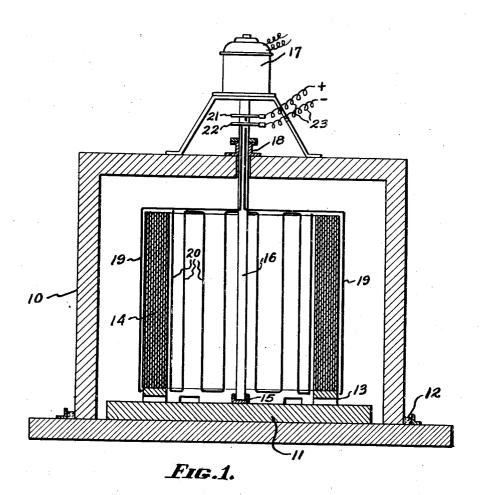
Dec. 5, 1939.


E. G. SCHLUP


2,181,921

INDUCTION FURNACE

Filed Jan. 5, 1938

2 Sheets-Sheet 1

ATTORNEYS.

Dec. 5, 1939.

E. G. SCHLUP

2,181,921

INDUCTION FURNACE

Filed Jan. 5, 1938

2 Sheets-Sheet 2

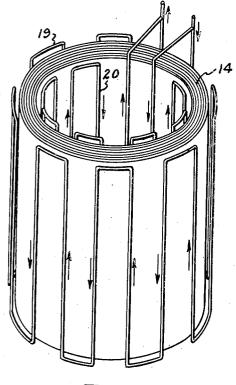


Fig. 2.

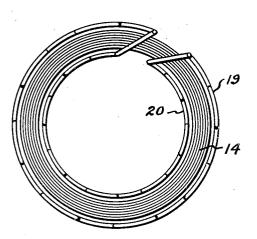


Fig. 3.

ERNEST G. SCHLUP.

UNITED STATES PATENT OFFICE

2,181,921

INDUCTION FURNACE

Ernest G. Schlup, Middletown, Ohio, assignor to The American Rolling Mill Company, Middletown, Ohio, a corporation of Ohio

Application January 5, 1938, Serial No. 183,501

2 Claims. (Cl. 13-26)

This invention relates to devices for electromagnetically heating metal without the application of an external source of high frequency current. More specifically my invention relates to 5 a device for heating a coil of strip metal and is particularly adapted thereto, although it should be understood that other materials or bodies, particularly of annular configuration may be heated thereby.

Conventional induction furnaces require an external source of high frequency current. Generally, a frequency of 1000 cycles or more is used, although frequencies of less than 1000 cycles per second are practical. In all cases, however, some 15 external source of such high frequency current

has been necessary.

According to my invention no external source of high frequency current is required; and I am thereby enabled to eliminate all expensive $_{20}$ high frequency generating equipment as well as the cumbersome high frequency leads to the fur-

It is an object of my invention to provide a device for electromagnetically heating a coil of 25 conductive material at a uniform and adjustable rate. Another object of my invention is to electromagnetically heat a coil of conductive material with a minimum expenditure of electrical energy. Other objects of my invention include 30 the provision of the devices above outlined which will be relatively inexpensive to manufacture and simple and inexpensive to operate.

These and other objects of my invention which will be set forth hereinafter or which will be 35 apparent to one skilled in the art upon reading these specifications, I accomplish by that certain construction and arrangement of parts of which I have shown exemplary embodiments. Reference is made to the drawings forming a part hereof and in which:

Figure 1 is a cross sectional view of an induction furnace in accordance with my invention.

Fig. 2 is an isometric view of the arrangement of the externally and internally located electric 45 conductors with reference to a coil of strip metal. Fig. 3 is a plan view of Fig. 2.

Figs. 4 and 5 are partial plan views showing the orientations of magnetic fluxes in the coil.

Briefly, in the practice of my invention, I pro-50 vide a casing of any desired form such as is indicated generally at 10 in Fig. 1. This furnace has a base or floor II, and may be provided with a seal of any conventional type, as generally indicated at 12. On the base 11 I provide a spacer 13 of annular form upon which a coil 14 may rest. Centrally of the base if I provide a step bearing 15 for the motor shaft 16 which is directly coupled to the motor 17, and also has a bearing of the vertical thrust type at 18.

Upon the shaft 16 I mount preferably two con- 5 ductor elements designated at 19 and 20. The configurations of these elements is best seen in Fig. 2. Each is an annular formation comprising a conductor extending continuously in a series of alternatively arranged return bent loops. At 21 10 and 22 I have indicated current collector rings for the members 19 and 20, respectively. These collector rings draw power from the leads 23.

It is preferred that the motor 17 be of the type having an adjustable speed characteristic 15 for the purpose of providing for accurate heat regulation. In the operation of my device an object to be heated, as for example, the coil 14, is placed in the furnace upon the spacer 13 and the cover 10 is then emplaced, whereby the con- 20 ductors 19 and 20 are brought into position inside and outside of the coil. The motor 17 is then started and current is supplied to the conductors 19 and 20 from the leads 23. The current supplied may be either alternating or di- 25 rect. The rotation of the conductors with respect to the coil produces a rapidly alternating magnetic field and the coil is heated by eddy currents caused thereby. Since the heat produced varies with the speed of alternation of the magnetic fluxes, very accurate heat regulation can be accomplished by adjusting the speed of the motor 17.

Generally speaking, coils of strip metal as produced in rolling mill plants today have an internal diameter of approximately three feet and an external diameter of approximately five feet. If the conductors 19 and 20 are spaced approximately two inches apart and the motor 17 rotates these conductors at a speed of approximately 600 revolutions per minute, an alternating flux of approximately 900 cycles per second can be produced, when a unidirectional current source is applied to the leads 23. On account of space limitation, the number of conductors in the inner member 20 may be approximately half that in the outer member 19, thus providing an alternating flux of approximately 450 cycles per second. However, it will be within the skill of the elec- 50 trical engineer to provide an equal number of conductors on the inside as on the outside. If the electrical conductors are fed from an alternating current source, as for example, a conventional 60 cycle current, the rate of heating will be

somewhat higher, due to the heating effect of the 60 cycle base current.

It will be understood that a variable capacity may be provided across the conductors in order to correct the power factor, and that the value of this capacity will depend, among other factors, upon the speed of rotation of the conductors 19 and 20, and also upon the characteristics of the magnetic circuit.

In Figs. 4 and 5 the arrow 24 indicates the direction of rotation of the conductors 19 and 20, respectively, and the arrows 25 indicate the direction of the magnetic field about the various conductors.

It should be understood that although I have referred throughout the specification to the heating of coils of strip metal, my device is equally adapted to the heating of other objects, particularly of annular formation whereby inner and outer rotating conductors may be used. It will also be clear that while I have shown the coil as being stationary and the conductors as being rotated, the same result would be obtained if the conductors were stationary and the coil was rotated. It is therefore to be understood that various modifications may be made without departing from the spirit of my invention, and that I

do not intend to limit myself otherwise than as pointed out in the claims that follow.

Having thus described my invention, what I claim as new and desire to secure by Letters Patent, is:

1. An induction furnace for heating annular metal elements, comprising a casing, a pair of annular formations comprising conductors extending continuously, respectively, in a series of alternately arranged return bent loops, one of 10 said formations being disposed to surround the metal element to be heated, and the other disposed within the same, power leads for said conductors, and means for rotating said formations.

2. A method of heating annular metal mem- 15 bers, which includes the steps of setting up a plurality of substantially parallel cylindrical electromagnetic fields cutting through a member to be heated from the outside, setting up a plurality of substantially cylindrical electromagnetic fields 20 cutting through said member from the inside, the sense of adjacent such fields both in the inner and outer annulus being opposite, and causing relative movement between said metal member and said fields about an axis substantially par- 25 allel to the axis of said fields.

ERNEST G. SCHLUP.