For the purpose of illustrating the application of the invention, a portion of a cow 10 has been shown in the drawings which illustrates the back 11 of the cow and the backbone 12 running along the same. In addition, the hip bones of the trunk of the cow have been shown which are indicated by the reference numeral 13.

The invention comprises a base or supporting structure 20 on which is mounted a flexible container 30 containing a colored liquid 31 and a transparent receptacle 40 connected together by means of a connector 50. Disposed within the connector 50 is a check valve 60 by means of which the liquid contained in the container 30 may flow from container 30 and into receptacle 40 but not in the opposite direction. These parts will now be described in detail.

The base 20 is constructed from a sheet of flexible material which may be a sheet of fabric impregnated with a suitable plastic to render the same capable of conforming to surface on which the same is applied. This base may also be constructed of a plastic material in sheet form. The base 20 is provided with spaced holes 21 and 22 arranged at intervals along the same. Fasteners 23, 24 and 25 are employed one at each pair of holes which are identical in construction. Only fastener 24 will be described. This fastener consists of a bar 26 having legs 27 and 28 extending outwardly therefrom and projecting through the holes 21 and 22, the bar 26 underlying the back of the base 20. The leg 27 terminates in an eye 127 while the leg 28 terminates in a hook 128. Operating in conjunction with the legs 27 and 28 is a continuous rubber band 29, looped through the eye 127 and adapted to be hooked on the hook 128.

The container 30 is tubular in form having a body 32 formed with a base 33 at one end and the neck 44 at its other end. The neck 34 is formed with external threads 35 and has a bore 36 extending through it and communicating with the interior of the container which is indicated by the reference numeral 37. Container 30 is constructed of an opaque flexible plastic material such as polyethylene and is adapted upon lateral pressure being applied to the same to discharge the contents of said container through the bore 36.

The receptacle 40 is similar in construction to the container 30 and comprises a body 42 provided with a base 43 at one end and a neck 44 at its other end. Neck 44 is formed with external threads 45 and has a bore 46 extending through it and communicating with the interior 47 of said receptacle. Receptacle 40 is constructed from a clear plastic material such as polyethylene and which is not easily broken or caused to leak upon pressure being exerted on the same, such as pressure produced by the mounting of one cow on the other.

The container 30 and receptacle 40 are connected together by means of connector 50 which has two internally threaded sockets 51 and 52 and into which the threaded necks 34 and 44 of the container 30 and receptacle 40 may be screwed. The diameter of the neck 44 at the locality of the threads 45 is greater than the diameter of the neck 34 at the locality of the threads 35 so that the respective necks can only be screwed into the particular sockets with which they are intended to operate. Between these sockets connector 50 has an annular partition 53 extending inwardly from said sockets and formed with a central passageway 54 therethrough. This passageway directly communicates with the bore 36 of container 30. The passageway 54 communicates with the interior 47 of the receptacle 40 through the check valve 60 in a manner to be presently explained.

The check valve 60 comprises a tubular body 61 constructed of rubber or some other similar flexible material and which fits freely into the bore 46 of receptacle 40. This bore is of a diameter greater than the diameter of
3,158,133

(a) a base for attachment to the back of the cow to be bred,
(b) a container mounted on said base and constructed from flexible material,
(c) a colored fluid within said container,
(d) a transparent receptacle for the colored fluid mounted on said base ahead of said container,
(e) a connector between said container and receptacle having a passageway therethrough bringing said container into communication with said receptacle defining a sealed enclosure and
(f) a check valve extending across said passageway, said check valve permitting flow from said container to said receptacle and preventing flow from said receptacle to said container.

2. In a cattle standing heat detector,
(a) a base for attachment to the back of the cow to be bred,
(b) a container mounted on said base and constructed from flexible material,
(c) a colored fluid within said container,
(d) a transparent receptacle for the colored fluid mounted on said base ahead of said container,
(k) said container and receptacle having necks facing one another,
(l) a connector between said necks,
(m) disengagable attaching means between said connector and necks,
(e) said connector having a passageway therethrough bringing said container into communication with said receptacle defining a sealed enclosure and
(gg) a valve having a movable part and disposed between said container and receptacle and controlling the flow of fluid therethrough.

3. In a cattle standing heat detector,
(a) a base for attachment to the back of the cow to be bred,
(b) a container mounted on said base and constructed from flexible material,
(c) a colored fluid within said container,
(d) a transparent receptacle for the colored fluid mounted on said base ahead of said container,
(n) threaded necks on said container and receptacle facing one another,
(l) a connector between said necks,
(p) threaded sockets in said connector adapted to receive said threaded necks,
(q) said connector having a passageway therethrough bringing said container into communication with said receptacle defining a sealed enclosure and
(gg) a valve having a movable part and disposed between said container and receptacle and controlling the flow of fluid therethrough.

4. In a cattle standing heat detector,
(a) a base for attachment to the back of the cow to be bred,
(b) a container mounted on said base and constructed from flexible material,
(c) a colored fluid within said container,
(d) a transparent receptacle for the colored fluid mounted on said base ahead of said container,
(n) threaded necks on said container and receptacle facing one another,
(l) a connector between said necks,
(p) threaded sockets in said connector adapted to receive said threaded necks,
(r) the threads on one neck and the cooperating socket differing from the threads on the other neck and the other socket to prevent the second named socket from being screwed on the first named neck,
(q) said connector having a passageway therethrough bringing said container into communication with said receptacle defining a sealed enclosure and
(gg) a valve having a movable part and disposed be-
3,158,138

5. In a cattle standing heat detector,
(a) a base for attachment to the back of the cow to be bred,
(b) a container mounted on said base and constructed from flexible material,
(c) a colored fluid within said container,
(d) a transparent receptacle for the colored fluid mounted on said base ahead of said container,
(n) threaded necks on said container and receptacle facing one another,
(l) a connector between said necks,
(p) threaded sockets in said connector adapted to receive said threaded necks,
(a) the diameter of the apexes of the threads of one of said necks being less than the diameter of the apexes of the socket of the connector engaging the other neck,
(q) said connector having a passageway therethrough bringing said container into communication with said receptacle defining a sealed enclosure and
(gg) a valve having a movable part and disposed between said container and receptacle controlling the flow of fluid therebetween.

6. In a cattle standing heat detector,
(a) a base for attachment to the back of the cow to be bred,
(b) a container mounted on said base and constructed from flexible material,
(c) a colored fluid within said container,
(d) a transparent receptacle for the colored fluid mounted on said base ahead of said container,
(n) threaded necks on said container and receptacle facing one another,
(l) a connector between said necks,
(p) threaded sockets in said connector adapted to receive said threaded necks,
(i) an elongated transparent receptacle open at one end and closed at its other end mounted on said base and constructed of flexible material,
(j) a container mounted on said base and constructed from flexible material,
(c) a colored fluid within said container,
(d) a transparent receptacle for the colored fluid mounted on said base ahead of said container,
(w) necks on said container and receptacle facing one another,
(x) said necks having bores therethrough of different diameters,
(l) a connector between said necks,
(mw) disengageable attaching means between said connector and necks,
(y) said connector having a passageway communicat

7. In a cattle standing heat detector,
(a) a base for attachment to the back of the cow to be bred,
(b) a container mounted on said base and constructed from flexible material,
(c) a colored fluid within said container,
(d) a transparent receptacle for the colored fluid mounted on said base ahead of said container,
(n) threaded necks on said container and receptacle facing one another,
(l) a connector between said necks,
(p) threaded sockets in said connector adapted to receive said threaded necks,
(v) the form of the threads of one of said necks differing from the form of the threads of the other neck and the threads of the sockets corresponding in form with the threads of the necks with which they are intended to engage,
(q) said connector having a passageway therethrough bringing said container into communication with said receptacle defining a sealed enclosure and
(gg) a valve having a movable part and disposed between said container and receptacle and controlling the flow of fluid therebetween.

8. In a cattle standing heat detector,
(a) a base for attachment to the back of the cow to be bred,
3,158,133

7

base, said receptacle being disposed in alignment with said container and ahead of the same with the open ends juxtaposed;

(ff) means for connecting said container and receptacle together at their open ends defining a sealed enclosure, and

(gg) a valve having a movable part and disposed between said container and receptacle and controlling the flow of fluid therebetween.

12. In a cattle standing heat detector,

(a) a base for attachment to the back of the cow to be bred,

(b) an elongated container open at one end and closed at its other end and mounted on said base, said container extending in the general direction of the backbone of the cow, said container being constructed of flexible material,

(i) an elongated transparent receptacle open at one end and closed at its other end and mounted on said base, said receptacle being disposed in alignment with said container and ahead of the same with the open ends juxtaposed,

(ff) means for connecting said container and receptacle together at their open ends defining a sealed enclosure, and

(j) a check valve extending across said passageway, said check valve permitting flow from said container to said receptacle and preventing flow from said receptacle to said container.

13. In a cattle standing heat detector,

(a) a base for attachment to the back of the cow to be bred,

(b) an elongated container open at one end and closed at its other end and mounted on said base, said container extending in the general direction of the backbone of the cow, said container being constructed of flexible material,

(i) an elongated transparent receptacle open at one end and closed at its other end and mounted on said base, said receptacle being disposed in alignment with said container and ahead of the same with the open ends juxtaposed,

(k) said container and receptacle having necks facing one another,

(hh) means for connecting said necks together defining a sealed enclosure,

(ii) and a valve having a movable part and disposed at the locality of said necks and controlling the flow of fluid therebetween.

References Cited in the file of this patent
UNITED STATES PATENTS

3,076,431 Rule et al. 10-3-1963 Feb. 5, 1963