(19) (1O DE 197 23 063 B4 2009.05.07

Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(12) Patentschrift

shytct:: GO6T 1/60(2006.01)

GO6F 12/08 (2006.01)

(21) Aktenzeichen: 197 23 063.6
(22) Anmeldetag: 02.06.1997
(43) Offenlegungstag: 29.01.1998
(45) Veroffentlichungstag

der Patenterteilung: 07.05.2009

Innerhalb von drei Monaten nach Veréffentlichung der Patenterteilung kann nach § 59 Patentgesetz gegen das Patent Ein-
spruch erhoben werden. Der Einspruch ist schriftlich zu erklaren und zu begriinden. Innerhalb der Einspruchsfrist ist eine
Einspruchsgebiihr in Héhe von 200 Euro zu entrichten(§ 6 Patentkostengesetz in Verbindung mit der Anlage zu § 2 Abs. 1

Patentkostengesetz).

(30) Unionsprioritat:
08/690,432 26.07.1996 us
(62) Teilung in:
197 58 921.9

(73) Patentinhaber:
Hewlett-Packard Development Co., L.P., Houston,
Tex., US

(74) Vertreter:
Schoppe, F., Dipl.-Ing.Univ., Pat.-Anw., 82049
Pullach

(72) Erfinder:
Saunders, Bradley L., Fort Collins, Col., US

(56) Fur die Beurteilung der Patentfahigkeit in Betracht
gezogene Druckschriften:
EP 06 68 555 A2
EP 04 47 227 A2

PRESS, W.H.: Numerical Recipes in C - The Art of
S

cientific Computing, Cambridge University Press,
1

992, S. 338-341; Parallel in Place Graphics Buffer
Reorganizations, IBM Technical Disclosure Bulleti
n, Vol. 37, No. 7, July 1994, S. 251-258; SEGAL M.
, AKELEY K.: The OpenGL TM Graphics System: A
Spec

ification, (Version 1.0), 1993, Kapitel 3.8, Textu
ring, S. 78-89; IEEE-CS TC-RTS Newsletter for
Sun,

Mar 26, 1995, S. 1, 33-36; MOLNAR, S.: >>The Pixe
IFlow Texture and Image Subsystem<x,
Proceedings o

f the 10th Eurographics Workshop on Graphics
Hardw

are, Maastricht, The Netherlands, Aug. 28-29, 1995
» PP- 3-13;

(54) Bezeichnung: Verfahren zum Speichern von Texeldaten einer Textur in einem zusammenhdngenden Speicher-

block

(57) Hauptanspruch: Verfahren zum Speichern von Texel-
daten einer Textur in einem zusammenhangenden
Speicherblock eines Speichers einer Texturabbildungs-
hardware in einem Computergraphiksystem, wobei einer
Textur eine MIP-Abbildung mit einer Mehrzahl von MIP-Ab-
bildungsebenen (100, 102, 104, 108) zugeordnet ist, wobei
das Verfahren folgende Schritte aufweist

(a) Empfangen (12) von Texeldaten flr eine erste herunter-
geladene MIP-Abbildungsebene (100, 102, 104, 108);

(b) Berechnen (16) eines zusammenhangenden Speicher-
blocks fir eine vollstdndige MIP-Abbildung, basierend auf
der GréRRe und der Ebenennummer der ersten herunterge-
ladenen MIP-Abbildungsebene (100, 102, 104, 108);

(c) Zuordnen (18) des zusammenhangenden Speicher-
bocks fiir die vollstandige MIP-Abbildung;

(d) Bestimmen (33) eines Versatzwertes in dem zusam-
menhangenden Speicherblock, basierend auf der Ebenen-
nummer der ersten heruntergeladenen MIP-Abbildungse-
bene (100, 102, 104, 108), wobei der Versatzwert der vor-
bestimmten Position zum Speichern von Texeldaten ent-

spricht, die der ersten heruntergeladenen MIP-Abbildungs-
ebene (100, 102, 104, 108) zugeordnet sind;

(e) Speichern (39) der Texeldaten fiir die erste herunterge-
ladene MIP-Abbildungsebene (100, 102,...

Ao e A%
oo . e

108

2 s oz
O s s e
aorTOE 0L o e e .)

127 128
L S o B . 104

102

DE 197 23 063 B4 2009.05.07

Beschreibung

[0001] Die vorliegende Erfindung bezieht sich auf ein Verfahren zum Speichern von Texeldaten einer Textur
in einem zusammenhangenden Speicherblock. Insbesondere bezieht sich die Erfindung auf eine Software-
speicherverwaltung von Texturabbildungen eines Texturabbildungs-Computergraphiksystems und insbeson-
dere auf einen neuen Lésungsansatz, welcher das System betrachtlich beschleunigt, indem sichergestellt wird,
daR die gesamten Texturdaten in einem zusammenhangenden Speicher gehalten werden.

[0002] Gegenwartige Implementationen der Texturabbildung, wie sie detaillierter in der Europaischen Paten-
tanmeldung EP 0 749 100 A beschrieben ist und deren Inhalt hierin durch Bezugnahme aufgenommen ist,
speichern eine Kopie der Textur des Benutzers in Software, um eine Vorrichtung zur Texturabfrage zu schaffen,
und um eine Cache-Speicherung von Texeln oder Texturelementen in Hardware zu erméglichen, wenn nicht
genug Speicher vorhanden ist, damit alle Texel zu einem Zeitpunkt in die Hardware passen.

[0003] Bei typischen Computergraphiksystemen wird ein Objekt, das auf dem Anzeigebildschirm dargestellt
werden soll, in eine Mehrzahl von Graphikgrundelementen gebrochen. Grundelemente sind Grundkomponen-
ten eines Graphikbildes und kénnen Punkte, Linien, Vektoren und Polygone, wie z. B. Dreiecke, umfassen. Ty-
pischerweise ist ein Hardware/Software-Schema implementiert, um auf dem zweidimensionalen Anzeigebild-
schirm die Graphikgrundelemente, die die Ansicht eines oder mehrerer Objekte darstellen, die auf dem Bild-
schirm dargestellt werden, aufzubereiten oder zu zeichnen.

[0004] Typischerweise werden die Grundelemente, die das dreidimensionale Objekt definieren, das aufberei-
tet werden soll, von einem Hostcomputer geliefert, welcher jedes Grundelement in Grundelement-Daten defi-
niert. Wenn das Grundelement beispielsweise ein Dreieck ist, kann der Hostcomputer das Grundelement in
den Koordinaten x, y, z seiner Spitzen sowie in den R-, G-, B-Farbwerten jeder Spitze definieren. Eine Aufbe-
reitungshardware interpoliert die Grundelementdaten, um die Anzeigebildschirmpixel zu berechnen, die einge-
schaltet werden, um jedes Grundelement darzustellen, und um die R-, G-, B-Werte fiir jedes Pixel zu berech-
nen.

[0005] Frihere Graphiksysteme schafften es nicht, Bilder auf eine ausreichend realistische Art und Weise an-
zuzeigen, um komplexe dreidimensionale Objekte darzustellen oder zu modellieren. Die Bilder, die von sol-
chen Systemen angezeigt werden, zeigten aulierordentlich weiche Oberflachen ohne Texturen, StoR3e, Krat-
zer, Schatten oder andere Oberflachendetails, die in dem modellierten Objekt vorhanden sind.

[0006] Als Ergebnis wurden Verfahren entwickelt, um Bilder mit verbesserten Oberflachendetails anzuzeigen.
Die Texturabbildung ist ein solches Verfahren, das das Abbilden eines Quellenbilds, das hierin als eine "Textur"
bezeichnet wird, auf eine Oberflache eines dreidimensionalen Objekts und anschlieliend das Abbilden des tex-
turierten dreidimensionalen Objekts auf den zweidimensionalen Graphikanzeigebildschirm betrifft, um das re-
sultierende Bild anzuzeigen. Oberflachendetailattribute, welche Ublicherweise Textur-abgebildet sind, umfas-
sen eine Farbe, eine spieglige Reflexion, eine Vektorstérung, eine Spiegligkeit, eine Transparenz, Schatten,
OberflachenungleichmaRigkeiten und Abstufungen.

[0007] Die Texturabbildung betrifft das Anlegen von einem oder mehreren Punkttexturelementen ("Texeln")
an jedes Punktelement ("Pixel") des angezeigten Abschnitts des Objekts, zu dem die Textur abgebildet wird.
Die Texturabbildungshardware ist Ublicherweise mit Informationen versehen, die die Art und Weise anzeigen,
auf die die Texel in einer Texturabbildung den Pixeln auf dem Anzeigebildschirm, die das Objekt darstellen,
entsprechen. Jedes Texel in einer Texturabbildung wird durch Koordinaten S und T definiert, welche seine Po-
sition in der zweidimensionalen Texturabbildung identifizieren. Fir jedes Pixel wird auf das entsprechende Te-
xel oder auf die entsprechenden Texel, die auf dasselbe abgebildet werden, von der Texturabbildung zugegrif-
fen, und dieselben werden in die endgultigen R-, G-, B-Werte aufgenommen, die fur das Pixel erzeugt werden,
um das texturierte Objekt auf dem Anzeigebildschirm darzustellen.

[0008] Es sollte offensichtlich sein, dal’ jedes Pixel in einem Objektgrundelement nicht in einer
Eins-zu-Eins-Korrespondenz mit einem einzelnen Texel in der Texturabbildung fiir jede Ansicht des Objekts ab-
gebildet werden kann. Je naher das Objekt beispielsweise an dem Anzeigetor, das auf dem Anzeigebildschirm
dargestellt ist, positioniert ist, um so groRer wird das Objekt erscheinen. Sowie das Objekt auf dem Anzeige-
bildschirm gréfier erscheint, wird die Darstellung der Textur detaillierter. Wenn das Objekt somit einen ziemlich
grofRen Abschnitt des Anzeigebildschirms einnimmt, wird eine grof3e Anzahl von Pixeln verwendet, um das Ob-
jekt auf dem Anzeigebildschirm darzustellen, wobei jedes Pixel, das dem Objekt entspricht, in eine
Eins-zu-Eins-Korrespondenz mit einem einzigen Texel in der Texturabbildung abgebildet werden kann, oder

2/41

DE 197 23 063 B4 2009.05.07

ein einzelnes Texel kann auf viele Pixel abgebildet werden. Wenn das Objekt jedoch einen relativ kleinen Ab-
schnitt des Anzeigebildschirms einnimmt, wird eine viel kleinere Anzahl von Pixeln verwendet, um das Objekt
darzustellen, was darin resultiert, da die Textur weniger detailliert dargestellt ist, derart, dall jedes Pixel in
mehrere Texel abgebildet werden kann. Zusatzlich kann jedes Pixel in mehrere Texel abgebildet werden, wenn
eine Textur auf einen kleinen Abschnitt eines Objekts abgebildet wird. Resultierende Texeldaten werden fir je-
des Pixel berechnet, das auf mehr als ein Texel abgebildet wird. Da es ublich ist, daf} ein Pixel auf mehrere
Texel abgebildet wird, stellen resultierende Texeldaten flr ein Pixel typischerweise einen Mittelwert der Texel,
die auf das Pixel abgebildet werden, dar.

[0009] Texturabbildungshardwaresysteme umfassen typischerweise einen lokalen Speicher, der Daten spei-
chert, die einer Textur entsprechen, die mit dem aufzubereitenden Objekt verkniipft ist. Wie es oben erortert
wurde, kann ein Pixel zu mehreren Texeln abgebildet werden. Wenn es nétig ware, dafd die Texturabbildungs-
hardware eine grof3e Anzahl von Texeln liest, die auf ein Pixel von dem lokalen Speicher abgebildet werden,
um einen Durchschnittswert zu erzeugen, wirde eine grof3e Anzahl von Speicherlesevorgangen und das Bil-
den des Durchschnitts von vielen Texelwerten erforderlich sein, was zeitaufwendig sein wiirde und das Sys-
temverhalten verschlechtern wirde.

[0010] Um dieses Problem zu Gberwinden, wurde ein Schema entwickelt, das das Erzeugen einer Serie von
Abbildungen, die "MIP"-Abbildungen genannt werden (MIP bedeutet "Multum In Parvo" = viele Dinge in einem
kleinen Platz), fir jede Textur betrifft, wobei die MIP-Abbildungen der Textur, die mit dem aufzubereitenden Ob-
jekt verknipft ist, in dem lokalen Speicher der Texturabbildungshardware gespeichert werden. Eine MIP-Abbil-
dung fur eine Textur umfalit eine Basis-("Ebene-0"-)Abbildung, die direkt der Texturabbildung entspricht, sowie
eine Serie von gefilterten Abbildungen, wobei jede aufeinanderfolgende Abbildung gréRenmaflig um einen
Faktor 2 in jeder der zwei Texturabbildungsdimensionen reduziert ist. Ein veranschaulichendes Beispiel eines
Satzes von MIP-Abbildungen ist in Eig. 1 gezeigt. Die MIP-Abbildungen umfassen eine Basisabbildung ("Ebe-
ne 0") 100, die eine Grof3e von 8 x 8 Texel aufweist, sowie eine Serie von Abbildungen 102, 104 und 108, die
die Ebene 1, welche 4 x 4 Texel ist, die Ebene 2, welche 2 x 2 Texel ist bzw. die Ebene 3 darstellen, welche
eine GrofRe von einem Texel aufweist.

[0011] Die Ebene-1-Abbildung 102, die eine Grofe von 4 x 4 aufweist, wird erzeugt, indem die Basisabbil-
dung 100 Kasten-gefiltert (dezimiert) wird, derart, dal} jedes Texel in der Ebene-1-Abbildung 102 einem Durch-
schnitt von vier Texeln von der Ebene-0-Basisabbildung 100 entspricht. Das Texel 110 in der Ebene-1-Abbil-
dung 102 gleicht beispielsweise dem Durchschnitt der Texel 112 bis 115 in der Ebene-0-(Basis-)Abbildung 100.
Auf ahnliche Weise gleichen die Texel 118 und 120 in der Ebene-1-Abbildung 102 den Durchschnitten der Te-
xel 121 bis 124 bzw. 125 bis 128 in der Ebene-0-(Basis-)Abbildung 100. Die 2 x 2-Abbildung 104 (die Ebe-
ne-2-Abbildung) wird durch Kastenfiltern der Ebene-1-Abbildung 102 erzeugt, derart, daf’ ein Texel 130 in der
Ebene-2-Abbildung 104 dem Durchschnitt der Texel 110 und 118 bis 120 in der Ebene-1- Abbildung 102
gleicht. Das einzige Texel in der Ebene-3-Abbildung 108 wird erzeugt, indem die vier Texel in der Ebene-2-Ab-
bildung 104 gemittelt werden.

[0012] Herkémmliche Graphiksysteme laden allgemein von dem Hauptspeicher des Hostcomputers die voll-
standige Serie von MIP-Abbildungen fiir jede Textur, die mit den auf dem Anzeigebildschirm aufzubereitenden
Grundelementen verwendet werden soll, in den lokalen Speicher der Texturabbildungshardware. Wie es fir
Fachleute verstandlich ist, meint eine komplette Serie von MIP-Abbildungen alle MIP-Abbildungen von der
Ebene 0 bis zur Ebene N, wobei die Ebene N eine 1 x 1-MIP-Abbildung ist. Somit kann die Texturabbildungs-
hardware auf Texturdaten von irgendeiner der Ebenen der Serie von MIP-Abbildungen zugreifen. Die Bestim-
mung, auf welche Abbildung zugegriffen wird, um die Texeldaten fur ein spezielles Pixel zu liefern, basiert auf
der Anzahl von Texeln, auf die das Pixel abgebildet wird. Wenn das Pixel beispielsweise in einer
Eins-zu-Eins-Korrespondenz mit einem einzigen Texel in der Texturabbildung abgebildet wird, dann wird auf
die Basisabbildung 100 zugegriffen. Wenn das Pixel jedoch auf 4, 16 oder 64 Texel abgebildet wird, dann wird
auf die Abbildungen 102, 104 bzw. 108 zugegriffen, da diese Abbildungen jeweils Texeldaten speichern, die
einen Durchschnitt von 4, 16 und 64 Texeln in der Texturabbildung darstellen.

[0013] Wie es erkannt werden wird, kann eine Serie von Textur-MIP-Abbildungen eine grof3e Menge an Sys-
temsoftwarespeicher zur Speicherung erfordern. Eine Serie von MIP-Abbildungen flir eine Textur mit einer Tex-
turbasisabbildung von 1.024 x 1.024 Texeln erfordert mehr als finf Megabyte an Systemsoftwarespeicher, um
eine Kopie der MIP-abgebildeten Textur zu speichern. Somit verwenden die mehreren gespeicherten Kopien
der MIP-abgebildeten Textur eine wesentliche Menge an Systemsoftwarespeicher.

[0014] Wahrend der Systemsoftwarespeicher in der Lage sein kann, bis zu ein paar Gigabytes Softwaredaten

3/41

DE 197 23 063 B4 2009.05.07

zu speichern, besteht ein anderer Punkt, welcher angegangen werden muss, darin, wo die MIP-Abbildungen
tatsachlich gespeichert werden. Um eine Aufbereitung von Graphikbildern mit hoher Geschwindigkeit zu errei-
chen, ist es insbesondere wichtig, in der Lage zu sein, die Texelinformationen von der geeigneten Ebene der
MIP-Abbildung zu der Graphikanzeige so schnell als mdglich zu Gibertragen. Obwohl es am besten wére, wenn
die Position aller Ebenen von vornherein bekannt sein wiirde, macht die Art und Weise, auf die eine typische
Graphikanwendungsprogrammierschnittstelle ("API"; APl = Application Programmer Interface) arbeitet, dieses
zu einer speziell schwierigen Aufgabe. Insbesondere erlaubt eine Graphik-API, die "OpenGL" genannt wird
und von Hewlett Packard erhaltlich ist, dal’ der Benutzer MIP-Abbildungsebenen derart herunterladt, daf’ die
verschiedenen Ebenen in einer beliebigen (Ebenen-)Reihenfolge zu dem Speicher gesendet werden kénnen.
Siehe z. B. Segal M., Akeley K.: ,The OpenGL™ Graphics System: A Specification (Version 1.0)", 1993, Kapitel
3.8, Texturing, Seiten 78 bis 89.

[0015] Bisher wurden solche MIP-Abbildungsebenen einzeln im Speicher gespeichert, wobei als Position flr
jede der Ebenen der Speicher verwendet wird, der von einer Betriebssystemspeicherzuordnungsroutine ("Mal-
locing"-Routine; Mallocing = Memory ALLOCatING) zurtickgegeben wird. Somit wurden die tatsachlichen Po-
sitionen in Speicher, in denen Ebenen der MIP-Abbildung gespeichert werden, dem Betriebssystem Uberlas-
sen. Wenn daher eine einzelnen Ebene bendtigt wurde, musste sie geortet werden, was in einer allgemeinen
Verlangsamung des Betriebs des Systems resultierte.

[0016] Die EP 0447 227 A beschreibt ein Verfahren und eine Vorrichtung zur Erzeugen von texturierten Gra-
phikgrundelementen in einem Computergraphiksystem mit einem Rahmenpuffer. Zunachst wird fur eine Ober-
flache eine zweidimensionale urspringliche Texturabbildung bestimmt und in dem Rahmenpuffer abgespei-
chert. Anschlielend wird die urspriingliche Texturabbildung unabhangig voneinander in zwei Richtungen neu
abgetastet, unter Verwendung eines asymmetrischen Filters, um vielfache Versionen einer Textur zu schaffen,
und um texturierte Pixel auf einer Anzeige in dem Rahmenpuffer zu adressieren. Die texturierten Pixel werden
Bereichen in dem Rahmenpuffer zugeordnet und die texturierten Graphikgrundelemente werden angezeigt.

[0017] Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren zum Speichern von Texturdaten
zu schaffen, das es ermdglicht, Texturdaten einer MIP-Abbildung unabhangig von der Reihenfolge der Bereit-
stellung der Texeldaten fir unterschiedliche MIP-Abbildungsebenen und unabhangig davon, ob Texeldaten fur
andere Texturen bereitgestellt werden, fir eine schnelle und zuverlassige Wiedergewinnung zu speichern.

[0018] Diese Aufgabe wird durch ein Verfahren gemaf Anspruch 1 geldst.

[0019] Gemal dem bevorzugten Ausfihrungsbeispiel der Erfindung wird eine Vorrichtung geschaffen, mit der
es moglich ist, Ebenen einer MIP-verarbeiteten OpenGL-Texturabbildung in einem zusammenhangenden
Speicher zu speichern, wahrend die Datenintegritat beibehalten wird. Somit reduziert oder eliminiert die vorlie-
gende Erfindung Speichercachefehlschlage, wenn eine vollstandig MIP-verarbeitete Texturabbildung zur
Hardware heruntergeladen wird, oder wenn eine Texturabbildung eine Softwarerasterisierung verwendet.
Ebenfalls halt die vorliegende Erfindung die Integritat der heruntergeladenen Daten bei, selbst wenn die Daten
nicht in die Beschreibung der gegenwartigen vollstandigen MIP-Abbildung passen.

[0020] Gemal der Erfindung wird ein Algorithmus geschaffen, welcher in der Lage ist, den Gesamtspeicher
zu berechnen, der bendtigt wird, um eine volle MIP-Abbildung zu speichern, und zwar basierend auf der ersten
Ebene, die zu dem Graphikkern geleitet wird, sowie basierend auf folgenden Basisabbildungsebenenanderun-
gen. Jede Ebene wird dann in dem zusammenhangenden Speicher gespeichert, wenn die Ebene gliltig ist,
oder in einer temporaren Speicherposition, wenn die Ebene nicht giltig ist. Jedesmal, wenn sich die Basise-
bene verandert, werden alle Ebenen nach ihrer Giiltigkeit getestet, wobei die gultigen Ebenen in dem zusam-
menhangenden Speicher plaziert werden.

[0021] Bevorzugte Ausfiihrungsbeispiele der vorliegenden Erfindung werden nachfolgend bezugnehmend
auf die beiliegenden Zeichnungen detaillierter erértert. Es zeigen:

[0022] Fig. 1 eine Graphikdarstellung eines Satzes von Textur-MIP-Abbildungen; und
[0023] Fig. 2 bis Fig. 6 ein Fluldiagramm, das das Verfahren der vorliegenden Erfindung darstellt.
[0024] Dieser Beschreibung beigefligt und in die Beschreibung aufgenommen ist ein Anhang, welcher den

Quellencode (in der Programmiersprache C) fir das bevorzugte Ausflihrungsbeispiel der Erfindung enthalt.
Obwohl davon ausgegangen wird, dal’ der Quellencode die Details der Erfindung ausreichend beschreibt, der-

4/41

DE 197 23 063 B4 2009.05.07

art, da® ein Fachmann auf dem Gebiet der Computergraphik in der Lage sein wird, die vorliegende Erfindung
ohne weiteres zu verstehen, werden zusatzliche Details der Erfindung nachfolgend bezugnehmend auf die
FluRdiagramme der Fig. 2 bis Fig. 6 beschrieben, welche das Verfahren darstellen, das von der Erfindung ver-
wendet wird.

[0025] Bezugnehmend auf Fig. 2 wird das FluRdiagramm allgemein als das Gesamtverfahren 10 bezeichnet.
Gemal der vorliegenden Erfindung 10 sollen die Texturdaten beim Durchfiihren des erfindungsgemafen Ver-
fahrens in einen zusammenhangenden Block eines Speichers plaziert werden. Wie es oben dargelegt wurde,
bestehen die Texturdaten aus den Daten, die mit allen Ebenen von der Ebene 0 bis zu Ebene n, wobei die
Ebene n ein 1 x 1-Array ist, verknUpft sind. Zur Erklarung ist es ausreichend, zuerst festzustellen, daf} die erste
Sache, die bestimmt werden muf}, darin besteht, ob ein ausreichender Speicher existiert, um alle Texeldaten
in einen einzigen Speicherblock zu plazieren. Bezugnehmend auf Fig. 2 ist diese Bestimmung durch einen
Entscheidungsblock 14 dargestellt. Wenn es nicht bekannt ist, ob ausreichend Speicher vorhanden ist, dann
muf die GroRe des zusammenhangenden Speicherblocks berechnet werden, welcher bendtigt werden wird
(16), und der Speicher mul® zugeordnet werden (18). Folgendes Beispiel sei genannt: wenn die Ebe-
ne-0-MIP-Abbildung eine 8 x 8-Abbildung ist, besetzt dieselbe 64 "Positionen", wobei die tatsachliche Spei-
chermenge durch die Anzahl von Bytes pro Texel (mal 64) bestimmt werden wirde. Somit wirde die Ebe-
ne-1-MIP-Abbildung 4 x 4 oder 16 Positionen besetzen, wahrend die Ebene-2-MIP-Abbildung 2 x 2 oder vier
Positionen besetzen wiirde, und die Ebene-3-MIP-Abbildung 1 x 1 oder eine Position besetzen wirde. Somit
wirde die Gesamtanzahl von Positionen 85 "Positionen" mal der Anzahl von Bytes pro Texel sein. Wie es zu
sehen ist, bedeutet die Kenntnis, da die Ebene-2-MIP-Abbildung eine 2 x 2-Abbildung ist, dal die Basisab-
bildung eine 8 x 8-Abbildung ist. Wenn also die Ebene und die Grofie einer MIP-Abbildung gegeben ist, ist es
ohne weiteres moglich, die GroRe eines zusammenhangenden Speicherblocks zu bestimmen, welcher beno-
tigt werden wird, um die volle MIP-Abbildung zu speichern.

[0026] Wenn es bestimmt wird, da® kein ausreichender Speicher zugeordnet werden kann 20, wird eine Feh-
lerbedingung 22 resultieren. Alternativ werden die Basis-Abbildungs-(Ebene-0-)Werte gespeichert werden 24.
AnschlieRend wird eine Flag, die "LevelOK" (LevelOK = Ebene in Ordnung) genannt wird, bei dem bevorzugten
Ausfiihrungsbeispiel der Erfindung bei 26 auf "0" eingestellt, wonach eine Uberpriifung durchgefiihrt wird, um
zu bestimmen, ob die Ebenen-Informationen in Ordnung sind 28. Dies bedeutet, daf} eine Bestimmung durch-
gefuhrt wird, ob die Informationen, die mit der MIP-Abbildungsebene, die geladen ist, verknlpft sind, mit den
Informationen in Einklang sind, die vorher tiber die MIP-Abbildung bekannt waren. Wenn beispielsweise eine
"Ebene-1"-MIP-Abbildung mit einer GréRe von 4 x 4 heruntergeladen wurde, und wenn dann eine Ebe-
ne-0-MIP-Abbildung mit einer GréRe von 8 x 8 heruntergeladen wird, wirden die Daten in Einklang sein, wobei
die Ebene in Ordnung sein wirde. Wenn alternativ eine "Ebene-1"-MIP-Abbildung mit einer Grof3e von 4 x 4
heruntergeladen wird, und wenn dann eine Ebene-0-MIP-Abbildung mit einer Gré3e von 4 x 4 heruntergeladen
wird, wirden die Daten nicht in Einklang sein, und die Ebene wirde nicht in Ordnung sein. Wenn es bestimmt
wird, dal} die Daten mit vorher heruntergeladenen Daten in Einklang sind, wird die LevelOK-Flag auf "1" ge-
setzt 30.

[0027] Wenn die LevelOK-Flag "0" ist, wird eine Uberpriifung durchgefiihrt 32, um zu bestimmen, ob die
MIP-Abbildung fir die Basisabbildung (Ebene 0) war. Wenn dies nicht so ist, oder wenn es so ist und die Le-
velOK-Flag gleich "1" war, wird zu einem Punkt "C" 36 gegangen (siehe Eig. 5). Wenn die MIP-Abbildung fur
die Basisabbildung (Ebene 0) ist, und wenn die LevelOK-Flag auf "0" eingestellt ist, d. h. Schritt 34, wird zu
einem Punkt "A" 38 gegangen (siehe Fig. 3), wobei die Basisebeneninformationen 50 und ein Zeiger auf einen
existierenden Speicher 40 gespeichert werden.

[0028] Weiter bezugnehmend auf Fig. 3 wird nun die Grée eines zusammenhangenden Speichers berech-
net 42, und der zusammenhangende Speicher wird zugeordnet 44. Nach einem Test, um zu bestimmen, ob
der zusammenhangende Speicher korrekt zugeordnet wurde 46, ist nichts mehr zu tun, wenn es bestimmt
wird, daf ein Fehler auftrat 48. Ein Zahler 52, eine Inkrementiereinrichtung 54 und eine Testprozedur 56 wer-
den eingestellt, um eine wiederholte Iteration durch eine Schleife zu erlauben. Bei dem bevorzugten Ausfuh-
rungsbeispiel der Erfindung umfasst die Schleife die Schritte des Erhaltens eines Zeigers auf die gegenwartige
Ebene 62 und des Bestimmens, dal’ die gegenwartige Ebene noch nicht auf eine Position in dem Speicher 64
zeigt. Diese Schleife wird wiederholt iteriert, und der Schleifenzéahler 54 wird jedesmal inkrementiert, bis der
Schleifenzahler anzeigt, dal} die Schleife die maximale Anzahl von méglichen unterstitzten Ebenen iteriert
worden ist. Bei dem gegenwartigen Ausflihrungsbeispiel der Erfindung werden basierend auf einer gegenwar-
tig verwendeten Hardware und basierend auf Speicherkapazitaten nicht mehr als 16 Ebenen unterstiitzt. Dem-
gemal kann die Schleife nicht mehr als 15 mal verarbeitet werden, obwohl es fur Fachleute offensichtlich sein
wird, dal3 diese Anzahl vergrof3ert werden wiirde, wenn eine zukiinftige Hardware- und Speicher-Verfligbarkeit

5/41

DE 197 23 063 B4 2009.05.07

die Verwendung einer gréReren Anzahl von MIP-Abbildungsebenen vorschreiben wirden.

[0029] Wenn es in dem Entscheidungskasten 64 bestimmt wird, dal® die gegenwartige Ebene auf einen Spei-
cher zeigt, dann wird die Grélke der gegenwartigen Ebene berechnet 70, und es wird eine Variable, d. h. Le-
velOK, die anzeigt, daR die Ebenendaten korrekt sind, in einem Schritt 72 auf "0" initialisiert, was anzeigt, daf}
es nicht bekannt ist, ob die Daten korrekt sind.

[0030] Die Ebenendaten werden nun bezlglich ihrer Genauigkeit 74 getestet, und wenn eine Bestimmung
durchgefiihrt wird, daf} die Ebenendaten genau sind, wird in einem Schritt 88 LevelOK auf "1" eingestellt, was
anzeigt, dal die Ebenendaten genau sind, und es wird ein Versatz in dem zusammenhangenden Speicher der
Basisabbildung fur die Ebene berechnet 90. Anschlie3end werden die Texel fir die gegenwartige Ebene in die
geeigneten Positionen in dem zusammenhangenden Speicher 92 kopiert.

[0031] An diesem Punkt wird in einem Schritt 94 ein Test durchgefihrt, um zu bestimmen, ob die Zeigerflag
auf "1" eingestellt war. Wenn sie es nicht war, wird wieder in die Schleife eingetreten, die oben beschrieben
wurde (siehe Fig. 3), und zwar an einem Punkt "E". Wenn die Zeigerflag andererseits auf "1" eingestellt war,
dann wird der Speicher flir diese Ebene 96 freigemacht, dann wird die Zeigerflag in einem Schritt 97 auf "0"
eingestellt, und dann wird der Speicherversatz in der gegenwartigen Ebene gespeichert 98. AnschlieRend wird
wieder an einem Punkt "E" in die oben beschriebene Schleife eingetreten (siehe Fig. 3).

[0032] Wenn es alternativ in einem Schritt 74 bestimmt wird, dal} die Ebenendaten nicht korrekt waren, und
wenn die Zeigerflag auf "1" eingestellt ist, dann wird der Entscheidungskasten 76 anleiten, wieder in die oben
beschriebene Schleife (siehe Fig. 3) an einem Punkt "E" einzutreten.

[0033] Wenn es andernfalls in einem Schritt 74 bestimmt wurde, daf} die Ebenendaten nicht korrekt waren,
und wenn die Zeigerflag auf "0" eingestellt ist, wird der Entscheidungskasten 76 bewirken, daf} das Verfahren
in einem Schritt 78 die Zeigerflag auf "1" einstellt, einen temporaren Speicherblock fir diese Ebene zuordnet
80 und bestatigt, dal’ der Speicher korrekt zugeordnet wurde 82. Wenn bei der Speicherzuordnung ein Fehler
auftrat, kann nichts weiter getan werden 84. Alternativ werden die Daten dieser Ebene anschlieend in den
temporaren Speicher kopiert, und es wird an dem Punkt "E" wieder in die oben beschriebene Schleife einge-
treten (siehe FEiq. 3).

[0034] Wieder bezugnehmend auf Fig. 2 wird, wenn es in dem Schritt 32 bestimmt wurde, daf} nicht die Ba-
sisebene vorhanden ist, in dem Verfahren zu dem Punkt "C" 36 weitergegangen (siehe Eig. 5). Alternativ wir-
de zu dem Punkt "C" 36 weitergegangen, wenn in dem Schritt 32 die Basisebene existieren wiirde, wenn je-
doch die Flag LevelOK in einem Schritt 34 nicht auf "0" gesetzt worden ware.

[0035] Bezugnehmend nun auf Eig. 5 besteht der nachste Schritt 13 von dem Punkt "C" 36 aus darin, zu be-
stimmen, ob die Ebeneninformationen korrekt sind. Wenn das nicht so ist, wird die EbenengréRe 15 berechnet,
wird die Zeigerflag auf "1" eingestellt 17, und wird ein temporarer Speicherblock fir diese Ebene 19 zugeord-
net. AnschlieRend wird bestatigt, dal® der Speicher korrekt zugeordnet wurde 21. Wenn bei der Speicherzu-
ordnung ein Fehler auftrat, kann nichts weiter getan werden 23. Alternativ wird zum Punkt "D" 58 gegangen.

[0036] An dem Punkt"C" 36 in dem Verfahren wird, wenn in dem Schritt 13 bestimmt wurde, da® die Ebenen-
informationen korrekt waren, in dem Schritt 27 Gberpriift, ob die Zeigerflag auf "1" eingestellt ist. Wenn das der
Fall ist, wird der temporare Speicher fur diese Ebene 28 freigemacht, wird die Zeigerflag in dem Schritt 31 auf
"0" eingestellt, und wird ein Versatz fur diese Ebene in dem zusammenhangenden Speicher 33 berechnet. An-
schlieRend wird zu dem Punkt "D" 58 weitergegangen.

[0037] Wenn die Zeigerflag in dem Schritt 27 "0" war, dann mul® nur ein Versatz fiir diese Ebene in dem zu-
sammenhangenden Speicher 33 der Basisabbildung berechnet werden, bevor in dem Schritt 58 zu dem Punkt
"D" ibergegangen wird.

[0038] Wenn bezugnehmend auf Fig. 3 die Schleife ihre fiinfzehnte Iteration vollendet hat, dann wird in dem
Schritt 60 der alte zusammenhangende Speicher freigemacht, wobei die Schleife bei 56 verlassen wird, und
wobei das Verfahren in dem Schritt 58 bei "D" fortgesetzt wird.

[0039] Wenn an dem Punkt "D" angekommen wird, d. h. Schritt 58 des Verfahrens, werden Ebeneninforma-

tionen 39 gespeichert, wonach in dem Schritt 41 bestimmt wird, ob die Zeigerflag auf "1" eingestellt ist. Wenn
dies der Fall ist, ist das Verfahren fertig 47. Wenn die Zeigerflag auf "0" eingestellt wurde, dann wird in dem

6/41

DE 197 23 063 B4 2009.05.07

Schritt 43 Uberprift, ob der Versatz groRer als "0" ist. Wenn der Versatz "0" ist, dann ist das Verfahren fertig
47. Wenn die Zeigerflag "0" war, und wenn der Versatz gréRRer als "0" ist, muld der Versatz fir diese Ebene 45
gespeichert werden, wonach das Verfahren fertig ist 47.

[0040] Unter Bericksichtigung des Verfahrens der vorliegenden Erfindung, wie es oben bezugnehmend auf
die Fig. 2 bis Fig. 6 beschrieben wurde, und bezugnehmend auf den Code in der Sprache C im Anhang ist es
nun maoglich, spezifische Beispiele darzulegen, wie die Erfindung arbeitet. Bei jedem der folgenden Beispiele
wird eine Herunterladesequenz gegeben sein, wobei jede Herunterladesequenz eine Ebenennummer, eine
Ebenengrolie (Breite x Hohe) und einen Zeigerflagwert fur die Ebene umfassen wird.

Beispiel 1
Ebenennr. Ebenengrofle (B, H) Zeigerflag
0 8x8 0
1 4x4 0
2 2x2 0
3 1x1 0

[0041] Im Beispiel 1 werden vier Ebenenabbildungen, die den Ebenen 0, 1, 2 und 3 entsprechen, herunter-
geladen, wobei sie 8 x 8-, 4 x 4-, 2 x 2- bzw. 1 x 1-Abbildungen sind. Somit kann beim Herunterladen der Ers-
te-Ebene-Abbildung fiir die Ebene 0 (d. h. die Basisabbildung) der gesamte Block des zusammenhangenden
Speichers zugeordnet werden, und es existieren keine Probleme. Dies ist der einfachste Fall, da alle Ebenen
heruntergeladen wurden, und zwar in der richtigen Reihenfolge, und da alle EbenengréfRen vollstandig in Ein-
klang miteinander sind.

Beispiel 2
Ebenennr. Ebenengréfle (B, H) Zeigerflag
2 1x1 0
1 2x2 0
0 4x4 0

[0042] Im Beispiel 2 werden drei Ebenenabbildungen, die den Ebenen 2, 1 und 0 entsprechen, heruntergela-
den, wobei dieselben 1 x 1-, 2 x 2- bzw. 4 x 4-Abbildungen sind. Somit kann beim Herunterladen der Ers-
te-Ebene-Abbildung fiir die Ebene 2 der gesamte Block des zusammenhangenden Speichers zugeordnet wer-
den, wobei beim weiteren in Einklang stehenden Herunterladen der Ebenen 1 und 0 zu sehen ist, daf} keinen
Problemen begegnet werden wird. Wieder waren alle Ebenennummer und Ebenengréfien vollstandig in Ein-
klang miteinander.

Beispiel 3
Ebenenur. Ebenengrole (B, H) Zeigerflag
0 4 x4 0
1 16 x 16 1
2 1%x1 0
1 2x%x2 0

[0043] Bei dem Beispiel 3 wurden vier Ebenenabbildungen, die den Ebenen 0, 1, 2 und 1 entsprechen, her-
untergeladen, und dieselben sind jeweils eine 4 x 4-, eine 16 x 16-, eine 1 x 1- bzw. 2 x 2-Abbildungen. Somit
wurde beim Herunterladen der Erste-Ebene-Abbildung fir die Ebene 0 (d. h. die Basisabbildung) der gesamte
Block des zusammenhangenden Speichers zugeordnet, und es wurde angenommen, dal} zusatzliche Ebe-
nenabbildungen empfangen werden, wobei die Ebene 1 eine 2 x 2-Abbildung, die Ebene 2 eine 4 x 4-Abbil-
dung, usw. sein wirden. Es sei angemerkt, dal3 nicht bekannt ist, wieviele Abbildungen empfangen werden.
Bei dem Herunterladen einer Ebene-1-16 x 16-Abbildung ist jedoch zu erkennen, dafl} eine Inkonsistenz be-

7/41

DE 197 23 063 B4 2009.05.07

steht. Demgemalf wird die Ebene-1-16 x 16-Abbildung in den temporaren Speicher plaziert, wonach die Zei-
gerflag auf 1 eingestellt wird, was anzeigt, daf} ein Problem vorhanden ist. Das Problem 16st sich selbst, wenn
zusatzliche Herunterladevorgange, die mit der urspriinglichen Ebene 0 in Einklang sind, heruntergeladen wer-
den (d. h. Ebene 2 mit 1 x 1 und Ebene 1 mit 2 x 2). Demgemal kann die ursprunglich heruntergeladene "Ebe-
ne 1" mit 16 x 16 weggeworfen werden, und der temporare Speicher kann freigemacht werden. Es sei ange-
merkt, daf’ der urspriingliche zusammenhangende Speicherblock bei diesem Beispiel basierend auf der ersten
heruntergeladenen Ebene verwendet wurde.

Beispiel 4
Ebenennr. Ebenengrofle (B, H) Zeigerflag
0 8x8 0
1 2x2 1
2 1x1 1
0 4x4 0

[0044] Im Beispiel 4 werden vier Ebenenabbildungen, die den Ebenen 0, 1, 2 und 0 entsprechen, herunter-
geladen, wobei dieselben eine 8 x 8-, eine 2 x 2-, eine 1 x 1- bzw. 4 x 4-Abbildung sind. Bei dem Herunterladen
der Erste-Ebene-Abbildung fir die Ebene 0 (d. h. die Basisabbildung) wurde ein gesamter Block des zusam-
menhangenden Speichers zugeordnet. Wiirde jedoch als nachste Ebene die Ebene 1 heruntergeladen wer-
den, und hatte sie eine GrofRe, die mit der Ebene-0-GrofRe nicht in Einklang ist, mifiten die Ebene-1-(2 x 2-)Da-
ten in den temporaren Speicher plaziert werden, und die Zeigerflag wiirde auf "1" eingestellt. Wenn die dritte
Ebene, d. h. die Ebene 2, als eine 1 x 1-Abbildung heruntergeladen werden wiirde, ware dieselbe ebenfalls
mit der Grofe der urspringlichen Ebene 0 nicht in Einklang, weshalb sie ebenfalls in dem temporaren Speicher
plaziert werden wiirde, und die Zeigerflag auf "1" eingestellt werden wirde. Wenn schlieRlich die vierte Ebene
sich selbst als (eine neue) Ebene 0 identifizieren wiirde, und wenn dieselbe mit den anderen heruntergelade-
nen Ebenen 1 und 2 konsistent sein wiirde, kdnnten die neue Ebene 0 und die vorher heruntergeladenen Ebe-
nen 1 und 2 in dem zusammenhangenden Speicher gemaf der vorliegenden Erfindung plaziert werden.

[0045] Wie es fur Fachleute offensichtlich ist, liefert das vorliegende erfindungsgemafe Verfahren eine Ein-
richtung zum Zuordnen eines zusammenhangenden Speicherblocks fir alle Ebenen beim Empfang einer Ab-
bildung einer beliebigen Ebene. Wenn Abbildungen zusatzlicher Ebenen heruntergeladen werden, schafft die
vorliegende Erfindung ein Verfahren zum Bestatigen, dal} sie mit der friiheren Zuordnung in Einklang sind, oder
das vorliegende Verfahren speichert alternativ ihre Informationen voriibergehend, bis ein in Einklang stehender
Satz von Ebenenabbildungen heruntergeladen ist. Bei der Verifikation des Empfangs eines in Einklang stehen-
den Satzes von Ebenenabbildungen werden alle in Einklang stehenden Ebenenabbildungsdaten in einem ein-
zigen zusammenhangenden Speicherblock sein.

Anhang-Quellencode

[0046] /*

Copyright Hewlett-Packard Company, 1996. Alle Rechte sind reserviert. Ein Kopieren oder eine andere Repro-
duktion dieses Programms mit Ausnahme von Archivzwecken ist ohne die vorherige schriftliche Zustimmung
der Hewlett-Packard Company verboten.

ERKLARUNG DER BEGRENZTEN RECHTE
[0047] Eine Verwendung, Duplizierung und eine Offenbarung durch die U. S. Regierung ist Begrenzungen un-

terworfen, wie sie in der Unterteilung (b) (3) (ii) der Bestimmung zu Rechten auf technische Daten und Com-
putersoftware bei 52.227-7013 dargelegt ist.

8/41

DE 197 23 063 B4 2009.05.07

HEWLETT-PACKARD COMPANY Fort Collins, Colorado

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/shm.h>
#include "mem alloc.h"
#include "GL/gl.h"
#include "ogl types.h"
#include "ogl_ state.h"
#include "ogl texture.h"
#include "ogl_env.h"
#include "ds_public.h"
#include "ocm_cmd.h"

#include "pcm_cmd.h"

/*
***_3:**

* %

9/41

DE 197 23 063 B4 2009.05.07

**x Zweck: Berechnen des Speichers, der fiir eine volle MIP-
** Abibldung bendtigt wird.

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

Eingaben: w
h
myBorder
tSize

level
mipLevel

offset

Breite der Abbildung

Hohe der Abbildung

Randgrofe flir die Abbildung
TexelgrdBe fir die interne Speiche-
rung

Ebenennummer

gibt die Gesamtanzahl von MIP-Ebenen
minus 1 zurick

wird verwendet, um den berechneten

Versatz zurilickzugeben

Gibt die berechnete Speichergrodfe zurilick.

khkkhkkhkkhkkkkhkkhkkhkhkkhkhhhkhhkhkkhkkkhhkkhkhkhkkhkkkhkhkhkkhhkkkhkhkhkkkkkikik

*/

static Int32 computeMipMemSize (

Int32 w,

Int32 h,

Int32 myBorder,
Int32 tSize,
Int32 level,
Uintlé *mipLevel,
Int32 *offset)

int bSize;

int memSize;
int numLevels;
int high;

/*

* Dies wird die GroBe der vollen MIP-Abbildung berechnen

* (bis herunter zu 1x1).

*/

10/41

/*

DE 197 23 063 B4 2009.05.07

memSize = 0;
high = (w > h) ? w : h;

for (numLevels = 0; high >= 1; high >>= 1)

{
/*
* Speichern des Versatzes der gegenwdrtigen Ebene 1in
* dem Speicher.
*/
if (numLevels == level)
*offset = memSize;
/*
* Berechnen des Speichers fiir die gegenwdrtige Ebene.
*/
bSize = (2 * myBorder) * w + (2 * myBorder) * h +

(myBorder * myBorder) * 4;
memSize += tSize * (w * h + bSize);

w=(w+ 1) / 2;
h=(h+ 1) / 2;
numlLevels++;

*mipLevel = numLevels;

return(memSize);

hhkkhkhkhhkhkhkhkhkhkhkhkhkkkkkhkkkhkkhkkhkhkhhkkkhkhkkkhhhhkhkhkkkhkhkkhkhkhkhkhkhkhkhkhkhkkk

* %

* %

* %

* %

Zweck: Uberpriifen, um zu sehen, ob die gegenwidrtige Ebe-
ne der Abbildung die gleiche Breite, H®he (2D),
RandgroBe und Format wie die Basisabbildung hat.

11/41

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

% %

* %k

% %

* %

DE 197 23 063 B4 2009.05.07

Eingaben: target - Dimension der Texturabbildung

mipLevel - Basisebeneninformationen

width - berechnete Breite fiir die Basisabbil-
dung, die der gegenwdrtigen Ebene ent-
spricht

height - berechnete Hbhe filir die Basisabbil-
dung, die der gegenwdrtigen Ebene ent-
spricht

border - Randgréfe der gegenwdrtigen Ebene

internalFormat - Benutzer gab das interne

Format der gegenwdrtigen Ebene

ein

Gibt -1 zuriick, wenn Ebene 0Ok, sonst 0

khkkhkkhkkhkhkhhkhhkhhkhhhhkhkhhkhkhhkhhkhhhhkhhkhkhkhhkkhkhkhhhkhkhkkhkkhhhkik

*/

|

static Int32 checkLevel (

Enum target,

Int32 level,
MipLevelState mipLevel,
Uint32 width,

Uint32 height,

Uint32 border,

Enum internalFormat)

int levelOk;
Uint32 tmpW;
Uint32 tmpH;

levelOk = 1;
tmpW = mipLevel.width >> level;
if (tmpW == 0)

tmpWw = 1;
if (tmpW != width)

12/41

DE 197 23 063 B4 2009.05.07

levelOk = 0;

if (target == GL_TEXTURE_ 2D)
{
tmpH = mipLevel.height >> level;
if (tmpH == 0)
tmpH = 1;
if (tmpH != height)
levelOk = 0;

if (mipLevel.border != border)

/*

khkhkkkkhkhkhkkhkhkhkkkhkhkhkhkkkhkhkhkkhkkhkkhhhhhkhhhkkhkkkkhkkhkkhkhkhkhkhkhhkkhkhkhhkhkix

* %

* %

* %

* %

* %

* %

* %

* %

% %

* %

* %

* %

* %

khkkhkhkhkkkkhhhkhkkhkhhkhhkhhkhkkkkkkhkhkkkkkkkkhhkkkkhkkkkhkhkkkkhkkkkkkkkk

*/

levelOk = 0;

if (mipLevel. internalFormat != internalFormat)
levelOk = 0;

return(levelOXk) ;

Zweck: Berechnen des Speichers, der fiir eine MIP-Abbil-

dungsebene benttigt wird.

Breite der Basisebene

Eingaben: width
height ~ HOhe der Basisebene

tSize

rung

myBorder

Speicherung

Gibt die berechnete EbenengréBe zurlick

13/41

TexelgroBe filir die interne Speiche-

GroBe des Rands fiir die interne

DE 197 23 063 B4

Int32_ hpOcm_computeLevelSize(
Int32width,
Int32 height,
Int32 tSize,
Int32 myBorder)

2009.05.07

{
int bSize;
int levelSize;
bSize = (2 * myBorder) * width + (2 * myBorder) *

height + (myBorder * myBorder) * 4;

levelSize = tSize * (width * height + bSize);
return(levelSize);

}

/*

hhkkkkhkhkhkkhhhkhkhkkhkkhkhkhkhkhkkhkkhkhhkhkhhhhkhkkkhhkhkhkhkhkhkkkkkhhkkkhkkhkkhkx

* %

**% Zweck: Berechnen des Texelversatzes von der Basisabbil-

* % dung filir die gegenwdrtige Ebene.

* %

*% Eingaben: width - Breite der Ebene

* % height - Hohe der Basisebene

*% tSize - TexelgrdBe fiir die interne Speiche-
* % rung

¥ ¥ myBorder - GroBe des Rands filir die interne
** Speicherung

* % Level - Ebene der MIP-Abbildung

* %

** Gibt den berechneten Versatz zuriick.

* %

khkkhkkkhkhkhhkkhkhkhhhkhkhkhkhkhkhkkhkkhkkhkkkhhkkkkkhkhhkkhkkkkkhkhhhkkhkhkkik

*/
Uint32 _hpOcm computeTexelOffset (

Int32 width,
Int32 height,

14/41

/*

DE 197 23 063 B4 2009.05.07

Int32 tSize,
Int32 myBorder,
Int32 level)

int i;

unsigned int offset;

offset = 0;

/*
* Summieren der GroéBe jeder Ebene, deren Nummer kleiner

* als die gegenwdrtige Ebene ist.

*/

for (i=0; i<level; i++)

{
offset += hpOcm_computeLevelSize(width, height,
tSize, myBorder);
width = (width + 1) / 2;
height = (height + 1) / 2;
}
return(offset);

khkhkhkkhkhkhkkhkhkhkhkhhkhkhkhhkhkhkhhkhkhhhhkhhkhkhhkhkhkhkkkhkhkhkkkhkhkkhkhkkdhkhdhkkk

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

Zweck: Zuordnen einer internen Speicherung fiir Texturab-

bildungen.

Eingaben: memSize - Gréfe des zuzuordnenden Stilicks
*sharedID - zum Zuriickgeben der gemeinsam ver-
wendeten Speicher-ID, wenn eine
vorhanden ist
*ptr - wird verwendet, um den zugeordneten

Speicherzeiger zu speichern

15/41

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

DE 197 23 063 B4 2009.05.07

*sharedTexels - Flag, die anzeigt, ob ein ge-
meinsam verwendeter Speicher
zugeordnet wurde

targetIndex - Dimension der Abbildung

Gibt -0 zuriick, wenn erfolgreich

Gibt -1 zuriick, wenn der Speicher nicht ausreicht

Umgebungsvariablen: OGL_TXTR_SHMEM THRESHOLD

Diese Umgebungsvariable setzt einen
Zaun fir die Verwendung von ProzeB-
speicher als Funktion von gemeinsam

verwendetem Speicher. Jede Textur,

die eine GroBe > die Schwelle hat,
wird in dem gemeinsam verwendeten
Speicher gespeichert. Der Anfangswert
ist auf 1.024 * 1.024 (Bytes) einge-
stellt.

Algorithmus: Wenn der angeforderte Speicher groéBer als
der gemeinsam verwendete Speicherzaun ist,
Zuordnen des Speichers aus dem gemeinsam
verwendeten Speichervorrat. Sonst
Zuordnen des reguldren Speichers.

khkhkhkhkkhkhkhkhkkhkhkhkhkhhkhhhkhhhkkhhhkkkkhhkhkhkhkhkhkhkkhkhkhhkhkkkkhkhkhkhkhkkkhkhk

*/

Int32 allocateTexelMemory (

Uint32 nemSize,

Uint32 *sharedID,

Texel *ptr,

unsigned *sharedTexels,
Enum targetIndex)

int shmID;

char *tmpPtr;

char *cp;

16/41

DE 197 23 063 B4 2009.05.07

long int tmp_ shared _memory_ limit;

if (memSize == 0)

{
ptr->1lum8 = (TexelLum8 *)NULL;
*sharedTexels = 0;

return(0) ;

}

/%

* Mogliche Optimierung: Speichern des Werts dieser Umge-
* bungsvariable ist ein PCM-Zu-
* stand. Dann existiert nur ein
* Getenv.

*/

cp = OglGetenv(HPOGLINT TXTR SHMEM THRESHOLD) ;

if (cp)
{

tmp_shared memory_limit = (long int) atol(cp);

/%
* Klemmen von negativen auf eins...

*/

if (tmp_shared memory limit < 1)
tmp_shared memory limit = 1L;

}

else

tmp_shared memory limit = OGL_TXTR_SHMEM DEFAULT;
shmID = -1;

/*
* Zuordnen eines gemeinsamen Speichers, wenn die Spei-

* chergrdBe groBer als die Schwelle ist, oder wenn dies

* keine eindimensionale Abbildung ist. Es werden Kkeine

17/41

DE 197 23 063 B4 2009.05.07

* eindimensionalen Abbildungen durchgelassen, da das For-
* mat der Abbildung unterschiedlich als das verwendete

* ist.

*/

if ((memSize >= tmp_shared memory limit) &&
(targetIndex != OGL_TEXTURE 1D))

shmID = shmget (IPC_PRIVATE, memSize, IPC_CREAT0666) ;
if (shmID != -1)

{
tmpPtr = (char*)shmat(shmID, (char*)0, 0);
if (int) tmpPtr == -1)
{
/*

* Entfernen der ID des gemeinsam verwendeten

* Speichers (Shared Memory ID).
*/

shmctl (shmID, IPC RMID, 0);

shmID = -1;

}

sonst

{
/*
* Es existiert eine gliltige Shared Memory ID und
* es ist Speicher angebracht. Somit werden die
* shmID und der Speicherzeiger gespeichert, und
* es wird 1 zuriickgegeben, was bedeutet, daB der
* gemeinsam verwendete Speicher erfolgreich
* eingesetzt wurde.
*/
*sharedID = shmID;
ptr->1lum8 = (TexelLum8%*)tmpPtr;
*sharedTexels = 1;
return(0); /* Shared Memory Success! */

}

18/41

DE 197 23 063 B4 2009.05.07

}
}
if (shmID == -1)
{
/*
* Versucht, regelmdBigen Speicher zuzuordnen.
*/
tmpPtr = (char*)SumMalloc(memSize, FREE_MANUALLY) ;
if (tmpPtr == (char*)NULL)
{
/ *
* Kein Speicher, keine Texturabbildung.
*/
SET_OGL_ERROR (GL_OUT_OF MEMORY) ;
return(-1);
}
else
{
/%
* Es existiert Speicher. Somit soll der Speicher-
* zeiger gespeichert werden, und es wird 0 zurick-
* gegeben, da der reguldre Speicher erfolgreich
* verwendet wurde.
*/
ptr->lum8 = (TexelLum8%*)tmpPtr;
*sharedTexels = 0;
return(0); /* Erfolg fiir reguldren Speicher! */
}
}
return(0) ;
}
/*

khkkhkkhhkhhkhkhhhkhkhkhkdhhhhhhhhkhkkhkhkhhkhkhkhkhhkkhkkkhkhkkhkhkhkkkhkkhhkhkkkkkk

* %

19/41

DE 197 23 063 B4 2009.05.07

**x Zweck: Freimachen eines internen Texelspeichers.

* %

** Eingaben: sharedTexel - Flag, die gemeinsam verwendeten

* % Speicher anzeigt

* % sharedID - ID des gemeinsam verwendeten Spei-
* % chers, wenn er anwendbar ist

* % *ptr - Speicherzeiger

* %

hkhkkhkhkhkhkhkhkhhkhkhkkhkhkhkhhhkhkhkhkhkhkhkkhkhkhkhkhkhkkhhkhhhhdhhkkhkhkhkhdkkkdhkhhkk

*/

void hpOcm_ freeTexelMemory (
unsigned sharedTexel,
Uint32 sharedID,

void *ptr)
{
if (sharedTexel)
{
shmdt (ptr) ;
shmctl (sharedID, IPC_RMID, 0);
}
else
{
if (ptr != (void*)NULL)
SumFree (ptr) ;
}
}

#pragma inline Log2
static int Log2(int Value)

{
int Result = 0;
while(Value > 1){
Result++, Value >>= 1;
}
return Result;
}

20/41

/*

DE 197 23 063 B4 2009.05.07

khkdkhkhkhhkhkhkkkhkrkkkhkkhkhkhkhkhhkhkhkkhhhkhhhhkhhkhhhhkhkhhhkhkhhhhkhhkhkhkkx

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

* %

*%

* %

* %

* %

* %

* %

* %

* %

*%

* %

* %

* %k

*%

* %

* %

* %

* %

* %

* %

* %

**

* %

* %

* %

Zweck: Diese Routine ordnet den internen Graphikkernspei-

cher fiir Texturabbildungen zu, fihrt eine zweidi-
mensionale Pipeline aus, um die Pixel aufzupacken
und zu iibertragen, und verfolgt die Anzahl von
gliltigen MIP-Abbildungsebenen, die fir jede Tex-
turabbildung heruntergeladen wurden.

Diese Routine ist komplex, da sie alle Ebenen der
MIP-Abbildung in einem zusammenhdngenden Speicher
hdlt.

Eingaben: target - spezifiziert GL TEXTURE_1D oder

GL_TEXTURE_2D

level - Detailebenen-Nummer

internalFormat - Benutzer-spezifiziertes,

internes Format

width - Breite der Textur #* ENTHALT NICHT DEN
RAND #*#*

height - HBhe der Textur ** ENTHALT NICHT DEN
RAND *%*

border - TexturabbildungsrandgroéBfe

Wird von glTexImage*D aufgerufen

Global zugegriffene Variablen - hpOgl context

Algorithmus: Wenn die Basisabbildung keinen Speicher hat,

Zuordnen von genug Speicher filir eine MIP-Ab-
bildung. Wenn das Format oder die Randgroéfe
der ankommenden Ebene nicht mit der ge-
genwdrtigen Basisebene konsistent ist, 2Zu-
ordnen von Speicher flir die Ebene getrennt
von dem Rest der Abbildung und Markieren

der Ebene als inkonsistent.

21/41

DE 197 23 063 B4 2009.05.07

** Aufgerufene Funktionen: getInternalFormatAndSize

* % computeMipMemSize

*% allocateTexelMemory

* % checkLevel

*% DS_NO_LOCK.destroyTexture
*% _hpOcm_computeLevelSize
*% _hpOcm_computeTexelOffset
*% memncpy

** SumFree

* % SumMalloc

*% _hpOcm_freeTexelMemory

* % storeMagicBorderValue

* %

** Fehlernachrichten: GL_OUT_OF_ MEMORY
* %

kkkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkkkhkhkkkkhkkhkhhkkkkkhkhhkhkdkkhhkkdk

*/

static void downLoadTexels(
Enum target,
Int32 level,
Int32 internalFormat,
Int32 width,
Int32 height,
Int32 border)

TextureObjectPtr boundTexels;
MipLevelStatePtr baseMap;
MipLevelStatePtr thisLevel;
Int32 offset;

Int32 tSize;

Int32 levelOk;

Int32 ourType;

Uint32 memSize;

int i;

int myBorder;

unsigned tmpSharedTexels;

22/41

DE 197 23 063 B4 2009.05.07

Enum targetIndex;

int32 ignore(4];

] *

* Setze myBorder auf 1, da immer Raum fiir einen Rand zu-
* geordnet wird,

* selbst wenn der Benutzer keinen Rand mit den Texeln
* hat.

* Initialisieren von Versatz auf O.

*/

myBorder = INTERNAL BORDER_SIZE;
offset = 0;

/*
* Erhalten eines Zeigers auf die gegenwdrtig begrenzte
* Textur mit korrekter Dimension.

* Einstellen von baseMap und thisLevel.

*/

if (target == GL_TEXTURE_2D)

targetIndex = OGL_TEXTURE_2D;
else
{
targetIndex = OGL_TEXTURE_1D;
if (width > 0)
height = 1;
sonst
height = 0;
}

boundTexels = OGL_TEXOBJ.boundTextures[targetIndex];

baseMap &boundTexels->level[0];

thisLevel = &boundTexels->level[level];

/*

* Wenn die gegenwdrtig begrenzte Textur ein Teil einer

23/41

DE 197 23 063 B4 2009.05.07

* Anzeigeliste ist

*

Optimierung, Kopieren der Textinformationen auf einen

*

neuen Zeiger, derart, daB der Anzeigelistenzeiger nicht

* verandert wird.

*/

if (boundTexels->hdr.d1lmFlag == 1)
{

Texel texelSave;

texelSave.lum8 = baseMap->texelData.lum8;

memSize = computeMipMemSize (baseMap->width,
baseMap->height,
myBorder
baseMap->bytesPerTexel,

0,
&boundTexels->hdr.numMipLevels,
&offset);
if(-1 == allocate TexelMemory(memSize,
&boundTexels->hdr.sharedTexellD,
&baseMap->texelData,
&tmpSharedTexels,
boundTexels->targetIndex))
{
/%
* Fehler wurde bereits gesetzt.
*/
return;
}

boundTexels->hdr.sharedTexels = tmpSharedTexels;
baseMap->pointerFlag = !TMP_MEMORY POINTER;

memcpy (baseMap->texelData.lum8, texelSave.lun8,

memSize) ;

24/41

DE 197 23 063 B4 2009.05.07

boundTexels->hdr.d1lmFlag = 0;
}

DS_NO_LOCK.getInternalFormatAndSize(internalFormat,

&ourType, &tSize, ignore);

/*
* {berpriifen nach einem existierenden Texelabbildungs-
* speicher.

* Das FluBdiagramm der Fig. 2 bis 6 beginnt hier.

*/

if (baseMap->texelData.lum8 == (TexelLum8%*)NULL)
{

Uint32 wsSave;

Uint32 hSave;

/%

* Berechnen der GrdBe der Basisebene. Diese Informa-
* tionen werden verwendet, um sicherzustellen, daB die
* gegenwdrtige Ebene eine korrekte MIP-Ebene ist, und/
* oder dieselben werden zur Speicherzuordnung verwen-

* det.
*/

wSave = width;
height;

hSave

if(level != 0)
{

wSave <<= level;
if (target == GL_TEXTURE_2D)

hSave <<= level;

/*
* Berechnen des gesamten Speichers, der fiir die Texel-

25/41

DE 197 23 063 B4 2009.05.07

*

daten bendtigt wird.

*

Dieser Code ordnet genug Speicher fiir eine volle
MIP-Abbildung einschlieflich der Rédnder (mit der
GroBe 1) zu.

%

%

*/
memSize = computeMipMemSize (wSave, hSave, myBorder,
tSize, level,
&boundTexels->hdr.numMipLevels,
&offset);
if (-1 == allocateTexelMemory (memSize,
&boundTexels->hdr.sharedTexellD,
&baseMap->texelData,
&tmpSharedTexels,
targetIndex))
{
/*
* Fehler wurde bereits eingestellt.
*/
return;
}

boundTexels->hdr.sharedTexels = tmpSharedTexels;

baseMap->texelType = ourType;

baseMap->internalFormat = internalFormat;

baseMap->bytesPerTexel = tSize;

baseMap->border = border;

baseMap->width = wSave;

baseMap->height = hSave;
baseMap->widthLog2 = Log2(wSave) ;
baseMap->heightLog2 = Log2(hSave) ;

!TMP_MEMORY POINTER;

baseMap->pointerFlag
baseMap->depth = 0;

baseMap->depthLog2 0;

26/41

* ok *F

*

*/

DE 197 23 063 B4 2009.05.07

Der Speicher ist nun zugeordnet, oder er existierte be-
reits. Nun wird die Ebene mit den Texelinformationen
gefillt.

Uberpriifen, um sicherzustellen, daB diese Ebene eine
gliltige MIP-Ebene ist. Dies umfaBt das Aufweisen der
gleichen Randgrdfe und des internen Formats wie die Ba-
sisebene sowie das Aufweisen eines korrekten Breiten-

werts und eines korrekten Hohenwerts (zweidimensional).

levelOk = checkLevel (target, level, *baseMap, width,

/*
*

*

*/

if ((boundTexels->hdr.texelID

height, border, internalFormat);

Wenn die Textur begrenzt ist, {bermitteln der DSM

(Hardware), daB diese Texel verdndert werden.

INVALID TEXEL ID) &&
(!levelOk))
DS _NO_LOCK.destroyTexture (boundTexels) ;

if(level == 0)

{

if (!levelOk)
{

Es wurde bereits genug Speicher zugeordnet, um
Texel 2zu speichern, wobei sich jedoch

die BasisabbildungsgrdBe verdndert hat. Deshalb

* % ¥ ¥

wird der alte Speicherzeiger gespeichert, wird

ein neuer Speicher zugeordnet, werden die Ebenen

* *

der alten Abbildung, die gliltig sind, in die neue

*

Abbildung kopiert, wird der Rest der Ebenen 2zu

27/41

DE 197 23 063 B4 2009.05.07

* den tmp-Zeigern kopiert, wonach der alte Speicher

* freigemacht wird.

*/

Texel texelSave;
unsigned sharedTexelsSave;
Uint32 sharedTexelIDSave;

/%
* Einfiillen von neuen Werten in die Basisebene.

*/

baseMap->texelType = ourType;

baseMap->internalFormat = internalFormat;

baseMap->bytesPerTexel = tSize;

baseMap->border = border;

baseMap->width = width;

baseMap->height = height;
baseMap->widthLog2 = Log2(width);
baseMap->heightLog2 = Log2 (height);

baseMap->pointerFlag = !TMP MEMORY POINTER;

baseMap->depth = 0;

baseMap->depthLog2 = 0;

/*
* Speichern des gegenwdrtigen Texelzeigers,
* Shared Memory ID und der Shared Memory Flag.

der
Wir

* brauchen diese Dinge, um den Speicher freizuma-

* chen, wenn wir fertig sind.

*/

texelSave.lum8 = baseMap->texelData.lum8;

sharedTexelsSave = boundTexels->hdr.sharedTexels;

sharedTexellIDSave = boundTexels->hdr.sharedTexellID;

memSize = computeMipMemSize(width,
height,
myBorder, tSize,

28/41

DE 197 23 063 B4 2009.05.07

level,
&boundTexels->hdr.numMipLevels,
&offset) ;

if (-1 == allocateTexelMemory (memSize,
&boundTexels->hdr.sharedTexellD,
&baseMap->texelData,

&tmpSharedTexels,
targetIndex))
{
/%
* Fehler wurde bereits eingestellt.
*/
return;
}

boundTexels->hdr.sharedTexels = tmpSharedTexels;

Fiir jede Ebene in der existierenden Abbildung,
* Bestimmen der Ebenen, die nun "ok" sind, und Ko-
* pieren dieser Ebenen in die neue Abbildung. Ko-
* pieren des Rests der Ebenen zu tmp-Zeigern und
*

Setzen der Zeigerflag.

*/

for(i=1; i<OGL_MAX MIPMAP_LEVELS; i++)
{

int levelSize;
MipLevelStatePtr curlLevel;

curLevel = &boundTexels->level[i];
if (curLevel->texelData.lum8 != NULL)

{
levelSize = hpOcm_computeLevelSize(curLevel

29/41

DE 197 23 063 B4 2009.05.07

->width, curLevel->height,
curLevel->bytesPerTexel,

myBorder) ;

levelOk = checkLevel (target,
i,
*baseMap,
curLevel->width,
curLevel->heigth,
curLevel->border,
curLevel->internalFormat) ;
if (levelOk)

{
offset = hpOcm_computeTexelOffset (baseMap

~->width,
baseMap->height,
baseMap->bytesPerTexel,
myBorder, level);

memcpy (baseMap->texelData.lum8 + offset,
curLevel~>texelData.lums,

levelSize);

if (curLevel->pointerFlag==TMP_MEMORY POINTER)
{
SumFree (curLevel->texelData.lum8) ;
curLevel->pointerFlag=!TMP_MEMORY_ POINTER;

}

curlLevel->texelData.lum8=baseMap->texelData.lum8
+ offset;
}

else

{

Texel levelSave;

/*

* Wenn diese Ebene die Zeigerflag bereits

30/41

DE 197 23 063 B4 2009.05.07

* gesetzt hat, dann besteht kein Grund,

* die Ebene zu kopieren.

*/

if (curLevel->pointerFlag != TMP_MEMORY _
POINTER)

{

levelSave. lum8=curlLevel->texelData.lun8;

curlevel->pointerFlag=TMP_MEMORY POINTER;

curLevel->texelData.lum8 =
(TexelLum8*)SumMalloc(levelSize,
FREE_MANUALLY) ;

if (curLevel~->texelData.lum8==(TexelLum8*)
NULL)

SET OGL_ERROR(GL_OUT OF MEMORY) ;

return;

memcpy (curLevel->texelData.lum8,

levelSave.lum8, levelSize);

/%
* Freimachen des alten Speichers in dem texelSave-

* Zeiger.

*/
_hpOcm_freeTexelMemory (sharedTexelsSave,

sharedTexelIDSave,

(void*)texelSave.lums8) ;

31/41

}

sonst

{

/*

DE 197 23 063 B4 2009.05.07

* Die weitergeleitete Ebene ist nicht die Basisebene.

*/

if (levelOk)

{

if (thisLevel->pointerFlag == TMP_MEMORY POINTER)

{
/*
* Die Ebene ist nun Ok, wenn sie es vorher noch
* nicht war. Deshalb Freimachen des tmp-Spei-
* chers, Riicksetzen der Zeiger-Flag und Neube-
* rechnen des Versatzes in dem mip-Array, auf
* den durch die Basisabbildung gezeigt wird.
*/
SumFree(thisLevel->texelData.lums8) ;
thisLevel->pointerFlag = !TMP_MEMORY POINTER;
offset = hpOcm_computeTexelOffset (baseMap
->width,
baseMap->height,
baseMap->bytesPerTexel,
myBorder, level);
}
else
{

/*

* This level...

*

*

*

*/

offset = hpOcm_computeTexelOffset (baseMap
->width,
baseMap->height,

32/41

DE 197 23 063 B4 2009.05.07

baseMap->bytesPerTexel,

myBorder, level);

}
}
sonst
{

/*

* Ebene ist nicht Ok. Somit, 2Zuordnen eines be-
* stimmten tempordren Speichers und Speichern die-
* ser Ebenentexel dort. Ebenfalls, Einstellen der
* Zeiger-Flag, um anzuzeigen, daB die Ebene keinen

* Versatz zur Basisabbildung aufweist.

*/
int levelSize;

levelSize = hpOcm_computeLevelSize(width, height,

tSize, myBorder);

thisLevel->pointerFlag = TMP_MEMORY_ POINTER;
thisLevel~->texelData.lum8=(TexelLum8*)SumMalloc
(levelSize, FREE MANUALLY) ;

if (thisLevel->texelData.lum8 == (TexelLum8*)NULL)
{
SET_OGL_ERROR(GL_OUT OF_MEMORY) ;
return;
}
}

* Speichern der Ebeneninformationen.

thisLevel->texelType = ourType;

thisLevel->internalFormat = internalFormat;

thisLevel->bytesPerTexel = tSize;

33/41

DE 197 23 063 B4 2009.05.07

thisLevel~>border = border;
thisLevel->width = width;
thisLevel->height = height;
thisLevel->widthLog2 = Log2(width);
thisLevel->heightLog2 = Log2 (height);
thisLevel->depth = 0;
thisLevel->depthlLog2 = 0;

/*

*

Wenn diese Ebene Ok ist, dann Speichern des Versatzes

*

fiir diese Ebene in den Texeldaten. Es sei angemerkt:

*

wenn diese die Ebene 0 ist, dann wird der Versatz immer

* 0 sein.

*/

if (thisLevel->pointerFlag != TMP_MEMORY POINTER)&&offset)
thislLevel->texelData.lum8 = baseMap->texelData.lum8 +
offset;

if (thisLevel->texelData.lums8)
storeMagicBorderValue(tSize, (char*)thisLeve1->
texelData.lum8);

Patentanspriiche

1. Verfahren zum Speichern von Texeldaten einer Textur in einem zusammenhangenden Speicherblock ei-
nes Speichers einer Texturabbildungshardware in einem Computergraphiksystem, wobei einer Textur eine
MIP-Abbildung mit einer Mehrzahl von MIP-Abbildungsebenen (100, 102, 104, 108) zugeordnet ist, wobei das
Verfahren folgende Schritte aufweist
(a) Empfangen (12) von Texeldaten fiir eine erste heruntergeladene MIP-Abbildungsebene (100, 102, 104,
108);

(b) Berechnen (16) eines zusammenhangenden Speicherblocks fiir eine vollstandige MIP-Abbildung, basie-
rend auf der Grofse und der Ebenennummer der ersten heruntergeladenen MIP-Abbildungsebene (100, 102,
104, 108);

(c) Zuordnen (18) des zusammenhangenden Speicherbocks fiir die vollstandige MIP-Abbildung;

(d) Bestimmen (33) eines Versatzwertes in dem zusammenhangenden Speicherblock, basierend auf der Ebe-
nennummer der ersten heruntergeladenen MIP-Abbildungsebene (100, 102, 104, 108), wobei der Versatzwert
der vorbestimmten Position zum Speichern von Texeldaten entspricht, die der ersten heruntergeladenen
MIP-Abbildungsebene (100, 102, 104, 108) zugeordnet sind;

(e) Speichern (39) der Texeldaten fiir die erste heruntergeladene MIP-Abbildungsebene (100, 102, 104, 108)
an der Position in dem zusammenhangenden Speicherblock, auf den durch den Versatzwert gezeigt wird;

(f) wiederholtes Empfangen zusatzlicher Texeldaten fiir zusatzliche MIP-Abbildungsebenen (100, 102, 104,
108), nachdem die Texeldaten flir die erste heruntergeladene MIP-Abbildungsebene (100, 102, 104, 108) emp-
fangen worden sind, und fir alle folgenden Texeldaten:

(1) Bestatigen (28), dass die neu empfangenen Texeldaten fir die zusatzliche MIP-Abbildungsebene (100,
102, 104, 108) der MIP-Abbildung zugeordnet sind, der die erste heruntergeladene MIP-Abbildungsebene
(100, 102, 104, 108) zugeordnet ist, und wenn dies der Fall ist, Berechnen (33) eines Versatzes in dem zusam-
menhangenden Speicherblock und Plazieren der zusatzlichen Texeldaten an der Position in dem zusammen-
hangenden Speicherblock, auf die durch den Versatz gezeigt wird,

wenn dies nicht der Fall ist, Plazieren (29) der zusatzlichen heruntergeladenen Texeldaten in einem tempora-

34/41

DE 197 23 063 B4 2009.05.07

ren Speicher, und Einstellen (31) einer Zeigerflag auf einen Wert, der anzeigt, dass sich Texeldaten in dem
temporaren Speicher befinden;

(2) Wiederholen des Schritts (e) (1), bis alle zum Speichern bereitgestellten Texeldaten heruntergeladen sind;
(3) falls in dem zusammenhangenden Speicherblock Texeldaten fir eine MIP-Abbildung gespeichert sind, Ent-
fernen der in dem temporaren Speicher befindlichen Texeldaten; und

(4) falls in dem zusammenhangenden Speicherblock keine Texeldaten fiir eine MIP-Abbildung gespeichert
sind und falls in dem temporaren Speicher Texeldaten fiir eine MIP-Abbildung gespeichert sind, Platzieren der
in dem temporaren Speicher befindlichen Texeldaten in dem zusammenhangenden Speicher.

2. Verfahren nach Anspruch 1, bei dem im Schritt (a) ein erster Datensatz empfangen wird, der der ersten
heruntergeladenen MIP-Abbildungsebene (100, 102, 104, 108) entspricht, und bei dem der Schritt (f)(1) fol-
gende Schritte umfaldt:

Analysieren des ersten Datensatzes, um eine Gréf3e und eine Ebenennummer des ersten Datensatzes zu be-
stimmen;

Empfangen eines zweiten Datensatzes, der der zusatzlichen MIP-Abbildungsebene (100, 102, 104, 108) ent-
spricht;

Analysieren des zweiten Datensatzes, um eine GroRRe und eine Ebenennummer des zweiten Datensatzes zu
bestimmen;

Vergleichen der GréRRe und der Ebenennummer des zweiten Datensatzes mit der Gréf3e und der Ebenennum-
mer des ersten Datensatzes; und

auf der Grundlage der GroRe und der Ebenennummer des zweiten Datensatzes und auf der Grundlage des
Vergleichsschrittes, Bestimmen, ob die neu empfangenen Texeldaten fir die zusatzliche MIP-Abbildungsebe-
ne (100, 102, 104, 108) der MIP-Abbildung zugeordnet sind, der die erste heruntergeladene MIP-Abbildungs-
ebene (100, 102, 104, 108) zugeordnet ist.

3. Verfahren nach Anspruch 2, das ferner den Schritt des Bestimmens einer Anzahl von MIP-Abbildungs-

ebenen (100, 102, 104, 108) basierend auf der Grof3e und der Ebenennummer des ersten Datensatzes um-
faldt.

Es folgen 6 Blatt Zeichnungen

35/41

DE 197 23 063 B4 2009.05.07

Anhangende Zeichnungen

801

ool

-] ° -} °
© [-} -]
L] ° o (-]

° ’ wN_..\ BN—.\
’ ’ mNF.\ mN_..\o
*NT\ nNF.\o m:.\ .v_._..\Aw
NN—..M FNF.\ m.:.\ N:.hv

36/41

FEHLER

16

18"\

DE 197 23 063 B4 2009.05.07

10

[FIG. 2

/,- BERECHNEN DER

GROBE DES ZUSAMMEN-
HANGENDEN SPEICHER-
BLOCKS,DER BENOTIGT
WIRD

ZUORDNEN DES
SPEICHERS

SPEICHERN VON BASIS+
ABBILDUNGSWERTEN

l

26

.

V4

LEVELOK = 0 ?

36

37/41

DE 197 23 063 B4 2009.05.07

38

Z0(D): WURDE FIN ZUSAMMENHANGENDER

SPEICHERN DFR 0 SPEICHER ZUGEORDNET ?
BASTSFRENEN-)
NORUTIONN 4 (2): ZFIGT DIE. GRGENWARTIGE FBENE

AUF EINEN SPEIGHER ?

SPEICHERN EINES w
ZEIGHRS AUF EINEN | /

FIG. 3

10 68

62

FRHALTEN EINES |~
ZEIGERS AUF DIE 7]
GFRGFNWARTIGE. FBRNE

ALTEN ZUSAMMEN-
HANGENDEN SPEICHERS 56

58 JA NEIN o5
° 1>15 JA

NEIN

38/41

DE 197 23 063 B4 2009.05.07

66
/70

BERECHNEN DER
GROBE DIESER
F . EBANE.
72
//_
70 (L) :ZFIGERFLAG = 1 LEVELOK = 0
WURDE EIN SPE[[(HER 10

88

99

39/41

DE 197 23 063 B4 2009.05.07

FIG. 5

36
10
13
NEIN

4

BERECHNEN DER EBENEN-
GROBE

[

/
ZEIGERFLAG = 1

4

ZUORDNEN EINES TEMO-
RAREN SPEICHERBLOCKS FUR
DIESE EBENE

NEIN

WURDE
SPEICHER
UGEORDNET

JA

15

17

NEIN

ZEIGER-

FLAG =1

19

29

/[

7

FREIMACHEN DES TEMPO-
RAREN SPEICHERS FUR
DIESE EBENE

//,31
23 ZEIGERFLAG = 0
FEHLER
//,33

BERECHNEN EINES VERSATZES
FUR DIESE EBENE IN DEM
ZUSAMMENHANGENDEN
SPEICHER DER BASISABBIL-

DUNG]
\‘ ”D”

58

40/41

DE 197 23 063 B4 2009.05.07

10

SPEICHERN DER EBENEN-
INFORMATION

41

NEIN
ZEIGERFLAG = 0
43
NEIN
VERSATZ > O
45

SPEICHERN EINES VERSATZES FUR
DIESE EBENE

47

FERTIG

41/41

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

