发明名称
基于微服务架构的云管理平台

摘要
本发明涉及一种基于微服务架构的云管理平台，所述云管理平台包括血糖检测子系统、血氧检测子系统、太阳能蓄电池、紧急通信设备、紧急按键和AT89C51芯片，所述血糖检测子系统用于提取在客船驾驶舱内驾驶的船长的血糖信息，所述血氧检测子系统用于提取在客船驾驶舱内驾驶的船长的血氧饱和度信息，所述AT89C51芯片根据所述血糖检测子系统和所述血氧检测子系统的检测结果确定是否控制所述紧急按键以启动所述紧急通信设备，所述太阳能蓄电池为运行中的紧急通信设备提供电力供应。通过本发明，能够有效提高客船行驶的安全性能。
1. 一种基于微服务架构的云管理平台，所述云管理平台包括血糖检测子系统、血氧检测子系统、太阳能蓄电池、紧急通信设备、紧急按键和AT89C51芯片，所述血糖检测子系统用于提取在客船驾驶舱内驾驶的船长的血糖信息，所述血氧检测子系统用于提取在客船驾驶舱内驾驶的船长的血氧饱和度信息，所述AT89C51芯片根据所述血氧检测子系统和所述血糖检测子系统的检测结果确定是否控制所述紧急按键以启动所述紧急通信设备，所述太阳能蓄电池为运行中的紧急通信设备提供电力供应。

2. 如权利要求1所述的基于微服务架构的云管理平台，其特征在于，所述云管理平台包括：

1. 直接数字频率合成器，用于产生频率和相位能够调整的正弦波信号以作为射频频率源用作混频使用；
2. 脉冲序列发生器，用于产生脉冲序列；
3. 混频器，与所述直接数字频率合成器和所述脉冲序列发生器分别连接，采用脉冲序列对正弦波信号进行频调制；
4. 功率放大器，与所述混频器连接，用于将频调制后的信号进行放大；
5. 开关电源，用作探头与功率放大器之间的接口电路，将放大后的信号加载到探头的射频收发线圈中；
6. 钨铁硼永磁型磁体结构，在容纳船长手指的空间内产生一个场强均匀的静态磁场；
7. 探头，放置在船长手指位置，缠绕射频收发线圈以将加载的信号送入所述钨铁硼永磁型磁体结构内，产生磁场共振现象，还用于将通过船长手指内导线质子共振后获得的衰减信号送出；
8. 发光二极管，设置在船长手指尖毛细血管位置，与电源驱动电路连接，用于基于电源驱动电路发送的发光控制信号，交替发射红光和绿光；
9. 光源驱动电路，内置定时器，用于向所述发光二极管发射发光控制信号；
10. 光电转换器，设置在船长手指指尖上，位于所述发光二极管的相对位置，用于接收透射船长手指尖毛细血管后的红光和绿光，并将透射红光和透射绿光分别转换为模拟电信号，以获得模拟红光光强和模拟绿光光强；
11. 电流电压转换电路，与所述光电转换器连接，用于对模拟红光光强和模拟绿光光强分别进行电流电压转换，以分别获得模拟红光光电压和模拟绿光光电压；
12. 信号放大器，与所述电流电压转换电路连接，用于对模拟红光光电压和模拟绿光光电压分别进行放大，以获得模拟红光光放大电压和模拟绿光光放大电压；
13. 信号检测电路，与所述信号放大器连接，包括直流信号检测子电路和交流信号检测子电路，用于检测模拟红光光电压中的直流成分和交流成分，以作为第一直流电压和第一交流电压输出，还用于检测模拟绿光光电压中的直流成分和交流成分，以作为第二直流电压和第二交流电压输出；
14. 模数转换器，与所述信号检测电路连接，用于对第一直流电压、第一交流电压、第二直流电压和第二交流电压分别进行模数转换，以获得第一数字直流电压、第一数字交流电压、第二数字直流电压和第二数字交流电压；
15. 血氧饱和度运算电路，与所述模数转换器连接，将第二数字直流电压与第一数字直流电压的比值除以第一数字直流电压与第二数字直流电压的比值以获得吸收光比
值因子，并基于吸收光比值因子计算血氧饱和度，其中，血氧饱和度与吸收光比值因子成线性关系；

警示屏，设置在客船乘客舱舱体上，与AT89C51芯片连接，用于在接收到异常状态信号时，显示按键通话字符，在接收到正常状态信号时，不进行显示操作；

紧急按键，设置在客船乘客舱舱体上，位于所述警示屏旁边；

按键驱动设备，与所述紧急按键连接，用于在接收到所述紧急按键上的按压操作时，发出电源供应信号；

紧急通信设备，设置在客船乘客舱舱体上，位于所述警示屏旁边，用于将乘客的通话信息通过通信链路发送到客船管理中心的服务器处；

开关切换设备，与所述按键驱动设备连接，在接收到所述电源供应信号时，打开所述太阳能蓄电池和所述紧急通信设备之间的连接通道以保持所述太阳能蓄电池对所述紧急通信设备的电力供应；

太阳能蓄电池，与所述警示屏、所述按键驱动设备和所述开关切换设备分别连接，仅为所述警示屏、所述按键驱动设备、所述开关切换设备和所述紧急通信设备提供电力供应；

AT89C51芯片，与所述探头连接，接收所述衰减信号，分析所述衰减信号的谱线，并计算其中葡萄糖所占比例，从而获取船长的血糖浓度，所述AT89C51芯片还与血氧饱和度运算电路连接以获得血氧饱和度；

其中，所述AT89C51芯片当所述血糖浓度在预设血糖上限浓度时，发出血糖浓度过高识别信号，当所述血糖浓度在预设血糖下限浓度时，发出血糖浓度过低识别信号；当所述血氧饱和度在预设血氧饱和度上限浓度时，发出血氧饱和度过高识别信号，当所述血氧饱和度在预设血氧饱和度下限浓度时，发出血氧饱和度过低识别信号；

其中，在所述信号放大器和所述信号检测电路之间还设置信号滤波电路，用于分别滤除模拟红外光放大电压和模拟红外光放大电压中的噪声成分；

其中，所述探头缠绕的射频收发线圈为鸟笼线圈、螺旋管线圈、鞍状线圈、相控阵列线圈和环状线圈中的一种；

其中，直接数字频率合成器所采用的频率合成选用直接数字合成、模拟锁相环和数字锁相环中的一种；

其中，当AT89C51芯片发出血氧饱和度过高识别信号、血氧饱和度过低识别信号、血糖浓度过高识别信号或血糖浓度过低识别信号过低时，AT89C51芯片同时发出异常状态信号，否则，AT89C51芯片同时发出正常状态信号；

所述发光二极管发射的红外光的波长为940nm；

所述发光二极管发射的红光的波长为660nm；

所述光电转换器为一光电二极管。
基于微服务架构的云管理平台

技术领域
[0001] 本发明涉及电子监控领域，尤其涉及一种基于微服务架构的云管理平台。

背景技术
[0002] 由于航空运输的发展，海上客船已转向沿海和近海短程运输，并多从事旅游业，而内陆水域的客船仍是许多国家的一种重要的客运工具。按照航行地点方式的不同海轮、渡轮、江轮等，其中海轮又依距离可分作近海和越洋两种，其中越洋的海轮客船转为观光旅游功能式的游轮。
[0003] 由于水上运输的特殊环境，以及客轮一般搭载较多的乘客，对客轮的检测非常重要，然而，目前对客轮的检测主要出现在对客轮客体检测上，对客轮驾驶人员的状态检测非常少，同时也缺乏在检测到异常时能够进行紧急通话的相应机制。
[0004] 为此，本发明提出了一种基于微服务架构的云管理平台，采用高精度的血氧监控设备和血氧监控设备对船长的血氧饱和度进行及时检测和报警，并在识别到船长状态异常时，以按键方式为乘客及时提供紧急通话设备，从而维护乘客的知情权，同时提高水上运营的安全性。

发明内容
[0005] 为解决现有技术存在的技术问题，本发明提供了一种基于微服务架构的云管理平台，利用有针对性的，可用于客轮驾驶舱的紧凑结构的血氧监控设备和血氧监控设备分别实现对驾驶位置的客轮船长的血氧参数和血氧饱和度的提取，并在异常时触发报警机制，而且，在异常时能够触发乘客紧急通话通道，帮助乘客尽快脱离困境。
[0006] 根据本发明的一方面，提供了一种基于微服务架构的云管理平台，所述云管理平台包括血氧检测子系统、血氧检测子系统、太阳能蓄电池、紧急通信设备、紧急按键和AT89C51芯片，所述血氧检测子系统用于提取在客船驾驶舱内驾驶的船长的血氧信息，所述血氧检测子系统用于提取在客船驾驶舱内驾驶的船长的血氧饱和度信息，所述AT89C51芯片根据所述血氧检测子系统和所述血氧检测子系统的检测结果确定是否控制所述紧急按键以启动所述紧急通信设备，所述太阳能蓄电池为运行中的紧急通信设备提供电力供应。
[0007] 更具体地，在所述基于微服务架构的云管理平台中，包括：直接数字频率合成器，用于产生频率和相位能够调整的正弦波信号以作为射频频率源用作混频使用；脉冲序列发生器，用于产生脉冲序列；混频器，用于所述直接数字频率合成器和所述脉冲序列发生器分别连接，采用脉冲序列对正弦波信号进行混频调制；功率放大器，与所述混频器连接，用于将混频调制后的信号进行放大；开关电源，用作发射与功率放大器之间的接口电路，将放大后的信号加载到发射的频段发射线路中；发射极电流磁性磁体结构，在容纳船长手持的空间内产生一个场强均匀的静态磁场；探头，放置在船长手持位置，缠绕发射频发射线路以将加载的信号送入所述发射极电流磁性磁体结构，产生磁共振现象，还用于将经过船长手持内氢质子共振后获得的衰减信号送出；发射二极管，设置在船长手持指尖毛细血管位置，与光源
驱动电路连接，用于基于光源驱动电路发送的发光控制信号；交替发送红外光和红光；光源驱动电路，内置定时器，用于向所述发光二级管发送发光控制信号；光电转换器，设置在船长手指枕部，位于所述发光二级管的相对位置，用于接收透射船长手指手指毛细血管内的红外光和红光，并将透射红外光和透射红光分别转换为模拟电流信号，以获得模拟红外光电流和模拟红光电流；电流电压转换电路，所述电路光电转换器连接，用于对模拟红外光电信号和模拟红光电信号分别进行电流电压转换，以分别获得模拟红外光电压和模拟红光电压；信号放大器，与所述电流电压转换电路连接，用于对模拟红外光电压和模拟红光电压分别进行放大，以获得模拟红外光放大电压和模拟红光放大电压；信号检测电路，与所述放大器连接，包括直流信号检测子电路和交流信号检测子电路，用于检测模拟红外光电压中的直流成分和交流成分，以为第一直流电压和第一交流电压输出；还用于检测模拟红光电压中的直流成分和交流成分，以为第二直流电压和第二交流电压输出；模拟转换器，与所述信号检测电路连接，用于对第一直流电压、第一交流电压、第二直流电压和第二交流电压分别进行模拟转换，以获得第一数字电压、第一数字交流电压、第二数字电压、第二数字交流电压和数字交流电压；电压饱和度运算电路，与所述模拟转换器连接，将所述数字电压与所述数字电压的比值以第一数字电压与第一数字电压的比值以获得吸收光比值因子，并基于吸收光比值因子计算血氧饱和度，其中，血氧饱和度与吸收光比值因子成线性关系；警示屏，设置在船长乘客乘车舱体上，与AT89C51芯片连接，用于在接收到异常状态信号时，显示按键信息字符，在接收到正常状态信号时，不进行显示操作；紧急按键，设置在客船乘客舱体上，设置在所述警示屏旁边；按键驱动设备，与所述紧急按键连接，用于在接收到来自紧急按键的按下操作时，发出电源信号；紧急通信设备，设置在客船乘客舱体上，设置在所述警示屏旁边，用于将乘客的通话信息通过通信链路发送到客船管理中心的服务器处；开关切换设备，与所述按键驱动设备连接，在接收到所述电源信号时，打开所述太阳能蓄电池与所述紧急通信设备之间的连接通道以保持所述太阳能蓄电池对所述紧急通信设备的电力供应；太阳能蓄电池，与所述警示屏、所述按键驱动设备、所述开关切换设备和所述紧急通信设备分别连接，仅为所述警示屏、所述按键驱动设备、所述开关切换设备和所述紧急通信设备提供电力供应；AT89C51芯片，与所述探头连接，接收所述探头信号，分析所述探头信号的谱线，并计算其中葡萄糖所占比例，从而获取船长的血糖浓度；所述AT89C51芯片还与血氧饱和度运算电路连接以获得血氧饱和度；其中，所述AT89C51芯片所述血糖浓度在预设血糖上限浓度时，发出血糖浓度高识别信号；所述血糖浓度在预设血糖下限浓度时，发出血糖浓度低识别信号；所述血氧饱和度在预设血氧饱和度上限浓度时，发出血氧饱和度过高识别信号，所述血氧饱和度在预设血氧饱和度下限浓度时，发出血氧饱和度过低识别信号；在所述信号放大器和所述信号检测电路之间还设置信号滤波电路，用于分别滤除模拟红光放大电压和模拟红光放大电压中的噪声成分；信号探头的射频收发线圈为鸟笼线圈、螺旋线圈、鞍状线圈、相控阵列线圈和环状线圈中的一种；直接数字频率合成器所采用的频率合成器选用直接数字合成，模拟锁相环和数字锁相环中的一种；当AT89C51芯片发出血氧饱和度过高识别信号、血氧饱和度过低识别信号、血糖浓度过高识别信号或血糖浓度识别信号过低时，AT89C51芯片同时发出异常状态信号。
光的波长为940nm。

更具体地，在所述基于微服务架构的云管理平台中，所述发光二极管发射的红光的波长为660nm。

更具体地，在所述基于微服务架构的云管理平台中，所述光电转换器为一光电二极管。

更具体地，在所述基于微服务架构的云管理平台中，所述通信链路为卫星通讯链路。

附图说明

以下将结合附图对本发明的实施方案进行描述，其中：

图1为本发明的基于微服务架构的云管理平台的第一实施例的结构方框图。

附图标记：1血糖检测子系统；2血氧检测子系统；3太阳能蓄电池；4紧急通信设备；5紧急按键；6AT89C51芯片

具体实施方式

下面将参照附图对本发明的基于微服务架构的云管理平台的实施方案进行详细说明。

目前，对客轮的监控主要集中在客轮客体本身，而对驾驶客轮的船长，相应的监控手段有限，更多的是对乘客的视频监控，即使有一些对于驾驶室的监控手段，也更多是对驾驶室内部温度、气压等有限的物理量的检测，缺乏对船长的生理状态的检测，而不用说采用在船长状态异常时，及时通知乘客的人员的通讯机制了。而且，在现有技术中，船长所驾驶的客轮通常由驾驶舱位置锁住，船长的驾驶状态乘客根本缺乏通道去获悉，乘客一旦登上飞机，基本上将生命交付给驾驶舱的船长以及其他驾驶人员。

由此可见，现有技术中存在以下技术问题：缺乏有效的船长生理状态检测设备；缺乏有效的生理参数预警机制；以及缺乏在危险时刻能够紧急触发并帮助乘客的安全与外部通讯的紧急通讯通道。

为此，本发明提供了一种基于微服务架构的云管理平台，能够及时了解驾驶位置的船长的血氧饱和度信号和血糖信号，一旦出现异常时，能够启动紧急通讯机制以帮助乘客的乘客寻求外部援助，以便水上救援中心通过紧急通话通道了解客船情况。

图1为本发明的基于微服务架构的云管理平台的第二实施例的结构方框图，所述云管理平台包括血糖检测子系统、血氧检测子系统、太阳能蓄电池、紧急通信设备、紧急按键和AT89C51芯片，所述血糖检测子系统用于提取在客船驾驶舱内驾驶的船长的血糖信息，所述血氧检测子系统用于提取在客船驾驶舱内驾驶的船长的血氧饱和度信息，所述AT89C51芯片根据所述血糖检测子系统和所述血氧检测子系统的检测结果确定是否控制所述紧急按键以启动所述紧急通信设备，所述太阳能蓄电池为运行中的紧急通信设备提供电力供应。

接着，继续对本发明的基于微服务架构的云管理平台的第二实施例进行进一步的说明。

所述云管理平台包括：直接数字频率合成器，用于产生频率和相位能够调整的正
弦波信号以作为射频频率源用作混频使用；脉冲序列发生器，用于产生脉冲序列；混频器，与所述直接数字频率合成器和所述脉冲序列发生器分别连接，采用脉冲序列对正弦波信号进行混频调制；功率放大器，与所述混频器连接，用于将混频调制后的信号进行放大；开关电源，用作探头与功率放大器之间的接口电路，将放大后的信号加载到探头的射频收发线圈中。

[0022] 所述云管理平台包括：钕铁硼永磁性磁体结构，在容纳船长手指的空间内产生一个场强均匀的静态磁场；探头，放置在船长手指位置，缠绕射频收发线圈以将加载的信号送入所述钕铁硼永磁性磁体结构内，产生核磁共振现象，还用于将经过船长手指内质子共振后获得的衰减信号送出；发光二极管，设置在船长手指指尖毛细血管位置，与光源驱动电路连接，用于基于光源驱动电路发送的发光控制信号，交替发射红外光和红光。

[0023] 所述云管理平台包括：光源驱动电路，内置定时器，用于向所述发光二极管发送发光控制信号；光电转换器，设置在船长手指指尖上，位于所述发光二极管的相对位置，用于接收射射船长手指指尖毛细血管后的红外光和红光，并将射射红外光和透射红光分别转换为模拟电信号，以获得模拟红外光电流和模拟红光电流；电流电压转换电路，与所述光电转换器连接，用于对模拟红外光电流和模拟红光电流分别进行电流电压转换，以分别获得模拟红外光电压和模拟红光电压。

[0024] 所述云管理平台包括：信号放大器，与所述电流电压转换电路连接，用于对模拟红外光电压和模拟红光电压分别进行放大，以获得模拟红外光放大电压和模拟红光放大电压；信号检测电路，与所述信号放大器连接，包括直流信号检测子电路和交流信号检测子电路，用于检测模拟红外光电流中的直流成分和交流成分，以作为第一直流电压和第一交流电压输出，还用于检测模拟红光电流中的直流成分和交流成分，以作为第二直流电压和第二交流电压输出。

[0025] 所述云管理平台包括：模数转换器，与所述信号检测电路连接，用于对第一直流电压、第一交流电压、第二直流电压和第二交流电压分别进行模数转换，以获得第一数字化直流电压、第一数字化交流电压、第二数字化直流电压和第二数字化交流电压；血氧饱和度运算电路，与所述模数转换器连接，将第二数字化交流电压与第二数字化直流电压的比值除以第一数字化交流电压与第一数字化直流电压的比值以获得氧化饱和度，并基于氧化饱和度与吸收光比值因子成线性关系。

[0026] 所述云管理平台包括：显示器，设置在客车乘客舱室上，与AT89C51芯片连接，用于在接收到异常状态信号时，显示按键电话字符串，在接收到正常状态信号时不进行显示操作；紧急按键，设置在客车乘客舱室上，位于所述警示屏旁边；按键驱动设备，与所述紧急按键连接，用于在接收到所述紧急按键上的按压操作时，发出电源供应信号；紧急通信设备，设置在客车乘客舱室上，位于所述警示屏旁边，用于将乘客的通话信息通过通信链路发送到客车管理中心的服务器处。

[0027] 所述云管理平台包括：开关切换设备，与所述按键驱动设备连接，在接收到所述电源供应信号时，打开所述太阳能蓄电池和所述紧急通信设备之间的连接通道以保持所述太阳能蓄电池对所述紧急通信设备的电力供应；太阳能蓄电池，与所述警示屏、所述按键驱动设备、所述开关切换设备和所述紧急通信设备分别连接，仅为所述警示屏、所述按键驱动设备和所述开关切换设备和所述紧急通信设备提供电力供应。
所述云管理平台包括：AT89C51芯片，与所述探头连接，接收所述衰减信号，分析所述衰减信号的谱线，并计算其中葡萄糖所占比例，从而获取船长的血糖浓度，所述AT89C51芯片还与血氧饱和度运算电路连接以获得血氧饱和度。

其中，所述AT89C51芯片当所述血糖浓度在预设血糖上限浓度时，发出血糖浓度过高识别信号，当所述血糖浓度在预设血糖下限浓度时，发出血糖浓度过低识别信号；当所述血糖饱和度在预设血糖饱和度上限浓度时，发出血氧饱和度过高识别信号，当所述血糖饱和度在预设血糖饱和度下限浓度时，发出血氧饱和度过低识别信号；在所述信号放大器和所述信号检测电路之间还设置信号滤波电路，用于分别滤除模拟红外光放大电压和模拟红光放大电压中的噪声成分；所述探头缠绕的射频收发线圈为鸟笼线圈、螺旋管线圈、鞍状线圈、相控阵列线圈和环状线圈中的一种。

其中，直接数字频率合成器所采用的频率合成选用直接数字合成、模拟锁相环和数字锁相环中的一种；当AT89C51芯片发出血糖饱和度过高识别信号、血氧饱和度过低识别信号、血糖浓度过低识别信号或血糖浓度识别信号过低时，AT89C51芯片同时发出异常状态信号，否则，AT89C51芯片同时发出正常状态信号。

可选地，在所述云管理平台中：所述发光二极管发射的红外光的波长为940nm；所述发光二极管发射的红光的波长为660nm；所述光电转换器为一光电二极管；所述通信链路可选为卫星通讯链路。

另外，血氧饱和度是血液中被氧结合的氧气血红蛋白的氧含量占全部可结合的氧气血红蛋白的氧含量的百分比，即血液中血氧的浓度，它是呼吸循环的重要生理参数。而功能性血氧饱和度为HbO2浓度与HbO2+Hb浓度之比，有别于氧气血红蛋白所占百分数。因此，监测动脉血氧饱和度可以对肺的氧合和血红蛋白携氧能力进行估计。正常人体动脉血的血氧饱和度为98％，静脉血为75％。

人体的新陈代谢过程是生物氧化过程，而新陈代谢过程中所需要的氧，是通过呼吸系统进入人体血液，与血液红细胞中的血红蛋白，结合成氧气合血红蛋白，再输送到人体各部分组织细胞中去。血液携带输送氧气的能力即用血氧饱和度来衡量。

采用本发明的基于微服务架构的云管理平台，针对现有技术中缺乏客轮船长生理状态检测设备以及缺乏乘客紧急通话设备的技术问题，采用高精度的血氧监控设备和血氧监控设备对客轮船长的血氧参数和血氧饱和度进行及时检测和报警，引入生理参数预警机制和紧急通话机制，帮助乘客舱内人员以及水上救援中心尽快了解客轮船长的异常状态。

可以理解的是，虽然本发明已以较佳实施例披露如上，然而上述实施例并非用以限定本发明。对于任何熟悉本领域的技术人员而言，在不脱离本发明技术方案范围情况下，都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰，或为等同变化的等效实施例。因此，凡是未脱离本发明技术方案的内容，依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰，均仍属于本发明技术方案保护的范围内。
图1