(54) 发明名称
芳基、杂芳基、O-芳基和O-杂芳基碳环糖家族

(57) 摘要
本发明涉及下列式(1)的化合物，以及其制备方法，包含其的药学和化妆品组合物，及其用途，特别是用作钠依赖性葡萄糖共转运蛋白如SGLT1、SGLT2和SGLT3的抑制剂，特别是用于治疗或预防糖尿病，并且更特别是II型糖尿病、与糖尿病有关的并发症如下肢关节炎、心肌梗塞、肾功能不全、神经病变或失明、高血压症、高胰岛素血症、肥胖症、高甘油三酯血症、X综合征和动脉硬化，以及用作抗癌药物、抗感染药物、抗病毒药物、抗血栓药物和抗炎药物，可用于使皮肤亮丽、漂白、脱色、从皮肤上除去污点，特别是老年斑和雀斑，或者用于预防皮肤的色素沉着。
1. 具有下列式(1)的化合物；

![化学结构式](image)

(1)

其中，
- n, m 和 p 彼此独立地代表 0 或 1，
- R 代表氢原子或氟原子或 CH₃, CH₂F, CH₂OH, CH₂OSiR³R⁴R⁵, CH₂OR⁶, CH₂OCOR⁷, CH₂CO₂R⁸, CH₂CONR⁹R¹₀, CH₂OP(OR⁶)₂ 或 CH₂OSO₂R¹¹ 基团，
- R₁ 和 R₂ 彼此独立地代表氢原子或 OH, OSiR³R⁴R⁵, OR⁶, OCOR⁷, OCO₂R⁸ 或 OCONR⁹R¹₀ 基团，
- R₃ 代表氢原子或氟原子或 OH, OSiR³R⁴R⁵, OR⁶, OCOR⁷, OCO₂R⁸, OCONR⁹R¹₀ 或 NR¹²R¹³ 基团，
- 当 n=1 时, R₁ 代表氢原子, 且当 n=0 时, R₁ 代表氢原子, 卤素原子或 OH, OSiR³R⁴R⁵, OR⁶, OCOR⁷, OCO₂R⁸ 或 OCONR⁹R¹₀ 基团，
- R 和 R₁ 与携带它们的碳原子一起形成具有下式的环状缩醛；

![环状结构式](image)

和 / 或 (R₁ 和 R₂)、(R₂ 和 R₃) 和 / 或 (R₃ 和 R₄) 与携带它们的碳原子一起形成具有下式的环状缩醛；

![环状结构式](image)

- X₁ 代表氢原子、卤素原子、CN, OH, SO₂, SiR³R⁴R⁵, (C₁₋C₆) - 烷基, (C₇₋C₁₂) - 烯基, (C₇₋C₁₂) - 炔基, (C₃₋C₆) - 环烷基, OR²⁴, OCOR²⁴, CO₂R²⁴, NR²⁵R²⁶, NR²⁵COR²⁴, CONR²⁵R²⁶, S₃R²⁴, SO₂R²⁴, CSR²⁴ 或 OSO₂R²⁴ 基团，
- U, V 和 W 彼此独立地代表苯基、吡啶基、N-(C₁₋C₆) 烷基 - 吡啶基或喹啉基环，所述环任选地被一个或多个选自卤素原子、CN, OH, SO₂, SiR³R⁴R⁵, (C₁₋C₆) - 烷基, (C₇₋C₁₂) - 烯基, (C₇₋C₁₂) - 炔基, (C₃₋C₆) - 环烷基, OR²⁴, OCOR²⁴, CO₂R²⁴, NR²⁵R²⁶, NR²⁵COR²⁴, CONR²⁵R²⁶, S₃R²⁴, SO₂R²⁴, CSR²⁴ 和 OSO₂R²⁴ 基团的取代基取代，
- 其中；
-R^{11}、R^{15}、R^{18}、R^{21} 和 R^{24} 彼此独立地代表 (C_{1}-C_{9}) - 烷基、(C_{9}-C_{10}) - 烷基、(C_{1}-C_{9}) - 烷基、(C_{9}-C_{10}) - 烷基、(C_{1}-C_{9}) - 烷基。5 至 7 元环杂环烷基、芳基、芳基 -(C_{1}-C_{9}) - 烷基或 (C_{1}-C_{9}) - 烷基 - 芳基基团，该基团可能被一个或多个选自卤素原子、OH、COOH 和 CHO 基团的基团取代，

-R^{12}、R^{13}、R^{16}、R^{17}、R^{19}、R^{23}、R^{22}、R^{23} 和 R^{26} 彼此独立地代表氢原子或 (C_{1}-C_{9}) - 烷基或芳基 - (C_{1}-C_{9}) - 烷基基团，

-R^{14} 代表氢原子或 (C_{1}-C_{9}) - 烷基基团，

-R^{9} 至 R^{10} 彼此独立地代表 (C_{1}-C_{9}) - 烷基、芳基或芳基 -(C_{1}-C_{9}) - 烷基基团，和

-R^{9} 至 R^{10} 彼此独立地代表氢原子或 (C_{1}-C_{9}) - 烷基基团、芳基或芳基 -(C_{1}-C_{9}) - 烷基基团。

2. 根据权利要求 1 所述的化合物，其特征在于，它对应于下列式 (Ia)、(Ib) 或 (Ic)：

![图示](image1)

![图示](image2)

![图示](image3)

其中 R, R_{1}, R_{2}, R_{3}, R_{4}, X_{1}, U, V, W, n, m 和 p 如权利要求 1 中所定义。

3. 根据权利要求 1 或 2 所述的化合物，其特征在于，它对应于下列式 (I-1)、(I-1a)、(I-1b) 或 (I-1c)：

![图示](image4)
或其药学上或化妆品学上可接受的盐、互变异构体、立体异构体或任何比例的立体异构体的混合物，特别是对映异构体的混合物，并且特别是外消旋混合物，

其中：
- \(R, R_1, R_2 \) 和 \(R_3 \) 如权利要求 1 中所定义，和
- \(X_1, X_2, X_3, X_4 \) 和 \(X_5 \) 彼此独立地代表氢原子、卤素原子、\(CN, OH, SO_2, SiR^R'R'' \)、\((C_1-C_6) \) - 烷基、\((C_2-C_3) \) - 烷基、\((C_3-C_4) \) - 氧基、\((C_4-C_5) \) - 环烷基、\(OR^{24}, COR^{24}, OCOR^{24}, CO_2R^{14}, NR^{25}R^{28}, NR^{25}COR^{24}, CONR^{25}R^{28}, \) \(SR^{24}, SO_2R^{24}, C_SR^{24} \) 或 \(OSO_2R^{24} \) 基团。

4. 根据权利要求 1 或 2 所述的化合物，其特征在于，它对应于下列式 (I-2)、(I-2a) 或
(I-2b):

或其药学上或化妆品学上可接受的盐、互变异构体、立体异构体或任何比例的立体异构体的混合物，特别是对映异构体的混合物，并且特别是外消旋混合物，
其中:
-R, R1, R2 和 R3 如权利要求 1 中所定义，和
-X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈ 和 X₉ 彼此独立地代表氢原子、卤素原子、CN, OH, SO₂, SiR³R⁴R⁵、
(C₁₋C₆) - 烷基、(C₂₋C₆) - 烯基、(C₃₋C₆) - 炔基、(C₃₋C₆) - 环烷基、OR²¹, COR²¹, OCOR²¹, CO₂R²²、
NR²⁵R²⁶, NR²⁵COR²¹, CONR²⁵R²⁶, SR²¹, SO₂R²¹, CSR²¹ 或 OSO₂R²¹ 基团。

5. 根据权利要求 1 或 2 所述的化合物，其特征在于，它对应于下列式 (I-3)，(I-3a) 的
或 (I-3b):

(I-3),

(I-3a),

(I-3b),

或其药学上或化妆品学上可接受的盐、互变异构体、立体异构体或任何比例的立体异
构体的混合物，特别是对映异构体的混合物，并且特别是外消旋混合物，
其中：
-R, R₁, R₂ 和 R₃ 如权利要求 1 中所定义，
-X₁, X₂, X₃, X₄ 和 X₅ 彼此独立地代表氢原子、卤素原子、CN、OH、SO₂、SiR₃²R₅²⁺、
(C₁₋C₆) – 烷基、(C₂₋C₆) – 烯基、(C₃₋C₆) – 炔基、(C₅₋C₆) – 环烷基、OR²⁴⁺、COR²⁴⁺、OCOR²⁴⁺、CO₂R²⁴⁺、
NR²⁵⁺, NR²⁵⁺COR²⁴⁺, CONR²⁵⁺R²⁶⁺, SR²⁴⁺, SO₂R²³⁺, CSR²⁺ 或 OSO₂R²⁺ 基团，和
-X 代表氢原子或 (C₁₋C₆) – 烷基基团。

6. 根据权利要求 1 或 2 所述的化合物，其特征在于，它对应于下列式(I-4), (I-4a) 或
(I-4b):

![化学结构式](image1)

或其药学上或化妆品学上可接受的盐、互变异构体、立体异构体或任何比例的立体异
构体的混合物，特别是对映异构体的混合物，并且特别是外消旋混合物，

其中：
-R, R₁, R₂, R₃ 和 R₄ 如权利要求 1 中所定义，和
-X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈ 和 X₉ 彼此独立地代表氢原子、卤素原子、CN、OH、SO₂、SiR₃²R₅²⁺、
(C₁-C₈) - 烷基、(C₃-C₆) - 烯基、(C₃-C₆) - 炔基、(C₃-C₆) - 烷烷基、OR²¹、COR²¹、OCOR²¹、CO₂R²²、NR²⁵R²⁶、NR²⁵COR²⁶、CONR²⁵R²⁶、SR²⁴、SO₂R²²、CSR²⁴ 或 OSO₂R²² 基团。

7. 根据权利要求 1 或 2 所述的化合物，其特征在于，它对应于下列式(I-5)、(I-5a) 或 (I-5b)：

![化合物结构图](image)

或其药学上或化妆品学上可接受的盐、互变异构体、立体异构体或任何比例的立体异
构体的混合物，特别是对映异构体的混合物，并且特别是外消旋混合物，
其中：
- R、R₁、R₂、R₃ 和 R₄ 如权利要求 1 中所定义，和
- \(X₁、X₂、X₃、X₄、X₅、X₆、X₇、X₈、X₉、X₁₀\) 和 \(X₁₁\) 彼此独立地代表氢原子、卤素原子、CN、OH、SO₂、
 SiR²R⁴R⁶、(C₁-C₆) - 烷基、(C₂-C₆) - 烷基、(C₃-C₆) - 烷基、(C₄-C₆) - 烷基、(C₅-C₆) - 烷基、(C₆-C₆) - 烷基、
 OR²₃、COR²₄、OCOR²₄、CO₂R²₄、NR²₅R²₆、NR₂₅COR²₄、CONR²₅R²₆、SR²₃、SO₃R²₄、CSR²₄ 或 OSO₃R²₄ 基团。

8. 根据权利要求 1 至 7 任一项所述的化合物，其特征在于，R₁、R₂ 和 R₃ 彼此独立地选自
 OH、-O-(C₁-C₆) - 烷基、-O-(C₁-C₆) - 烷基、-O-(C₁-C₆) - 烷基、-O-(C₁-C₆) - 烷基。

9. 根据权利要求 1 至 8 任一项所述的化合物，其特征在于，R 代表
 CH₂OH、-CH₂O-(C₁-C₆) - 烷基、-CH₂O-(C₁-C₆) - 烷基、-CH₂O-(C₁-C₆) - 烷基、-CH₂O-(C₁-C₆) - 烷基。

10. 根据权利要求 1 至 9 任一项所述的化合物，其特征在于，当 n=1 时，R₄=H 且当 n=0
 时，R₅=H 或 OH。

11. 根据权利要求 1 至 10 任一项所述的化合物，其特征在于，U、V 和 W 彼此独立地代表
 苯基、吡啶基、N-(C₁-C₆) 烷基 - 吡啶基或噻吩基环，
 所述环任选被一个或多个选自卤素原子、OH、(C₁-C₆) - 烷基、(C₂-C₆) - 烷基、(C₃-C₆) - 烷基、
 (C₄-C₆) - 烷基、(C₅-C₆) - 烷基、(C₆-C₆) - 烷基、OR²₃、COR²₄、OCOR²₄ 和 CO₂R²₄ 基团的取代基取代，和
 \(X₁、X₂、X₃、X₄、X₅、X₆、X₇、X₈、X₉\) 和 \(X₁₀\) 彼此独立地选自氢原子、卤素原子、OH、(C₁-C₆) - 烷基、
 (C₂-C₆) - 烷基、(C₃-C₆) - 烷基、(C₄-C₆) - 烷基、(C₅-C₆) - 烷基、(C₆-C₆) - 烷基、OR²₃、COR²₄、OCOR²₄ 和 CO₂R²₄ 基团。

12. 根据权利要求 1 至 11 任一项所述的化合物，其特征在于，它选自下列化合物：

![化合物图1]

![化合物图2]
13. 根据权利要求1至12任一项所述的化合物，其用作药物，特别是用作钠依赖性葡萄糖共转运蛋白如SGLT1、SGLT2和SGLT3的抑制剂。

14. 根据权利要求1至12任一项所述的化合物，其用于治疗或预防糖尿病，并且更特别是II型糖尿病，与糖尿病有关的并发症如下肢关节炎、心肌梗塞、肾功能不全、神经病变或失明、高血糖症、高胰岛素血症、肥胖症、高甘油三酯血症、X综合征和动脉硬化，以及用作抗
权利要求书

癌药物、抗感染药物、抗病毒药物、抗血栓形成药物或抗炎药物。

15. 至少一种根据权利要求 1 至 12 任一项所述的化合物的化妆品用途，用于使皮肤亮化、漂白、脱色，从皮肤上除去污点，特别是老年斑和雀斑，或者预防皮肤的色素沉着，或用作抗氧化剂。

16. 一种药物组合物或化妆品组合物，其包含至少一种根据权利要求 1 至 12 任一项所述的化合物和至少一种药学上或化妆品学上可接受的载体。

17. 一种用于制备其中 R=H 的根据权利要求 1 至 12 任一项所述的化合物的方法，其包括下述式（II）的化合物的氯化：

![化学结构式](image)

其中 R、R₁、R₂、R₃、X₁、U、V、W、n、m 和 p 如权利要求 1 中所定义。

18. 一种用于制备其中 n=0 且 R₅≠H 的根据权利要求 1 至 12 任一项所述的化合物的方法，其包括如权利要求 20 中所定义的式（VIII）的化合物与下述式（XI）的化合物的偶联

![化学结构式](image)

其中 R、R₁、R₂ 和 R₃ 如权利要求 1 中所定义。

以得到其中 n=0 且 R₅=OH 的根据权利要求 1 所述的式（I）的化合物，

任选地，接着进行 OH 官能团的取代以得到其中 n=0 且 R₅=卤素、OSiR₄⁻、OR⁻、OCOR⁻、OCOR₂⁻ 或 OCONR₂⁻ 的根据权利要求 1 所述的式（I）的化合物。

19. 一种用于制备其中 R₅=H 的根据权利要求 1 至 12 任一项所述的化合物的方法，其包括以下步骤：

(a4) 其中 R₅=OH 的式（I）的化合物的溴代，以得到其中 R₅=Br 的式（I）的化合物，和

(b4) 在前述步骤（a4）中获得的其中 R₅=Br 的式（I）的化合物的还原，以得到其中 R₅=H 的式（I）的化合物。

20. 一种用于制备根据权利要求 1 至 12 任一项所述的化合物的方法，其包括下述式（XVI）的化合物与下述式（V）的化合物之间的偶联反应：

![化学结构式](image)
权利要求书

其中 R、R₁、R₂ 和 R₃ 如权利要求 1 中所定义且 R₀ 代表离去基团，

其中 X₁、U、V、W、m 和 p 如权利要求 1 中所定义。
芳基、杂芳基、0-芳基和0-杂芳基碳环糖家族

技术领域
[0001] 本发明涉及氟化的芳基、杂芳基、0-芳基、0-杂芳基苷类化合物家族，其制备方法，以及其在药物或化妆品领域的应用，特别是用于治疗或预防糖尿病和肥胖症，并作为脱色剂或亮化剂。

背景技术
[0002] 糖及其衍生物构成了自然界中最常见的化合物类别之一。基于其化学结构，其表现出各种理化性质并且可以在许多生物过程中发挥关键作用。
[0003] 近年来，对于利用新型苷类的兴趣与日俱增，所述苷类在改善有效性和选择性和稳定性方面具有有利的性质。
[0004] 人们发现这些化合物中，特别是芳基苷或酚苷可应用于化妆品领域或者用于治疗或预防疾病如糖尿病、肥胖症、癌症、炎性疾病、自身免疫性疾病、感染、血栓形成，和涉及众多其他治疗领域。关于其生物学性质及其结构，这些化合物引起了众多科研团队的兴趣。

根皮苷

[0006] 特别是在肠和胃中发现的钠依赖性葡萄糖共转运蛋白（SGLT）的抑制剂，潜在地可用于治疗糖尿病，且更具体的是II型糖尿病，还用于治疗高血压、高胰岛素血症、肥胖症、高甘油三酯血症、X综合征（也称为代谢综合征，J.of Clin.Endocrinol.Metabol..,82,727-734（1997））与尿病有关的并发症或动脉硬化。事实上，人们已知高血糖症参与糖尿病的发病和演变并导致胰岛素分泌的减少和胰岛素敏感性的降低，这导致葡萄糖水平的增加，从而加剧糖尿病。因此，高血糖症的治疗可以被看作是治疗糖尿病的手段。

[0007] 在这种情况下，用于治疗高血糖症的方法之一是促进过量的葡萄糖直接排泄到尿中，例如，通过抑制肾脏近端小管中的钠依赖性葡萄糖共转运蛋白，其效果是抑制葡萄糖的
再吸收，从而促进其排泄到尿液中，进而导致血糖水平的降低。

【0009】目前，存在大量的药物可用于治疗糖尿病，如双肽类、磺酰脲类、胰岛素性改善剂和α-糖苷酶抑制剂。然而，这些化合物具有许多副作用，因而越来越需要新型药物。

【0010】因此，本发明提供了新型化合物，特别地，其用于治疗或预防糖尿病和肥胖症。

【0011】这些化合物是芳基、杂芳基、O-芳基、O-杂芳基苷的CF₃-类似物，其中环内糖苷氧被携带2个氟原子的碳原子代替。这些化合物将具有独特的特征，当面对酶降解过程时，特别是经过糖苷酶型酶的降解过程，这些化合物是O-芳基和O-杂芳基苷的稳定类似物。此外，二氯化碳是氧原子的优良模拟物。

【0012】专利申请WO2009/121939中描述了稳定的芳基苷类似物，其中氧基氧被携带2个氟原子的碳原子代替。

【0013】专利申请WO2005/044256中描述了O-芳基苷的合成，其中环内氧或氧基被携带2个氟原子的碳原子代替。特别描述了下列化合物的合成：

【0014】

![化合物图](image)

【0015】WO2009/076550中同样已经报道了O-芳基和芳基类似物，其中环内氧被携带2个卤素原子的碳原子代替，但是尚未被例举。

发明内容

【0016】因此，本发明人已经开发出新型合成方法，其能够获得新型芳基、杂芳基、O-芳基、O-杂芳基基化合物，所述化合物用作SGLT抑制剂，特别是用于治疗或预防糖尿病和肥胖症，并且用作酶酸酶抑制剂，特别是用于化妆品的应用，并且特别是作为脱色剂或亮化剂，并且也可以用作抗氧化剂。

【0017】因此，本发明涉及具有下列式(I)的化合物：

【0018】

![化合物图](image)

【0019】或其药学上或化妆品学上可接受的盐、互变异构体、立体异构体或任何比例的立体异构体的混合物，特别是对映异构体的混合物，并且特别是外消旋混合物，

【0020】其中：
-n, m 和 p 彼此独立地代表 0 或 1，

- R 代表氢原子或氟原子或 CH₃、CH₂F、CH₃OH、CH₂OSiR‴R‴R‴、CH₃OR‴、CH₂OCOR‴、CH₃OCONR‴R‴、CH₂OP (O) (OR‴)₂ 或 CH₃OSO₂R‴ 基团，

- R₁ 和 R₂ 彼此独立地代表氟原子或 OH、OSiR‴R‴R‴、OR‴、OCOR‴、OCO₂R‴ 或 OCONR‴R‴ 或 OCONR‴R‴R‴ 基团，

- R₃ 代表氟原子或氯原子或 OH、OSiR‴R‴R‴、OR‴、OCOR‴、OCO₂R‴、OCONR‴R‴R‴ 或 NR‴OR‴R‴ 基团，

- 当 n=1 时，R₄ 代表氯原子，且当 n=0 时，R₄ 代表氢原子、卤素原子或 OH、OSiR‴R‴R‴、OR‴、OCOR‴ 基团，

- 当 m=0 时，R₅ 代表氢原子，R₆ 代表氯原子或 OH、OSiR‴R‴R‴、OR‴、OCOR‴ 基团。
在本发明中，“药学上或化妆品学上可接受的”被理解为是指其用于制备药物组合物或化妆品组合物，所述组合物一般是安全的，无毒的，在生物学或其他方面满足需要并且所述组合物可以被接受用于兽类和人类药物用途以及化妆品用途。

在本发明中，化合物的“药学上或化妆品学上可接受的盐”被理解为指代下列盐，其是药学上或化妆品学上可接受的（如本文所定义的）盐并且其具备预期的母体化合物的药理性。这种盐包括：

（1）水合物和溶剂化物，如（S）-丙二醇溶剂化物。

（2）与无机酸如盐酸、氢溴酸、硫酸、硝酸、磷酸等形成的酸加成盐，或与有机酸如乙酸、苯磺酸、苯甲酸、对甲苯磺酸、柠檬酸、乙酸、富马酸、苯甲酸、乙酸、苯甲酸、乙酸、对甲苯磺酸、二甲基乙酸、三甲基乙酸、三氟乙酸等形成的酸加成盐；和

（3）当母体化合物中存在的酸质子被金属离子，例如，碱金属离子（例如，钠离子或锂离子），碱土金属离子（如钙离子或镁离子）或铝离子代替；或者与有机碱或无机碱配位时形成的盐。可接受的有机碱包括二乙醇胺、乙醇胺、N-甲基葡萄糖胺、三乙醇胺、氨丁三醇等。可接受的无机碱包括氢氧化铝、氢氧化钙、氢氧化钾、碳酸钾和氢氧化钠。

在本发明中，“互变异构体”被理解为指代通过质子转移（即氢原子的迁移和双键位置的变化）获得的异构体。化合物的不同的互变异构体通常是相互转化的并且以各种比例在溶液中达到平衡，这可以取决于所使用的溶剂、温度或pH值。

在本发明中，“立体异构体”是指下列异构体，其具有相同的分子式和成键原子顺序，但其原子在空间上的三维取向不同。因此，它们指代E/Z异构体，非对映异构体和对映异构体。E/Z异构体是具有双键的化合物，在该双键上存在的取代基不在双键的同一侧。彼此不为镜像的立体异构体因此指代“非对映异构体”，并且非重叠镜像的立体异构体指代“对映异构体”

特别地，本发明的化合物的糖片段可以在D或L系列，优选D系列。

被键合至四个不同的取代基的碳原子被称为“手性中心”。

两个对映异构体的等摩尔混合物被称为外消旋混合物。

在本发明的含义中，“卤素”被理解为是指氟、溴、氯或碘原子。

在本发明的意义中，“(C1-C6)烷基”被理解为是指包含1至6个碳原子的饱和的直链或支链的烃链，特别是甲基、乙基、正丙基、异丙基、正丁基、异丁基、正戊基、正己基基团。

在本发明的含义中，“(C5-C9)烯基”被理解为是指包含至少一个双键且包含2至6个碳原子的直链或支链的烃链，例如，如乙烯基（ethenyl或 vinyl）或丙烯基基团。

在本发明的含义中，“(C3-C9)炔基”被理解为是指包含至少一个三键且包含2至6个碳原子的直链或支链的烃链，例如，如乙烯基或丙炔基基团。

在本发明的含义中，“(C5-C9)环烷基”被理解为是指包含3至7个，有利地是5至7个碳原子的饱和烃环，特别是环己基、环戊基或环庚基基团。

在本发明的含义中，“5至7元环杂环烷基”被理解为是指具有5至7个成员并且含有代替碳原子的一个或多个（有利地是一个或两个）杂原子（例如，如硫、氮或氧原子）的
饱和烃环，例如，如四氢呋喃基、哌啶基、吡咯烷基、四氢吡喃基、1,3- 二氧杂环戊烷基基团。

[0055] 在本发明的含义中，“芳基”被理解为是指优选包含 5 至 10 个碳原子并且包含一个或多个稠合环的芳香烃基团，例如，如苯基或萘基基团。有利的是苯基。

[0056] 在本发明的含义中，“芳基-(C1-C6)-烷基”基团被理解为是指如上所定义的任何芳基基团，其通过如上所定义的(C1-C6)-烷基基团被键合至分子。特别地，像这样的基团可以是苯基基团。

[0057] 在本发明的含义中，“C1-C6-烷基-芳基”基团被理解为是指如上所定义的(C1-C6)-烷基基团，其通过如上所定义的芳基基团被键合至分子。特别地，像这样的基团可以是甲基苯基基团。

[0058] 在本发明的含义中，“N-(C1-C6) 烷基-吡唑基”基团是具有下式的基团，其中 X 代表如上所定义的(C1-C6) 烷基基团：

\[
\begin{align*}
\text{(Ia),} \\
\text{(Ib),} \\
\text{(Ic),}
\end{align*}
\]

[0060] 该基团通过吡唑基片段中的两个碳原子被键合至分子的剩余部分。

[0061] 有利地，本发明的化合物基于下列式(Ia)、(Ib)和(Ic)，并且特别是(Ia)和(Ic)：

[0062] 其中 R, R1, R2, R3, R4, X1, U, V, W, n, m 和 p 如上所定义。
说明书

[0064] 有利地，R₁和R₃彼此独立地分别氢原子或OH、OSiR₄⁺R⁺₄⁻、OR⁴⁻、OCOR⁴⁻、OCOR⁺或OCONR⁺⁻基团，并且其中还分别地氢原子或OH、OSiR₄⁺R⁺₄⁻、OR⁴⁻、OCOR⁴⁻、OCOR⁺或OCONR⁺⁻基团。

[0065] 更有利地，R₁和R₃彼此独立地分别氢原子或OH、OR⁴⁻或OCOR⁺基团，并且R₃分别地氢原子或OH、OR⁴⁻或OCOR⁺基团。

[0066] 甚至更有利地，R₁、R₂和R₃可以彼此独立地选自OH、-O-(C₁-C₆)-烷基、-O-芳基、-O-(C₁-C₆)-烷基-芳基和-OCO-(C₁-C₆)-烷基基团。

[0067] 特别地，R₁、R₂和R₃可以彼此独立地选自OH、OSiMe₃和苯氧基(OBn)基团，并且优选OH和OBn。

[0068] 根据一个特定的实施方案，R₁、R₂和R₃是相同的。

[0069] 根据另一个特定的实施方案，R₁、R₂和R₃是相同的并且每一个都代表OH基团以及R分别代表CH₂OH基团。

[0070] 有利地，R分别代表氢原子或CH₃、CH₂OH、CH₂OR¹⁻或CH₃OSiR⁺⁻⁻⁻⁻基团，并且特别是氢原子或CH₃、CH₂OH、CH₂OR¹⁻或CH₃OSiR⁺⁻⁻⁻⁻基团。

[0071] 其中R¹⁻⁻ᵃ
和 CONR^2R^2 基团；更有利于选自卤素原子、OH、(C_1-C_6)-烷基、(C_2-C_6)-烯基、(C_2-C_6)-炔基、(C_3-C_7)-环烷基、OR^2、COR^2、OCOR^2 和 CO_2R^2 基团；甚至更有利于选自卤素原子、OH、(C_1-C_6)-烷基和 OR^2 基团。

[0081] （1）在第一个实施方案中，n 为 1。

[0082] 在该实施方案的第一子类中，m=0 且 U 是任选被取代的苯基。因此，根据本发明的化合物可以表示为下列式(I-1)，并且更特别地是下列式(I-1a)、(I-1b) 和 (I-1c)，并且特别是(I-1a) 和 (I-1c)；

[0083]
或其药学上或化妆品学上可接受的盐、互变异构体、立体异构体或任何比例的立体异构体的混合物，特别是对映异构体的混合物，并且特别是外消旋混合物，

其中，

- R_1、R_2、R_3 和 R_4 如上所定义，和

- X_1, X_2, X_3, X_4 和 X_5 彼此独立地代表氢原子、卤素原子、CN、OH、SO$_2$、SiR$_3^1$、R$_3^1$、R$_3^2$、R$_3^3$、R$_3^4$、(C$_1$-C$_9$)、烷基、(C$_2$-C$_9$)、烯基、(C$_3$-C$_7$)、炔基、(C$_3$-C$_7$)、环烷基、OR$_2^1$、COR$_2^1$、OCOR$_2^1$、CO$_2$R$_2^1$、NR$_2^1$、NR$_3^2$、NR$_3^3$、NR$_3^4$、NR$_3^5$、COR$_2^1$、CONR$_2^5$R$_2^6$、SR$_2^1$、SO$_2$R$_2^1$、CSR$_2^1$ 或 OSO$_2$R$_2^1$ 基团；有利地选自氢原子、卤素原
子，OH、(C₁₋C₆) - 烷基、(C₂₋C₆) - 烷基、(C₃₋C₆) - 烷基、(C₁₋C₆) - 环烷基、OR²¹、COR²¹、OCOR²¹、CO₂R²¹、NR²¹R²⁰、NR²¹COR²¹ 和 CONR²¹R²⁰ 基团；更有利地选自氢原子、卤素原子、OH、(C₁₋C₆) - 烷基、(C₂₋C₆) - 烷基、(C₃₋C₆) - 烷基、(C₁₋C₆) - 环烷基、OR²¹、COR²¹、OCOR²¹ 和 CO₂R²¹ 基团；甚至更有利地选自氢原子、卤素原子、OH、(C₁₋C₆) - 烷基和 OR²¹ 基团。

[0088] 该第一子类内的实例包括但不限于：

[0089]

[0090] 在该实施方案的第二子类中，m=1，p=0 且 U 和 V 彼此独立地代表任选被取代的苯基。因此，根据本发明的化合物可以表示为下列式 (1-2)，并且更特别地是下列式 (1-2a) 和 (1-2b)，并且特别是 (1-2a)：

[0091]
[0092]

[0093] 或其药学上或化妆品学上可接受的盐、互变异构体、立体异构体或任何比例的立体异构体的混合物，特别是对映异构体的混合物，并且特别是外消旋混合物，

[0094] 其中：

[0095] -R、R₁、R₂ 和 R₃ 如上所定义，和

[0096] -X₁、X₂、X₃、X₄、X₅、X₆、X₇ 和 X₈ 彼此独立地代表氢原子、卤素原子、CN、OH、SO₂、SiR₂R₂R₂、(C₁=C₆) - 烷基、(C₂=C₆) - 烯基、(C₃=C₆) - 炔基、(C₅=C₆) - 环烷基、OR₂¹、COR₂¹、OCOR₂¹、CO₂R₂¹、NR₂₆¹、NR₅COR₂¹、CONR₂₅R₂₆、SR₂¹、SO₂R₂¹、OSO₂R₂¹ 或 OSO₂R₂¹ 基团；有利地选自氢原子、卤素原子、OH、(C₁=C₆) - 烷基、(C₂=C₆) - 烯基、(C₃=C₆) - 炔基、(C₅=C₆) - 环烷基、OR₂¹、COR₂¹、OCOR₂¹、CO₂R₂¹、NR₂₆¹、NR₅COR₂¹ 和 CONR₂₅R₂₆ 基团；更有利地选自氢原子、卤素原子、OH、(C₁=C₆) - 烷基、(C₂=C₆) - 烯基、(C₃=C₆) - 炔基、(C₅=C₆) - 环烷基、OR₂¹、COR₂¹、OCOR₂¹ 和 CO₂R₂¹ 基团；甚至更有利地选自氢原子、卤素原子、OH、(C₁=C₆) - 烷基和 OR₂¹ 基团。

[0097] 该第二子类内的实例包括但不限于：

[0098]

[0099] 在本实施方案的第三子类中，m=1，p=0，U 是吡嗪基或 N-(C₁=C₆) 烷基 - 吡嗪基基团和 V 是任选被取代的苯基。因此，根据本发明的化合物可以表示为下列式 (1-3)，并且更特别是下列式 (1-3a) 和 (1-3b)，并且特别是 (1-3a)：

[0100]
或其药学上或化妆品学上可接受的盐、互变异构体、立体异构体或任何比例的立体异构体的混合物，特别是对映异构体的混合物，并且特别是外消旋混合物。

其中：

- R、R₁、R₂ 和 R₃ 如上所定义，

- X₁、X₂、X₃、X₄、X₅ 和 X₆ 彼此独立地代表氢原子、卤素原子、CN、OH、SO₂、SiR₃R₄R₅、(C₁–C₆) - 烷基、(C₂–C₆) - 烯基、(C₃–C₆) - 烷基、(C₅–C₆) - 烷基、(C₆–C₆) - 烷基、(C₇–C₆) - 烷基、(C₈–C₆) - 烷基、(C₉–C₆) - 烷基、(C₁₀–C₆) - 烷基、(C₁₁–C₆) - 烷基、(C₁₂–C₆) - 烷基、(C₁₃–C₆) - 烷基、(C₁₄–C₆) - 烷基、(C₁₅–C₆) - 烷基、(C₁₆–C₆) - 烷基、(C₁₇–C₆) - 烷基、(C₁₈–C₆) - 烷基、(C₁₉–C₆) - 烷基、(C₂₀–C₆) - 烷基、(C₂₁–C₆) - 烷基、(C₂₂–C₆) - 烷基、(C₂₃–C₆) - 烷基、(C₂₄–C₆) - 烷基、(C₂₅–C₆) - 烷基、(C₂₆–C₆) - 烷基、(C₂₇–C₆) - 烷基、(C₂₈–C₆) - 烷基、(C₂₉–C₆) - 烷基、(C₃₀–C₆) - 烷基、(C₃₁–C₆) - 烷基、(C₃₂–C₆) - 烷基、(C₃₃–C₆) - 烷基、(C₃₄–C₆) - 烷基、(C₃₅–C₆) - 烷基、(C₃₆–C₆) - 烷基、(C₃₇–C₆) - 烷基、(C₃₈–C₆) - 烷基、(C₃₉–C₆) - 烷基、(C₄₀–C₆) - 烷基、(C₄₁–C₆) - 烷基、(C₄₂–C₆) - 烷基、(C₄₃–C₆) - 烷基、(C₄₄–C₆) - 烷基、(C₄₅–C₆) - 烷基、(C₄₆–C₆) - 烷基、(C₄₇–C₆) - 烷基、(C₄₈–C₆) - 烷基、(C₄₉–C₆) - 烷基、(C五十–C₆) - 烷基、(C五十–C₇) - 烷基、(C五十–C₈) - 烷基、(C五十–C₉) - 烷基、(C五十–C₁₀) - 烷基、(C五十–C₁₁) - 烷基、(C五十–C₁₂) - 烷基、(C五十–C₁₃) - 烷基、(C五十–C₁₄) - 烷基、(C五十–C十五) - 烷基、(C五十–C十六) - 烷基、(C五十–C十七) - 烷基、(C五十–C十八) - 烷基、(C五十–C十九) - 烷基、(C五十–C二十) - 烷基、(C五十–C二十一) - 烷基、(C五十–C二十二) - 烷基、(C五十–C二十三) - 烷基、(C五十–C二十四) - 烷基、(C五十–C二十五) - 烷基、(C五十–C二十六) - 烷基、(C五十–C二十七) - 烷基、(C五十–C二十八) - 烷基、(C五十–C二十九) - 烷基、(C五十–C三十) - 烷基、(C五十–C三十一) - 烷基、(C五十–C三十二) - 烷基、(C五十–C三十三) - 烷基、(C五十–C三十四) - 烷基、(C五十–C三十五) - 烷基、(C五十–C三十六) - 烷基、(C五十–C三十七) - 烷基、(C五十–C三十八) - 烷基、(C五十–C三十九) - 烷基、(C五十–C四十) - 烷基、(C五十–C四十一) - 烷基、(C五十–C四十二) - 烷基、(C五十–C四十三) - 烷基、(C五十–C四十四) - 烷基、(C五十–C四十五) - 烷基、(C五十–C四十六) - 烷基、(C五十–C四十七) - 烷基、(C五十–C四十八) - 烷基、(C五十–C四十九) - 烷基、(C五十–C五十) - 烷基、(C五十–C五十零) - 烷基、(C五十–C五十)-
有利地选自氢原子、卤素原子、OH、(C₁-C₆) -烷基和 OR^{αi} 基团，和

- X 代表氢原子或 (C₁-C₆) -烷基基团。

- 该第三子类内的实例包括但不限于：

(1) 在第二个实施方案中，n是0。

(2) 在该实施方案的第一子类中，m=1, p=0, U 和 V 独立地是任选被取代的苯基。因此，根据本发明的化合物可以表示为下列式(I-4)，并且更特别是下列式(I-4a)和(I-4b)，并且特别是(I-4a)：

或其药学上或化妆品学上可接受的盐、互变异构体、立体异构体或任何比例的立
体异构体的混合物，特别是对映异构体的混合物，并且特别是外消旋混合物，

其中：

- R, R’, R”, R” 和 R” 如上所定义，和

- X₁, X₂, X₃, X₄, X₅, X₆, X₇, X₈ 和 X₉ 彼此独立地代表氢原子、卤素原子、CN、OH、SO₂、
 SiR”R”R”、(C₁-C₆) - 烷基、(C₃-C₆) - 烯基、(C₅-C₆) - 炔基、(C₇-C₈) - 烷基、OR₂₅、COR₂₅、OCOR₂₅、
 CO₂R₂₅、NR₂₅R₂₅、NR₂₅COR₂₅、CONR₂₅R₂₅、SR₂₅、SO₂R₂₅、CSR₂₅ 或 OSOR₂₅ 基团；有利地选自氢原子、卤素原子、OH、(C₁-C₆) - 烷基、(C₃-C₆) - 烯基、(C₅-C₆) - 炔基、(C₇-C₈) - 烷基、OR₂₅、COR₂₅、OCOR₂₅、
 CO₂R₂₅、NR₂₅R₂₅、NR₂₅COR₂₅ 和 CONR₂₅R₂₅ 基团；更有利地选自氢原子、卤素原子、OH、(C₁-C₆) - 烷基、
 (C₃-C₆) - 烯基、(C₅-C₆) - 炔基、(C₇-C₈) - 烷基、OR₂₅、COR₂₅、OCOR₂₅ 和 CO₂R₂₅ 基团；甚至更有利地选自氢原子、卤素原子、OH、(C₁-C₆) - 烷基和 OR₂₅ 基团。

该第一子类内的实例包括但不限于：

在该实施方案的第二子类中，m=1, p=1, u 和 w 独立地是任选被取代的苯基且 v 是任选被取代的噻吩基。因此，根据本发明的化合物可以表示为下列式(I-5)，并且更特别是下式(I-5a) 和 (I-5b)，并且特别是(I-5a)：

[0118]
或其药学上或化妆品学上可接受的盐、互变异构体、立体异构体或任何比例的立体异构体的混合物，特别是对映异构体的混合物，并且特别是外消旋混合物，

其中：
-R₁、R₂、R₃ 和 R₄ 如上所定义，和
-X₁、X₂、X₃、X₄、X₅、X₆、X₇、X₈、X₉、X₁₀ 和 X₁₁ 彼此独立地代表氢原子、卤素原子、CN、
OH, SO₂, SiR³R⁴R⁵, (C₁-C₉) - 烷基, (C₂-C₉) - 基, (C₂-C₈) - 烷基, (C₃-C₉) - 烷基, (C₄-C₉) - 烷基, (C₅-C₉) - 烷基, OR²¹, COR²¹, OCOR²¹, CO₂R²¹, NR²⁸R²⁹, NR²⁴COR²¹, CONR²⁵R³⁰, SR²⁴, SO₃R²⁴, CSR²⁴ 或 OSO₃R²⁴ 基团; 有利地选自氢原子、卤素原子、OH, (C₁-C₉) - 烷基, (C₂-C₉) - 烷基, (C₃-C₉) - 烷基, (C₄-C₉) - 烷基, (C₅-C₉) - 烷基, (C₆-C₉) - 烷基, OR²¹, COR²¹, OCOR²¹, CO₂R²¹, NR²⁸R²⁹, NR²⁴COR²¹ 和 CONR²⁵R³⁰ 基团; 更有利地选自氢原子、卤素原子、OH, (C₁-C₉) - 烷基, (C₂-C₉) - 烷基, (C₃-C₉) - 烷基, (C₄-C₉) - 烷基, (C₅-C₉) - 烷基, OR²¹, COR²¹, OCOR²¹ 和 CO₂R²¹ 基团; 甚至更有利地选自氢原子、卤素原子、OH, (C₁-C₉) - 烷基和 OR²¹ 基团。

[0123] 该第二子类内的实例包括但不限于：

[0124]

和

[0125] 因此，根据本发明的化合物可以选自下列化合物：

[0126]
[0128] 本发明的另一个目的是如上所定义的化合物，其用作药物，特别是用作钠依赖性葡萄糖共转运蛋白如SGLT1、SGLT2和SGLT3的抑制剂。

[0129] 在本发明的含义中，“钠依赖性葡萄糖共转运蛋白的抑制剂”被理解为是指能够部分地或完全地抑制钠依赖性葡萄糖共转运蛋白的化合物。

[0130] 更特别地，本发明的化合物可用于治疗或预防糖尿病，并且更特别是II型糖尿病，与糖尿病有关的并发症如如肢关节炎、心肌梗塞、肾功能不全、神经病变或失明、高血压症、高胰岛素血症、肥胖症、高甘油三酯血症、X综合征和动脉硬化。特别地，本发明的化合物用于治疗或预防糖尿病。

[0131] 本发明的化合物同样可以用作抗癌药物、抗感染药物、抗病毒药物、抗血栓形成药物或抗炎药物。

[0132] 本发明还涉及本发明的化合物，其用于治疗或预防糖尿病，并且更特别是II型糖尿病，与糖尿病有关的并发症如肢关节炎、心肌梗塞、肾功能不全、神经病变或失明、高血压症、高胰岛素血症、肥胖症、高甘油三酯血症、X综合征和动脉硬化的药物中的用途，以及在制备抗癌药物、抗感染药物、抗病毒药物、抗血栓形成药物或抗炎药物中的用途，并且特别是在制备用于治疗或预防糖尿病的药物中的用途。

[0133] 本发明还涉及一种方法，其用于治疗或预防糖尿病，并且更特别是II型糖尿病，与糖尿病有关的并发症如肢关节炎、心肌梗塞、肾功能不全、神经病变或失明、高血压症、高胰岛素血症、肥胖症、高甘油三酯血症、X综合征和动脉硬化的药物中的用途，以及在制备抗癌药物、抗感染药物、抗病毒药物、抗血栓形成药物或抗炎药物中的用途。
高胰岛素血症、肥胖症、高甘油三酯血症、X综合征和动脉硬化，以及用于抗瘀治疗、抗感染治疗、抗病毒治疗、抗血栓形成治疗或抗炎治疗，并且特别是用于治疗或预防糖尿病，所述方法包括向有其需要的患者施用有效量的至少一种本发明的化合物。

[0135] 本发明的甲硅烷基化合物，以及其中 R=CH₂OBn，R₁=OBn，R₂=OBn 和 / 或 R₃=OBn 的化合物在药物用途方面将不是优选。

[0136] 用作药物并且特别是用于治疗或预防糖尿病的化合物更特别地是式 (Ia) 或 (Ib)，并且特别是 (Ia) 的化合物；特别是式 (I-2) 至 (I-5)，如 (I-2a) 至 (I-5a) 和 (I-2b) 至 (I-5b)，并且特别是 (I-2a) 至 (I-5a) 的化合物。

[0137] 本发明的另一个目的是如上所定义的本发明的化合物的化妆品用途，用于使皮肤亮化、漂白、脱色，从皮肤上除去污点，特别是老年斑和雀斑，或者预防皮肤的色素沉着，或用作抗氧化剂，特别是通过外部应用。

[0138] 因此，本发明涉及一种方法，其用于使皮肤亮化、漂白、脱色，从皮肤上除去污点，特别是老年斑和雀斑，或者预防皮肤的色素沉着，所述方法包括至少一种本发明的化合物的外部应用。

[0139] 本发明的甲硅烷基化的化合物，以及其中 R=CH₂OBn，R₁=OBn，R₂=OBn 和 / 或 R₃=OBn 的化合物在化妆品用途方面将不是优选。

[0140] 在化妆品领域中常用的，特别是用作脱色剂或亮化剂的化合物更特别地是式 (Ia)、(Ib) 或 (Ic)，并且特别是 (Ic) 的化合物；特别是式 (I-1)，如 (I-1a)、(I-1b) 和 (I-1c)，并且更特别是 (I-1c) 的化合物。

[0141] 特别地，具有脱色活性的化合物是酪氨酸酶抑制剂。特别地，它们是下列式的化合物：

，并优选是下列式的化合物，

如：

和

[0145] 本发明的另一个目的是一种药物组合物或化妆品组合物，其包含至少一种如上所
定义的本发明的化合物和至少一种药学上或化妆品学上可接受的载体。

[0146] 根据本发明的化合物可以被口服施用、舌下施用、肠胃外施用、皮下施用、肌内施用、静脉内施用、经皮施用、局部施用或直肠施用。

[0147] 在本发明的药物组合物中，对于口服施用、舌下施用、肠胃外施用、皮下施用、肌内施用、静脉内施用、经皮施用、局部施用或直肠施用而言，活性成分可以与常规的药物载体混合在一起，以施用单位的形式施用于动物或人类。适合的施用单位形式包含口服形式如片剂、凝胶胶囊剂、粉剂、颗粒剂和口服的溶液剂或混悬剂，舌下或口腔施用形式，肠胃外、皮下、肌内、静脉内、鼻内或眼内施用形式和直肠施用形式。

[0148] 对固体组合物被制备成片剂形式时，主要活性成分与药用载体如明胶、淀粉、乳糖、硬脂酸镁、滑石、阿拉伯胶等混合。片剂可以采用蔗糖或其他合适的材料包衣或者以如此的方式处理以至于其具有延长的或延迟的活性并且连续释放预定量的活性成分。

[0149] 通过将活性成分与稀释剂混合并通过将获得的混合物倾倒入软质或硬质胶囊中来获得凝胶胶囊剂。

[0150] 糖浆剂或酏剂形式的制剂可以包含活性成分连同甜味剂、防腐剂以及芳香剂和适当的着色剂。

[0151] 可分散于水中的粉剂或颗粒剂可以包含活性成分，其与分散剂、湿润剂或悬浮剂以及与矫味剂或甜味剂混合在一起。

[0152] 栓剂用于直肠施用，其采用在直肠温度下熔化的粘合剂，例如，可可脂或聚乙二醇来制备。

[0153] 水性混悬剂、等渗的生理盐水溶液剂或无菌的且可注射的溶液剂（其包含药理学上可兼容的分散剂和/或湿润剂）用于肠胃外、鼻内或眼内施用。

[0154] 活性成分（可能与一种或多种添加剂载体一起）也可以被配制成微包剂。

[0155] 本发明的化合物能够以介于0.01mg/天和1000mg/天之间的剂量来使用，以单一剂量/天的方式来提供或者以全天内若干剂量的方式来施用，例如，相同剂量每天两次。所施用的日剂量有利地介于0.1mg和100mg之间，甚至更有利地介于2.5mg和50mg之间。使用超出这些范围的剂量可能是需要的，本领域技术人员自身将会意识到这一点。

[0156] 在本发明的一个特定实施方案中，药物组合物或化妆品组合物也可以被配制用于外部施用。它可以被引入到该施用类型的常用形式（即，特别是洗剂、泡沫剂、凝胶剂、分散剂、喷雾剂、香波、精华素、面膜、体乳或霜剂）中，所述常用形式具有赋形剂，所述赋形剂特别地能够穿透皮肤，以便于改善活性成分的性质和可接近性。除了根据本发明的组合物之外，这些组合物通常进一步包含生理上可接受的介质，所述介质通常包含水或溶剂，例如，醇、醚或乙二醇。所述组合物还可以包含表面活性剂、防腐剂、稳定剂、乳化剂、增稠剂、产生互补效果或可能的协同作用的其他活性成分、微量元素、精油、香料、着色剂、胶原蛋白、化学或矿物过滤剂，保湿剂或温泉水。

[0157] 在一个特定实施方案中，除了本发明的化合物以外，本发明的药学组合物可以包含至少一种其它活性成分。

[0158] 可以举出的活性成分的实例是抗糖尿病剂，如磺酰脲类化合物（其为增加胰岛素分泌的降血糖磺酰脲）如（例如）氯磺丙脲、甲苯磺丁脲、妥拉磺脲、格列吡嗪、格列齐特、格列本脲、格列喹酮和格列美脲；减少肝脏糖异生和胰岛素抗性的双胍类如二甲双胍；增
说明书

加胰岛素敏感性的噻唑烷二酮类（也被称为格列酮类）如罗格列酮、吡格列酮和环格列酮；
减慢碳水化合物的肠道吸收的 α-糖苷酶抑制剂类如阿卡波糖、米格列醇和伏格列波糖；
增加胰岛素胰腺分泌的氯菌苯酸类（也被称为格列奈类）如瑞格列奈和那格列奈；
降血血糖素模拟物类如艾塞那肽或二肽基肽酶-4（DPP4）抑制剂类如西他列汀、维格列汀和胰岛素；
或者降血脂剂，如通过抑制酶 HMG-CoA 还原酶来降低胆固醇的他汀类如阿托伐他汀和西立伐他汀；
贝特类如苯扎贝特、吉非贝齐和非诺贝特，或者依折麦布。

【0159】本发明还涉及用于制备根据本发明的化合物的方法。
【0160】因此，本发明涉及一种用于制备其中 R₂=H 的根据本发明所述的式 (I) 的化合物的
方法，其包括下列式 (II) 的化合物的氟化：

![化合物II](image)

【0161】其中 R₁、R₂、R₃、X₁、U、V、W、n、m 和 p 如上所定义。
【0162】氟化将在氟化剂如 DAST（二乙氨基三氟化硫）的存在下进行。
【0163】如果有必要，那么可以进行保护、脱保护、取代等额外的步骤，这些步骤是本领域
技术人员熟知的。
【0164】借助于本领域技术人员熟知的方法，如通过萃取、蒸发溶剂或者通过沉淀或结晶
（接着通过过滤），从反应介质中通过分离可以回收获得的式 (I) 的化合物。
【0165】如果有必要，通过本领域技术人员熟知的方法，如通过重结晶、通过蒸馏、通过硅
胶柱色谱法或者通过高效液相色谱法 (HPLC) 也可以纯化化合物。
【0166】通过下列式 (III) 的化合物的氧化可以制备式 (II) 的化合物：

![化合物III](image)

【0167】其中 R₁、R₂、R₃、X₁、U、V、W、n、m 和 p 如上所定义。
【0168】根据本领域技术人员熟知的方法，将在氧化剂的存在下进行氧化。氧化剂例如可以
是戴斯-马丁氧化剂，PAH (氯代酸胺钯盐) 等。
【0169】当 n=1 时，用于制备式 (III) 的化合物的方法可以包括下列连续的步骤：
【0170】(a1) 下列式 (IV) 的化合物：

![化合物IV](image)

【0171】其中 R₁、R₂、R₃、X₁、U、V、W、n、m 和 p 如上所定义。
其中 R、R₁、R₂ 和 R₃ 如上所定义，
与下列式 (V) 的化合物：

其中 X₁、U、V、W、m 和 p 如上所定义，
之间的偶联，以得到下列式 (VI) 的化合物：

其中 R、R₁、R₂、R₃、X₁、U、V、W、m 和 p 如上所定义，和
(b1) 在前述步骤 (a1) 中获得的式 (VI) 的化合物的硼氢化 - 氧化反应，以得到其中 n=1 的式 (III) 的化合物。
步骤 (a1) 可以在本领域技术人员熟悉的 Mitsunobu 反应的条件下进行，特别是使用 DEAD (偶氮二甲酸二乙酯)、DIAD (偶氮二甲酸二异丙基酯) 或 ADDP (偶氮二甲酸二环烷) 作为偶联剂并且使用 PPh₃ 或 P(nBu)₃ 作为膦配体。
步骤 (b1) 可以在本领域技术人员熟知的条件下进行，特别是通过与硼烷如 BH₃，并且特别是 BH₃、THF 或 BH₃·Me₂S，在溶剂 (如 THF) 中的反应，接着在碱 (如氢氧化钠) 的存在下加入过氧化氢。
当 n=0 时，用于制备式 (III) 的化合物的方法可以包括下列连续的步骤：
(a2) 下列式 (VII) 的化合物：

其中 R、R₁、R₃ 和 R₄ 如上所定义，
与下列式 (VIII) 的化合物：
其中 X₁, U, V, W, m 和 p 如上所定义且 Aₐ 代表 -Li 或 -Mg-Hal, Hal 是卤素原子，之间的偶联，以得到下列式 (IX) 的化合物:

![式 (IX)](attachment:image)

其中 R₁, R₂, R₃, X₁, U, V, W, m 和 p 如上所定义，

(b2) 在前述步骤 (a2) 中获得的式 (IX) 的化合物的还原，以得到下列式 (X) 的化合物:

![式 (X)](attachment:image)

其中 R₁, R₂, R₃, X₁, U, V, W, m 和 p 如上所定义，和

(c2) 在前述步骤 (b2) 中获得的式 (X) 的化合物的硼氢化 - 氧化反应，以得到其中 n=0 的式 (III) 的化合物。

步骤 (a2) 可以通过式 (VIII) 的化合物与式 (VII) 的化合物在溶剂如 THF 中的反应来进行，所述式 (VIII) 的化合物可以由卤化衍生物通过与镁反应以形成格氏试剂或者通过卤素交换使用锂碱如正丁基锂以形成相应的锂化的化合物来获得。

这种式 (VII) 的化合物在本领域技术人员熟知的条件下，并且特别是根据 EP0240175 或 Carbohydrate Research, 2010, 345, 1056-1060 中描述的方法来获得。

式 (VIII) 的化合物可以由卤化衍生物通过与镁反应以形成格氏试剂或者通过卤素交换使用锂碱如正丁基锂以形成相应的锂化的化合物来获得。

步骤 (b2) 可以在还原剂如 Et₃SiH 和路易斯酸如 BH₃·Et₂O 的存在下进行。

步骤 (c2) 相当于前述步骤 (b1)。

在下文和下列实验部分中将更加详细地描述用于制备其中 R₃=H 的根据本发明的化合物的方法。

A方案: 第一个实施例的化合物的合成途径 (其中 n=1)

33
(a) 在第一步骤中，环己烯酮 T1 经历涉及标准条件如 NaBH₄、NaBH₄/CeCl₃、LiAlH₄ 或 L-三仲丁基硼氢化锂的还原。

(b) 然后在使用 DEAD、DIAD 或 ADDP 作为偶联剂且使用 PPh₃ 或 P(nBu)₃ 作为膦配体的标准条件下发生化合物 T2 和醇 T3 之间的 Mitsunobu 偶联反应。

(c) 使用 BH₃·THF 或 BH₃·Me₂S 的化合物 T4 的硼氢化生成化合物 T5。

(d) 根据涉及 PCC、戴斯-马丁氧化剂的典型方法，化合物 T5 的醇官能团被氧化成酮，产生化合物 T6。

(e) 使用氟化剂如 DAST 氟化化合物 T6 以得到二氟碳环糖（difluorocarbasugar）T7。在最后的步骤中，根据保护基团（Protective groups in organic synthesis, T. W. Greene）中描述的典型方法可以除去保护基团。

更特别地：

(a) 在第一步骤中，环己烯酮 T8 经历如 Can. J. Chem. 2004, 82, 1361-1364 中描述的涉及三仲丁基硼氢化锂的区域选择性还原。

(b) 然后在使用 DEAD、DIAD 或 ADDP 作为偶联剂且使用 PPh₃ 或 P(nBu)₃ 作为膦配
体的标准条件下发生化合物 T9 和醇 T3 之间的 Mitsunobu 偶联反应。
[0215] （c）使用 BH₃·THF 或 BH₃·Me₂S 的化合物 T10 的硼氢化产生化合物 T11。
[0216] （d）根据涉及 PCC、戴斯-马丁氧化剂的典型方法，化合物 T11 的醇官能团被氧化成醋，产生化合物 T12。
[0217] （e）使用氧化剂如 DAST 氧化化合物 T12 以得到二氯环已烯 T13。在最后的步骤中，
根据 Protective groups in organic synthesis, T.W. Greene 中描述的典型方法可以除去
保护基团。
制备环己烯酮 T8，将合成法应用于来自市售可得的 2, 3, 4, 6-O- 萘基 -D- 吡喃葡萄糖的葡萄
糖系列。
[0219] 化合物 T3 可以是市售可得的（第一子类）或根据下列方案合成的：

[0220] （第二子类）
[0221] 或
[0222] （R₅ 和 R₆ 代表 (C₈-C₂₈) 烷基基团）（第三子类）
[0224] 方案 B：第二个实施方案的化合物的合成途径（其中 n=0, R₁=H）
[0225] （a）在第一步骤中，根据典型方法，由相应的卤代化合物制备的格氏试剂或锂化的
化合物 T14 被加入到环己烯酮 T1 中。
[0228] (b) 在合成法的下一个步骤中，在路易斯酸如 BF₃·Et₂O 的存在下，采用还原剂如 Et₃SiH 处理化合物 T15，产生化合物 T16。
[0229] (c) 使用 BH₃·THF 或 BH₃·Me₂S 的化合物 T16 的硼氢化产生化合物 T17。
[0230] (d) 根据涉及 PCC, 戴斯 - 马丁氧化剂的典型方法，化合物 T17 的醇官能团被氧化成酮，产生化合物 T18。
[0231] (e) 使用氟化剂如 DAST 氟化化合物 T18 以得到二氟碳环糖 T19。在最后的步骤中，根据 Protective groups in organic synthesis, T.W. Greene 中描述的典型方法可以除去保护基团。
[0232] 并且更特别地：
[0233]

[0234] (a) 在第一步骤中，根据典型方法，由相应的卤代化合物制备的格氏试剂或溴化的化合物 T14 被加入到环己烯酮 T8 中。
[0235] (b) 在合成法的下一个步骤中，在路易斯酸如 BF₃·Et₂O 的存在下，采用还原剂如 Et₃SiH 处理化合物 T20，产生化合物 T21。
[0236] (c) 使用 BH₃·THF 或 BH₃·Me₂S 的化合物 T21 的硼氢化产生化合物 T22。
[0237] (d) 根据涉及 PCC, 戴斯 - 马丁氧化剂的典型方法，化合物 T22 的醇官能团被氧化成酮，产生化合物 T23。
[0238] (e) 使用氟化剂如 DAST 氟化化合物 T23 以得到二氟碳环糖 T24。在最后的步骤中，根据 Protective groups in organic synthesis, T.W. Greene 中描述的典型方法可以除去保护基团。
[0239] 根据下列方案可以合成用于获得化合物 T14 的卤代化合物：
[0240]

[0241] 本发明还涉及一种用于制备其中 n=0 且 R₃≠H 的根据本发明所述的式 (I) 的化合
物的方法，其包括如上所定义的式(VIII)的化合物与下列式(XI)的化合物的偶联

[0242]

其中 R、R1、R2 和 R3 如上所定义，

[0243] 以得到其中 n=0 且 R2=OH 的式(1)的化合物，

[0244] 任选地，接着进行 OH 官能团的取代以得到其中 n=0 且 R2=卤素、OSiR4R4R2、OR2、

[0245] OCONR2R3 的式(1)的化合物。

[0246] 这些偶联和取代的步骤可以在本领域技术人员熟知的条件下进行。

[0247] 如果有必要，那么可以进行保护、脱保护、取代等额外的步骤，这些步骤是本领域技术

[0248] 技术人员熟知的。

[0249] 借助于本领域技术人员熟知的方法，如通过萃取、蒸发溶剂或者通过沉淀或结晶

[0250] (接着通过过滤) 或者通过通过反应通过反应介质中通过分离可以回收获得的式(1)的化合物。

[0251] 用于制备式(XI)的化合物的方法可以包括下列连续的步骤：

[0252] (a3) 式(XII)的化合物的硼氢化 - 氧化反应

[0253] 其中 R、R1、R2 和 R3 如上所定义且 R2=SiR5R6R3 或 CH2OCH3 (甲氧基甲基-MOM)，

[0254] 其中 R4、R5 和 R6 各自独立地代表(C1-C6) - 烷基、芳基或芳基 -(C1-C6) - 烷基基团。

[0255] 以得到下列式(XIII)的化合物

[0256] 其中 R、R1、R2 和 R3 如上所定义且 R2=SiR5R6R3 或 CH2OCH3 (甲氧基甲基-MOM)，

[0257] (b3) 在前述步骤(a3)中获得的式(XIII)的化合物的氧化，以得到下列式(XIV)的化合物

[0258]
[0259] 其中 R，R₁，R₂ 和 R₃ 如上述所定义且 R₇=SiR₄R₅R₆ 或 CH₂OCH₃ 甲氨基甲基-MOM，
[0260] (c3) 当 R₇=SiR₄R₅R₆ 时，在前述步骤(b3)中获得的式(XIV)的化合物的脱保护，
以得到其中 R₇=H 的式(XIV)的化合物，
[0261] (d3) 当 R₇=H 时，在前述步骤(c3)中获得的其中 R₇=H 的式(XIV)的化合物保护。
以得到其中 R₇=COR₈ 且 R₈ 代表 (C₁-C₈)-烷基，芳基或芳基-(C₁-C₈)-烷基基团的式(XIV)的化合物，
[0262] (e3) 在前述步骤(d3)或(b3)中获得其中 R₇=COR₈ 或 CH₂OCH₃ 的式(XIV)的化合物的氟化，
以得到下列式(XV)的化合物，
[0263] ![Chemical Structure](image)

[0264] 其中 R，R₁，R₂ 和 R₃ 如上述所定义且 R₇=COR₈ 或 CH₂OCH₃，
[0265] (f3) 在前述步骤(e3)中获得的其中 R₇=COR₈ 或 CH₂OCH₃ 的式(XV)的化合物的脱保护，
以得到其中 R₇=H 的式(XV)的化合物，
[0266] (g3) 在前述步骤(f3)中获得的其中 R₇=H 的式(XV)的化合物的氧化，
以得到式(XVI)的化合物。
[0267] 步骤(a3)相对于前述步骤(b1)。通过本领域技术人员熟知的保护步骤，可以由式
(XVI)的化合物制得式(XII)的化合物。
[0268] 步骤(b3)和(g3)可以在氧化剂如戴斯-马丁氧化剂，PCC（氯化亚砜钯盐）等
的存在下进行。
[0269] 只有当式(XII)的起始原料中的 R₇=SiR₄R₅R₆ 时，步骤(c3)和(d3)才是任选的和
必需的。
[0270] 步骤(c3)、(d3)和(f3)可以本领域技术人员熟知的条件下进行。
[0271] 步骤(e3)可以在氧化剂如 DAST（二乙氨基三氯化硫）的存在下进行。
[0272] 本发明还涉及一种用于制备其中 R₇=H 的根据本发明所述的式(I)的化合物的方
法，其包括以下步骤：
[0273] (a4) 其中 R₇=OH 的式(I)的化合物的溴代，以得到其中 R₇=Br 的式(I)的化合物，
和
[0274] (b4) 在前述步骤(a4)中获得的其中 R₇=Br 的式(I)的化合物的还原，以得到其中
R₇=H 的式(I)的化合物。
[0275] 步骤(a4)可以在溴化剂如 SOBr₂ 的存在下进行。有利地，反应也可以在碱如吡啶
的存在下进行。根据如上所描述的方法可以制备起始原料，以制备其中 R₇ ≠ H 的式(I)的
化合物。
[0276] 步骤(b4)可以在氯化物如 Bu₃SnH 的存在下进行。
[0277] 在下文和下列实验部分中将更加详细地描述用于制备其中 n=0 且 R₆=OH 或 H 的根据本发明的化合物的方法。
[0278] 方案C：其中 n=0 且 R₆=OH 或 H 的化合物的合成
[0279]
[0280] (a) 在第一步骤中，环己烯酮 T₄ 经历涉及标准条件如 NaBH₄、NaBH₄/CeCl₃、LiAlH₄ 或 L- 三甲基硼氢化锂的还原。
[0281] (b) 然后，根据 Protective groups in organic synthesis, T.W. Greene 中描述的熟知的过程，醇 T₂ 被保护为甲硅烷基醚的形式，以得到化合物 T₂₅。
[0282] (c) 使用 BH₃·THF 或 BH₃·Me,S 的化合物 T₂₅ 的硼氢化产生化合物 T₂₆。
[0283] (d) 然后，根据涉及 PCC, 戴斯－马丁氧化剂等的典型方法，化合物 T₂₆ 被氧化成相应的酮 T₂₇。
[0284] (e) 然后，当 T₂₇ 携带甲硅烷基化保护基团 R₇ 时，使用 Protective groups in organic synthesis, T.W. Greene 中描述的典型方法，在酸性条件下除去化合物 T₂₇ 的该甲硅烷基化保护基团，以得到醇 T₂₈。
[0285] (f) 根据 Protective groups in organic synthesis, T.W. Greene 中描述的熟知方法，该醇 T₂₈ 被保护成酯，以得到化合物 T₂₉。
[0286] (g) 使用氟化剂如 DAST 氟化化合物 T₂₇ (当 R₇=MOM 时) 或 T₂₉，以得到氟化的化
结合 T30。

(h) 在 Protective groups in organic synthesis, T.W. Greene 中描述的条件下除去化合物 T30 的醚或酯保护基团 (OR)，以得到醇 T31。

(i) 然后，使用戴斯 - 马丁氧化剂氧化该醇 T31，以得到化合物 T32。

(j) 根据典型方法，由相应的卤代化合物制备的格氏试剂或锂化的化合物 T14 被加入到化合物 T32 中，以得到 T33。

(k) 根据包括使用 SOBr2，接着加入吡啶的典型方法，化合物 T33 被溴代，以得到化合物 T34。

(l) 然后，在氢化物如 Bu3SnH 的存在下，化合物 T34 被还原。

(m) 在最后的步骤中，根据 Protective groups in organic synthesis, T. W. Greene 中描述的典型方法可以除去保护基团。

应该指出的是，仅对于其中 R₁=H 的式 (I) 的化合物的制备进行步骤 (k) 和 (l)。

并且更特别地：

(a) 在第一步中，环己烯酮 T8 在 THF 和 MeOH 中经历涉及 NaBH₄/CeCl₃ 的选择性还原。

(b) 然后，使用咪唑和 TBDMSCL 保护醇 T36，以得到其中 R₂=TBDMS 的化合物 T37；或者使用二甲氧基甲烷和 P₂O₅ 保护醇 T36，以得到其中 R₂=CH₂OCH₃ 的化合物 T37。

(c) 使用 BH₃/Me₂S 的化合物 T37 的硼氢化产生化合物 T38。

(d) 然后，根据涉及 PCC，戴斯 - 马丁氧化剂等的典型方法，化合物 T38 被氧化成相
应的酶 T39。

当 R₇=TBDMST 时，在酸性条件下（如甲醇和二氯甲烷中的 12N HCl）除去化合物 T39 的该甲硅烷基化保护基团，以得到酯 T40。

（f）使用 Ac₂O,吡啶和催化量的 DMAP（二甲氨基吡啶），该酯 T40 被保护成乙酸酯，以得到化合物 T41。

（g）使用二氯甲烷中的 DAST 氟化化合物 T41 或化合物 T39（其中 R₇=CH₃OCH₃），以得到氟化的化合物 T42。

当 R₇=Ac 时，使用甲醇中的甲醇钠除去化合物 T42 的乙酸酯保护基团，以得到酯 T43。

（h）当 R₇=CH₃OCH₃ 时，使用二氯甲烷中的 TFA 除去 T42 的 MOM 保护基团，以得到酯 T43。

（i）然后，使用戴斯 - 马丁氧化剂氧化该酯 T43，以得到化合物 T44。

（j）根据典型方法，由相应的卤代化合物制备的格氏试剂或锂化的化合物 T14 被加入到化合物 T44 中，以得到化合物 T45。

（k）采用二氯甲烷中的 SO₂Br₂，化合物 T45 被溴化，接着加入吡啶，以得到化合物 T46。

（l）然后，在甲苯中的 Bu₃SnH 的存在下，化合物 T46 被还原，以得到化合物 T47。

（m）在最后的步骤中，根据 Protective groups in organic synthesis, T. W. Greene 中描述的典型方法可以除去保护基团。

应该指出的是，仅对于其中 R₇=H 的式（I）的化合物的制备进行步骤（k）和（l）。

本发明还涉及一种用于制备其中 R₇=H 且 n=1 的根据本发明所述的式（I）的化合物的方法，其包括下列式（XVI）的化合物与如上所定义的式（V）的化合物之间的偶联反应：

![图示](XVI)

其中 R、R₁、R₂ 和 R₃ 如上所定义且 R₅ 代表离去基团。

如本发明中所使用的术语“离去基团”是指一种化学基团，其在亲核取代反应的过程中很容易被亲核试剂代替，在当前的实例中，亲核试剂是醇，即携带 OH 基团的分子。特别地，这种离去基团可以是卤素原子或磺酸酯。特别地，磺酸酯是 -OSO₂-R₅ 基团，其中 R₅ 代表（C₁-C₆ 烷基）、芳基、芳基-(C₁-C₆) 烷基或 (C₁-C₆) 烷基-芳基基团。磺酸酯可以是甲磺酸酯 (CH₃-S(O₂)O⁻)、三氟甲磺酸酯 (CF₃-S(O)O⁻) 或甲苯磺酸酯 (p-Me-C₆H₄-S(O)O⁻)。

该反应可以在本领域技术人员熟知的条件下进行，特别是在碱如 NaOH, K₂CO₃ 或 MeONa 的存在下进行。

如果有必要，那么可以进行保护、脱保护、取代等额外的步骤，这些步骤是本领域技术人员熟知的。

借助于本领域技术人员熟知的方法，如通过萃取、蒸发溶剂或者通过沉淀或结晶
（接着通过过滤），从反应介质中通过分离可以回收获得的式（1）的化合物。

[0318] 如果有必要，通过本领域技术人员熟知的方法，如通过重结晶、通过蒸馏、通过硅胶柱色谱法或者通过高效液相色谱法（HPLC）也可以纯化化合物。

[0319] 根据本领域技术人员熟知的方法，可以由其中 R₇=H 的式（XV）的化合物制备式（XVI）的化合物。例如，当离去基团是卤素原子时，该反应可以在卤化剂的存在下进行。当离去基团是磺酸酯时，将反应可以在相应的磺酸和硼烷的条件下进行。

[0320] 在下文和下列实验部分中将更加详细地描述用于制备其中 n=1 且 R₇=H 的根据本发明的化合物的方法。

[0321]

[0322] (a) 在第一步骤中，根据本领域技术人员熟知的方法，T₃₁ 的醇基团被转化为离去基团如卤素或甲磺酰基、甲苯磺酰基或三氟甲磺酰基基团。

[0323] (b) 然后，通过使用碱如 NaH, K₂CO₃, 或 MeONa, T₄₈ 被产生自 T₃ 的醇化物取代，以得到 T₇。

[0324] (c) 在最后的步骤中，根据 Protective groups in organic synthesis, T. W. Greene 描述的典型方法可以除去保护基团。

[0325] 并且更特别地：

[0326]

[0327] (a) 在第一步骤中，在三氟甲磺酸酐和吡啶的存在下，T₄₃ 的醇基团被转化为与相应的三氟甲磺酰基基团，以得到化合物 T₄₉。

[0328] (b) 然后，通过使用 N₃, T₄₉ 被产生自 T₃ 的醇化物取代，以得到 T₅₀。反应在二甲基甲酰胺中进行。

[0329] (c) 在最后的步骤中，根据 Protective groups in organic synthesis, T. W. Greene 描述的典型方法可以除去保护基团。

[0330] 通过阅读下列实施例和附图，本领域技术人员将会更好地理解本发明。这些实施例仅用于解释本发明。

附图说明

[0331] 图 1 表示在口服施用（3mg/kg po）后 0 至 8 小时之间针对化合物 16 和针对化合物 50 的尿素排泄。

[0332] 图 2 表示在口服施用（3mg/kg po）后 16 至 28 小时之间针对化合物 16 和针对化
化合物50的尿糖排泄。
[0333] 图3表示在1.3和10mg/kg po剂量下针对化合物16的口服葡萄糖耐量试验。
[0334] 图4表示在口服施用化合物16（3mg/kg po）18小时后针对化合物16的口服葡萄
糖耐量试验。
[0335] 图5表示在口服施用（3mg/kg po）后16至28小时之间针对化合物16和针对化
合物50的尿糖排泄。
[0336] 图6表示在口服施用（3mg/kg po）后16至28小时之间针对化合物16和针对
WO2009/1076550的化合物9的尿糖排泄。
[0337] 图7表示化合物21的HPLC谱。
[0338] 图8表示化合物26的HPLC谱。
[0339] 图9表示化合物26在β-糖苷酶的存在下于37℃孵育4小时后的HPLC谱。
[0340] 图10表示合体列净（Sergliflozin）-A的HPLC谱。
[0341] 图11表示合体列净-A在β-糖苷酶的存在下于37℃孵育4小时后的HPLC谱。

具体实施方式
[0342] 实施例
[0343] 1. 本发明的化合物的制备
[0344] 文中遇到的缩写被定义如下：
[0345] Ac 乙酰基
[0346] ADDP 偶氮二甲酸二哌啶
[0347] Bn 苄基
[0348] cat. 催化量的
[0349] DAST 二乙氨基三氯化硫
[0350] DCM 二氯甲烷
[0351] de 非对映异构体过量
[0352] DMAP 4-二甲氨基吡啶
[0353] DMF 二甲基甲酰胺
[0354] DMSO 二甲亚砜
[0355] eq. 当量
[0356] ESI 电喷雾离子化
[0357] g 克
[0358] Hz 赫兹
[0359] mg 毫克
[0360] MHz 兆赫兹
[0361] min. 分钟
[0362] ml. 毫升
[0363] mmol 毫摩尔
[0364] mM 毫摩尔/升
[0365] μmol 微摩尔
[0366] nmol 纳摩尔
[0367] NMR 核磁共振
[0368] po 口服
[0369] PEG 聚乙二醇
[0370] QS 适量
[0371] Rf 阻滞因子
[0372] rt 室温
[0373] TFAA 三氟乙酸酐
[0374] THF 四氢呋喃
[0375] TLC 薄层色谱法
[0376] TMS 三甲基硅烷基
[0377] TBDMs 水丁基二甲基硅烷基
[0378] 下文中将说明对本申请中描述的所有化合物进行分析所使用的设备的特征：
[0379] 在BRUKER DPX300光谱仪上记录¹H NMR谱。所使用的内标是一氟三氯甲烷CFCl₃。
化学位移（δ）以百万分之一（ppm）表示，并且偶合常数（J）以赫兹（Hz）表示。
[0380] 使用下列缩写：
[0381] S为单峰，bs为宽单峰，d为二重峰，t为三重峰，qdt为四重峰，m为多重峰或大量峰，dd为双二重峰等。
[0382] 质谱在偶联至LC Waters Acquity的Waters LCT PremierXE光谱仪上获得。
[0383] GC-MS在Micromass Autospec8kV上进行，其配备了GC HP6890，毛细管柱WCOT，HP5MS，30m，d1:0.25mm，于50℃（0.5mm），从50至280℃（10℃/min），和280℃（5mm），其中IE:70eV。
[0384] 自动柱色谱法在使用Biotage® SNAP小柱的Biotage SP4仪器上进行。通过采用
Kieselge160F-254-0.25-mm板的薄层色谱法（TLC）来确保过程的跟踪。化合物在给定支持物上的迁移距离与洗脱剂的迁移距离的比值被称为阻滞因子（Rf）。
[0385] 下面将描述根据本发明的示例性化合物的制备，其用于说明而非限制本发明。
[0386] 化合物1的合成
[0387] C₃₂H₅₂O₆M=538.63g·mol⁻¹
[0388] 质谱：(ES⁺):561.2(M+Na)
[0389]

```
[0390] 在惰性气氛下，将乙酸酐（420mL）加入到含有DMSO(640mL)中的2,3,4,6-四-O-苄基-D-葡萄糖（100g，185mmol）的圆底烧瓶中。将混合物在室温下搅拌过夜，然后冷却至0℃。加入大量的水并停止搅拌，以便使反应混合物静置3小时（内酯样品位于烧瓶的底部）。除去上清液，将混合物粗品用Et₂O稀释并用水洗涤3次，用饱和的NaHCO₃水溶液中和
```

```
并用水再洗涤两次。然后，将有机层用硫酸镁干燥，过滤并浓缩。将混合物粗品经硅胶色谱
法(环己烷/乙酸乙酯 8:2; Rf=0.61)纯化，以 80% 的产率得到作为无色油状物的预期的内酯 1.

[0391] 化合物 2 的合成
[0392] C_{x}H_{y}O_{z}P M=662. 71g. mol^{-1}
[0394]

![化学结构图]

[0395] 在惰性气氛下，将正丁基锂(1. 6M 乙烷溶液, 168mL, 0. 27mol, 2. 9eq)逐滴加入到
冷却至-78°C的甲基膦酸二甲酯(42mL, 0. 39mol, 1. 2eq)的 THF(390mL)溶液中。将混合物
在该温度下搅拌 30 分钟，然后将内酯 1 (50g, 93mmol, 1eq)的四氢呋喃(230mL)溶液在相
同温度下逐滴加入。将混合物搅拌 30 分钟，然后在搅拌下温热至 0°C。

[0396] 将反应混合物倾倒入 10% 饱和氯化铵水溶液(100mL)和乙酸乙酯(300mL)的冰
冷混合物中。将有机层分离，用水洗涤，用硫酸钠干燥，过滤，然后在减压下浓缩，定量地得
到作为微黄色油状物的 3, 4, 5, 7- 四 -0- 单基 -1- 脱氧 -1-( 二甲氧基磷酰基 ) -D- 葡萄糖
型 -2- 五碳呋喃糖(3, 4, 5, 7-tetra-O-benzyl-1-deoxy-1-(dimethoxyphosphoryl)-D-glucouco-2-heptulopyranose) 2 (63g)，其随着时间的推移会变为白色晶体。

[0397] 化合物 3a/b 的合成
[0398] C_{x}H_{y}O_{z}P M=664.72g. mol^{-1}
[0399] 质谱：(ESI') 665. 13 [M+H]; 687. 27 (M+Na); 696. 73 (M+MeOH)
[0400]

![化学结构图]

[0401] 向 2 (69. 5g, 105mmol, 1eq) 的四氢呋喃(600mL) 溶液中按份加入硼氢化钠(7. 44g,
210mmol, 2eq)。将混合物在室温下搅拌过夜，然后在减压下浓缩。将残留物在乙酸乙酯和
水之间分配并将有机层用水洗涤，用硫酸钠干燥，过滤并在减压下浓缩。化合物 2 粗品 (非
对映异构体 a 和 b 的混合物, 70. 5g, 100%) 无需进一步纯化即可参与下一个步骤。

[0402] 化合物 4 的合成
[0403] C_{x}H_{y}O_{z}P M=660. 69g. mol^{-1}
[0404] 质谱：(ESI') 661. 00 [M+H]; 683. 20 (M+Na); 1343. 0 (2M+Na)
在惰性气下，将冷却至 0℃的三氟乙酸酐（27.1mL, 0.19mol, 4eq）的二氯甲烷（130mL）溶液逐滴加入到在环境温度下制备的二甲亚砜（20.8mL, 0.29mol, 6eq）的二氯甲烷（260mL）溶液中，然后冷却至 -75℃。将混合物在 -75℃下搅拌 45 分钟，然后加入冷却至 -75℃的 3（32.43g, 48.8mmol, 1eq）的二氯甲烷（260mL）溶液。将混合物在相同温度下搅拌 1.5 小时。将三乙胺（54.2mL, 0.39mmol, 8eq）逐滴加入到反应混合物中，然后在搅拌下使其温热至 0℃。将 2N 盐酸水溶液加入到反应混合物中。将有机层分离，用饱和碳酸氢钠溶液洗涤，用硫酸钠干燥。过滤并在减压下浓缩。以黄色油状物的形式获得的化合物 4。粗品（36.3g, 100%）无需进一步纯化即可参与下一个步骤。

化合物 5a/b 的合成

C_{35}H_{44}O_{6} M=556.69 g·mol^{-1}

质谱：(ESI')：557.20 (M+H); 1135.07 (2M+Na)

将 2, 3, 4, 6-四-O-苯基-D-吡喃葡萄糖（50g, 92.7mmol, 1eq）溶解于 THF（645mL）中并冷却至 0℃。在惰性气下，将甲基溴化镁（在 THF/甲苯中 185mL 的 1.4M 溶液，259.4mmol, 2.8eq）逐滴加入，并且将反应混合物在 0℃下搅拌 10 分钟并在 50℃下搅拌 3 小时 30 分。薄层色谱法（环己烷 - 乙酸乙酯，7:3）显示起始原料完全转化为两种产品（Rfα=0.17 和 Rfβ=0.25）。将反应混合物倾倒入饱和的氯化铵水溶液中并用乙酸乙酯萃取。将合并的有机萃取物用硫酸钠干燥。过滤并浓缩，以定量地得到黄色油状物形式的预期的二醇 5。粗品（非对映异构体 a 和 b 的混合物）。该化合物无需进一步纯化即可参与下一个步骤。

化合物 6 的合成

C_{35}H_{38}O_{6} M=552.66 g·mol^{-1}

质谱：(ESI')：575.40 (M+Na); 1150.80 (2M+Na); 1142.93 (2M+K)
在惰性气氛下，将二甲亚砜（14mL, 0.20mol, 9eq）的二氯甲烷（50mL）溶液逐滴加入到冷却至-78°C的草酰氯（12.5mL, 0.13mol, 6eq）的二氯甲烷（50mL）溶液中。将混合物在-78°C下搅拌30分钟，然后逐滴加入二酮5（12.2g, 21.9mmol, 1eq）的二氯甲烷（50mL）溶液。45分钟后，沉淀物出现，并且将反应混合物温热至-40°C并搅拌额外的30分钟。然后，将混合物再次冷却至-78°C并逐滴加入三乙胺（55mL, 0.39mol, 18eq）。15分钟后，将冷却液移除并使反应混合物达到室温。大量的沉淀物已经形成。另外的2小时后，加入甲苯（400mL）并通过过虑除去沉淀物。将残留物用甲苯洗涤，将滤液浓缩并经硅胶色谱法（环己烷 / 乙酸乙酯 = 97:3 至 70:30）纯化，以得到作为橙色油状物的二酮6（9.92g，产率76%）。

化合物7的合成

C_{36}H_{38}O_6  M=552.66g·mol^{-1}

质谱: (ESI')：570.27 (M+H_2O); 575.33 (M+Na)

将L-脯氨酸（7.35g, 63.8mmol, 1eq）加入到二酮6（35.2g, 63.7mmol, 1eq）的DMSO（561mL）溶液中。将混合物在空气中于50°C搅拌8小时后，然后倾倒入水和盐水的混合物（2:1）中，用乙酸乙酯萃取，用硫酸钠干燥，过滤并浓缩。将混合物粗品经硅胶色谱法（环己烷 / 乙酸乙酯 = 97:3 至 35:35）纯化，以得到作为橙色油状物的化合物7（13.0g, 37%）。

化合物8的合成

C_{36}H_{38}O_6  M=534.64g·mol^{-1}

质谱: (ESI')：535.00 (M+H); 552.00 (M+H_2O); 785.87; 1086.67 (2M+H_2O)

步骤A:

向4（10.5g, 15.89mmol, 1eq）的甲苯（400mL）溶液中加入18-冠-6（168mg, 0.64mmol, 0.04eq）和碳酸钾（6.69g, 48.5mmol, 3.05eq）。将混合物在室温下搅拌过夜，然后将残留的不溶性物质过滤掉并用甲苯洗涤。将滤液和洗涤液合并，用2N盐酸水溶液接着是
饱和的碳酸氢钠水溶液洗涤，用硫酸钠干燥，过过滤并在减压下浓缩。将残留物经硅胶色谱法(环己烷 / 乙酸乙酯 98:2 至 80:20)纯化，以得到作为浅黄色油状物的环己烯酮 \( \mathcal{E} \) (4.07g，产率 48%)

步骤 B:

将 \( \mathcal{E} \) (3.27g, 5.92mmol, 1eq) 的吡啶 (14mL) 溶液冷却至 0°C，然后逐滴加入 PCl\(_3\) (2.75mL, 29.6mmol, 5eq)。将混合物在此温度下搅拌 10 分钟，然后将冷却浴移除。将反应混合物在室温下搅拌过夜，然后重新冷却至 0°C。试图完成反应，再次加入 PCl\(_3\) (2.75mL, 29.6mmol, 5eq)。将混合物在室温下搅拌额外的 20 小时，然后用 Et\(_2\)O (20mL) 稀释并倾倒在碎冰上。加入 1M HCl 水溶液 (100mL)，并将混合物用 Et\(_2\)O (200mL 和 100mL) 萃取。将合并的有机萃取液用盐水 (100mL) 洗涤，用硫酸钠干燥，过滤并浓缩，然后经硅胶色谱法(环己烷 / 乙酸乙酯 98:2 至 80:20)纯化，以得到作为橙色油状物的化合物 \( \mathcal{E} \) (1.46g, 46% 产率)

化合物 9 合成

化合物 9 合成

化合物 10 合成

化合物 11 合成

化合物 \( \mathcal{E} \) (J. Med. Chem. 2008, 51, 1145-1149) 中描述了该产品的合成。

质量：(GC-MS): 338-340

化合物 10 (J. Med. Chem. 2008, 51, 1145-1149) 中描述了该产品的合成。

质量：(ESI')：798.20 (M+H2O)

在惰性气氛下，将镁粉 (265mg, 10.9mmol, 2.4eq) 装入三颈烧瓶中，接着加入 1/3
部分的 4-溴-1-氯-2-(4-乙基苯基)苯(2.95g,9.1mmol,2eq) 的干燥 THF (25mL) 和1,2-二溴乙烷溶液(10mol%，Mg, 85mg, 0.45mmol)。将混合物加热回流，反应启动(放热并消耗 Mg) 后，逐滴加入剩余的 2-(4-乙基苯基)-4-溴-1-氯苯的干燥 THF 溶液。然后，在温和的回流下，使混合物再反应一个小时，直至大部分的镁被消耗。

[0444] 在惰性气氛下，于室温(约 25℃)将上步将氯代苯妥因加入到环己烯酮 8 (2.42g, 4.53mmol, 1eq) 的干燥 THF (25mL) 溶液中，然后使其反应 3 小时。将饱和的氯化铵水溶液加入到该混合物中以淬火反应。将混合物用 EtOAc 萃取，用盐水洗涤，用硫酸钠干燥，过滤并浓缩。将残留物经硅胶色谱法(环己烯/乙酸乙酯 100:0 至 80:20)纯化，以得到作为黄色油状物的目标化合物 II (3.01g, 86%)。

[0445] 化合物 12 的合成

[0446] C_{36}H_{48}ClO_{9} M=765.37g.mol^{-1}

[0447] 质谱：(ESI') 782.13 (M+H,O)

[0448] 11

1. Et_{3}SiH
2. BF_{3}·OEt_{2}
DCM,-20 ℃

12

[0449] 在惰性气氛下，于 -20℃将三乙基硅烷 (0.210mL, 1.30mmol, 3eq) 和三氟化硼乙醚化物 (48% BF_{3}, 0.110mL, 0.866mmol, 2eq) 依次加入到醇 II (338mg, 0.433mmol, 1eq) 的二氯甲烷 (5mL) 溶液中。搅拌 2.5 小时后，加入饱和的氯化钠水溶液以淬火反应。将混合物用 CHCl_{3} (10mL×3) 萃取并合并有机层用盐水洗涤，用 Na_{2}SO_{4} 干燥，过滤并浓缩。将残留物经硅胶色谱法(环己烯/乙酸乙酯 9.8:0.2 至 8:2)纯化，以得到作为白色粉末的目标化合物 12 (278mg, 0.363mmol, 84%)。

[0450] 化合物 13 的合成

[0451] C_{36}H_{48}ClO_{9} M=783.39g.mol^{-1}

[0452] 质谱：(ESI') 800 (M+H,O); 1581 (2M+H,O)

[0453] 12

BH_{3}·Me_{2}S·THF

NaOH, H_{2}O_{2}

13

[0454] 在惰性气氛下，将硼烷-二甲烷络合物 (2M THF 溶液, 16.7mL, 33mmol, 10.5eq) 加入到冷却至 0℃的 12 (2.41g, 3.15mmol, 1eq) 的干燥 THF (100mL) 溶液中。然后将反应混合物回流 1 小时，冷却至 0℃并在室温下 (30℃以上) 采用氢氧化钠 (3M H_{2}O 溶液, 10.5mL, 31.5mmol, 10eq) 接着是过氧化氢 (30%H_{2}O 溶液, 3.2mL, 31.5mmol, 10eq) 小心地处理。使混合物在室温下 (~ 25℃) 反应过夜，然后加入饱和的氯化铵水溶液以淬火反应。将混合物用乙酸乙酯萃取并合并有机层用盐水洗涤，用 Na_{2}SO_{4} 干燥，过滤并浓缩。将残留物经硅胶色谱法(环己烯/乙酸乙酯 97:3 至 73:27)纯化，以得到作为浅黄色油状物的预期的化合物 13。
(1.05 g, 43%)。

[0455] 化合物 14 的合成

[0456] C_{49}H_{43}ClO_{5}， M=803.37 g.mol^{-1}

[0457] 质谱：(ESI') : 798 (M+H\textsubscript{2}O); 1471; 1579 (2M+H\textsubscript{2}O)

[0458]

[0459] 在 0°C 下，将戴斯马汀氧化剂 (81 mg, 1.91 mmol, 1.5 eq) 按份加入到醇 13 (1.0 g; 1.28 mmol, 1 eq) 的无水二氯甲烷 (20 mL) 溶液中。然后，将反应在室温下搅拌过夜，然后用 1 N 氢氧化钠水溶液淬灭。将有机层分离并用二氯甲烷萃取。将合并的有机层用硫酸钠干燥，过滤并浓缩。将残留物经硅胶色谱法 (环己烷 / 乙酸乙酯 98:2 至 82:18) 纯化，以得到作为无色油状物的目标酮 14 (783 mg, 产率 79%)。

[0460] 化合物 15 的合成

[0461] C_{66}H_{49}ClF_{2}O_{5}， M=942.42 g.mol^{-1}

[0462] {^{19}F} NMR (CDCl_{3}, 282.5 MHz) : -100.3 (d, J=254 Hz, 1F, CFF); -113.3 (td, J=1 J=254 Hz, J2=29 Hz, 1F, CFF)。

[0463] 质谱：(ESI') : 820.00 (M+H\textsubscript{2}O)

[0464]

[0465]

[0466] 将酮 14 (421 mg, 0.539 mmol, 1 eq) 的 DAST (2 mL, 16.3 mmol, 30 eq) 溶液在惰性气氛下于 70°C 搅拌 12 小时。然后，将混合物冷却至室温并加入二氯甲烷。将溶液倾倒在水、冰和固态 NaHCO\textsubscript{3} 的混合物上。保持搅拌 30 分钟，同时达到室温。将水层和氯甲烷萃取并将有机相用 Na\textsubscript{2}SO\textsubscript{4} 干燥，过滤并浓缩。将粗产物经硅胶色谱法 (环己烷 / 乙酸乙酯 98:2 至 80:20) 纯化，以得到作为淡黄色油状物的期望的化合物 15 (182 mg, 产率 42%)。

[0467] 化合物 16 的合成

[0468] C_{72}H_{53}ClF_{2}O_{5}， M=442.88 g.mol^{-1}

[0469] {^{19}F} NMR (MeOD, 282.5 MHz) : -96.7 (d, J=254 Hz, 1F, CFF); -112.2 (td, J1=254 Hz, J2=29 Hz, 1F, CFF)。

[0470] 质谱：(ESI') : 465.3 (M+Na)

[0471]
将邻二氯苯（0.320mL, 2.82mol, 10eq），接着是10%的Pd/C（0.342g, 0.32mol, 1.1eq）加入到15（228mg, 0.28mmol, 1eq）的THF和MeOH混合溶液（2:1, v/v, 160mL）中。将反应放置在氢气气氛下并在室温下搅拌2小时。将反应混合物过滤并浓缩，然后经硅胶色谱法（二氯甲烷/甲醇为100:1至90:10）纯化，以得到化合物16（105mg，产率83%）。

化合物17的合成

C_{32}H_{30}O_{3}  M=536.66g·mol^{-1}

质谱：(ESI')：554.13 (M+H₂O); 1095 (2M+Na)

在惰性气氛下，将1.0 M L-三仲丁基硼氢化锂的THF(0.84mL, 0.84mmol, 1.5eq)溶液逐滴加入到环己烯酮8（0.300g, 0.56mmol, 1eq）在THF（14mL）中的搅拌的和冷却的(0°C)溶液中。将混合物搅拌18小时，使其逐渐熔化至室温。然后加入饱和的氯化铵水溶液并将得到的混合物搅拌15分钟。加入水，然后将水溶液用乙酸乙酯萃取并将合并的有机层用盐水洗涤，用硫酸钠干燥，过滤并浓缩，以定量地得到作为黄色油状物的预期的化合物17（350mg）。

化合物18的合成

C_{12}H_{13}O_{3}  M=228.24g·mol^{-1}

质谱：(GC-MS): 228 (M)

步骤A

将2-羟基苯甲酸（13.8g, 0.1mol, 1eq）和茴香醚（10.9mL, 0.1mol, 1eq）加入到加热至80°C的石墨（9.6g, 0.8mol, 8eq）和甲磺酸（25mL, 0.4mol, 4eq）的混合物中。将反应混
化合物在该温度下搅拌 12 小时，然后冷却至室温。然后，将混合物用氯仿萃取两次并将合并的有机层用饱和的 NaHCO₃ 水溶液洗涤，用硫酸钠干燥，过滤并浓缩。将残留物经硅胶色谱法（环己烷 / 乙酸乙酯 70:30）纯化，以得到作为橙色油状物的化合物 18（4g 产率 17%）。

步骤 B.

将 BBr₃·DMSO (10.8g, 34.42 mmol, 1.1 eq) 按份加入到冷却至 0℃的 20 (7.58g, 31.29 mmol, 1 eq) 的二氯甲烷 (150mL) 溶液中。将反应在 0℃下搅拌 3 小时，然后倾倒在水和冰的混合物上。搅拌 10 分钟后，分离溶液并将水层用乙酸乙酯萃取。将合并的有机层用水和盐水洗涤，用硫酸镁干燥，过滤并浓缩，以得到作为红紫色油状物的化合物 18 (6.78g)。

化合物 19 的合成

C₁₀H₁₂O₃ M=244.29 g·mol⁻¹

质谱：(ESI⁺): 227.1 (M+H-H₂O)

在惰性气氛下，将 4- 甲氧基苯基溴化镁的溶液 (0.5M THF 溶液, 300mL, 0.150mol, 1.1 eq) 逐滴加入到冷却至 0℃的 2- 甲氧基苯甲酸 (18.75g, 0.137mol, 1 eq) 的 THF (188mL) 溶液中。将所得混合物在室温下搅拌过夜，然后倾倒在饱和的氯化铵水溶液上。将水层用乙酸乙酯萃取并将合并的有机层用硫酸钠干燥，过滤并浓缩，以得到作为棕色油状物的化合物 19 (37.5g)。

化合物 20 的合成

C₁₀H₁₂O₃ M=242.27 g·mol⁻¹

质谱：(GC-MS): 51; 64; 77; 92; 107; 121; 128; 135; 139; 181; 197; 211; 225; 242

将氯化酸吡啶锌盐 (34.3g, 159mmol, 2 eq) 加入到包含分子筛的醇 19 (19.4g, 79.4 mmol, 1 eq) 的二氯甲烷 (210mL) 溶液中。将反应混合物在室温下搅拌过夜，过滤以除去 PCC 残留物和分子筛并浓缩。将残留物粗品经硅胶色谱法（环己烷 / 乙酸乙酯 100:0 至 85:15）纯化，以得到作为淡黄色固体的酮 20 (12.6g, 产率 38%)。
[0501] 步骤 A.
[0502] 将 10% 的 Pd/C 加入到 18（1.5g, 6.6mmol, 1eq）的乙醇溶液中。将溶液在 30 巴的氢气气相下搅拌，直至反应完成。通过过滤除去钯颗粒并将溶液浓缩以得到作为白色粉末的化合物 21（1.32g, 产率 93%）。
[0503] 步骤 B.
[0504] 在惰性气氛下，将 18（8.1g, 35.5mmol, 1eq）的乙腈（130ml）溶液冷却至 0℃。缓慢加入 TMSI（20.7ml, 163.3mmol, 4.6eq），接着是 NaBH₄CN（10.5g, 1667mmol, 4.7eq）（放热反应）。将所得黄色悬浮液在室温下搅拌 2 小时，然后倾倒在水上。然后，加入二氯甲烷并将其有机层分离，用盐水洗涤，用硫酸镁干燥，过滤并浓缩。将残留物粗晶经硅胶层析（环己烷 / 乙酸乙酯 100:0 至 83:17）纯化，以得到作为淡黄色固体的目标化合物 21（产率 80%）。
[0505] 化合物 22 的合成
[0506] C₁₀H₁₃O₅ M=372.90g·mol⁻¹
[0507] 质谱：(ESI⁺): 755.4 (M+Na); 771.4 (M+K)
[0508] 在惰性气氛下，向冷却至 0℃的 17（50毫克, 0.093mmol, 1eq）的甲苯（0.30ml）溶液中依次加入 21（30mg, 0.140mmol, 1.5eq）、三丁基膦（0.35ml, 0.140mmol, 1.5eq）和 1,1’-(偶氮二甲基)二哌啶（35mg, 0.140mmol, 1.5eq）。将反应混合物在 0℃下搅拌 30 分钟。出现致密的沉淀物，将混合物用二氯甲烷溶解并在减压下浓缩以得到白色残留物，将残留物经硅胶层析（环己烷 / 乙酸乙酯 100:0 至 80:20）纯化，以得到作为无色油状物的目标化合物 22（63mg, 93% 产率）。
[0509] 化合物 23 的合成
向 22（62mg, 0.085mmol, 1eq）在无水 THF（0.837mL）中的冷却的溶液（0℃）中加入 BH₃-Me₂S（2M THF 溶液, 0.169mL, 0.338mmol, 4eq）。将所得溶液在室温下搅拌过夜，然后再次冷却至 0℃。然后依次加入水（0.107mL, 23.6mmol, 70eq）、过氧化氢（30% 水溶液, 0.258mL, 10.1mmol, 30eq）和氯化钠（2M 水溶液, 0.338mL, 2.7mmol, 8eq），并将混合物在室温下搅拌 3 小时。加入水和乙酸乙酯并将有机层用盐水洗涤，用硫酸钠干燥，过滤并浓缩。然后，将化合物粗品经硅胶色谱法（环己烷 / 乙酸乙酯 100:0 至 75:25）纯化，以得到作为白色固体的 23（34mg, 产率 53%）。

化合物 24 的合成

将戴斯马丁氧化剂（29mg, 0.068mmol, 1.5eq）加入到冷却至 0℃的醇 23（34mg, 0.045mmol, 1eq）的二氯甲烷（0.680mL）溶液中。将所得混合物在室温下搅拌 3 小时，然后将氯化钠（1N 水溶液）和二氯甲烷的溶液加入到混合物中。将有机层分离，用硫酸钠干燥，过滤并浓缩，以得到作为白色固体的预期的酯 24（36mg, 产率 70%）。

化合物 25 的合成

$^{13}C$ NMR (CDCl₃, 282.5 MHz): -109.3 (d, J=252 Hz, 1F, C=O); -120.3 (ddd, J1=252 Hz, J2=30 Hz, J3=19 Hz, 1F, C=O)。

质谱（ESI’）：773.4 (M-HF); 793.5 (M+Na)。
[0525] 在惰性气氛下，将 DAST (0.72mL, 4.96mmol, 20eq) 加入到酯 24 (183mg, 0.244mmol, 1eq) 的二氯甲烷 (0.720mL) 溶液中并将其反应混合物在室温下搅拌过夜。将溶液冷却至室温，然后倾倒在水中。加入二氯甲烷并将有机层用饱和的 NaHCO₃ 水溶液洗涤，用硫酸钠干燥，过滤并浓缩。将粗产品经硅胶色谱法（环己烷 / 乙酸乙酯 100:0 至 90:10）纯化，以 32% 的产率得到作为白色固体的化合物 25。

[0526] 化合物 26 的合成

[0527] C₂₁H₂₃F₂O₅, M=410.41g·mol⁻¹

[0528] ¹H NMR (MeOD, 282.5MHz): δ 109.6 (d, J=251Hz, 1F, C(F)); -122.4 (ddd, J₁=251Hz, J₂ =28Hz, J₃=20Hz, 1F, C(F))

[0529] 质谱: (ESI⁻): 445.2 (M+Cl)

[0530] 将化合物 25 (48mg, 0.06mmol, 1eq) 溶解在 THF (6.3mL) 和甲醇 (6.3mL) 的混合物中。加入 10% 的 Pd/C (48mg, 0.04mmol, 0.7eq), 接着是 2 滴 12N 盐酸水溶液。然后，将混合物在氢气气氛下于室温搅拌 1 小时，然后过滤并浓缩。将混合物粗品经硅胶色谱法（二氯甲烷 / 甲醇 100:0 至 90:10）纯化，以得到作为白色固体的目标化合物 26 (42mg, 产率 67%)

[0532] 化合物 27 的合成

[0533] C₁₈H₁₈O₆, M=718.88g·mol⁻¹

[0534] 质谱: (ESI⁺): 741.8 (M+Na), 757.7 (M+K)

[0535]
说明书

[0536] 在惰性气氛下，将 17 (30mg, 0.056mmol, 1eq) 的甲苯 (0.180mL) 溶液冷却至 0℃并依次加入 4-(苯氧基) 苯酚 (17mg, 0.085mmol, 1.5eq), 三丁基磷 (142mg, 0.668mmol, 3eq) 和 1,1’-(偶氮二羧基) 二哌啶 (42mg, 0.167mmol, 3eq)。将反应混合物在 0℃下搅拌 30 分钟。将反应混合物用二氯甲烷稀释并在减压下浓缩，以产生白色残留物，将残留物经硅胶色谱法（环己烷 / 乙酸乙酯 100:0 至 80:20）纯化，以得到作为无色油的化合物 27 (30mg, 产率 75%)。

[0537] 化合物 28 的合成

[0538] C_{22}H_{44}O_5, M=736.88g·mol^{-1}

[0539] 质谱：(ESI⁺): 759.8 (M+Na), 775.7 (M+K)

[0540] ![](image)

[0541] 在惰性气氛下，将 BH₃·Me₂S (3.48mL, 6.96mmol, 2eq) 溶液冷却至 0℃的 27 (1.00g, 1.39mmol, 1eq) 的干燥四氢呋喃 (15mL) 溶液中，将该混合物在室温下搅拌过夜。然后在 0℃下加入水 (1.75mL, 97.4mmol, 70eq)，接着是 30% 过氧化氢水溶液 (4.73mL, 41.7mmol, 30eq) 和 1M 氢氧化钠水溶液 (11.1mL, 11.1mmol, 8eq)。将所得混合物在室温下搅拌 3 小时。然后，加入大量的水，接着用 EtOAc 提取。将有机层用盐水洗涤，用 MgSO₄ 干燥，过滤并浓缩。将混合物粗品经硅胶色谱法（环己烷 / 乙酸乙酯 95:5 至 60:40）纯化，以得到作为淡黄色油状物的 28 (791mg, 产率 78%)。

[0542] 化合物 29 的合成

[0543] C_{22}H_{44}O_5, M=734.87g·mol^{-1}

[0544] 质谱：(ESI⁺): 757.8 (M+Na), 773.7 (M+K)

[0545] ![](image)

[0546] 在室温下，将戴斯 - 马丁氧化剂 (17mg, 0.041mmol, 1.5eq) 加入到醇 28 (682mg, 1.61mmol, 1eq) 的干燥二氯甲烷 (20mL) 溶液中。将反应在室温下搅拌过夜，然后用二氯甲烷稀释并用 1M 氢氧化钠水溶液淬灭。用二氯甲烷萃取后，将有机层用 MgSO₄ 干燥，过滤并浓缩，以得到作为淡黄色油状物的酯 29 粗品 (730mg, 产率 91%)。

[0547] 化合物 30 的合成

[0548] C_{22}H_{44}O_5, M=756.87g·mol^{-1}

[0549] H NMR (282.5MHz): -120.6 (ddd, 1F, J1=251Hz, J2=28Hz, J3=20Hz, CFF); -108.7 (d, 1F, J=251Hz, CFF)

56
在惰性气氛下，将偶氮 29（15mg, 2.04μmol, 1eq）的 DAST (0.130mL, 0.276mmol, 130eq)溶液在 70°C下搅拌过夜。然后，将混合物粗品用二氯甲烷稀释并用 H2O 淡水小心地淬灭。将有机层用饱和的 NaHCO3 水溶液洗涤，用 MgSO4 干燥，过滤并浓缩。将混合物粗品经制备型 TLC (环己烷 / 乙酸乙酯 85:15) 纯化，以得到作为浅黄色油状物的化合物 30。

化合物 30 的合成

**0554**  C13H16F2O6  M=306.26g. mol⁻¹

**0555**  ¹³C NMR (MeOD, 282.5 MHz): -109.2 (J=253 Hz, 1F, CFF); -123.0 (ddd, J1=253 Hz, J2 =29Hz, J3=20Hz, 1F, CFF)。

**0556**  质谱: (ESI⁺): 341.0 [M+Cl]⁻

在惰性气氛下，将化合物 30（191mg, 0.252mmol, 1eq）溶解于 THF-乙醇 (4:1, v/v, 120mL) 中。将 10% 的 Pd/C (191mg, 0.17mmol, 0.7eq) 和 9 滴 12N 盐酸水溶液加入到用 H2 脱气 5 次的混合物中。将所得黑色悬浊液在 H2 气氛下于室温搅拌 45 分钟。将反应混合物过滤并将滤液浓缩。将粗产物经硅胶色谱法（二氯甲烷 / 甲醇 100:0 至 90:10）纯化，以 73% 的产率得到作为无色油状物的目标化合物 31。

化合物 31 的合成

**0559**  C13H12O2  M=212.24g. mol⁻¹

**0561**  质谱: (Cl⁺): 213 (M+H)
氨下于室温搅拌过夜。向反应混合物中加入冰水以淬灭反应，然后用大量的水稀释。将混合物过滤，并将残留物用水洗涤并溶解在乙酸乙酯中。将有机层用盐水洗涤，用MgSO₄干燥，过滤并浓缩，以定量地得到作为淡黄色油状物的酯32粗品，其随着时间的推移而缓慢结晶。

[0564] 化合物33的合成

[0565] C₁₀H₁₃O₂  M=214.26g·mol⁻¹

[0566] 质谱：(GC-MS): 91, 197, 214 (M)。

[0567] ![](image)

[0568] 将醛32（6.5g,30.6mmol,1eq）的干燥四氢呋喃（25mL）溶液逐滴加入到NaBH₄（1.51g,39.8mmol,1.3eq）的无水四氢呋喃（25mL）悬浮液中。将所得混合物在惰性气氛围下室温搅拌72小时，然后用冰水淬灭，用乙醚稀释，用4N HCl水溶液酸化，并用乙醚萃取。将有机层用饱和的NaHCO₃水溶液洗涤，用MgSO₄干燥，过滤并浓缩，以得到作为白色无定形固体的醇33粗品（产率97%）。

[0569] 化合物34的合成

[0570] C₁₃H₁₄BrO  M=277.16g·mol⁻¹

[0571] 质谱：(Cl⁺): 107, 197, 277 (M+H)

[0572] ![](image)

[0573] 以温度不超过8℃的速率，向醇33粗品（6g,28.0mmol,2.4eq）在乙醚（50mL）中的冰冷悬浮液中加入PBr₃（1.1mL,11.67mmol,1eq）。将所得混合物在惰性气氛围下室温搅拌2小时。然后，将反应混合物在冰浴中冷却，用冰水淬灭并用乙醚和乙酸乙酯稀释。将有机层用饱和的NaHCO₃水溶液洗涤，用MgSO₄干燥，过滤并浓缩，以得到作为白色无定形固体的化合物34粗品（产率99%）。

[0574] 化合物35的合成

[0575] C₁₆H₁₁O₂  M=326.39g·mol⁻¹

[0576] 质谱：(ESI⁺): 349.1 (M+Na); 365.1 (M+K)
[0578] 在惰性气氛下，向 95% 的 NaH (0.61g, 25.26mmol, 1eq) 的干燥 THF (30mL) 悬浮液中加入乙酰乙酸乙酯 (3.5mL, 27.79mmol, 1.1eq) 的干燥 THF (10mL) 溶液。将所得混合物在室温下搅拌 30 分钟，然后逐滴加入 34 (7g, 25.26mmol, 1eq) 的 THF (13mL) 溶液。然后，将混合物在 70℃ 下搅拌过夜并冷却至室温，然后浓缩。将残留物用 Et₂O (60mL) 溶解，用 H₂O 和盐水洗涤，用 MgSO₄ 干燥，过滤并浓缩。将所得混合物粗品经硅胶柱色谱 (99/1 至 85/15 环己烷 / 乙酸乙酯) 纯化，以得到作为浅黄色油状物的化合物 35 (产率 77%)。

[0579] 化合物 36 的合成

[0580] C₃H₁₁N₂O₂  M=294.35g·mol⁻¹

[0581] 质谱：(ESI⁻): 317.1 (M+Na); 333.1 (M+K)

[0582] 在室温下，向 35 (6.5g, 19.91mmol, 1eq) 的乙醇 (50mL) 溶液中加入 55% 的水合肼 (1.25mL, 22.10mmol, 1.1eq)。在室温下，将所得混合物回流 3 小时。然后，将反应介质在冰浴中冷却并过滤。将沉淀物用冷乙醇洗涤，以得到作为白色固体的化合物 36 (产率 77%)。

[0583] 化合物 37 的合成

[0584] C₅H₁₀N₂O₂  M=812.99g·mol⁻¹

[0585] 质谱：(ESI⁻): 813.5 (M+H); 835 (M+Na); 851.4 (M+K)。

[0586] 在惰性气氛下，将化合物 36 (328mg, 1.11mmol, 1.5eq) 加入到 17 (400mg,
0.75 mmol, 1 eq.) 的干燥 THF (6.4 mL) 溶液中，接着是三正丁基膦 (198 mg, 0.98 mmol, 1.3 eq.) 和偶氮二甲酸二乙酯 (376 mg, 1.49 mmol, 2.0 eq.)。将所得黄色悬液在 30°C 下搅拌过夜。将溶剂除去，并将混合物经硅胶柱色谱法 (环己烷 / 乙酸乙酯 100:0 至 60:40) 纯化，以得到作为黄色油状物的化合物 37 (262 mg, 产率 43%)。

0589 化合物 38 的合成

0590 C_{36}H_{38}N_{2}O_{6}, M=855.07 g mol^{-1}

0591 质谱 (ESI^+): 854.43 (M+Na); 893.5 (M+K)

0592

37

$\text{CsCO}_3$

DMF, 室温

38

0593 在惰性气氛下，将碳酸铯 (4.1 g, 12.5 mmol, 1.5 eq.)，接着是异丙基碘 (0.99 g, 5.83 mmol, 7 eq.) 加入到 37 (0.68 g, 0.83 mmol, 1 eq.) 的 DMF 溶液中。将所得悬液在水浴下搅拌 3 小时。将混合物用乙酸乙酯和水稀释。将有机层用盐水洗涤，用硫酸钠干燥，过滤并浓缩。将黄色油状物粗品经硅胶柱色谱法 (环己烷 / 乙酸乙酯 100:0 至 77:23) 纯化，以得到作为淡黄色油状物的预期的化合物 38 (549 mg, 产率 77%)。

0594 化合物 39 的合成

0595 C_{36}H_{38}N_{2}O_{6}, M=873.08 g mol^{-1}

0596 质谱 (ESI^+): 873.6 (M+H); 895.6 (M+Na); 911.5 (M+K)

0597

0598 在惰性气氛下，将 9-BBN (0.5 M THF 溶液, 0.585 mL, 0.29 mmol, 10 eq.) 加入到 38 (25 mg, 0.03 eq.) 的干燥 THF 溶液中。将无色溶液回流过夜，然后冷却至 0°C。依次加入水 (0.047 mL)，过氧化氢水溶液 (30% w/w, 0.10 mL) 和 2N 氢氧化钠水溶液 (0.117 mL)。将所得白色悬液搅拌额外的 3 小时。然后，将混合物用乙酸乙酯稀释并倾倒在水上。然后将有机相用硫酸镁干燥，过滤并浓缩，以得到淡黄色油状物。经硅胶柱色谱法 (环己烷 / 乙酸乙酯 100:0 至 80:20) 纯化得到产物 39 (2 mg, 产率 8%)。

0599 化合物 40 的合成

0600 C_{36}H_{38}N_{2}O_{6}, M=871.07 g mol^{-1}

0601 质谱 (ESI^+): 871.6 (M+H); 893.6 (M+Na); 909.5 (M+K)

60
在惰性气氛下，将戴斯-马丁氧化剂（9mg, 0.021mmol, 1.5eq）加入到39（12mg, 0.014mmol, 1eq）的干燥二氯甲烷溶液中。将反应混合物在室温下搅拌2小时，然后用二氯甲烷和1N氢氧化钠水溶液稀释。然后，将水层用氯甲烷萃取并将所得有机层用硫酸钠干燥，过滤并浓缩。然后，将黄色油状物粗品经硅胶色谱法（环己烷/乙酸乙酯 100:0 至 72:28）纯化，以得到作为浅黄色油状物的酯40（8mg, 产率 67%）。

化合物41的合成

C_{90}H_{80}F_{2}N_{2}O_{6} M=893.07g/mol

质谱（ESI）: 893.4 (M+H); 911.5 (M+H,0)

在惰性气氛下，将DAST（0.05ml, 0.410mmol, 45eq）加入到40（8mg, 0.009mmol, 1eq）的干燥二氯甲烷（0.05ml）溶液中。将反应混合物在室温下搅拌过夜并在35℃下搅拌3小时。使反应混合物达到室温，然后用二氯甲烷稀释并倾倒在水上。然后，将有机层用饱和的NaHCO_{3}水溶液洗涤，用硫酸镁干燥，过滤并浓缩，以得到作为橙色残留物的化合物41粗品。

化合物42的合成

C_{10}H_{19}FS M=178.23g/mol

^{1}H NMR (CDCl_{3}, 282.5MHz): -109.8 (m, 1F, Ar-F)。

质谱（GC-MS）: 133 (41%) 178 (100%)

向新鲜脱气的EtOH（69mL）和H_{2}O（9mL）的混合物中加入Pd_{2}dba_{3}（534mg, 0.58mmol, 0.025eq）、PCy_{3}（660mg, 2.35mmol, 0.1eq）、2-噻吩硼酸（3.00g, 23.4mmol, 1eq）、K_{2}CO_{3}（6.48g, 46.9mmol, 2eq）和4-溴苯（5.17mL, 47.0mmol, 2eq）。将所得混合物在90℃
下搅拌过夜，然后使其达到室温。加入 MgSO₄，以去除水并使用乙酸乙酯将混合物在 Celite 垫上过滤。将滤液浓缩并经硅胶色谱法（环己烷 / 乙酸乙酯 100:0 至 95:5）纯化，以得到作为白色固体的化合物 42（3.84g，产率 92%）。

[0615] 化合物 43 的合成

[0616] C₈H₁₆BrF₂O₂ M=375.25 g·mol⁻¹

[0617] ¹H NMR (CDCl₃, 282.5MHz): -111.3 (m, 1F, Ar-F)。

[0618] 质谱 (GC-MS): 202.0 (97%); 203.0 (28%); 204.0 (100%); 416.0 (23%); 418.0 (23%)

[0619] 将 5-溴-2-甲基苯甲酸 (725mg, 3.37mmol, 1eq) 悬浮在干燥二氯甲烷 (9.7mL) 中。然后，在室温下加入草酸氢 (0.32mL, 3.74mmol, 1.1eq) 和 N,N-二甲基甲酰胺 (0.013mL, 0.17mmol, 0.05eq) 并搅拌混合物 6 小时。然后将溶剂蒸发以得到作为黄色油状物的 5-溴-2-甲基苯甲酰氯。将该产物溶在干燥二氯甲烷 (19.3mL) 中，然后，在 0℃（内部温度）下加入 AlCl₃ (49.5mg, 0.37mmol, 1.1eq) 和 42 (600mg, 在 3.7mmol, 1eq)。将所得混合物在该温度下搅拌 30 分钟，然后在室温下搅拌过夜。将反应混合物倾倒在冰和水上，将有机层分离并将水层用二氯甲烷萃取。将有机层收集，用 MgSO₄ 干燥，过滤并浓缩。将残留物用正已烷吸收以形成沉淀物，将沉淀物经过滤收集，用正已烷洗涤并干燥，以得到作为浅黄色晶体的化合物 43（产率 69%）。

[0620] 化合物 44 的合成

[0621] C₈H₁₆BrF₂O₂ M=361.27 g·mol⁻¹

[0622] ¹H NMR (CDCl₃, 282.5MHz): -115.0 (m, 1F, Ar-F)。

[0623] 质谱 (ESI⁻): 133 (29%); 177 (49%); 182 (55%); 184 (70%); 191 (72%); 281 (39%); 360 (95%); 362 (100%)

[0624] 在室温下，将 Et₃SiH (0.99mL, 6.18mmol, 2.9eq) 加入到醚 43 (800mg, 2.13mmol, 1eq) 的无水二氯甲烷-乙腈 (1:1, v/v, 16mL) 溶液中。将所得混合物冷却至 0℃并缓慢加入 BF₃·Et₂O (0.75mL, 5.97mmol, 2.8eq)。然后，将反应混合物在室温下搅拌 3 小时。在 0℃下，缓慢地加入饱和的 NaHCO₃ 水溶液。将水层用二氯甲烷萃取并将其有机层用 MgSO₄ 干燥，过滤并浓缩。然后，将混合物粗品用 MeOH 重结晶，以得到作为浅黄色晶体的化合物 44（产率 70%）。
化合物45的合成

C$_5$H$_9$F$_2$OS M=587.02g mol$^{-1}$

$^{19}$F NMR (CDCl$_3$, 282.5MHz): -115.2 (m, 1F, Ar-F)

质谱 (ESI$^+$): 839.5 [M+Na]$^+$; 855.4 [M+K]$^+$

在惰性气氛下，将正丁基锂 (1.4M 乙烷溶液，0.30mL, 0.412mmol, 1.1eq) 缓慢加入到 44 (149mg, 0.412mmol, 1.1eq) 在无水 THF- 甲苯 (1:1, v/v, 4.8mL) 中的冷却溶液 (-70℃) 中。将所得深蓝色溶液于相同温度下搅拌 5 分钟，然后缓慢加入环己烯酮 8 的冷却溶液 (-70℃)。将反应混合物在 -70℃ 下搅拌 15 分钟，然后倾倒在水中。然后，将有机层用硫酸钠干燥，过滤并浓缩，以得到作为黄色油状物的 45 粗品 (300mg, 产率 98%)，其无需进一步纯化即可用于下一个步骤。

化合物46的合成

C$_5$H$_9$F$_2$OS M=801.02g mol$^{-1}$

$^{19}$F NMR (CDCl$_3$, 282.5MHz): -115.3 (m, 1F, Ar-F)

质谱 (ESI$^+$): 823.5 [M+Na]$^+$; 839.4 [M+K]$^+$

在惰性气氛下，将Et$_3$SiH (0.025mL, 0.157mmol, 3eq) 和 BF$_3$.Et$_2$O (0.013mL, 0.105mmol, 2 eq) 依次加入到 45 (43mg, 0.052mmol, 1 eq) 在无水二氯甲烷 (0.55mL) 中的冷却溶液中 (-20℃)。将所得溶液在 -20℃下搅拌 1 小时 45 分钟，用二氯甲烷稀释并倾倒在盐水中。将有机层用硫酸钠干燥，过滤并浓缩，以得到绿色油状物。然后，将油状物经硅胶色谱法 (环己烷 / 乙酸乙酯 100:0 至 82:18) 纯化，以得到作为绿色油状物的化合物 46 (27mg, 64% 产率)。

化合物47的合成

C$_5$H$_5$F$_2$OS M=819.03g mol$^{-1}$

$^{19}$F NMR (CDCl$_3$, 282.5MHz): -115.3 (m, 1F, Ar-F)

[0643]

![化学结构式]

[0644] 在惰性气氛下，将 BH₃·Me₂S (2M THF 溶液, 0.065mL, 0.130mmol, 4eq) 加入到 46 (26mg, 0.032mmol, 1eq) 在干燥 THF (0.335mL) 中的冷却溶液 (0°C) 中。将所得溶液在室温下搅拌过夜，然后冷却至 0°C。然后，小心地加入水 (0.041mL, 2.27mmol, 70eq) 接着是过氧化氢 (30% w/v, 0.11mL, 0.97mmol, 30eq) 和 2N 氢氧化钠溶液 (0.13mL, 0.26mmol, 8eq)。将白色悬浮液在室温下搅拌 4 小时。然后，将反应混合物用乙酸乙酯稀释并倾倒在水上。将有机层用硫酸钠干燥，过滤并浓缩，以产生无色残留物。然后将残留物经硅胶色谱法 (环己烷/乙酸乙酯 100:0 至 77:23) 纯化，以得到作为淡黄色残留物的醇 47 (7mg, 产率 26%)。

[0645] 化合物 48 的合成

[0646] C₅H₆F₅O₂S  M=817.02g/mol⁻¹

[0647] ¹⁹F NMR (CDCl₃, 282.5MHz): -115.4 (m, 1F, Ar-F)


[0649]

![化学结构式]

[0650] 将戴斯特-马丁氧化剂 (5mg, 0.013mmol, 1.5eq) 加入到醇 47 (7mg, 0.009mmol, 1eq) 的二氯甲烷溶液 (0.150mL) 中。将所得混合物在室温下搅拌 1 小时 30 分钟，然后倾倒在 1N 氢氧化钠水溶液中。将有机层分离并用氯甲烷萃取。将合并的有机层用硫酸钠干燥，过滤并浓缩。然后，将残留物粗品经硅胶色谱法 (环己烷/乙酸乙酯 100:0 至 80:20) 纯化，以得到作为淡黄色残留物的酮 48 (6mg, 产率 86%)。

[0651] 化合物 49 的合成

[0652] C₅H₆F₅O₂S  M=839.0lg/mol⁻¹

[0653] ¹⁹F NMR (CDCl₃, 282.5MHz): -115.3 (m, 1F, Ar-F); 113.75 (dt, J1=254Hz, J2=29Hz, 1F, CF); -100.4 (d, J=254Hz, 1F, CF)


[0655]
将酮48（316mg, 0.39mmol, 1eq）溶解在DAST（1.4mL, 11.4mmol, 30eq）中并将其反应混合物在惰性气氛下于70℃搅拌过夜。将水相用二氯甲烷萃取并将有机相用Na₂SO₄干燥，过滤并浓缩。将粗产物经硅胶色谱法（环己烷/乙酸乙酯100:0至78:12）纯化，接着是制备型HPLC（Kromasil C18柱，MeOH/H₂O95:5）纯化，以得到作为无色油的49（84mg, 产率26%）。

化合物50的合成

C₅₇H₃₃F₃O₄S  M=478.52g·mol⁻¹

¹⁹F NMR (CDCl₃, 282.5MHz): -100.2 (d, J=254Hz, 1F, CCF); -116.2 (dt, J₁=254Hz, J₂=28Hz, 1F, CCF); -117.6 (m, 1F, Ar-F)。

质谱 (ESI⁺): 501.2 [M+Na]⁺

质谱 (ESI⁻): 513.2 [M+Cl]⁻

在惰性气氛下，将化合物49（48mg, 0.057mmol, 1eq）溶解在THF-MeOH（1:1, v/v, 4.2mL）中。将10%的Pd/C（96mg, 0.02mmol, 0.35eq）和5滴12N盐酸水溶液加入到混合物中，并将混合物用H₂脱气5次。将所得黑色悬浮液在H₂气氛下于室温搅拌72小时。将反应混合物在Celite545垫上过滤并将滤液浓缩。将粗产物经硅胶色谱法（二氯甲烷/甲醇100:0至91:9）纯化，接着是制备型HPLC（5-氨基化C18, MeCN/H₂O38:62）纯化，以27%的产率得到作为白色固体的化合物50。

化合物51的合成

C₅₃H₃₁O₅  M=536.66g·mol⁻¹

质谱 (ESI⁺): 554.13 [M+H₂O]⁺
[0668] 在惰性气氛下，将氯化铈七水合物 (167mg, 0.449mmol, 1.2 eq) 加入到冷却至 -23℃ 的环己烯稀 8 (200mg, 0.374mmol, 1eq) 的 MeOH-THF (3:1, v/v, 5mL) 溶液中。将反应混合物在该温度下搅拌 30 分钟并加入硼氢化钠 (21mg, 0.561mmol, 1.5eq). 另外的 45 分钟后，加入氯化铵 (15mL) 和氯化钠 (15mL) 的饱和的水溶液。将水层用乙酸乙酯萃取并将合并的萃取液用硫酸钠干燥，过滤并浓缩。将残留物经硅胶色谱法 (乙酸乙酯/环己烷 3/97 至 35/65) 纯化，以得到作为白色固体的醇 51 (137mg, 产率 68%)。

[0669] 化合物 52 的合成

[0670] C_{12}H_{20}O_{5}Si  M=650.92g, mol^{-1}

[0671] 质谱 (ESI^+): 673.5 [M+Na]^+; 689.3 [M+K]^+

[0672] 在惰性气氛下，向 51 (3.80g; 7.09mmol, 1eq) 的干燥二甲基甲酸胺 (25mL) 溶液中加入咪唑 (1.45g; 21.3mmol, 3eq)。将反应混合物在室温下搅拌 30 分钟，然后加入叔丁基二甲基氯硅烷 (1.70g, 11.3mmol, 1.6 eq)。将混合物在 40℃下加热 12 小时，然后用水淬灭并用乙酸乙酯萃取。将有机层合并，用盐水洗涤，用硫酸钠干燥，过滤并浓缩，以得到作为黄色油状物的化合物 52 (4.57g, 产率 9%)。该化合物无需进一步纯化即可参与下一个步骤。

[0674] 化合物 53 的合成

[0675] C_{12}H_{20}O_{5}Si  M=668.93g, mol^{-1}


[0677] 在惰性气氛下，于 0℃ 向 52 (4g, 6.15mmol, 1eq) 的干燥 THF (60mL) 溶液中加入硼烷 - 二甲硫醚络合物 (12.3mL; 2M THF 溶液; 24.6mmol; 4eq)。将反应介质在室温下搅拌过夜，然后于 0℃ 依次加入水 (7.8mL; 0.43mol; 70eq), 30% 的过氧化氢水溶液 (21.0mL; 0.19mol; 30eq) 和 3M 的氢氧化钠水溶液 (16.4mL; 49.2mmol; 8eq)。将混合物在室温下搅拌 2 小时，然后用饱和的氯化铵水溶液 (300mL) 淬灭。将水层用乙酸乙酯萃取，并且将合并的
有机层用盐水洗涤，用硫酸钠干燥，过滤并浓缩。将残留物经硅胶色谱法（环己烷 / 乙酸乙酯）纯化，以得到作为黄色油状物的醇 53（754mg，产率 63%）。53 粗品也能够无需进一步纯化即可参与下一个步骤。

[0679] 化合物 54 的合成

[0680] C₃₅H₅₉O₁₀Si  M=666.92g. mol⁻¹


[0682] 在惰性气氛下，于 0℃ 向 53（1.51g；2.26mmol；1eq）的干燥二氯甲烷（23mL）溶液中加入戴斯 - 马丁氧化剂（1.44g；3.39mmol；1.5eq）。将混合物在室温下搅拌过夜，然后加入 1M 氢氧化钠水溶液（50mL）。将水层用二氯甲烷（2×100mL）萃取并将合并的有机层用硫酸钠干燥，过滤并浓缩。将残留物经硅胶色谱法（乙酸乙酯 / 环己烷 1/99 至 11/89），以得到作为黄色油状物的酮 54（1.13g，产率 75%）。可替换地，酮 54 可以由 51 经过 3 个步骤以 55% 的产率获得，仅在最后的步骤中进行一次纯化。

[0683] 化合物 55 的合成

[0684] C₃₅H₅₉O₁₀  M=552.66g. mol⁻¹

[0685] 质谱 (ESI⁺): 575.3 [M+Na]⁺; 591.3 [M+K]⁺

[0686] 向 54（560mg，0.84mmol）的二氯甲烷（4mL）溶液中加入 12N HCl 的甲醇溶液（2%v/v，4mL）。将反应混合物在室温下搅拌过夜。然后加入水，接着是饱和的碳酸氢钠水溶液，直至中和。将混合物用二氯甲烷萃取，用硫酸钠干燥，过滤并浓缩。将残留物在乙醇中研磨并过滤，以得到作为白色固体的化合物 55（337mg，产率 73%）。

[0687] 化合物 56 的合成

[0688] C₃₅H₅₉O₁₀  M=594.69g. mol⁻¹


[0690]
[0693] 在惰性气氛下，于 0°C 向 55（1.27g；2.30mmol；1eq）的干燥二氯甲烷（3mL）溶液中依次加入吡啶（0.93mL；11.5mmol；5eq）、二甲基氧化试剂（60mg；0.46mmol；0.2eq）和乙酸酐（0.44mL；4.60mmol；2eq），将混合物在相同温度下搅拌 45 分钟。然后加入水，接着是 1N 盐酸水溶液。将水层用二氯甲烷萃取，并且将合并的有机层用盐水洗涤，用硫酸钠干燥，过滤并浓缩，以定量地得到作为浅黄色油状物的酯 56（1.39g）。56 精品无需进一步纯化即可参与下一个步骤。

[0694] 化合物 57 的合成

[0695] C_{37}H_{40}F_{2}O_{6} M=616.69g·mol^{-1}

[0696] $^1$H NMR (CDCl$_3$, 282.5MHz): -110.0 (d, J=250Hz, 1F, CFF); -119.4 (ddd, J1=249Hz, J 2=21Hz, J3=29Hz, 1F, CFF)


[0699] 在惰性气氛下，向 56（1.30g；2.19mmol；1eq）的干燥二氯甲烷（5.2mL）的溶液中加入二乙氨基二氯化硫（5.2mL；42.4mmol；19eq）。将反应基质在室温下搅拌 16 小时。然后，将溶液用二氯甲烷稀释并加入固体硫酸氢钠。将混合物在 0°C 下搅拌额外的 30 分钟，然后逐滴加入水。将水层用二氯甲烷萃取并将合并的有机层用硫酸钠干燥，过滤并浓缩。将残留物经硅胶色谱法（乙酸乙酯 / 环己烷 2/98 至 12/88）纯化，以得到浅黄色油状物形式的化合物 57（471mg，产率 35%）。

[0700] 化合物 58 的合成

[0701] C_{37}H_{40}O_{6} M=580.71g·mol^{-1}

[0702] 质谱 (ESI): 603.3 [M+Na]^+; 619.3 [M+K]^+

[0703] 在惰性气氛下，将 51 精品（53.7g）溶解在干燥的氯仿（500mL）和二甲基甲烷（292mL，3.3mol，33eq）的混合物中。加入 P_2O_5 (73.9g, 521mmol, 1.2eq)。在机械搅拌下，
将反应物在室温下保持 1 小时。然后，将混合物在 celite® 545 垫上过滤（用二氯甲烷洗脱）并用饱和的碳酸氢氯水溶液（700mL）洗涤。然后加入水（1L），并用将混合物用二氯甲烷（2×300mL）萃取，用盐水洗涤，用 Na2SO4 干燥，过滤并浓缩，以得到棕色油状物形式的 58（57.7g），其缓慢地结晶。58 无需进一步纯化即可参与下一个步骤。

[0705] 化合物 59 的合成
[0706] C37H46O7 M=598.73g·mol⁻¹
[0707] 质谱 (ESI⁺): 621.3 (M+Na)⁺; 637.3 (M+K)⁺
[0708]

在惰性气氛下，将硼烷 - 二甲基硫醚络合物（2M THF 溶液，199mL，397mmol，1eq）加入到冷却至 0°C 的 58（57.7g）的干燥 THF（197mL）溶液中。然后，将反应混合物在室温下搅拌过夜，然后冷却至 0°C 并用水（125mL，6.96mol，70eq），接着是过氧化氢（30%w/v 的水溶液，338mL，2.98mol，30eq）和氢氧化钠（2M 水溶液，397mL，0.79mol，8eq）小心地处理。使混合物在室温下（～ 25°C）反应 2 小时，然后加入饱和的氯化铵水溶液（700mL）和水（300mL）以淬灭反应。将混合物用乙酸乙酯（3×500mL）萃取并合并的有机层用水（600mL）和盐水（600mL）洗涤，用 Na2SO4 干燥，过滤并浓缩，以得到黄色油状物形式的 59（59.5g）。59 无需进一步纯化即可参与下一个步骤。

[0710] 化合物 60 的合成
[0711] C37H46O7 M=596.71g·mol⁻¹
[0712] 质谱 (ESI⁺): 619.3 (M+Na)⁺; 635.3 (M+K)⁺
[0713]

[0714] 将戴斯 - 马丁氧化剂（84.3g；199mmol；2eq）按份加入到 0°C 的 59 粗品（59.5g）的干燥二氯甲烷（1L）溶液中。将反应物在室温下搅拌 18 小时，然后加入氢氧化钠（1N 水溶液，1L）和水（500mL）。然后将水层用二氯甲烷（2×400mL）萃取并合并的有机层用硫酸钠干燥，过滤并浓缩。将残留物经硅胶色谱法（环己烷 / 乙酸乙酯 98:2 至 86:14, v/v 在 Biotage SNAP750g 小柱上），以得到作为黄色固体的目标酮 60（32g；经过 4 个步骤的产率 48%）。

[0715] 化合物 61 的合成
[0716] C37H46O7 M=618.71g·mol⁻¹
[0717] ¹H NMR (CDCl₃, 282.5MHz): -108.5 (d, J=252Hz, 1F, CFF); -121.0 (ddd, J1=252Hz, J 2=30Hz, J3=20Hz, 1F, CFF).
[0720] 将 DAST (125mL, 1.02mol, 19eq) 缓慢地加入到 60 (32g, 53.6mmol, 1eq) 在干燥二氯甲烷 (145mL) 中的冷却溶液 (0℃) 中。然后使反应混合物达到室温并搅动过夜。然后加入二氯甲烷 (400mL) 并将混合物缓慢倾倒在冰 (1L) 、二氯甲烷 (300mL) 和 NaHCO₃ (400g) 的混合物中。将混合物剧烈搅拌 15 分钟。加入水 (500mL) 并将水层用二氯甲烷 (2×300mL) 萃取。将合并的有机萃取液用 Na₂SO₄ 干燥，过滤并浓缩，以得到黄色油状物形式的 61 粗品 (32.6g)。61 无需进一步纯化即可参与下一个步骤。

[0721] 化合物 62 的合成

[0722] C₃₀H₅₀F₄O₂, M=574.65 g·mol⁻¹

[0723] ¹³C NMR (CDCl₃, 282.5 MHz): -110.7 (d, J=249Hz, 1F, CFF); -123.7 (ddd, J₁=248Hz, J₂=29Hz, J₃=19Hz, 1F, CFF)。

[0724] 质谱 (ESI⁺): 577.5 [M+H⁺+Na⁺]; 592.5 [M+H₂O⁺]; 597.5 [M+Na⁺]; 613.5 [M+K⁺]

[0725] A. 在惰性气氛下，向 57 (70mg, 0.114mmol, 1eq) 的干燥甲醇溶液中加入甲醇钠 (8mg, 0.142mmol, 1.25eq)。将反应介质在室温下搅拌过夜。然后加入水，接着加入 1N 盐酸水溶液直至 pH=6。将混合物用乙酸乙酯萃取，用盐水洗涤，用硫酸钠干燥，过滤并浓缩，以定量的产率得到浅黄色固体形式的酯 62 (65mg)。

[0726] B. 在惰性气氛下，将三氟乙酸 (98.0mL, 1.32mol, 25eq) 加入到 61 (32.6g) 的干燥二氯甲烷 (260mL) 溶液中。将反应混合物在室温下搅拌过夜。将混合物冷却至 0℃并加入水 (500mL)。分离液层并用水 (500mL) 洗涤有机层。将合并的水层合并并用二氯甲烷 (2×100mL) 萃取。将合并的有机层用饱和的 NaHCO₃ (250mL) 洗涤，用硫酸钠干燥，过滤并浓缩。将混合物粗品经硅胶色谱法 (环己烷 / 乙酸乙酯 98:2 至 82:18, v/v) 在 Biotage SNAP750g 小柱上纯化，以得到作为白色固体的 62 (13.6g, 经过 2 个步骤的产率 30%)。
化合物 63 的合成

C_{33}H_{20}F_{10}O_{5} M=819.37 g. mol^{-1}

^{19}F NMR (CDCl_{3}, 282.5 MHz): -112.3 (dd, J1=266 Hz, J2=27 Hz, 1F, CFF); -113.7 (dd, J1=266 Hz, J2=61 Hz, 1F, CFF).

质谱 (ESI): 836.7 [M+H]^{+}; 841.8 [M+Na]^{+}; 857.7 [M+K]^{+}

在惰性气氛下，向 62 (200 mg, 0.35 mmol, 1 eq) 的干燥二氯甲烷溶液中加入戴斯-马丁氧化剂 (295 mg, 0.7 mmol, 2 eq)。将反应介质在室温下搅拌 3 小时，然后加入 1 N 氢氧化钠水溶液 (10 mL)。将水层用二氯甲烷萃取，并且用硫酸钠干燥，过滤并浓缩，得到作为浅橙色固体的酯 63 (158 mg, 产率 77%)，其迅速向着形成水合物形式的方向发展，直至达到平衡。

化合物 64 的合成

C_{33}H_{20}F_{10}O_{5} M=819.37 g. mol^{-1}

^{19}F NMR (CDCl_{3}, 282.5 MHz): -112.3 (dd, J1=266 Hz, J2=27 Hz, 1F, CFF); -113.7 (dd, J1=266 Hz, J2=27 Hz, 1F, CFF).

质谱 (ESI): 836.7 [M+H]^{+}; 841.8 [M+Na]^{+}; 857.7 [M+K]^{+}

在惰性气氛下，在包含镁屑 (50 mg, 2.04 mmol, 1.2 eq) 的 Schlenk 管中加入 2 mL (来自于 5 mL) 10 (552 mg, 1.70 mmol, 1 eq) 和 1,2-二溴乙烷 (15 μL, 0.17 mmol, 0.1 eq) 的干燥 THF (5 mL) 溶液。将混合物在 75 °C 下加热 5 分钟以启动反应，然后在室温下逐滴加入剩余 3 mL 10 和 1,2-二溴乙烷的溶液。然后，将该溶液在 75 °C 下搅拌 1 小时。

然后，将预冷冷却至室温的 2.4 mL 银氏溶液加入到 63 (158 mg, 0.27 mmol) 的干燥 THF (2 mL) 溶液中。将反应混合物在室温下搅拌 2 小时，然后加入饱和的氯化铵溶液。将水层用乙醚萃取并将合并的有机层用盐水洗涤，用硫酸钠干燥，过滤并浓缩。将残留物经硅胶色谱法（环己烷 / 乙酸乙酯 100:0 至 77:23）纯化，以 69% 的产率得到作为两种非对映异构体的混合物的化合物 64 (152 mg)。这些非对映异构体可以通过半制备型 HPLC 分离。
化合物 65 的合成

C_{32}H_{25}ClF_{2}O_6  M=458.88g·mol^{-1}

$^{1}H$ NMR (CDCl$_3$, 282.5 MHz): -114.0 (dd, J1=262Hz, J2=7Hz, 1F, CFF); -115.4 (dd, J1=262Hz, J2=261Hz, 1F, CFF)。

质谱 (ESI?): 481.3 [M+Na]'; 497.3 [M+K]'

化合物 66 的合成

C_{52}H_{38}BrClF_{2}O_6  M=882.27g·mol^{-1}

$^{1}H$ NMR (CDCl$_3$, 282.5 MHz): 主要端基异构体: -97.8 (dd, J1=246Hz, J2=30Hz, CFF); -102.6 (d, J=246Hz, CFF).

质谱 (ESI?): 4881.2 (M+H)^+; 898.3 (M+H_2O)^+.

化合物 15 的合成

C_{30}H_{25}ClF_{2}O_6  M=803.37g·mol^{-1}

$^{1}H$ NMR (CDCl$_3$, 282.5 MHz): -100.3 (d, J=254Hz, 1F, CFF); -113.3 (td, J1=254Hz, J2=29Hz, 1F, CFF)。

质谱: (ESI?): 820.00 (M+H_2O)
[0761] 在室温下，将 Bu₃SnH (7 μL, 25.5 mmol, 1.5 eq) 加入到 66 (15mg, 17.0 mmol) 在干燥甲苯 (170 μL) 溶液中。然后将混合物在 110℃ 下加热并搅拌 3 小时。然后加入额外的一份 Bu₃SnH (7 μL, 25.5 mmol, 1.5 eq)，并将混合物在 110℃ 下搅拌额外的 3 小时。再次重复该步骤，直至 TLC 上不再观察到变化。将混合物浓缩并经制备型 TLC (环己烷 / 乙酸乙酯 90:10, v/v) 纯化，以得到 15 (2mg, 17%, β - 端基异构体和 4mg 包含 α - 端基异构体)。

[0762] 化合物 67 的合成

[0763] C₃₀H₃₆F₇O₂S  M=706. 72g. mol⁻¹

[0764] ¹H NMR (CDCl₃, 282. 5MHz); -74. 0 (d, J=12Hz, CF₃); -108. 2 (dq, J₁=252Hz, J₂=12Hz, CF₃); -119. 5 (ddd, J₁=253Hz, J₂=31Hz, J₃=18Hz, CF₃)。

[0765] 质谱 (ESI⁺); 724. 3 (M+H⁺); 729. 2 (M+Na⁺); 745. 2 (M+K⁺)

[0766] 在惰性气氛下，将三氟甲磺酸酐 (9.5mL, 57.4mmol, 1eq) 和吡啶 (4.6mL, 57.4mmol, 1eq) 加入到 62 (11.0g, 19.1mmol, 1eq) 在干燥二氯甲烷 (190mL) 中的冷却溶液 (0℃) 中。使溶液温热至室温并搅拌过夜。然后将水 (400mL) 加入到冷却混合物 (0℃) 中，然后用氯化甲烷 (2×150mL) 萃取，用硫酸钠干燥，过滤和浓缩，以得到作为棕色固体的 67 粗品 (3.6g)。67 无需进一步纯化即可参与下下一个步骤。

[0767] 化合物 68 的合成

[0768] C₃₀H₃₆F₇O₂  M=756. 87g. mol⁻¹

[0769] ¹H NMR (CDCl₃, 282. 5MHz); -107. 9 (brd, J₁=256Hz, CF₃); -110. 8 (ddd, J₁=257Hz, J₂=30Hz, J₃=3Hz, CF₃)。

[0770] 质谱 (ESI⁺); 779. 4 (M+Na⁺); 795. 3 (M+K⁺)

[0771] 将氢化钠 (95%, 1.38g, 57.3mmol, 1eq) 加入到 4-(苯氧基) 苯酚 (13.4g,
化合物 69 的合成

C_{12}H_{15}F_2O_6  M=306.26 g·mol^{-1}

{^{19}F\text{ NMR}} (D_2O, 282.5 MHz): -107.6 (brd, J=262Hz, 1F, CFF); -111.6 (brdd, J1=262Hz, J2=31Hz, 1F, CFF).

质谱 (ESI−): 285.1 (M−H−HF); 305.1 (M−H); 341.1 (M+Cl); 351.1 (M+HCO)_3^{-}

将 68 粗品 (13.5 g) 溶解在乙醇 / 12N% 的 HCl (v/v, 117mL), 四氢呋喃 (63mL) 的混合液中。然后将活性炭 (10%, 3.8g, 0.2eq) 悬浮在溶液中，并将反应混合物放置在氮气气氛下并在室温下搅拌 3 天。将反应介质过滤并浓缩，然后经硅胶色谱法 (二氯甲烷 / 甲醇 100:0 至 85:15, v/v 在 Biotage SNAP340g 小柱上) 纯化，以得到 69 (4.92g, 90%), 其被冷冻干燥成白色固体形式。

2. 生物活性

a) 关于对葡萄糖排泄的易化作用 (facilitatory effect) 的试验。

使用雌性 CD1 小鼠 (CDM 或 Charles River) 作为实验动物。将测试化合物以 1mg/mL 的浓度溶解在载体 (5% 的 N- 甲基吡咯烷酮, 20% 的 PEG400, 75% 的 20mM NaHPO_4 缓冲液, v/v/v) 中。在测定小鼠体重并对其随机分组之后，以 1mg/kg, 3mg/kg 和 10mg/kg 的剂量口服给药。对于对照，只口服给载体 (5% 的 N- 甲基吡咯烷酮, 20% 的 PEG400, 75% 的 20mM NaHPO_4 缓冲液, v/v/v)。采用用于小鼠的胃管和 ml 注射器来进行口服给药。一组中的最小计数为 3，但是对于一组而言能够达到 12。手动进行尿液的采集；通过温和地按摩腹部，以便通过标准的移液管来采集尿液 (3 μL)。在 1, 2, 4, 6, 8 和随后的 16, 18, 20, 22, 24, 26 和 28 小时采集尿液。使用 WAKO 葡萄糖试剂盒按照如下方式测定尿糖浓度：将 3 μL 的尿液置于 96 孔微板中用于光谱测定的读出。将尿液等分样本用 350 μL 的 WAKO 工作溶液稀释。对于可能超出 WAKO 葡萄糖试剂盒量程的葡萄糖浓度而言，将最终溶液的等分样本 (35 μL) 置于另一块 96 孔微板中并用 315 μL 的 WAKO 工作溶液进一步稀释 (10×)。然后，使用 BioTek SynergyMX 平板荧光计 / 吸光光度计在 505nm 处读取 96 孔板的吸光度并计算葡萄糖浓度。使用 Excel2007 来计算对照和供试品在不同时间点的葡萄糖浓度的平均值并使用 GraphPad Prism5 绘制。

图 1 和 2 中显示出采用 16 和 50 所获得的结果。因此，看起来是 16 (3mg/kg) 触
发了持久性糖尿病（高达 26 小时，图 2）。

b）通过研究对葡萄糖排泄的易化作用来比较根据本发明的化合物与现有技术中的化合物之一的作用的持续时间的试验

试验已经如 a）所述地进行。

当葡萄搪片段的环内氮原子被 CF₃片段代替时，已经比较了根据本发明的化合物 16 和达格列净（Dapagliflozin）来突出强调化合物的作用的持续时间的改善，即更长的糖尿持续时间。

该试验已经在 3mg/kg 的剂量下进行。

图 5 中显示出获得的结果。因此，与达格列净相比，看起来是 16（3mg/kg）触发了糖尿，其持续了超过 24 小时。

当携带 CH-CH 片段而非环内氧的葡萄糖模拟物被携带代替 CH-CH 片段的 CF₃ 的葡萄糖模拟物代替时，已经比较了根据本发明的化合物 16 和 WO2009/1076550 中的化合物 9 来突出强调化合物的作用的持续时间的改善。

该试验已经在 3mg/kg 的剂量下进行。

图 6 中显示出获得的结果。因此，当 WO2009/1076550 的化合物 9 在相同的时期内没有检测到情况时，看起来是 16（3mg/kg）触发了更长的持久性糖尿病（高达 24 小时）。

c）关于在葡萄糖负荷后减少血糖波动的易化作用的试验。

使用禁食 18 小时的雌性 CD1 小鼠（CDM 或 Charles River）作为实验动物。将测试化合物以 1mg/mL 的浓度溶解在载体（5% 的 N- 甲基偶硝酰）20% 的 PEG400，75% 的 20mM Na₃P₂O₅, 缓冲液）中。在测定小鼠体重并对其随机分组之后，以 1mg/kg，3mg/kg 和 10mg/kg 的剂量口服施用供试品。对于对照，只口服施用载体（5% 的 N- 甲基偶硝酰，20% 的 PEG400，75% 的 20mM Na₃P₂O₅, 缓冲液，v/v/v）。该口服施用后 15 分钟，将去离子水中 20% 的葡萄糖溶液口服施用于所有小鼠。采用用于小鼠的胃管和 1mL 注射器来进行口服施用。一组中的最小计数为 3，但是对于一些组而言能够达到 5。通过静脉内进行血液的采集。在葡萄糖负荷后的 5，10，30，45，60 和 120 分钟采集血样。一项试验在于在葡萄糖负荷之前 18 小时施用供试品，即口服供试品之后 18 小时进行葡萄糖负荷。使用 Johnson and Johnson’s
OneTouch® Ultra Blood Glucose Monitoring System测定血糖浓度。使用Excel2007来计算对照和供试品在不同时间点的葡萄糖浓度的平均值并使用GraphPad Prism5绘制。

[0796] 图3和4中显示出采用16所获得的结果。

[0797] 因此，看起来是16在葡萄糖负荷之后于正常小鼠体内以剂量依赖性方式降低了血糖水平（图3）。此外，在葡萄糖负荷之前18小时口服施用的16（3mg/kg）在血糖负荷之后仍然减少了血糖波动（图4）。

[0798] d)评价和比较根据本发明的化合物26与现有技术的化合物（合格列净-A）对抗糖苷酶的稳定性试验。

[0799] 已经采用根据本发明的化合物26和用作控制β-糖苷酶有效性的参照化合物的化合物A来进行酶稳定性试验。也已经评价了合格列净-A稳定性，以便比较通过葡萄糖片段的环内氧原子被CF3片段代替而获得的代谢稳定性的改善。

[0800]

[0801] 所有的化合物均已经用β-糖苷酶处理。在用β-糖苷酶孵育后，通过HPLC分析已经评价了化合物26和合格列净-A的稳定性。

[0802] 使用Gilson HPLC系统，其配备有手动进样系统（V=20μL），设定在230nm波长处的二极管阵列检测器（DAD172）和150mm×4.6mm，5μm HILIC Kromasil100-5C18反相柱。使用如下的线性HPLC二元梯度：溶剂A是水且溶剂B是乙腈。在20μL样品进样之后，溶剂B保持在20%共3分钟，在17分钟内从20%增加到90%，保持在90%共4分钟，最后，溶剂B在3.5分钟内降回至20%并保持在20%共3.5分钟。


[0804] 将100μL的4.5·10⁻⁴mol·L⁻¹下的化合物26的乙腈溶液加入到包含800μL的磷酸盐缓冲液（73173Fluka，pH7）的溶液中并在37℃下保持4小时，所述溶液中存在来自于Almonds的β-糖苷酶（10U, 100μL的5.6mg·mL⁻¹下的磷酸盐缓冲液溶液，（G4511sigeal18.7U/mg））。

[0805] 按照相同的方法，在β-糖苷酶的存在下，已经处理了100μL的4.5·10⁻⁴mol·L⁻¹下的合格列净-A乙腈溶液。

[0806] 平行地，将100μL的4.5·10⁻⁴mol·L⁻¹下的对硝基苯基β-葡萄糖基（化合物A）的
磷酸盐缓冲液（pH7）溶液加入到包含 700 μL 的磷酸盐缓冲液和 100 μL 的乙腈的溶液中并在 37 ℃下保持 4 小时，所述溶液中存在来自于 Almonds 的 β - 糖苷酶（10U, 100 μL 的 5.6mg.ml⁻¹ 下的磷酸盐缓冲液溶液，(G4511siala18.7U/mg)）。在 β - 糖苷酶存在过程中，观察到黄色染色，这突出强调了化合物 A 的分解。


[0808] 已经进行了化合物 21（图 7），化合物 26（图 8）和化合物 -A（图 10）的 HPLC，以便在实验中监测化合物 21（糖苷配基部分）的形成，这意味着原料的降解。

[0809]

![化合物 21](image)

[0810] 已经进行了化合物 26 在 β - 糖苷酶的存在下的 HPLC（图 9）并突出强调了由于没有观察到化合物 21 的形成的，所以没有发生降解。

[0811] 已经进行了化合物 -A 在 β - 糖苷酶的存在下的 HPLC（图 11）并突出强调了由于观察到化合物 21 的形成的，所以发生了降解。

[0812] 为了评价降解的百分比，已经对化合物 21 进行了校准，其给出以下结果：

<table>
<thead>
<tr>
<th>浓度 g/L</th>
<th>面积 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>260</td>
</tr>
<tr>
<td>0.01</td>
<td>506</td>
</tr>
<tr>
<td>0.05</td>
<td>2962</td>
</tr>
<tr>
<td>0.1</td>
<td>5228</td>
</tr>
</tbody>
</table>

[0813]

[0814]

[0815] 数据已经被绘制（面积 % 相比于浓度）并且获得的线性回归的特征在于以下方程

\[ y = 53629x \] 且 \[ R^2 = 0.994 \]。

[0816] 在图 11 中，化合物 -A 在 β - 糖苷酶的存在下的 HPLC 谱突出强调了伴随着化合物 21 的形成的，发生了降解（面积 % = 416）。

[0817] 前述方程使我们能够确定化合物 21 的浓度为 7.76 × 10⁻³ g/L，其相当于

\[ 3.6 \times 10^8 \text{ mol} \]。

[0818] 这等于采用 β - 糖苷酶在 37 ℃下孵育 4 小时后，80% 的化合物 -A 发生了降解，然而在相同的条件下，化合物 26 不发生降解。

[0819] e) 关于抑制酪氨酸 - 酪氨酸酶反应的试验

[0820] 抑制酪氨酸酶（即抑制酪氨酸羟化成多巴）可以通过可见分光光度法来测定，并且更具体地，通过于 477nm 处测定吸光度来测定，这表明由酪氨酸底物通过酪氨酸酶在体外
产生黑色素的量。
[0821] 为了确保测定的吸光度在研究的浓度范围内与酶活性成正比，五种标准溶液被制备如下。

<table>
<thead>
<tr>
<th>标准溶液编号</th>
<th>溶液 A</th>
<th>Bis Tris 缓冲液</th>
<th>溶液 B</th>
<th>适量的 milliQ 水</th>
<th>吸光度 (477nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 mL</td>
<td>2 mL</td>
<td>2 mL</td>
<td>10 mL</td>
<td>0.0002</td>
</tr>
<tr>
<td>2</td>
<td>2 mL</td>
<td>2 mL</td>
<td>2 mL</td>
<td>10 mL</td>
<td>0.2626</td>
</tr>
<tr>
<td>3</td>
<td>4 mL</td>
<td>2 mL</td>
<td>2 mL</td>
<td>10 mL</td>
<td>0.4832</td>
</tr>
<tr>
<td>4</td>
<td>6 mL</td>
<td>2 mL</td>
<td>2 mL</td>
<td>10 mL</td>
<td>0.5774</td>
</tr>
<tr>
<td>5</td>
<td>8 mL</td>
<td>2 mL</td>
<td>2 mL</td>
<td>10 mL</td>
<td>0.5447</td>
</tr>
</tbody>
</table>

[0822] 已经在 Perkin Elmer UV/Vis Spectrometer Lambda 12 上测定吸光度。

[0824] 溶液 A (1000 U/mL 肽氨酸酶溶液) 通过将 40 mg 的 1250 U/mg 肽酸肽氨酸酶溶液在 1 mL 的 100 mM pH6.5 bis Tris 缓冲液中，并用 milliQ 水适量添加至 50 mL 来制备。

[0825] Bis Tris 缓冲液 (100 mM pH6.5 bis Tris 缓冲液) 通过将 2.09 g 的 Bis Tris 溶解于 MilliQ 水中并适量添加至 100 mL 来制备。

[0826] 溶液 B (肽氨酸酶溶液) 通过将 100 mg 的肽氨酸溶解于 MilliQ 水中并适量添加至 100 mL 来制备。

[0827] 将标准溶液在 37℃下孵育 2 小时，然后迅速冷却至 4℃。相对于不含肽氨酸酶的空白溶液 (溶液 #1)，在 477 nm 处测定溶液 #2-5 的吸光度。数据已经被图形成 (吸光度相比较于肽氨酸酶浓度) 并且在 0 到 0.5 的吸光度范围内获得的线的特征在于以下方程
\[ y = 0.2415x - 0.2343 \] 和 \[ R^2 = 0.9975 \]。

[0828] 制备下列测试溶液并在 477 nm 处测定其吸光度：

<table>
<thead>
<tr>
<th>溶液 C</th>
<th>溶液 D</th>
<th>溶液 E</th>
</tr>
</thead>
<tbody>
<tr>
<td>描述 (100%的肽氨酸酶活性)</td>
<td>化合物 31 (n=5.10^{-5} mol)</td>
<td>氨酚 (n=5.10^{-5} mol)</td>
</tr>
<tr>
<td>测试化合物 (mg)</td>
<td>0</td>
<td>15.3</td>
</tr>
<tr>
<td>溶液 A (mL)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>溶液 B (mL)</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Bis Tris 缓冲液 (mL)</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>吸光度 (477 nm)</td>
<td>0.4354</td>
<td>0.1292</td>
</tr>
</tbody>
</table>

[0830] 具有 0.1292 的吸光度，化合物 31 (溶液 D) 显示出如同氨酚 (溶液 E) 一样对肽氨酸酶的抑制作用。

[0831] 评估和比较根据本发明的化合物 31 和现有技术的化合物 (β-熊果苷) 的 IC50 的试验。

[0832] 所执行的方案与试验 e 中相同。
溶液A（1000U/mL 酪氨酸酶液）通过将所有的50kU 蘑菇酪氨酸酶溶解在1mL 的100mM pH6.5 bis Tris 缓冲液中，并用 MilliQ 水适量添加至50mL 来制备。

Bis Tris 缓冲液（100mM pH6.5 bis Tris 缓冲液）通过将2.09g 的Bis Tris 溶解于 MilliQ 水中并适量添加至100mL 来制备。使用盐酸将 pH 调节至 6.5。

溶液 B（酪氨酸液）通过将 20mg 的酪氨酸溶解于 MilliQ 水中并适量添加至20mL 来制备。

化合物 31 的储备溶液被如下制备：将 10mg 的化合物 31 溶解在 Bis Tris 缓冲液中直至1mL。

β-熊果苷的储备溶液被如下制备：将 20mg 的 β-熊果苷化合物溶液在 Bis Tris 缓冲液中直至1mL。

将溶液在 37℃下孵育 1 小时 30 分钟，然后迅速冷却至 4℃。将 100 μL 的每种溶液置于 96-孔板上。在 477nm 处测定不同溶液的吸光度 (Molecular Devices: Spectra Max340PC)。

按照下列不同表格中的描述制备不同的溶液并报道了其吸光度。见证溶液 (不含抑制剂) 的吸光度被设定为 100% 的酶活性，这使得我们能够确定不同溶液的酶活性百分比。

<table>
<thead>
<tr>
<th></th>
<th>条目 1</th>
<th>条目 2</th>
<th>条目 3</th>
<th>条目 4</th>
<th>条目 5</th>
<th>见证</th>
</tr>
</thead>
<tbody>
<tr>
<td>溶液 B（μL）</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>化合物 31 的溶液（μL）</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>50</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>水（μL）</td>
<td>240</td>
<td>230</td>
<td>220</td>
<td>200</td>
<td>190</td>
<td>250</td>
</tr>
<tr>
<td>溶液 A（μL）</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>吸光度（477nm）</td>
<td>0.5855</td>
<td>0.3535</td>
<td>0.255</td>
<td>0.220</td>
<td>0.200</td>
<td>0.718</td>
</tr>
<tr>
<td>抑制剂浓度 mg/mL</td>
<td>0.17</td>
<td>0.33</td>
<td>0.50</td>
<td>0.67</td>
<td>0.83</td>
<td>0.00</td>
</tr>
<tr>
<td>活性 %</td>
<td>81.55</td>
<td>49.23</td>
<td>35.52</td>
<td>30.57</td>
<td>27.86</td>
<td>100.00</td>
</tr>
</tbody>
</table>
### 表格

<table>
<thead>
<tr>
<th>条目</th>
<th>条目 1</th>
<th>条目 2</th>
<th>条目 3</th>
<th>条目 4</th>
<th>条目 5</th>
<th>见证</th>
</tr>
</thead>
<tbody>
<tr>
<td>溶液 B(μL)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>β-熊果苷的溶液(μL)</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>水(μL)</td>
<td>210</td>
<td>200</td>
<td>190</td>
<td>180</td>
<td>170</td>
<td>220</td>
</tr>
<tr>
<td>溶液 A(μL)</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>吸光度(477nm)</td>
<td>0.5010</td>
<td>0.3040</td>
<td>0.2380</td>
<td>0.2035</td>
<td>0.1970</td>
<td>0.722</td>
</tr>
<tr>
<td>抑制剂浓度 mg/mL</td>
<td>0.67</td>
<td>1.33</td>
<td>2.00</td>
<td>2.67</td>
<td>3.33</td>
<td>0.00</td>
</tr>
<tr>
<td>活性%</td>
<td>66.62</td>
<td>40.43</td>
<td>31.65</td>
<td>27.06</td>
<td>26.20</td>
<td>100.00</td>
</tr>
</tbody>
</table>

[0843] 数据已经被绘制（活性%相比于抑制剂的浓度）并且曲线的线性回归用于计算两种化合物的 IC50。所获得的结果列于下表：

<table>
<thead>
<tr>
<th>IC50</th>
<th>酪氨酸酶浓度 100 U/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>化合物 31</td>
<td>0.328 mg/mL</td>
</tr>
<tr>
<td>口口熊果苷</td>
<td>1.1 mg/mL</td>
</tr>
</tbody>
</table>

[0845] 结果明确强调了化合物 31 是一种比 β-熊果苷更好的酪氨酸酶抑制剂。
图 1

图 2
图3

口服18小时后OGTT

图4
图 5

图 6
图7

化合物21

保留时间=13.805分钟
图8

化合物26
图 9
图 11