に戻り、次の小節番号に対する処理に移行する。
【００８２】
　ステップＳ１３０３の判定がＹＥＳならば、ＣＰＵ１０１は、小節番号ｉに対応するポ
インタ情報ｔｏｎａｌｉｔｙ［ｉ］から参照される調情報において、調のキーｔｏｎａｌ
ｉｔｙ［ｉ］．ｉＫｅｙに、図９のステップＳ９１０で算出されているパワー評価値最高
キー値ｉｍａｘｋｅｙをセットする。また、ＣＰＵ１０１は、調判定時のパワー評価値ｔ
ｏｎａｌｉｔｙ［ｉ］．ｄｏＰｏｗｅｒＶａｌｕｅに、図９のステップＳ９１０で算出さ
れているパワー評価値最高値ｄｏＭａｘをセットする。更に、ＣＰＵ１０１は、調判定時
の区間長ｔｏｎａｌｉｔｙ［ｉ］．ｉＬｅｎｇｔｈに、図６のステップＳ６０１で指定さ
れている図６のステップＳ６０１で指定されている現在の区間長をセットする（以上、ス

(15) JP 6500869 B2 2019.4.17

10

20

30

40

50

テップＳ１３０４）。ステップＳ１３０４の処理の後、ＣＰＵ１０１は、ステップＳ１３
０１の処理に戻り、次の小節番号に対する処理に移行する。
【００８３】
　なお、ＲＡＭ１０３に生成される図２（ｂ）の調データは、図４のステップＳ４０４の
曲データの読込み時に、読み込まれたＭＩＤＩシーケンスデータのノートイベントの存在
範囲の値から、必要小節数分のポインタ情報及びそれらから参照される調情報が初期生成
される。例えば４分の４拍子の楽曲であれば、前述したように１拍＝４８０ティックとし
て、必要小節数Ｎ＝（末尾のノートイベントの図２（ａ）の（ｌＴｉｍｅ＋ｌＧａｔｅ）
値÷４８０÷４拍）が算出される。この結果、ｔｏｎａｌｉｔｙ［０］からｔｏｎａｌｉ
ｔｙ［Ｎ－１］までのポインタ情報と、そこから参照される図２（ｂ）の調情報の構造体
データが生成される。そして、各ポインタ情報ｔｏｎａｌｉｔｙ［ｉ］（０≦ｉ≦Ｎ－１
）から参照される構造体データにおいて、ｔｏｎａｌｉｔｙ［ｉ］．ｉＫｅｙには無効値
が初期設定される。ｔｏｎａｌｉｔｙ［ｉ］．ｄｏＰｏｗｅｒＶａｌｕｅには、例えばマ
イナス値が初期設定される。ｔｏｎａｌｉｔｙ［ｉ］．ｌＴｉｃｋには、（４８０ティッ
ク×４拍×ｉ小節）のティック時刻値がセットされる。また、ｔｏｎａｌｉｔｙ［ｉ］．
ｉＭｅａｓＮｏには、小節番号ｉがセットされる。なお、本実施形態では、ｔｏｎａｌｉ
ｔｙ［ｉ］．ｉＳｃａｌｅは未使用である。
【００８４】
　前述した図８の例において、図６のステップＳ６０１で指定されている区間長＝１小節
長（ｉＦｒａｍｅＴｙｐｅ＝０）、ステップＳ６０２で指定されている区間の開始小節番
号（図８（ａ）のｉＭｅａｓＮｏ）＝０のときに、ステップＳ６０３でのキー判定処理の
結果として、図８（ｃ）に示されるように、パワー評価値最高キー値ｉｍａｘｋｅｙとし
てピッチクラス＝１０（音名＝Ｂ♭）が得られ、パワー評価値最高値ｄｏＭａｘとして３
が得られている。この結果、図６のステップＳ６０４の結果保存処理における図１３のフ
ローチャートにおいて、小節番号ｉ＝０のときに、ステップＳ１３０２の判定がＹＥＳと
なる。そして、ステップＳ１３０３の判定処理が実行されるが、このとき、ｔｏｎａｌｉ
ｔｙ［０］．ｄｏＰｏｗｅｒＶａｌｕｅの値はマイナスの初期値となっているため、パワ
ー評価値最高値ｄｏＭａｘ＝３のほうが大きくなり、ステップＳ１３０３の判定はＹＥＳ
となる。この結果、ステップＳ１３０４において、ｔｏｎａｌｉｔｙ［０］．ｉＫｅｙ＝
ｉｍａｘｋｅｙ＝１０（音名Ｂ♭）、ｔｏｎａｌｉｔｙ［０］．ｄｏＰｏｗｅｒＶａｌｕ
ｅ＝ｄｏＭａｘ＝３、ｔｏｎａｌｉｔｙ［０］．ｉＬｅｎｇｔｈ＝１（小節長）がセット
される。
【００８５】
　次に、前述した図８の例において、図６のステップＳ６０１で指定されている区間長＝
２小節長（ｉＦｒａｍｅＴｙｐｅ＝１）、ステップＳ６０２で指定されている区間の開始
小節番号（図８（ａ）のｉＭｅａｓＮｏ）＝０のときに、ステップＳ６０３でのキー判定
処理の結果として、図８（ｄ）に示されるように、パワー評価値最高キー値ｉｍａｘｋｅ
ｙとしてピッチクラス＝１０（音名＝Ｂ♭）が得られ、パワー評価値最高値ｄｏＭａｘと
して４が得られている。この結果、図６のステップＳ６０４の結果保存処理における図１
３のフローチャートにおいて、小節番号ｉ＝０のときに、ステップＳ１３０２の判定がＹ
ＥＳとなる。そして、ステップＳ１３０３の判定処理が実行されるが、このとき、ｔｏｎ
ａｌｉｔｙ［０］．ｄｏＰｏｗｅｒＶａｌｕｅ＝３となっているため、パワー評価値最高
値ｄｏＭａｘ＝４のほうが大きくなり、ステップＳ１３０３の判定はＹＥＳとなる。この
結果、ステップＳ１３０４において、ｔｏｎａｌｉｔｙ［０］．ｉＫｅｙ＝ｉｍａｘｋｅ
ｙ＝１０（同じ音名Ｂ♭）、ｔｏｎａｌｉｔｙ［０］．ｄｏＰｏｗｅｒＶａｌｕｅ＝ｄｏ
Ｍａｘ＝４、ｔｏｎａｌｉｔｙ［０］．ｉＬｅｎｇｔｈ＝２（小節長）がセットされる。
【００８６】
　更に、前述した図８の例において、図６のステップＳ６０１で指定されている区間長＝
４小節長（ｉＦｒａｍｅＴｙｐｅ＝２）、ステップＳ６０２で指定されている区間の開始
小節番号（図８（ａ）のｉＭｅａｓＮｏ）＝０のときに、ステップＳ６０３でのキー判定

(16) JP 6500869 B2 2019.4.17

10

20

30

40

50

処理の結果として、図８（ｅ）に示されるように、パワー評価値最高キー値ｉｍａｘｋｅ
ｙとしてピッチクラス＝０（音名＝Ｃ）が得られ、パワー評価値最高値ｄｏＭａｘとして
７が得られている。この結果、図６のステップＳ６０４の結果保存処理における図１３の
フローチャートにおいて、小節番号ｉ＝０のときに、ステップＳ１３０２の判定がＹＥＳ
となる。そして、ステップＳ１３０３の判定処理が実行されるが、このとき、ｔｏｎａｌ
ｉｔｙ［０］．ｄｏＰｏｗｅｒＶａｌｕｅ＝４となっているため、パワー評価値最高値ｄ
ｏＭａｘ＝７のほうが大きくなり、ステップＳ１３０３の判定はＹＥＳとなる。この結果
、ステップＳ１３０４において、ｔｏｎａｌｉｔｙ［０］．ｉＫｅｙ＝ｉｍａｘｋｅｙ＝
０（音名Ｃ）、ｔｏｎａｌｉｔｙ［０］．ｄｏＰｏｗｅｒＶａｌｕｅ＝ｄｏＭａｘ＝７、
ｔｏｎａｌｉｔｙ［０］．ｉＬｅｎｇｔｈ＝４（小節長）がセットされる。
【００８７】
　以上のステップＳ１３０２からＳ１３０４の一連の処理の実行が、楽曲を構成する全て
の小節番号ｉについて完了すると、ＣＰＵ１０１は、図１３のフローチャートで示される
図６のステップＳ６０４の結果保存処理を終了する。
【００８８】
　以上の例からわかるように、本実施形態では、複数の区間長（ｉＦｒａｍｅＴｙｐｅ）
での調判定結果が総合的に判断されることにより、例えば転調が発生した場合、又は１小
節だけではコードを判定するのに十分な発音がないような場合であっても、適切な調判定
を行うことが可能となる。更に、本実施形態では、後述するようにパワー評価値を算出す
るときに、コードの和音の構成音以外の音についての配慮も行われるため、調判定の精度
を維持することが可能となる。更に、本実施形態では、図９のステップＳ９０６とＳ９０
７で、調の音階音に関わるの第１のパワー評価値ｌＰｏｗｅｒと音階音以外の音に関わる
第２のパワー評価値ｌＯｔｈｅｒＰｏｗｅｒが算出され、それらに基づいて調のキー値ｉ
ｋｅｙに対応するパワー評価値ｄｏＫｅｙＰｏｗｅｒが算出される。従って、調のキー値
ｉｋｅｙに関して、その音階音と音階音以外の音の両方に配慮したパワー評価を行うこと
ができ、判定の精度を維持することが可能となる。
【００８９】
　次に、上記詳述した図５のステップＳ５０１の調判定処理により、図２（ｂ）の調デー
タとして各小節毎に調が適切に判定された後、全ての小節毎（ステップＳ５０２）及び各
小説内の全ての拍毎（ステップＳ５０３）に繰り返し実行されるステップＳ５０４のピッ
チクラスパワー作成処理と、ステップＳ５０５のマッチング＆結果保存処理の詳細につい
て、以下に説明する。
【００９０】
　まず、図５のステップＳ５０４のピッチクラスパワー作成処理の詳細について説明する
。ここでは、ＣＰＵ１０１は、現在設定されている拍内でノートオンする楽曲のノートイ
ベント毎に、そのノートイベントのベロシティとその拍内での発音時間長とに基づいて決
定されるパワー情報値をそのノートのピッチに対応するピッチクラスに累算することによ
り、現在の拍におけるピッチクラス毎のパワー情報累算値を算出する。
【００９１】
　図５のステップＳ５０４の詳細は、前述した図１１のフローチャートで示される。前述
した図９のステップＳ９０１の詳細処理である図１１の説明では、「現在の該当範囲」は
現在指定されている調判定のための小節区間であった、これに対して図５のステップＳ５
０４の詳細処理である以下の図１１の説明では、「現在の該当範囲」は図５のステップＳ
５０２で指定される小節内のステップＳ５０３で指定される拍に対応する範囲である。更
に、図１２の該当範囲開始時刻ｌＴｉｃｋＦｒｏｍは、現在の拍の開始時刻である。前述
したように、拍及び小節の時間単位としては、何れも前述したティックが使用され、１拍
は一般的に４８０ティックで、４分の４拍子の楽曲の場合、１小節は４拍である。従って
、例えば４分の４拍子の楽曲の場合では、楽曲の先頭を０小節目として図５のステップＳ
５０２で指定される小節の小節番号をカウントした場合、その小節の開始時刻は（４８０
ティック×４拍×小節番号）となり、更に、小節の先頭の拍を０として図５のステップＳ

(17) JP 6500869 B2 2019.4.17

10

20

30

40

50

５０３で指定される拍の拍番号をカウントした場合、その拍の小節内での開始時刻は（４
８０ティック×拍番号）となる。従って、該当範囲開始時刻ｌＴｉｃｋＦｒｏｍ＝（４８
０ティック×４拍×小節番号）＋（４８０ティック×拍番号）＝４８０×（４拍×小節番
号＋拍番号）として算出される。また、図１２の該当範囲終了時刻ｌＴｉｃｋＴｏは、現
在の拍の終了時刻である。１拍は４８０ティックであるから、該当範囲終了時刻ｌＴｉｃ
ｋＴｏ＝該当範囲開始時刻ｌＴｉｃｋＦｒｏｍ＋４８０＝４８０×（４拍×小節番号＋拍
番号＋１）として算出される。
【００９２】
　ＣＰＵ１０１は、以上の置換えの後に図１１のフローチャートの処理を動作させること
により、ステップＳ１１１１で、現在のノートイベントのピッチｉＰｉｔｃｈを１２で除
算したときの剰余（ｉＰｉｔｃｈ％１２）として算出される現在のノートイベントに対応
するピッチクラスにおけるピッチクラスパワーｌＰｉｃｈＣｌａｓｓＰｏｗｅｒ［ｉＰｉ
ｔｃｈ％１２］に、以下の計算値を格納する。ＣＰＵ１０１は、現在のノートイベントの
ベロシティとパート情報とから定まるベロシティ情報ｌＰｏｗｅｒＷｅｉｇｈｔに、現在
のノートイベントの現在の拍の範囲における発音時間長（ｌＴｉｃｋＥｎｄ－ｌＴｉｃｋ
Ｓｔａｒｔ）を乗算した値として、上記ピッチクラスパワーｌＰｉｃｈＣｌａｓｓＰｏｗ
ｅｒ［ｉＰｉｔｃｈ％１２］を算出する。このようにして、現在のノートイベントに対応
するピッチクラスパワーｌＰｉｃｈＣｌａｓｓＰｏｗｅｒ［ｉＰｉｔｃｈ％１２］の値は
、現在の拍の範囲内での現在のノートイベントの発音時間が長ければ長いほど、また発音
の強さを示すベロシティが大きければ大きいほど、そして現在のノートイベントが属する
パートに応じて、現在のノートイベントに対応するピッチクラス（ｉＰｉｔｃｈ％１２）
の音の現在の拍の範囲での構成割合が大きいことになる。
【００９３】
　図１４は、図５のステップＳ５０５のマッチング＆結果保存処理の詳細例を示すフロー
チャートである。
【００９４】
　次に、ＣＰＵ１０１は、コードのルート（根音）を示す全てのｉｒｏｏｔの値０から１
１について、以下のステップＳ１４０２からＳ１４１３の一連の処理を実行する（ステッ
プＳ１４０１）。更に、ＣＰＵ１０１は、コードの種別を示す全てのコードタイプｉｔｙ
ｐｅの値について、以下のステップＳ１４０３からＳ１４１３の一連の処理を実行する（
ステップＳ１４０２）。
【００９５】
　ステップＳ１４０３からＳ１４１３の繰返し処理において、ＣＰＵ１０１は始めに、共
にＲＡＭ１０３に記憶される変数である第１のパワー評価値ｌＰｏｗｅｒと第２のパワー
評価値ｌＯｔｈｅｒＰｏｗｅｒの各値を０にクリアする（ステップＳ１４０３）。
【００９６】
　次に、ＣＰＵ１０１は、０から１１までの値を有する全てのピッチクラスｉＰｃ毎に、
以下のステップＳ１４０５からＳ１４０７の処理を実行する（ステップＳ１４０４）。
【００９７】
　まず、ＣＰＵ１０１は、ステップ１４０４で指定された現在のピッチクラスｉＰｃが、
ステップＳ１４０１及びステップＳ１４０２で指定された現在のコードルートｉｒｏｏｔ
及びコードタイプｉｔｙｐｅに基づいて定まるコードの構成音（コードトーン）に含まれ
るか否かを判定する（ステップＳ１４０５）。この判定は、「ｃｈｏｒｄｔｏｎｅ［ｉｔ
ｙｐｅ］［（１２＋ｉＰｃ－ｉｒｏｏｔ）％１２］の値が１であるか否か」を判定する演
算である。図１５は、コードトーンの説明図である。図１５において、（ａ）ｍａｊｏｒ
、（ｂ）ｍｉｎｏｒ、（ｃ）７ｔｈ、及び（ｄ）ｍｉｎｏｒ７ｔｈの各行は、コードルー
トがピッチクラス＝０（音名＝Ｃ）である場合における、メジャーコード、マイナーコー
ド、セブンスコード、及びマイナーセブンスコードの各コードタイプにおける構成音のピ
ッチクラス及び音名を示している。各行で、値「１」が記載されているピッチクラス及び
音名が、その行に対応するコードの構成音である。値「０」が記載されているピッチクラ

(18) JP 6500869 B2 2019.4.17

10

20

30

40

50

ス及び音名は、その行に対応するコードの構成音でない音が比較対象とされる。図１のＲ
ＯＭ１０２は、コードルートがピッチクラス＝０（音名＝Ｃ）であるときの例えば図１５
（ａ）、（ｂ）、（ｃ）、及び（ｄ）の各コードタイプｉｔｙｐｅに対応する配列定数ｃ
ｈｏｒｄｔｏｎｅ［ｉｔｙｐｅ］［ｉ］を記憶している。なお、実際には、ｉｔｙｐｅの
種類は、図１５に示される４種類より多い。ここで、ｉは図１５の０から１１までのピッ
チクラスの値をとり、配列要素値ｃｈｏｒｄｔｏｎｅ［ｉｔｙｐｅ］［ｉ］には、第１配
列要素引数ｉｔｙｐｅに対応する図１５（ａ）、（ｂ）、（ｃ）、又は（ｄ）として例示
される行の第２配列要素引数ｉに対応するピッチクラスｉにおける値１又は０が格納され
ている。ＣＰＵ１０１は、ステップＳ１４０５において、まず、第２配列要素引数として
「（１２＋ｉＰｃ－ｉｒｏｏｔ）％１２」の値を演算する。この演算では、ステップＳ１
４０４で指定されているピッチクラスｉＰｃとステップＳ１４０１で指定されているコー
ドルートｉｒｏｏｔとの差分値が、どのピッチクラスになるかが算出されている。括弧内
で１２が加算されているのは「ｉＰｃ－ｉｒｏｏｔ」の値がマイナス値にならないように
するためである。また、「％」は、剰余を求める剰余演算を示している。ＣＰＵ１０１は
、この演算結果を第２配列要素引数とし、更にステップＳ１４０２で指定されているｉｔ
ｙｐｅを第１配列要素引数として、ＲＯＭ１０２から読み出した配列要素値ｃｈｏｒｄｔ
ｏｎｅ［ｉｔｙｐｅ］［（１２＋ｉＰｃ－ｉｒｏｏｔ）％１２］の値が１であるか否かを
判定する。これにより、ＣＰＵ１０１は、ステップＳ１４０４で指定されているピッチク
ラスｉＰｃが、図１５に例示されるコードルートがピッチクラス＝０（音名＝Ｃ）のとき
のコード構成音をコードルートがステップＳ１４０１で指定されているｉｒｏｏｔである
ときのコード構成音に変換したときのｉｔｙｐｅに対応する行のコード構成音に含まれて
いるか否かを判定することができる。
【００９８】
　ステップ１４０４で指定された現在のピッチクラスｉＰｃが、ステップＳ１４０１で指
定された現在のコードルートｉｒｏｏｔ及びステップＳ１４０２で指定された現在のコー
ドタイプｉｔｙｐｅに対応するコードの構成音に含まれている場合（ステップＳ１４０５
の判定がＹＥＳの場合）には、ＣＰＵ１０１は、そのピッチクラスｉＰｃに対応して図５
のステップＳ５０４で算出されているピッチクラスパワーｌＰｉｃｈＣｌａｓｓＰｏｗｅ
ｒ［ｉＰｃ］を、第１のパワー評価値ｌＰｏｗｅｒに累算する（ステップＳ１４０６）。
【００９９】
　一方、ステップ１４０４で指定された現在のピッチクラスｉＰｃが、ステップＳ１４０
１で指定された現在のコードルートｉｒｏｏｔ及びステップＳ１４０２で指定された現在
のコードタイプｉｔｙｐｅに対応するコードの構成音にに含まれていない場合（ステップ
Ｓ１４０５の判定がＮＯの場合）には、ＣＰＵ１０１は、そのピッチクラスｉＰｃに対応
して図５のステップＳ５０４で算出されているピッチクラスパワーｌＰｉｃｈＣｌａｓｓ
Ｐｏｗｅｒ［ｉＰｃ］を、第２のパワー評価値ｌＯｔｈｅｒＰｏｗｅｒに累算する（ステ
ップＳ１４０７）。
【０１００】
　ＣＰＵ１０１は、０から１１までの値を有する全てのピッチクラスｉＰｃについて、上
述のステップＳ１４０５からＳ１４０７の処理の実行を終えると（ステップＳ１４０４の
判定結果が「終了」を示すと）、次の処理を実行する。ＣＰＵ１０１は、ステップＳ１４
０１及びＳ１４０２で現在指定されているコードルート及びコードタイプで定まるコード
の構成音中で、図５のステップＳ５０２で現在指定されている小節に対して図５のステッ
プＳ５０１の調判定処理で決定された調の音階音に含まれる音数を、その調の音階音の数
で除算した値を、補正係数ＴＮＲとして算出する。即ち、ＣＰＵ１０１は、下記（１）式
で示される演算を実行する（ステップＳ１４０８）。
【０１０１】
　ＴＮＲ＝（コード構成音中で調の音階音に含まれる音数）÷（調の音階音数）
　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　・・・（１）
【０１０２】

(19) JP 6500869 B2 2019.4.17

10

20

30

40

50

　より具体的には、ＣＰＵ１０１は、図５のステップＳ５０２で現在指定されている小節
の小節番号を引数として、ＲＡＭ１０３に記憶されている図２（ｂ）のデータフォーマッ
トのポインタ情報ｔｏｎａｌｉｔｙ［小節番号］から図２（ｂ）の調情報を参照する。こ
れにより、ＣＰＵ１０１は、上記小節に対応する調のキー値を、ｔｏｎａｌｉｔｙ［小節
番号］．ｉＫｅｙとして取得する。そして、ＣＰＵ１０１は、ＲＯＭ１０２に記憶されて
いるキー値がピッチクラス＝０（音名＝Ｃ）であるときの図１０（ｄ）の統合スケールｓ
ｃａｌｅに対応する配列定数ｓｃａｌｅ［ｉ］の各ｉ毎の音階音を、上記取得したキー値
ｔｏｎａｌｉｔｙ［小節番号］．ｉＫｅｙに従って変換する。これにより、ＣＰＵ１０１
は、上記取得したキー値ｔｏｎａｌｉｔｙ［小節番号］．ｉＫｅｙに対応した統合スケー
ルｓｃａｌｅの音階音の情報を得る。この音階音を、ステップＳ１４０１とＳ１４０２で
現在指定されているコードルート及びコードタイプで定まるコードの構成音と比較するこ
とにより、上記（１）式を計算する。
【０１０３】
　例えば、調判定結果がハ長調のときの各コードの補正値は、下記のようになる。
　　Ｇ７：１、Ｂｄｉｍ：１、Ｂｄｉｍ７：０．７５、Ｂｍ７♭５＝１．０、
　　Ｄｄｉｍ７＝０．７５、Ｆｄｉｍ７＝０．７５
【０１０４】
　続いて、ＣＰＵ１０１は、ステップＳ１４０８で算出した補正係数ＴＮＲをステップＳ
１４０６で算出された第１のパワー評価値ｌＰｏｗｅｒに乗算し、また、第２のパワー評
価値ｌＯｔｈｅｒＰｏｗｅｒに所定の負の定数ＯＰＲを乗算し、両者の乗算結果を加算し
た結果で、第１のパワー評価値ｌＰｏｗｅｒを置き換えることにより、ステップＳ１４０
１とＳ１４０２で現在指定されているコードルート及びコードタイプで定まるコードに対
応する新たなパワー評価値ｌＰｏｗｅｒを算出する（ステップＳ１４０９）。
【０１０５】
　上述の（１）の補正係数ＴＮＲを介して、本実施形態では、図５のステップＳ５０１で
の調判定処理による小節毎の調判定の結果を、その小節内の拍毎のコード判定に反映させ
ることが可能となり、精度の高いコード判定が実現される。
【０１０６】
　ＣＰＵ１０１は、図３のコード進行データとして得られている現在の拍番号ｌＣｎｔに
対応する全てのコード候補の数ｉ（ｉ＝０、１、２、・・・）について、以下のステップ
Ｓ１４１１からＳ１４１３の一連の処理を繰り返し実行する（ステップＳ１４１０）。
【０１０７】
　この繰返し処理において、ＣＰＵ１０１はまず、現在の拍番号ｌＣｎｔに対応する第ｉ
＋１候補（ｉ＝０なら第１候補、ｉ＝１なら第２候補、ｉ＝２なら第３候補、・・・）の
ポインタ情報ｃｈｏｒｄＰｒｏｇ［ｌＣｎｔ］［ｉ］が参照する、コード情報内のパワー
評価値ｃｈｏｒｄＰｒｏｇ［ｌＣｎｔ］［ｉ］．ｄｏＰｏｗｅｒＶａｌｕｅを取得する。
ここで、現在の拍番号ｌＣｎｔは、楽曲の先頭からの拍の通し番号であり、４分の４拍子
の楽曲の場合、「ｌＣｎｔ＝（４拍×ステップＳ５０２の小節番号）＋（ステップＳ５０
３の拍番号）」として算出される。そして、ＣＰＵ１０１は、ステップＳ１４０９で算出
したパワー評価値ｌＰｏｗｅｒが、上記ｃｈｏｒｄＰｒｏｇ［ｌＣｎｔ］［ｉ］．ｄｏＰ
ｏｗｅｒＶａｌｕｅの値よりも大きいか否かを判定する（以上、ステップＳ１４１１）。
【０１０８】
　ステップＳ１４１１の判定がＮＯの場合、ＣＰＵ１０１は、ステップＳ１４１０の処理
に戻って、ｉをインクリメントした次のコード候補に対する処理に移行する。
【０１０９】
　ステップＳ１４１１の判定がＹＥＳの場合、ＣＰＵ１０１は、第ｉ＋１番目以降のポイ
ンタ情報ｃｈｏｒｄＰｒｏｇ［ｌＣｎｔ］［ｉ＋１］、ｃｈｏｒｄＰｒｏｇ［ｌＣｎｔ］
［ｉ＋２］、ｃｈｏｒｄＰｒｏｇ［ｌＣｎｔ］［ｉ＋３］、・・・が参照するコード情報
を、順次いままでひとつずつ順位が高かったコード情報を参照するように、参照関係をシ
フトする。そして、ＣＰＵ１０１は、第ｉ番目のポインタ情報ｃｈｏｒｄＰｒｏｇ［ｌＣ

(20) JP 6500869 B2 2019.4.17

10

20

30

40

50

ｎｔ］［ｉ］が新たに参照するコード情報の保存場所をＲＡＭ１０３上に確保し、その保
存場所に新たに判定されたコードに関するコード情報を図３に例示されるデータフォーマ
ットで格納する。
【０１１０】
　このコード情報において、ｌＴｉｃｋには現在の小節（ステップＳ５０２で決定）内の
現在の拍（ステップＳ５０３で決定）に対応する開始の時刻が格納される。これは、図５
のステップＳ５０４のピッチクラスパワー作成処理の説明で前述した該当範囲開始時刻ｌ
ＴｉｃｋＦｒｏｍ＝４８０×（４拍×現在の小節番号＋小節内の現在の拍番号）である。
ｉＭｅａｓＮｏには現在の小節の楽曲の先頭の小節を第０小節としてカウントした現在の
小節番号が格納される。ｉＴｉｃｋＩｎＭｅａｓには、小節内の現在の拍に対応する開始
のティック時刻が格納される。図２（ｂ）の説明で前述したように、ｉＴｉｃｋＩｎＭｅ
ａｓは、１拍目に対応するティック値０、２拍目に対応するティック値４８０、３拍目に
対応するティック値９６０、又は４拍目に対応するティック値１４４０の何れかの値とな
る。ｉＲｏｏｔとｉＴｙｐｅにはそれぞれ、ステップＳ１４０１で指定されている現在の
コードルートｉｒｏｏｔ値と、ステップＳ１４０２で指定されている現在のコードタイプ
ｉｔｙｐｅが格納される。ｄｏＰｏｗｅｒＶａｌｕｅにはステップＳ１４０９で算出され
たパワー評価値が格納される。その後、ＣＰＵ１０１は、ステップＳ１４１０の処理に戻
り、次のコード候補に対する処理に移行する。
【０１１１】
　全てのコード候補の数ｉに対する処理が完了すると（ステップＳ１４１０の判定結果が
「終了」を示すと）、ＣＰＵ１０１は、ステップＳ１４０２の処理に戻り、次のコードタ
イプｉｔｙｐｅについての繰返し処理に移行する。
【０１１２】
　全てのコードタイプｉｔｙｐｅに対する繰返し処理が完了すると（ステップＳ１４０２
の判定結果が「終了」を示すと）、ＣＰＵ１０１は、ステップＳ１４０１の処理に戻り、
次のコードルートｉｒｏｏｔについての繰返し処理に移行する。
【０１１３】
　全てのコードルートｉｒｏｏｔに対する繰返し処理が完了すると（ステップＳ１４０１
の判定結果が「終了」を示すと）、ＣＰＵ１０１は、図１４のフローチャートで例示され
た図５のステップＳ５０５のマッチング＆結果保存処理を終了する。
【０１１４】
　次に、図５のステップＳ５０６の最小コスト計算処理と、ステップＳ５０７の経路確定
処理の詳細について、以下に説明する。楽曲データに対するコードの判定において、実際
の楽曲で使われるコード以外の音の影響や逆にコードの構成音が常に鳴っていない状況が
あったりで、従来、適切なコード判定ができない場合があった。例えば、「シレファ」だ
けの発音の場合、この音を構成音として持つコードは、Ｇ７、Ｂｄｉｍ、Ｂｄｉｍ７、Ｂ
ｍ７♭５、Ｄｄｉｍ７、Ｆｄｉｍ７がある。また、「ド、ド＃、レ、ミb、ミ」の発音の
場合、これらの一部を構成音として持つコードは、Ｃａｄｄ９、Ｃｍａｄｄ９、Ｃ＃ｍＭ
７などがある。これら複数のコードの候補がある場合にそのコードが存在する拍タイミン
グのピッチクラスのみから判定するのには困難があり、音楽的知識を使ったり時間軸上の
変化要素を考慮するなどの工夫が考えられる。
【０１１５】
　一般的には、“ｓｕｓ４”“ｍＭ７”などは、前後のコードの連結について音楽的に自
然なルールがある。例えば、“ｓｕｓ４”のコードの次のコードは、同じコードルートを
有する場合が多い。また、“ｍＭ７”のコードの前後のコードは、同じコードルートを有
し、マイナーコードである場合が多い。
【０１１６】
　そこで、本実施形態では、音楽的な連結規則に基づく２つのコード間の連結コストが定
義される。そして、ＣＰＵ１０１は、図５のステップＳ５０６において、楽曲の全ての小
節及び小節内の全ての拍に対して図３に例示されるデータフォーマットで得られる複数候

(21) JP 6500869 B2 2019.4.17

10

20

30

40

50

補からなるコード進行データの全ての組合せの中から、上記連結コストに基づいて楽曲全
体でコストが最小となるコードの組合せを算出する。最小コストの計算には、例えばダイ
クストラ法などを利用することができる。
【０１１７】
　図１６は、最小コスト計算処理と経路確定処理の説明図である。図１６（ａ）は、最小
コスト計算処理における経路最適化処理の説明図である。図１６（ｂ）は、最小コスト計
算処理及び経路確定処理による経路最適化結果の説明図である。ステップＳ５０６におけ
る最小コスト計算処理による経路最適化処理は、拍タイミング毎にコードの候補がｍ個（
例えば３個）あるとすると、ｍのコード数の拍数乗の組合せの中から、最小コストとなる
経路を求める処理である。以下、ｍ＝３の場合を例に説明する。
【０１１８】
　いま、図１６に示されるように、図３のコード進行データとして、各拍タイミングｎ－
２、ｎ－１、ｎ、ｎ＋１、・・・毎に、第１候補から第３候補までの３候補ずつのコード
候補が得られている。いま、拍タイミングｎを現在の拍タイミングとし、この現在の拍タ
イミングが、ＲＡＭ１０３に記憶される変数ｌＣｈｏｒｄＩｄｘによって指定されるとす
る。また、現在の直前の拍タイミングｎ－１が、ＲＡＭ１０３に記憶される変数ｌＰｒｅ
ｖＣｈｏｒｄＩｄｘによって指定されるとする。更に、ｌＣｈｏｒｄＩｄｘで指定される
現在の拍タイミングｎにおける各候補番号（０、１、又は２）が、ＲＡＭ１０３に記憶さ
れる変数ｉＣｕｒＣｈｏｒｄによって指定されるとする。また、ｌＰｒｅｖＣｈｏｒｄＩ
ｄｘで指定される現在の直前の拍タイミングｎ－１における各候補番号（０、１、又は２
）が、ＲＡＭ１０３に記憶される変数ｉＰｒｅｖＣｈｏｒｄによって指定されるとする。
【０１１９】
　本実施形態の最小コスト計算処理では、いま、楽曲の先頭の拍タイミングからコードの
発音が始まって、各拍タイミング毎にコード候補が選択されながら、現在の拍タイミング
ｌＣｈｏｒｄＩｄｘにおける現在の候補番号ｉＣｕｒＣｈｏｒｄの現在のコード候補が選
択されて発音されるまでにかかるトータルコストを、ＲＡＭ１０３に記憶される配列変数
である最適コードトータル最小コストｄｏＯｐｔｉｍｉｚｅＣｈｏｒｄＴｏｔａｌＭｉｎ
ｉｍａｌＣｏｓｔ［ｌＣｈｏｒｄＩｄｘ］［ｉＣｕｒＣｈｏｒｄ］と定義する。このコス
ト値は、現在の直前の拍タイミングｌＰｒｅｖＣｈｏｒｄＩｄｘにおける３つのコード候
補の各々と現在のコード候補との間の各連結コストに、その３つのコード候補の各々にお
いて算出されている各最適コードトータル最小コストをそれぞれ加算した各値が最小とな
る値として算出される。また、その最小値をとる現在の直前の拍タイミングｌＰｒｅｖＣ
ｈｏｒｄＩｄｘにおけるコード候補を、ＲＡＭ１０３に記憶される配列変数である現在の
コード候補への直前最適コードルートｉＯｐｔｉｍｉｚｅＣｈｏｒｄＲｏｕｔｅＰｒｅｖ
［ｌＣｈｏｒｄＩｄｘ］［ｉＣｕｒＣｈｏｒｄ］と定義する。ＣＰＵ１０１は、図５のス
テップＳ５０６の最小コスト計算処理において、楽曲の先頭の拍タイミングから楽曲の進
行に沿った拍タイミング毎に順次、上述の最小コスト計算処理を実行してゆく。
【０１２０】
　図１７は、図５のステップＳ５０６の最小コスト計算処理の詳細例を示すフローチャー
トである。ＣＰＵ１０１は、ｌＣｈｏｒｄＩｄｘ＝１以降の全ての拍タイミングについて
、現在の拍タイミングｌＣｈｏｒｄＩｄｘを指定しながら、ステップＳ１７０２からＳ１
７０８までの一連の処理を繰り返し実行する（ステップＳ１７０１）。ｌＣｈｏｒｄＩｄ
ｘ＝０の場合は、それより手前に拍タイミングが存在しないため、計算を行わない。
【０１２１】
　次に、ＣＰＵ１０１は、現在の直前の拍タイミングｌＰｒｅｖＣｈｏｒｄＩｄｘに、現
在の拍タイミングｌＣｈｏｒｄＩｄｘの値から１減算した値を格納する（ステップＳ１７
０２）。
【０１２２】
　続いて、ＣＰＵ１０１は、ステップＳ１７０１で指定される現在の拍タイミングｌＣｈ
ｏｒｄＩｄｘ毎に、全てのコード候補について現在の拍タイミングの候補番号ｉＣｕｒＣ

(22) JP 6500869 B2 2019.4.17

10

20

30

40

50

ｈｏｒｄを指定しながら、ステップＳ１７０４からＳ１７０９までの一連の処理を繰り返
し実行する（ステップＳ１７０３）。
【０１２３】
　更に、ＣＰＵ１０１は、ステップＳ１７０３で指定される現在の拍タイミングの候補番
号ｉＣｕｒＣｈｏｒｄ毎に、全ての直前の拍タイミングのコード候補について直前の拍タ
イミングの候補番号ｉＰｒｅｖＣｈｏｒｄを指定しながら、ステップＳ１７０５からＳ１
７０８までの一連の処理を繰り返し実行する（ステップＳ１７０４）。
【０１２４】
　ステップＳ１７０５からＳ１７０９までの繰返し処理において、ＣＰＵ１０１はまず、
ステップＳ１７０４で指定された直前の拍タイミングの候補番号ｉＰｒｅｖＣｈｏｒｄの
コード候補からステップＳ１７０３で指定された現在の拍タイミングの候補番号ｉＣｕｒ
Ｃｈｏｒｄのコード候補に遷移するときの連結コストを計算し、その計算結果をＲＡＭ１
０３に記憶される変数であるコストｄｏＣｏｓｔに格納する（ステップＳ１７０５）。
【０１２５】
　次に、ＣＰＵ１０１は、コストｄｏＣｏｓｔに、ステップＳ１７０３で指定された直前
の拍タイミングの候補番号ｉＰｒｅｖＣｈｏｒｄのコード候補に対して保持されている最
適コードトータル最小コストｄｏＯｐｔｉｍｉｚｅＣｈｏｒｄＴｏｔａｌＭｉｎｉｍａｌ
Ｃｏｓｔ［ｌＰｒｅｖＣｈｏｒｄＩｄｘ］［ｉＰｒｅｖＣｈｏｒｄ］の値を加算する（ス
テップＳ１７０６）。なお、現在の拍タイミングｌＣｈｏｒｄＩｄｘ＝１で現在の直前の
拍タイミングｌＰｒｅｖＣｈｏｒｄＩｄｘ＝０の場合における最適コードトータル最小コ
ストｄｏＯｐｔｉｍｉｚｅＣｈｏｒｄＴｏｔａｌＭｉｎｉｍａｌＣｏｓｔ［０］［ｉＰｒ
ｅｖＣｈｏｒｄ］（ｉＰｒｅｖＣｈｏｒｄ＝０、１、２）の値は０である。
【０１２６】
　次に、ＣＰＵ１０１は、ステップＳ１７０６で更新されたコストｄｏＣｏｓｔの値が、
ステップＳ１７０３で指定された現在の拍タイミングの候補番号ｉＣｕｒＣｈｏｒｄに対
して現在までに得られているＲＡＭ１０３に記憶される変数であるコスト最小値ｄｏＭｉ
ｎ以下であるか否かを判定する（ステップＳ１７０７）。なお、コスト最小値ｄｏＭｉｎ
の値は、ＣＰＵ１０１が、ステップＳ１７０３で新たな現在の拍タイミングの候補番号ｉ
ＣｕｒＣｈｏｒｄを指定するときに、大きな初期値に設定される。
【０１２７】
　ステップＳ１７０７の判定がＮＯならば、ＣＰＵ１０１は、ステップＳ１７０４の処理
に戻って、ｉＰｒｅｖＣｈｏｒｄをインクリメントして、直前の拍タイミングの次の候補
番号ｉＰｒｅｖＣｈｏｒｄに対する処理に移行する。
【０１２８】
　ステップＳ１７０７の判定がＹＥＳならば、ＣＰＵ１０１は、現在までのコスト最小値
ｄｏＭｉｎにコストｄｏＣｏｓｔの値を格納し、ＲＡＭ１０３に記憶される変数であるコ
スト最小直前コードｉＭｉｎＰｒｅｖＣｈｏｒｄに、ステップＳ１７０４で指定されてい
る直前の拍タイミングの候補番号ｉＰｒｅｖＣｈｏｒｄを格納する。更に、ＣＰＵ１０１
は、現在の拍タイミングｌＣｈｏｒｄＩｄｘ及び現在の拍タイミングの候補番号ｉＣｕｒ
Ｃｈｏｒｄのコード候補に対応する最適コードトータル最小コストｄｏＯｐｔｉｍｉｚｅ
ＣｈｏｒｄＴｏｔａｌＭｉｎｉｍａｌＣｏｓｔ［ｌＣｈｏｒｄＩｄｘ］［ｉＣｕｒＣｈｏ
ｒｄ］に、コストｄｏＣｏｓｔの値を格納する（以上、ステップＳ１７０８）。その後、
ＣＰＵ１０１は、ステップＳ１７０４の処理に戻り、ｉＰｒｅｖＣｈｏｒｄをインクリメ
ントして、直前の拍タイミングの次の候補番号ｉＰｒｅｖＣｈｏｒｄに対する処理に移行
する。
【０１２９】
　以上のステップＳ１７０５からＳ１７０８までの一連の処理がステップＳ１７０４で順
次指定される直前の拍タイミングの候補番号ｉＰｒｅｖＣｈｏｒｄ毎に実行され、全ての
直前の拍タイミングの候補番号ｉＰｒｅｖＣｈｏｒｄ（＝０、１、２）に対する処理が完
了すると、ＣＰＵ１０１は、次の処理を実行する。ＣＰＵ１０１は、現在の拍タイミング

(23) JP 6500869 B2 2019.4.17

10

20

30

40

50

ｌＣｈｏｒｄＩｄｘ及び現在の拍タイミングの候補番号ｉＣｕｒＣｈｏｒｄに対応する直
前最適コードルートｉＯｐｔｉｍｉｚｅＣｈｏｒｄＲｏｕｔｅＰｒｅｖ［ｌＣｈｏｒｄＩ
ｄｘ］［ｉＣｕｒＣｈｏｒｄ］に、コスト最小直前コードｉＭｉｎＰｒｅｖＣｈｏｒｄの
値を格納する。その後、ＣＰＵ１０１は、ステップＳ１７０３の処理に戻り、ｉＣｕｒＣ
ｈｏｒｄをインクリメントして現在の拍タイミングの次の候補番号ｉＣｕｒＣｈｏｒｄに
対する処理に移行する。
【０１３０】
　以上のステップＳ１７０４からＳ１７０９までの一連の処理がステップＳ１７０３で順
次指定される現在の拍タイミングの候補番号ｉＣｕｒＣｈｏｒｄ毎に実行され、全ての現
在の拍タイミングの候補番号ｉＣｕｒＣｈｏｒｄ（＝０、１、２）に対する処理が完了す
ると、ＣＰＵ１０１は、ステップＳ１７０１の処理に戻り、ｌＣｈｏｒｄＩｄｘをインク
リメントして、次の拍タイミングｌＣｈｏｒｄＩｄｘに対する処理に移行する。
【０１３１】
　以上のステップＳ１７０２からＳ１７０９までの一連の処理がステップＳ１７０１で順
次指定される現在の拍タイミングｌＣｈｏｒｄＩｄｘ毎に実行され、全ての現在の拍タイ
ミングｌＣｈｏｒｄＩｄｘに対する処理が完了すると、ＣＰＵ１０１は、図１７のフロー
チャートで示される図５のステップＳ５０６の最小コスト計算処理を終了する。
【０１３２】
　図１８は、図１７のステップＳ１７０５のコスト計算処理の詳細例を示すフローチャー
トである。ＣＰＵ１０１はまず、現在の拍タイミングｌＣｈｏｒｄＩｄｘ及び現在の拍タ
イミングの候補番号ｉＣｕｒＣｈｏｒｄに対応してＲＡＭ１０３に記憶されているコード
情報（図３参照）へのポインタ情報ｃｈｏｒｄＰｒｏｇ［ｌＣｈｏｒｄＩｄｘ］［ｉＣｕ
ｒＣｈｏｒｄ］の値をＲＡＭ１０３に記憶される変数である現在ポインタｃｕｒに格納す
る（ステップＳ１８０１）。
【０１３３】
　ＣＰＵ１０１は同様に、現在の直前の拍タイミングｌＰｒｅｖＣｈｏｒｄＩｄｘ及び直
前の拍タイミングの候補番号ｉＰｒｅｖＣｈｏｒｄに対応してＲＡＭ１０３に記憶されて
いるコード情報へのポインタ情報ｃｈｏｒｄＰｒｏｇ［ｌＰｒｅｖＣｈｏｒｄＩｄｘ］［
ｉＰｒｅｖＣｈｏｒｄ］の値をＲＡＭ１０３に記憶される変数である直前ポインタｐｒｅ
ｖに格納する（ステップＳ１８０２）。
【０１３４】
　次に、ＣＰＵ１０１は、連結コストｄｏＣｏｓｔの値を、０．５に初期設定する（ステ
ップＳ１８０３）。
【０１３５】
　次に、ＣＰＵ１０１は、現在の拍タイミングｌＣｈｏｒｄＩｄｘの候補番号ｉＣｕｒＣ
ｈｏｒｄのコード情報のコードルートｃｕｒ．ｉＲｏｏｔ（図３参照）に１２を加算した
後に、現在の直前の拍タイミングｌＰｒｅｖＣｈｏｒｄＩｄｘの候補番号ｉＰｒｅｖＣｈ
ｏｒｄのコード情報のコードルートｐｒｅｖ．ｉＲｏｏｔを減算し、その結果を１２で除
算したときの剰余値が５であるか否かを判定する（ステップＳ１８０４）。
【０１３６】
　ステップＳ１８０４の判定がＹＥＳの場合は、現在の直前の拍タイミングｌＰｒｅｖＣ
ｈｏｒｄＩｄｘの候補番号ｉＰｒｅｖＣｈｏｒｄのコード候補から、現在の拍タイミング
ｌＣｈｏｒｄＩｄｘにおける候補番号ｉＣｕｒＣｈｏｒｄのコード候補への遷移は、音程
差が５度のとても自然なコード遷移である。従って、この場合には、ＣＰＵ１０１は、連
結コストｄｏＣｏｓｔの値を最も良い値である最低値０．０に設定する（ステップＳ１８
０５）。
【０１３７】
　ステップＳ１８０４の判定がＮＯの場合は、ＣＰＵ１０１は、ステップＳ１８０５の処
理はスキップし、連結コストｄｏＣｏｓｔの値は０．５のままとなる。
【０１３８】

(24) JP 6500869 B2 2019.4.17

10

20

30

40

50

　次に、ＣＰＵ１０１は、現在の直前の拍タイミングｌＰｒｅｖＣｈｏｒｄＩｄｘの候補
番号ｉＰｒｅｖＣｈｏｒｄのコード情報のコードタイプｐｒｅｖ．ｉＴｙｐｅ（図３参照
）が“ｓｕｓ４”であって、かつ、そのコード情報のコードルートｐｒｅｖ．ｉＲｏｏｔ
と、現在の拍タイミングｌＣｈｏｒｄＩｄｘの候補番号ｉＣｕｒＣｈｏｒｄのコード情報
のコードルートｃｕｒ．ｉＲｏｏｔとが同じであるか否かを判定する（ステップＳ１８０
６）。
【０１３９】
　ステップＳ１８０６の判定がＹＥＳの場合は、「“ｓｕｓ４”のコードの次のコードは
同じコードルートを有する場合が多い」という音楽ルールに良く合っており、とても自然
なコード遷移である。従って、この場合には、ＣＰＵ１０１は、連結コストｄｏＣｏｓｔ
の値を最も良い値である最低値０．０に設定する（ステップＳ１８０７）。
【０１４０】
　ステップＳ１８０６の判定がＮＯの場合には、かなり不自然なコード遷移になるため、
この場合には、ＣＰＵ１０１は、連結コストｄｏＣｏｓｔの値を悪い値１．０に設定する
（ステップＳ１８０８）。
【０１４１】
　次に、ＣＰＵ１０１は、現在の直前の拍タイミングｌＰｒｅｖＣｈｏｒｄＩｄｘの候補
番号ｉＰｒｅｖＣｈｏｒｄのコード情報のコードタイプｐｒｅｖ．ｉＴｙｐｅが“ｍＭ７
”であって、かつ、現在の拍タイミングｌＣｈｏｒｄＩｄｘの候補番号ｉＣｕｒＣｈｏｒ
ｄのコード情報のコードタイプｃｕｒ．ｉＴｙｐｅが“ｍ７”であって、なおかつ、両方
のコード情報のコードルートｐｒｅｖ．ｉＲｏｏｔとｃｕｒ．ｉＲｏｏｔとが同じである
か否かを判定する（ステップＳ１８０９）。
【０１４２】
　ステップＳ１８０９の判定がＹＥＳの場合も、音楽ルールに良く合っていてとても自然
なコード遷移であるため、この場合も、ＣＰＵ１０１は、連結コストｄｏＣｏｓｔの値を
最も良い値である最低値０．０に設定する（ステップＳ１８１０）。
【０１４３】
　ステップＳ１８０９の判定がＮＯの場合には、かなり不自然なコード遷移になるため、
この場合には、ＣＰＵ１０１は、連結コストｄｏＣｏｓｔの値を悪い値１．０に設定する
（ステップＳ１８１１）。
【０１４４】
　更に、ＣＰＵ１０１は、現在の直前の拍タイミングｌＰｒｅｖＣｈｏｒｄＩｄｘの候補
番号ｉＰｒｅｖＣｈｏｒｄのコード情報のコードタイプｐｒｅｖ．ｉＴｙｐｅが“ｍａｊ
”であって、かつ、現在の拍タイミングｌＣｈｏｒｄＩｄｘの候補番号ｉＣｕｒＣｈｏｒ
ｄのコード情報のコードタイプｃｕｒ．ｉＴｙｐｅが“ｍ”であって、なおかつ、両方の
コード情報のコードルートｐｒｅｖ．ｉＲｏｏｔとｃｕｒ．ｉＲｏｏｔとが同じであるか
否かを判定する（ステップＳ１８１２）。
【０１４５】
　ステップＳ１８１２の判定がＹＥＳの場合は、不自然なコード遷移になるため、ＣＰＵ
１０１は、連結コストｄｏＣｏｓｔに悪い値１．０を設定する（ステップＳ１８１３）。
【０１４６】
　ステップＳ１８１２の判定がＮＯの場合は、ＣＰＵ１０１は、ステップＳ１８１３の処
理はスキップする。
【０１４７】
　最後に、ＣＰＵ１０１は、連結コストｄｏＣｏｓｔに、１から現在の拍タイミングｌＣ
ｈｏｒｄＩｄｘの候補番号ｉＣｕｒＣｈｏｒｄのコード情報のパワー評価値ｃｕｒ．ｄｏ
ＰｏｗｅｒＶａｌｕｅを減算した結果と、１から現在の直前の拍タイミングｌＰｒｅｖＣ
ｈｏｒｄＩｄｘの候補番号ｉＰｒｅｖＣｈｏｒｄのコード情報のパワー評価値ｐｒｅｖ．
ｄｏＰｏｗｅｒＶａｌｕｅを減算した結果とを乗算して、連結コストｄｏＣｏｓｔの値を
調整する（ステップＳ１８１４）。その後、ＣＰＵ１０１は、図１８のフローチャートで

(25) JP 6500869 B2 2019.4.17

10

20

30

40

50

示される図１７のステップＳ１７０５のコスト計算処理を終了する。
【０１４８】
　図１６（ｂ）には、説明の簡単化のために、候補数を２、拍タイミングを０、１、２、
３のみとした場合における、上述の図１７の最小コスト計算処理による最小コスト計算結
果の例を示してある。図１６（ｂ）において、大きな丸印は判定されたコード候補を示し
ている。また、丸印間を連結する直線矢印付近に記載された数値は、その直線矢印の始点
の丸印のコード候補から終点の丸印のコード候補への連結コストｄｏＣｏｓｔを示してい
る。拍タイミング＝０では、Ｃｍａｊが第１コード候補、Ｃｍが第２コード候補として判
定されたとする。拍タイミング＝１では、Ａｍが第１コード候補、ＡｍＭ７が第２コード
候補として判定されたとする。拍タイミング＝２では、Ｄｍが第１コード候補、Ｄｓｕｓ
４が第２コード候補として判定されたとする。そして、拍タイミング＝３では、Ｇ７が第
１コード候補、Ｂｄｉｍが第２コード候補として判定されたとする。
【０１４９】
　図１７の最小コスト計算処理において、まず、現在の拍タイミングｌＣｈｏｒｄＩｄｘ
＝１で、候補番号ｉＣｕｒＣｈｏｒｄ＝０（第１候補）の場合、現在のコード候補として
”Ａｍ”が得られている。この場合、現在の直前の拍タイミングｌＰｒｅｖＣｈｏｒｄＩ
ｄｘ＝０において、候補番号ｉＰｒｅｖＣｈｏｒｄ＝０（第１候補）の直前のコード候補
“Ｃｍａｊ”から現在のコード候補”Ａｍ”への連結コストｄｏＣｏｓｔは、図１８のフ
ローチャートのアルゴリズムにより０．５と計算される。また、候補番号ｉＰｒｅｖＣｈ
ｏｒｄ＝１（第２候補）の直前のコード候補“Ｃｍ”から現在のコード候補”Ａｍ”への
連結コストｄｏＣｏｓｔも、図１８のフローチャートのアルゴリズムにより０．５と計算
される。直前のコード候補“Ｃｍａｊ”及び“Ｃｍ”の各最適コードトータル最小コスト
ｄｏＯｐｔｉｍｉｚｅＣｈｏｒｄＴｏｔａｌＭｉｎｉｍａｌＣｏｓｔ［０］［０／１］は
、共に０である。図１７のステップＳ１７０７では、連結コストｄｏＣｏｓｔとコスト最
小値ｄｏＭｉｎが同値の場合にはあとのコード候補が優先される。従って、現在のコード
候補“Ａｍ”の最適コードトータル最小コストｄｏＯｐｔｉｍｉｚｅＣｈｏｒｄＴｏｔａ
ｌＭｉｎｉｍａｌＣｏｓｔ［１］［０］は、“Ａｍ”の丸印の内部に示されるように０．
５と計算される。また、現在のコード候補“Ａｍ”に対する直前最適コードルートｉＯｐ
ｔｉｍｉｚｅＣｈｏｒｄＲｏｕｔｅＰｒｅｖ［１］［０］としては、“Ａｍ”の丸印に入
力する太線矢印として示されるように直前のコード候補“Ｃｍ”が設定される。
【０１５０】
　現在の拍タイミングｌＣｈｏｒｄＩｄｘ＝１で、候補番号ｉＣｕｒＣｈｏｒｄ＝１（第
２候補）の場合のコード候補”ＡｍＭ７”についても同様の計算が実行される。現在のコ
ード候補“ＡｍＭ７”の最適コードトータル最小コストｄｏＯｐｔｉｍｉｚｅＣｈｏｒｄ
ＴｏｔａｌＭｉｎｉｍａｌＣｏｓｔ［１］［１］は、“ＡｍＭ７”の丸印の内部に示され
るように０．５と計算される。また、現在のコード候補“ＡｍＭ７”に対する直前最適コ
ードルートｉＯｐｔｉｍｉｚｅＣｈｏｒｄＲｏｕｔｅＰｒｅｖ［１］［１］としては、“
ＡｍＭ７”の丸印に入力する太線矢印として示されるように直前のコード候補“Ｃｍ”が
設定される。
【０１５１】
　次に、現在の拍タイミングが１つ進んでｌＣｈｏｒｄＩｄｘ＝２となり、候補番号ｉＣ
ｕｒＣｈｏｒｄ＝０（第１候補）の場合、現在のコード候補として“Ｄｍ”が得られてい
る。この場合、現在の直前の拍タイミングｌＰｒｅｖＣｈｏｒｄＩｄｘ＝１において、候
補番号ｉＰｒｅｖＣｈｏｒｄ＝０（第１候補）の直前のコード候補“Ａｍ”から現在のコ
ード候補”Ｄｍ”への連結コストｄｏＣｏｓｔは、図１８のフローチャートのアルゴリズ
ムにより０．０と計算される。また、候補番号ｉＰｒｅｖＣｈｏｒｄ＝１（第２候補）の
直前のコード候補“ＡｍＭ７”から現在のコード候補”Ｄｍ”への連結コストｄｏＣｏｓ
ｔは、図１８のフローチャートのアルゴリズムにより１．０と計算される。直前のコード
候補“Ａｍ”及び“ＡｍＭ７”の各最適コードトータル最小コストｄｏＯｐｔｉｍｉｚｅ
ＣｈｏｒｄＴｏｔａｌＭｉｎｉｍａｌＣｏｓｔ［１］［０／１］は、共に０．５である。

(26) JP 6500869 B2 2019.4.17

10

20

30

40

50

従って、直前のコード候補“Ａｍ”から現在のコード候補”Ｄｍ”への図１７のステップ
Ｓ１７０６で修正されたコストｄｏＣｏｓｔの値は０．５＋０．０＝０．５となる。同様
に、直前のコード候補“ＡｍＭ７”から現在のコード候補”Ｄｍ”への修正されたコスト
ｄｏＣｏｓｔの値は０．５＋１．０＝１．５となる。従って、現在のコード候補“Ｄｍ”
の最適コードトータル最小コストｄｏＯｐｔｉｍｉｚｅＣｈｏｒｄＴｏｔａｌＭｉｎｉｍ
ａｌＣｏｓｔ［２］［０］は、“Ｄｍ”の丸印の内部に示されるように０．５と計算され
る。また、現在のコード候補“Ｄｍ”に対する直前最適コードルートｉＯｐｔｉｍｉｚｅ
ＣｈｏｒｄＲｏｕｔｅＰｒｅｖ［２］［０］としては、“Ｄｍ”の丸印に入力する太線矢
印として示されるように直前のコード候補“Ａｍ”が設定される。
【０１５２】
　現在の拍タイミングｌＣｈｏｒｄＩｄｘ＝２で、候補番号ｉＣｕｒＣｈｏｒｄ＝１（第
２候補）の場合のコード候補”Ｄｓｕｓ４”についても同様の計算が実行される。現在の
コード候補“Ｄｓｕｓ４”の最適コードトータル最小コストｄｏＯｐｔｉｍｉｚｅＣｈｏ
ｒｄＴｏｔａｌＭｉｎｉｍａｌＣｏｓｔ［２］［１］は、“Ｄｓｕｓ４”の丸印の内部に
示されるように０．５と計算される。また、現在のコード候補“Ｄｓｕｓ４”に対する直
前最適コードルートｉＯｐｔｉｍｉｚｅＣｈｏｒｄＲｏｕｔｅＰｒｅｖ［２］［１］とし
ては、“Ｄｓｕｓ４”の丸印に入力する太線矢印として示されるように直前のコード候補
“Ａｍ”が設定される。
【０１５３】
　次に、現在の拍タイミングが更に１つ進んでｌＣｈｏｒｄＩｄｘ＝３となり、候補番号
ｉＣｕｒＣｈｏｒｄ＝０（第１候補）の場合、現在のコード候補として“Ｇ７”が得られ
ている。この場合、現在の直前の拍タイミングｌＰｒｅｖＣｈｏｒｄＩｄｘ＝２において
、候補番号ｉＰｒｅｖＣｈｏｒｄ＝０（第１候補）の直前のコード候補“Ｄｍ”から現在
のコード候補”Ｇ７”への連結コストｄｏＣｏｓｔは、図１８のフローチャートのアルゴ
リズムにより０．０と計算される。また、候補番号ｉＰｒｅｖＣｈｏｒｄ＝１（第２候補
）の直前のコード候補“Ｄｓｕｓ４”から現在のコード候補”Ｇ７”への連結コストｄｏ
Ｃｏｓｔは、図１８のフローチャートのアルゴリズムにより１．０と計算される。直前の
コード候補“Ｄｍ”及び“Ｄｓｕｓ４”の各最適コードトータル最小コストｄｏＯｐｔｉ
ｍｉｚｅＣｈｏｒｄＴｏｔａｌＭｉｎｉｍａｌＣｏｓｔ［２］［０／１］は、共に０．５
である。従って、直前のコード候補“Ｄｍ”から現在のコード候補“Ｇ７”への修正され
たコストｄｏＣｏｓｔの値は０．５＋０．０＝０．５となる。同様に、直前のコード候補
“Ｄｓｕｓ４”から現在のコード候補“Ｇ７”への修正されたコストｄｏＣｏｓｔの値は
０．５＋１．０＝１．５となる。従って、現在のコード候補“Ｇ７”の最適コードトータ
ル最小コストｄｏＯｐｔｉｍｉｚｅＣｈｏｒｄＴｏｔａｌＭｉｎｉｍａｌＣｏｓｔ［３］
［０］は、“Ｇ７”の丸印の内部に示されるように０．５と計算される。また、現在のコ
ード候補“Ｇ７”に対する直前最適コードルートｉＯｐｔｉｍｉｚｅＣｈｏｒｄＲｏｕｔ
ｅＰｒｅｖ［３］［０］としては、“Ｇ７”の丸印に入力する太線矢印として示されるよ
うに直前のコード候補“Ｄｍ”が設定される。
【０１５４】
　現在の拍タイミングｌＣｈｏｒｄＩｄｘ＝３で、候補番号ｉＣｕｒＣｈｏｒｄ＝１（第
２候補）の場合のコード候補”Ｂｄｉｍ”についても同様の計算が実行される。現在のコ
ード候補“Ｂｄｉｍ”の最適コードトータル最小コストｄｏＯｐｔｉｍｉｚｅＣｈｏｒｄ
ＴｏｔａｌＭｉｎｉｍａｌＣｏｓｔ［３］［１］は、“Ｂｄｉｍ”の丸印の内部に示され
るように１．０と計算される。また、現在のコード候補“Ｂｄｉｍ”に対する直前最適コ
ードルートｉＯｐｔｉｍｉｚｅＣｈｏｒｄＲｏｕｔｅＰｒｅｖ［３］［１］としては、“
Ｂｄｉｍ”の丸印に入力する太線矢印として示されるように直前のコード候補“Ｄｍ”が
設定される。
【０１５５】
　次に、図５のステップＳ５０７の経路確定処理について説明する。経路確定処理におい
て、ＣＰＵ１０１は、末尾の拍タイミングから先頭の拍タイミングに逆方向に向かって、

(27) JP 6500869 B2 2019.4.17

10

20

30

40

50

拍タイミングｌＣｈｏｒｄＩｄｘ毎及び候補番号ｉＣｕｒＣｈｏｒｄ毎のコード候補につ
いて算出された最適コードトータル最小コストｄｏＯｐｔｉｍｉｚｅＣｈｏｒｄＴｏｔａ
ｌＭｉｎｉｍａｌＣｏｓｔ［ｌＣｈｏｒｄＩｄｘ］［ｉＣｕｒＣｈｏｒｄ］の小さい値を
探しながら、また、直前最適コードルートｉＯｐｔｉｍｉｚｅＣｈｏｒｄＲｏｕｔｅＰｒ
ｅｖ［ｌＣｈｏｒｄＩｄｘ］［ｉＣｕｒＣｈｏｒｄ］を辿りながら、拍タイミング毎にコ
ード候補を選択してゆき、選択されたコード候補を第１候補に置き換えていく。
【０１５６】
　図１６（ｂ）の例では、まず、末尾の拍タイミングｌＣｈｏｒｄＩｄｘ＝３において、
最適コードトータル最小コストの値が最小値０．５である候補番号ｉＣｕｒＣｈｏｒｄ＝
０のコード候補“Ｇ７”が選択され、ｌＣｈｏｒｄＩｄｘ＝３における第１候補とされる
。次に、ｌＣｈｏｒｄＩｄｘ＝３で第１候補となったコード候補“Ｇ７”に設定されてい
る直前最適コードルートｉＯｐｔｉｍｉｚｅＣｈｏｒｄＲｏｕｔｅＰｒｅｖ［３］［０］
が参照されることにより、１つ手前の拍タイミングｌＣｈｏｒｄＩｄｘ＝２において、候
補番号ｉＣｕｒＣｈｏｒｄ＝０のコード候補 “Ｄｍ”が選択され、ｌＣｈｏｒｄＩｄｘ
＝２における第１候補とされる。続いて、ｌＣｈｏｒｄＩｄｘ＝２で第１候補となったコ
ード候補“Ｄｍ”に設定されている直前最適コードルートｉＯｐｔｉｍｉｚｅＣｈｏｒｄ
ＲｏｕｔｅＰｒｅｖ［２］［０］が参照されることにより、１つ手前の拍タイミングｌＣ
ｈｏｒｄＩｄｘ＝１において、候補番号ｉＣｕｒＣｈｏｒｄ＝０のコード候補 “Ａｍ”
が選択され、ｌＣｈｏｒｄＩｄｘ＝１における第１候補とされる。最後に、ｌＣｈｏｒｄ
Ｉｄｘ＝１で第１候補となったコード候補“Ａｍ”に設定されている直前最適コードルー
トｉＯｐｔｉｍｉｚｅＣｈｏｒｄＲｏｕｔｅＰｒｅｖ［１］［０］が参照されることによ
り、１つ手前の先頭の拍タイミングｌＣｈｏｒｄＩｄｘ＝０において、候補番号ｉＣｕｒ
Ｃｈｏｒｄ＝１のコード候補 “Ｃｍ”が選択され、ｌＣｈｏｒｄＩｄｘ＝０における第
１候補とされる。以上の経路確定処理の結果、楽曲の先頭の拍タイミングから順次、各拍
タイミングの第１候補のコード候補“Ｃｍ”、“Ａｍ”、 “Ｄｍ”、及び “Ｇ７”が最
適なコード進行として選択され、表示手段１０５等に表示される。
【０１５７】
　図１９は、図５のステップＳ５０７の経路確定処理の詳細例を示すフローチャートであ
り、上述した動作を実現する。ＣＰＵ１０１はまず、全ての拍タイミングについて、末尾
の拍タイミングから先頭の拍タイミングに向かって、現在の拍タイミングｌＣｈｏｒｄＩ
ｄｘをディクリメントしながら指定してゆき、ｌＣｈｏｒｄＩｄｘ毎に、ステップＳ１９
０２からＳ１９０６までの一連の処理を繰り返し実行する（ステップＳ１９０１）。
【０１５８】
　ステップＳ１９０２からＳ１９０６までの一連の繰返し処理において、ＣＰＵ１０１は
まず、終端コードがあるか否か、即ち末尾の拍タイミングを指定しているか否かを判定す
る（ステップＳ１９０２）。
【０１５９】
　次に、ＣＰＵ１０１は、ステップＳ１9０１で指定される末尾の拍タイミングｌＣｈｏ
ｒｄＩｄｘについて、全てのコード候補について末尾の拍タイミングの候補番号ｉＣｕｒ
Ｃｈｏｒｄを指定しながら、ステップＳ１９０４からＳ１９０６までの一連の処理を繰り
返し実行する（ステップＳ１９０３）。この処理は、図１６（ｂ）で説明したように、末
尾の拍タイミングｌＣｈｏｒｄＩｄｘにおいて、最適コードトータル最小コストｄｏＯｐ
ｔｉｍｉｚｅＣｈｏｒｄＴｏｔａｌＭｉｎｉｍａｌＣｏｓｔ［ｌＣｈｏｒｄＩｄｘ］［ｉ
ＣｕｒＣｈｏｒｄ］の値が最小となる候補番号ｉＣｕｒＣｈｏｒｄを探索する処理である
。
【０１６０】
　ステップＳ１９０４からＳ１９０６までの一連の繰返し処理において、ＣＰＵ１０１は
、ステップＳ１９０１で指定されているｌＣｈｏｒｄＩｄｘとステップＳ１９０３で指定
されているｉＣｕｒＣｈｏｒｄに対応する最適コードトータル最小コストｄｏＯｐｔｉｍ
ｉｚｅＣｈｏｒｄＴｏｔａｌＭｉｎｉｍａｌＣｏｓｔ［ｌＣｈｏｒｄＩｄｘ］［ｉＣｕｒ

(28) JP 6500869 B2 2019.4.17

10

20

30

40

50

Ｃｈｏｒｄ］の値が、ＲＡＭ１０３に記憶されている変数であるコスト最小値ｄｏＭｉｎ
以下である否かを判定する（ステップＳ１９０４）。コスト最小値ｄｏＭｉｎの値は、図
１９のフローチャートの処理の開始時に大きな値に初期設定されている。
【０１６１】
　ステップＳ１９０４の判定がＮＯならば、ＣＰＵ１０１は、ステップＳ１９０３の処理
に戻り、ｉＣｕｒＣｈｏｒｄをインクリメントして、次の候補番号ｉＣｕｒＣｈｏｒｄに
対する処理に移行する。
【０１６２】
　ステップＳ１９０４の判定がＹＥＳになると、ＣＰＵ１０１は、コスト最小値ｄｏＭｉ
ｎに、ステップＳ１９０１で指定されているｌＣｈｏｒｄＩｄｘとステップＳ１９０３で
指定されているｉＣｕｒＣｈｏｒｄに対応する最適コードトータル最小コストｄｏＯｐｔ
ｉｍｉｚｅＣｈｏｒｄＴｏｔａｌＭｉｎｉｍａｌＣｏｓｔ［ｌＣｈｏｒｄＩｄｘ］［ｉＣ
ｕｒＣｈｏｒｄ］の値を格納する（ステップＳ１９０５）。
【０１６３】
　そして、ＣＰＵ１０１は、ＲＡＭ１０３に記憶される変数である最適コード候補番号ｉ
ＣｈｏｒｄＢｅｓｔに、ステップＳ１９０３で現在指定されているｉＣｕｒＣｈｏｒｄの
値を格納する（ステップＳ１９０６）。その後、ＣＰＵ１０１は、ステップＳ１９０３の
処理に戻り、ｉＣｕｒＣｈｏｒｄをインクリメントして、次の候補番号ｉＣｕｒＣｈｏｒ
ｄに対する処理に移行する。
【０１６４】
　以上のようにして、ステップＳ１９０４からＳ１９０６の一連の処理の実行がｉＣｕｒ
Ｃｈｏｒｄとして指定される全ての候補番号について完了すると、ＣＰＵ１０１は、ステ
ップＳ１９０８の処理に移行する。この状態において、最適コード候補番号ｉＣｈｏｒｄ
Ｂｅｓｔに、末尾の拍タイミングにおいて、最適コードトータル最小コストが最小となる
コード候補の候補番号が得られている。ステップＳ１９０８において、ＣＰＵ１０１は、
現在の末尾の拍タイミングｌＣｈｏｒｄＩｄｘと最適コード候補番号ｉＣｈｏｒｄＢｅｓ
ｔに対応するコード情報のコードルートｃｈｏｒｄＰｒｏｇ［ｌＣｈｏｒｄＩｄｘ］［ｉ
ＣｈｏｒｄＢｅｓｔ］．ｉＲｏｏｔの値を、現在の末尾の拍タイミングｌＣｈｏｒｄＩｄ
ｘの第１候補のコード情報のコードルートｃｈｏｒｄＰｒｏｇ［ｌＣｈｏｒｄＩｄｘ］［
０］．ｉＲｏｏｔに格納する（ステップＳ１９０８）。
【０１６５】
　次に、ＣＰＵ１０１は、現在の末尾の拍タイミングｌＣｈｏｒｄＩｄｘと最適コード候
補番号ｉＣｈｏｒｄＢｅｓｔに対応するコード情報のコードタイプｃｈｏｒｄＰｒｏｇ［
ｌＣｈｏｒｄＩｄｘ］［ｉＣｈｏｒｄＢｅｓｔ］．ｉＴｙｐｅの値を、現在の末尾の拍タ
イミングｌＣｈｏｒｄＩｄｘの第１候補のコード情報のコードタイプｃｈｏｒｄＰｒｏｇ
［ｌＣｈｏｒｄＩｄｘ］［０］．ｉＴｙｐｅに格納する（ステップＳ１９０９）。
【０１６６】
　その後、ＣＰＵ１０１は、現在の末尾の拍タイミングｌＣｈｏｒｄＩｄｘと最適コード
候補番号ｉＣｈｏｒｄＢｅｓｔに対応するコード候補の直前最適コードルートｉＯｐｔｉ
ｍｉｚｅＣｈｏｒｄＲｏｕｔｅＰｒｅｖ［ｌＣｈｏｒｄＩｄｘ］［ｉＣｈｏｒｄＢｅｓｔ
］の値を、直前の拍タイミングの候補番号ｉＰｒｅｖＣｈｏｒｄに格納する（ステップＳ
１９１０）。そして、ＣＰＵ１０１は、ステップＳ１９０１の処理に戻り、ｌＣｈｏｒｄ
Ｉｄｘをデクリメントして、１つ手前の拍タイミングｌＣｈｏｒｄＩｄｘに対応する処理
に移行する。
【０１６７】
　末尾から手前の拍タイミングになると、ステップＳ１９０２の判定がＮＯとなる。この
結果、ＣＰＵ１０１は、ステップＳ１９１０で直前の拍タイミングの候補番号ｉＰｒｅｖ
Ｃｈｏｒｄに格納されている直前最適コードルートを、最適コード候補番号ｉＣｈｏｒｄ
Ｂｅｓｔに格納する（ステップＳ１９０７）。
【０１６８】

(29) JP 6500869 B2 2019.4.17

10

20

30

40

50

　続いて、ＣＰＵ１０１は、前述したステップＳ１９０８、Ｓ１９０９を実行することに
より、現在の拍タイミングｌＣｈｏｒｄＩｄｘと最適コード候補番号ｉＣｈｏｒｄＢｅｓ
ｔに対応するコード情報のコードルートｃｈｏｒｄＰｒｏｇ［ｌＣｈｏｒｄＩｄｘ］［ｉ
ＣｈｏｒｄＢｅｓｔ］．ｉＲｏｏｔとコードタイプｃｈｏｒｄＰｒｏｇ［ｌＣｈｏｒｄＩ
ｄｘ］［ｉＣｈｏｒｄＢｅｓｔ］．ｉＴｙｐｅの各値を、現在の拍タイミングｌＣｈｏｒ
ｄＩｄｘの第１候補のコード情報のコードルートｃｈｏｒｄＰｒｏｇ［ｌＣｈｏｒｄＩｄ
ｘ］［０］．ｉＲｏｏｔとコードタイプｃｈｏｒｄＰｒｏｇ［ｌＣｈｏｒｄＩｄｘ］［０
］．ｉＴｙｐｅに格納する。
【０１６９】
　その後、ＣＰＵ１０１は、現在の末尾の拍タイミングｌＣｈｏｒｄＩｄｘと最適コード
候補番号ｉＣｈｏｒｄＢｅｓｔに対応するコード候補の直前最適コードルートｉＯｐｔｉ
ｍｉｚｅＣｈｏｒｄＲｏｕｔｅＰｒｅｖ［ｌＣｈｏｒｄＩｄｘ］［ｉＣｈｏｒｄＢｅｓｔ
］の値を、直前の拍タイミングの候補番号ｉＰｒｅｖＣｈｏｒｄに格納する（ステップＳ
１９１０）。そして、ＣＰＵ１０１は、再びステップＳ１９０１の処理に戻り、ｌＣｈｏ
ｒｄＩｄｘをデクリメントして、１つ手前の拍タイミングｌＣｈｏｒｄＩｄｘに対応する
処理に移行する。
【０１７０】
　以上の処理が、拍タイミングｌＣｈｏｒｄＩｄｘ毎に繰り返し実行されることにより、
各拍タイミングｌＣｈｏｒｄＩｄｘの第１候補のコード情報のコードルートｃｈｏｒｄＰ
ｒｏｇ［ｌＣｈｏｒｄＩｄｘ］［０］．ｉＲｏｏｔとコードタイプｃｈｏｒｄＰｒｏｇ［
ｌＣｈｏｒｄＩｄｘ］［０］．ｉＴｙｐｅとして、最適なコード進行を出力することがで
きる。
【０１７１】
　以上説明した図５のステップＳ５０６の最小コスト計算処理では、コードの連結規則を
使うので、複数候補が出てきたときに、より自然なコード判定結果を得ることが可能とな
る。
【０１７２】
　以上説明した実施形態により、転調も適切に判定できる調判定の結果からより適切なコ
ード判定を行うことが可能となる。
【０１７３】
　以上説明した実施形態では、楽曲データ例として、ＭＩＤＩシーケンスデータからのコ
ード判定について説明したが、音楽音響信号からのコード判定を行ってもよい。その場合
は、高速フーリエ変換などの音響分析を行うことにより、ピッチクラスパワーを求めるこ
とになる。
【０１７４】
　以上の実施形態に関して、更に以下の付記を開示する。
（付記１）
　楽曲を第１長で区切った第１区間の構成音に基づいて第１調を推定し、前記第１区間と
少なくとも部分的に重なる区間であって、前記楽曲を前記第１長と異なる長さの第２長で
区切った第２区間の構成音に基づいて第２調を推定する調推定処理と、
　前記推定された前記第１調及び前記第２調を比較することにより最適な調を決定する調
決定処理と、
　を実行するコード解析装置。
（付記２）
　前記最適な調に基づいて前記楽曲の前記第１区間のコードを判定するコード判定処理を
実行し、更に前記コード判定処理は、前記楽曲の小節を区分した拍毎に、当該拍の構成音
を判定し、当該構成音に基づいて当該拍のコードを判定する、付記１に記載のコード解析
装置。
（付記３）
　前記第１区間、前記第２区間、又は前記拍毎の構成音の判定は、当該第１区間、当該第

(30) JP 6500869 B2 2019.4.17

10

20

30

40

50

２区間、又は当該拍の期間内でノートオンしている前記楽曲の楽音毎に、当該楽音のベロ
シティと当該期間内での発音時間長とに基づいて決定されるパワー情報値を当該楽音のピ
ッチに対応するピッチクラスに累算することにより、当該第１区間、当該第２区間、又は
当該拍における前記ピッチクラス毎のパワー情報累算値を算出する処理である、付記２に
記載のコード解析装置。
（付記４）
　前記第１区間、前記第２区間、又は拍毎に、前記第１調、前記第２調、又はコードの候
補に対応して、前記ピッチクラスの各々が前記第１調、前記第２調の候補の音階音又はコ
ードの候補の構成音と一致する場合に当該ピッチクラスに対して算出されている前記パワ
ー情報累算値を第１のパワー評価値に累算し、一致しない場合に当該ピッチクラスに対し
て算出されている前記パワー情報累算値を第２のパワー評価値に累算し、前記第１調、前
記第２調、又はコードの候補毎に算出される前記第１のパワー評価値及び前記第２のパワ
ー評価値を比較することにより、当該第１区間、当該第２区間、又は拍における前記第１
調、前記第２調、又は前記コードを判定する、付記３に記載のコード解析装置。
（付記５）
　前記第１区間の区間長は１小節の長さであり、前記第２区間の区間長は１小節の倍数で
あり、前記調決定処理は、前記第１区間と前記第２区間とで重なる小節毎に、当該小節毎
に判定された前記第１調及び前記第２調を比較することにより、当該小節に対応する前記
最適な調を決定する、付記１に記載のコード解析装置。
（付記６）
　前記調決定処理は、区間開始位置を１小節ずつずらしながら前記第１区間の区間長又は
前記第２区間の区間長で楽曲を区切って前記第１区間又は前記第２区間を決定する、付記
５に記載のコード解析装置。
（付記７）
　前記判定されたコードを表示する表示処理を更に実行する、付記２乃至６の何れかに記
載のコード解析装置。
（付記８）
　コード解析装置の処理部が、
　楽曲を第１長で区切った第１区間の構成音に基づいて第１調を推定し、前記第１区間と
少なくとも部分的に重なる区間であって、前記楽曲を前記第１長と異なる長さの第２長で
区切った第２区間の構成音に基づいて第２調を推定し、
　前記推定された前記第１調及び前記第２調を比較することにより最適な調を決定する、
　処理を実行するコード解析方法。
（付記９）
　コード解析を行うコンピュータに、
　楽曲を第１長で区切った第１区間の構成音に基づいて第１調を推定し、前記第１区間と
少なくとも部分的に重なる区間であって、前記楽曲を前記第１長と異なる長さの第２長で
区切った第２区間の構成音に基づいて第２調を推定するステップと、
　前記推定された前記第１調及び前記第２調を比較することにより最適な調を決定するス
テップと、
　を実行させるためのプログラム。
【符号の説明】
【０１７５】
　１０１　ＣＰＵ
　１０２　ＲＯＭ
　１０３　ＲＡＭ
　１０４　入力手段
　１０５　表示手段
　１０６　サウンドシステム
　１０７　通信インタフェース

(31) JP 6500869 B2 2019.4.17

　１０８　バス

【図１】 【図２】

(32) JP 6500869 B2 2019.4.17

【図３】 【図４】

【図５】

【図６】

【図７】

(33) JP 6500869 B2 2019.4.17

【図８】 【図９】

【図１０】 【図１１】

(34) JP 6500869 B2 2019.4.17

【図１２】

【図１３】

【図１４】

【図１５】 【図１６】

(35) JP 6500869 B2 2019.4.17

【図１７】 【図１８】

【図１９】

(36) JP 6500869 B2 2019.4.17

10

フロントページの続き

(56)参考文献 特開平０５－１７３５５７（ＪＰ，Ａ）　　　
 特開平０５－３４６７８１（ＪＰ，Ａ）　　　
 特開平１１－１０９９７２（ＪＰ，Ａ）　　　
 特開平１１－１２６０７５（ＪＰ，Ａ）　　　
 特開昭６３－０８０２９９（ＪＰ，Ａ）　　　

(58)調査した分野(Int.Cl.，ＤＢ名)
 Ｇ１０Ｈ　　　１／００－７／１２
 Ｇ１０Ｇ　　　１／００－３／０４

	biblio-graphic-data
	claims
	description
	drawings
	overflow

