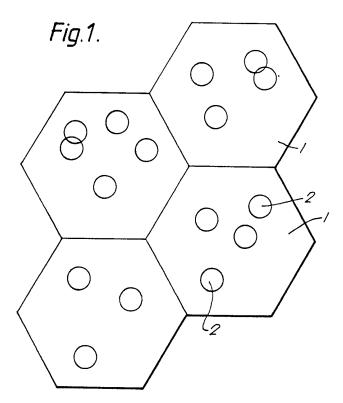
UK Patent Application (19) GB (11) 2 242 806(13) A

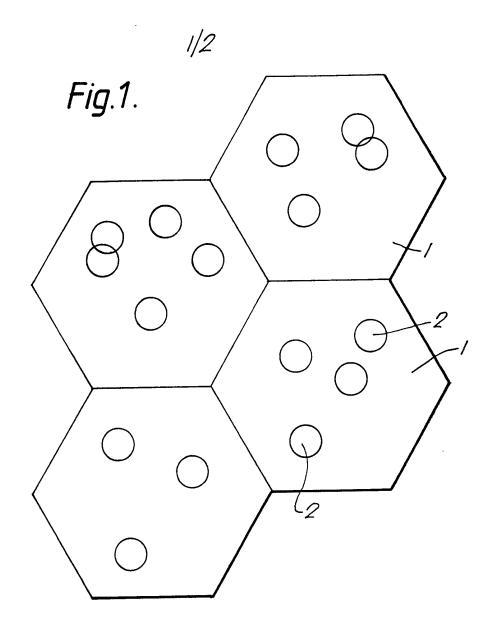
(43) Date of A publication 09.10.1991

- (21) Application No 9007809.8
- (22) Date of filing 06.04.1990
- (71) Applicant STC plc

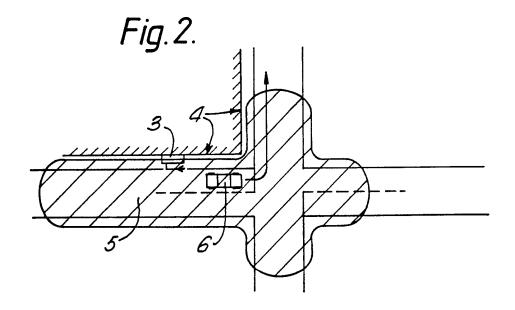
(Incorporated in the United Kingdom)

1B Portland Place, London, W1N 3AA, United Kingdom

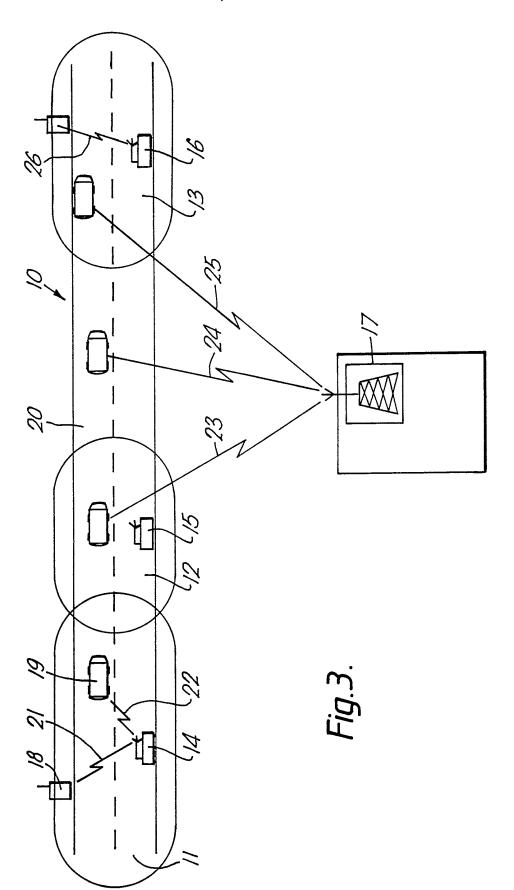

(72) Inventors Peter Alan Ramsdale Philip Stuart Gaskell


(74) Agent and/or Address for Service S M Dupuy STC Patents, West Road, Harlow, Essex, CM20 2SH, United Kingdom

- (51) INT CL5 H04Q 7/00, H04B 7/26
- (52) UK CL (Edition K) **H4L LDSX**
- (56) Documents cited GB 1564053 A
- (58) Field of search UK CL (Edition K) H4K KYR, H4L LDSD LDSX INT CL5 H04B 7/24 7/26, H04Q 7/00 7/02 7/04 Online database: WPI


(54) Handover techniques for cellular radio

(57) In a cellular radio system having a two layer cell structure comprised by macrocells (1) overlaying microcells (2), handover occurs only via the macrocell layer. Thus when the quality of a call handled by a microcell (2) deteriorates below predefined criteria the call is handed up rapidly to the umbrella macrocell and is only handed back down to a microcell when a handset has been in that microcell for a predetermined time and the quality of the link thereto exceeds predefined criteria. A handset moving quickly through a microcell thereby avoids unecessary handovers from macrocell to microcell and back again.



(

Ÿ

(

HANDOVER TECHNIQUES

This invention relates to cellular radio systems and in particular to handover techniques for use with communication networks involving radio cells.

Handover is a technique that allows calls in a personal or mobile communication network to be maintained as a handset or mobile station moves between radio cells. After a call is set up, the quality of the radio link is monitored by the handset and by the associated cell base station. In addition, other channels from the same and adjacent cells are also monitored as potential links to handover to. According to pre-defined criteria the call is switched to another base-station as the mobile/handset moves, or the propagation conditions change, in order to maintain a good quality link. If this is not done, then the call quality may deteriorate seriously or the call may be "dropped" altogether. Either the network or the handset/mobile may incorporate the intelligence to enable the decisions to be made on when, whether and to which cell the radio link should be switched.

This type of handover is well known and widely adopted in conventional cellular systems. However, it gives rise to problems in mobile or personal communication networks where handsets or mobiles are moving at speed through areas covered by small cells such as sectored or microcells. Since the cells are small, the time spent in a cell is short and the time taken to initiate and perform handover may be too long.

This leads to poor call quality and dropped calls.

According to one aspect of the present invention there is provided a cellular radio system having a two layer cell structure comprised by macrocells overlaying microcells and wherein handover between cells only occurs via the macrocell layer.

According to another aspect of the present invention there is provided a handover technique for use with cellular radio systems having a two layer cell structure comprised by macrocells overlaying microcells and such that handover between cells only occurs via the macrocell layer.

Embodiments of the invention will now be described with reference to the accompanying drawings, in which:

Fig 1 illustrates a cell structure consisting of macrocells and microcells;

Fig 2 illustrates a "rapid loss of signal" scenario, and

Fig 3 illustrates an example sequence of handovers for a particular call and according to the present invention.

One cell structure suitable for high traffic personal communication networks (PCN) consists of a continuous layer of macrocells 1 (Fig 1), which may be of 1km or more radius and an underlay of microcells 2, for example 200m radius, which are selectively deployed in areas of very high traffic densities. The microcells themselves do not necessarily touch to give continuous

coverage but they lie within the umbrella coverage of the macrocells. Since microcells generally operate at low power levels, channel frequencies can be re-used at short spatial intervals, giving excellent spectral efficiency.

Handover between microcells 2 and macrocells 1 for slow speed (for example, walking) users can be accomplished using relatively conventional handover methods. However, if calls from high speed mobiles are handled by microcells, the time spent in each microcell is so short that the system cannot perform the necessary handover processes rapidly enough and the call may be dropped. To avoid this, fast moving handsets should be handled by the macrocells and slow moving handsets should be handled by the microcells, when the handsets are in the microcell coverage areas, this is. However, this requires some means of detecting the speed of the handset. This can be done indirectly by a novel handover technique whose two basic aims are to maintain a call as the handset or mobile passes through macrocells and microcells even at high speed and to maintain high traffic levels in microcells for spectrum efficiency.

Advantage is taken of the fact that microcells lie within the umbrella coverage of a macrocell. The handover technique is as follows. For a handset making a call via a microcell base-station and with the handset moving towards the microcell boundary, handover is performed rapidly to the macrocell. This is necessary because coverage from the microcell can be lost very quickly, for example when turning a corner into the shadow of a building. This is illustrated in Fig 2. A microcell base-station 3 on the wall of a building 4 at a cross-roads produces a microcell 5. A car 6 carrying

14

the handset and turning left at the cross-roads may quickly exit the microcell and result in the call being dropped unless handover to the umbrella macrocell is performed rapidly. Having handed the call up to the macrocell, one option that would support handset or mobiles moving at high speed would be for the call to continue to be handled by the macrocell base-station. However, if handover only occurred upwards from the microcell to the macrocell, then the traffic in the microcells would be reduced and this would defeat the purpose of using microcells in areas of high traffic. To remedy this, handover is performed downwards from the macrocell to the microcell when the handset has spent a sufficiently long period, for example several seconds, in a given microcell, that is with a slow time constant.

The technique proposed will now be described further with reference to Fig 3 which shows a sequence of handovers for the duration of a particular call. Fig 3 shows a busy street 10, partially covered by microcells 11, 12 and 13 associated with microcell base-stations 14, 15 and 16, respectively and completely covered by a macrocell associated with macrocell base-station 17. A person with a handset 18 and located in microcell 11 places a call which is set up via link 21 to the base-station 14 which is nearest. The person then enters a taxi 19 and the call continues to be handled by base-station 14 (link 22). As the taxi approaches the boundary of microcell 11, the call is handed up rapidly to the umbrella macrocell (link 23) to avoid degrading the call quality. It is not handed over to the next microcell 12 because the handset spends insufficient time there. As the taxi moves through other microcells 12 and 13 and area 20 covered only by the macrocell, the call continues to be handled by the macrocell base-station 17 (links 23, 24, 25). This

occurs because the handset 18 does not remain long enough in a particular microcell for the call to be handed down to the microcell. Finally the taxi stops in microcell 13 and the person gets out. When the system has detected that the handset 18 has remained in microcell 13 for a predefined period, for example several seconds, the call is handed down to the microcell 13 (link 26). Assuming the person remains in microcell 13 link 26 is maintained until the call is terminated.

The need for handover can be determined by monitoring several different parameters, as in the case for conventional cellular radio handover. The simplest are the absolute field strength, relative field strength and bit error rate BER (for digital systems). Digital systems also enable delay or distance from the base-station to be used as indicators for handover. Further factors can be considered. For example rate of change of distance from the base-station would show whether a mobile was moving rapidly or not. Such a measure could give an early indication of the need to hand up from a microcell. As is conventional the actual changeover decision can be taken by either the handset or the network.

In summary, a handover technique is proposed for a mobile PCN system in which there is a two layer cell structure consisting of contiguous, overlapping macrocells overlaying microcells. Handover only occurs via the macrocell, that is microcell to macrocell, macrocell to macrocell, or macrocell to microcell. Microcell to microcell handover does not occur. If the quality of a call being handled by a microcell deteriorates below pre-determined criteria, for example based on BER, field strength and/or distance

1

measurement, the call is handed up rapidly to the macrocell (time-constant of a second or less). A call is only handed down from the macrocell to a microcell when the link from the handset to the particular microcell base-station is of adequate quality for more than a given duration (several seconds or more), that is when the handset has remained in the microcell for a substantial period.

Attention is directed to our co-pending

Application No. 40 07808 (Serial No

(P A Ramsdale - P S Gaskell 6-5) which relates to other handover techniques.

CLAIMS:

- 1. A cellular radio system having a two layer cell structure comprised by macrocells overlaying microcells and wherein handover between cells only occurs via the macrocell layer.
- 2. A cellular radio system as claimed in claim 1 wherein when the quality of a call handled by a said microcell deteriorates below predefined criteria the call is handed up to the umbrella macrocell rapidly.
- 3. A cellular radio system as claimed in claim 1 or claim 2 wherein a call associated with a mobile equipment is only handed down from a macrocell to an underlying microcell when a link from the equipment to the base-station associated with said underlying microcell is a quality exceeding predefined criteria for greater than a predetermined time.
- 4. A cellular radio system as claimed in claim 3 wherein the equipment is a handset.
- 5. A cellular radio system as claimed in claim 2 wherein the criteria for call quality include one or more of bit error rate, field strength, distance measurement, rate of change of distance.
- A handover technique for use with cellular radio systems having a two layer cell structure comprised by macrocells overlaying microcells and such that handover between cells only occurs via the macrocell layer.
- 7. A handover technique as claimed in claim 6 and wherein when the quality of a call handled by a said

microcell deteriorates below predefined criteria the call is handed up to the umbrella macrocell rapidly.

- 8. A handover technique as claimed in claim 6 or claim 7 and wherein a call associated with a mobile equipment is only handed down from a macrocell to an underlying microcell when a link from the equipment to the base-station associated with said underlying microcell is of a quality exceeding predefined criteria for greater than a predetermined time.
- 9. A handover technique as claimed in claim 8, wherein the equipment is a handset.
- 10. A handover technique as claimed in claim 7 wherein the criteria for cell quality include one or more of bit error rate, field strength, distance measurement, rate of change of distance.
- 11. A cellular radio system substantially as herein described with reference to the accompanying drawings.
- 12. A handover technique for use with a cellular radio system substantially as herein described with reference to the accompanying drawings.