
DE19723063B420090507
(19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 197 23 063 B4 2009.05.07

(12) Patentschrift

(21) Aktenzeichen: 197 23 063.6
(22) Anmeldetag: 02.06.1997
(43) Offenlegungstag: 29.01.1998
(45) Veröffentlichungstag

der Patenterteilung: 07.05.2009

(51) Int Cl.8: G06T 1/60 (2006.01)
G06F 12/08 (2006.01)

Innerhalb von drei Monaten nach Veröffentlichung der Patenterteilung kann nach § 59 Patentgesetz gegen das Patent Ein-
spruch erhoben werden. Der Einspruch ist schriftlich zu erklären und zu begründen. Innerhalb der Einspruchsfrist ist eine
Einspruchsgebühr in Höhe von 200 Euro zu entrichten(§ 6 Patentkostengesetz in Verbindung mit der Anlage zu § 2 Abs. 1
Patentkostengesetz).

(54) Bezeichnung: Verfahren zum Speichern von Texeldaten einer Textur in einem zusammenhängenden Speicher-
block

(57) Hauptanspruch: Verfahren zum Speichern von Texel-
daten einer Textur in einem zusammenhängenden
Speicherblock eines Speichers einer Texturabbildungs-
hardware in einem Computergraphiksystem, wobei einer
Textur eine MIP-Abbildung mit einer Mehrzahl von MIP-Ab-
bildungsebenen (100, 102, 104, 108) zugeordnet ist, wobei
das Verfahren folgende Schritte aufweist
(a) Empfangen (12) von Texeldaten für eine erste herunter-
geladene MIP-Abbildungsebene (100, 102, 104, 108);
(b) Berechnen (16) eines zusammenhängenden Speicher-
blocks für eine vollständige MIP-Abbildung, basierend auf
der Größe und der Ebenennummer der ersten herunterge-
ladenen MIP-Abbildungsebene (100, 102, 104, 108);
(c) Zuordnen (18) des zusammenhängenden Speicher-
bocks für die vollständige MIP-Abbildung;
(d) Bestimmen (33) eines Versatzwertes in dem zusam-
menhängenden Speicherblock, basierend auf der Ebenen-
nummer der ersten heruntergeladenen MIP-Abbildungse-
bene (100, 102, 104, 108), wobei der Versatzwert der vor-
bestimmten Position zum Speichern von Texeldaten ent-

spricht, die der ersten heruntergeladenen MIP-Abbildungs-
ebene (100, 102, 104, 108) zugeordnet sind;
(e) Speichern (39) der Texeldaten für die erste herunterge-
ladene MIP-Abbildungsebene (100, 102,...

(30) Unionspriorität:
08/690,432 26.07.1996 US

(62) Teilung in:
197 58 921.9

(73) Patentinhaber:
Hewlett-Packard Development Co., L.P., Houston,
Tex., US

(74) Vertreter:
Schoppe, F., Dipl.-Ing.Univ., Pat.-Anw., 82049
Pullach

(72) Erfinder:
Saunders, Bradley L., Fort Collins, Col., US

(56) Für die Beurteilung der Patentfähigkeit in Betracht
gezogene Druckschriften:
EP 06 68 555 A2
EP 04 47 227 A2

PRESS, W.H.: Numerical Recipes in C - The Art of
S
cientific Computing, Cambridge University Press,
1
992, S. 338-341; Parallel in Place Graphics Buffer
Reorganizations, IBM Technical Disclosure Bulleti
n, Vol. 37, No. 7, July 1994, S. 251-258; SEGAL M.
, AKELEY K.: The OpenGL TM Graphics System: A
Spec
ification, (Version 1.0), 1993, Kapitel 3.8, Textu
ring, S. 78-89; IEEE-CS TC-RTS Newsletter for
Sun,
Mar 26, 1995, S. 1, 33-36; MOLNAR, S.: >>The Pixe
lFlow Texture and Image Subsystem<<,
Proceedings o
f the 10th Eurographics Workshop on Graphics
Hardw
are, Maastricht, The Netherlands, Aug. 28-29, 1995
, pp. 3-13;
1/41

DE 197 23 063 B4 2009.05.07
Beschreibung

[0001] Die vorliegende Erfindung bezieht sich auf ein Verfahren zum Speichern von Texeldaten einer Textur
in einem zusammenhängenden Speicherblock. Insbesondere bezieht sich die Erfindung auf eine Software-
speicherverwaltung von Texturabbildungen eines Texturabbildungs-Computergraphiksystems und insbeson-
dere auf einen neuen Lösungsansatz, welcher das System beträchtlich beschleunigt, indem sichergestellt wird,
daß die gesamten Texturdaten in einem zusammenhängenden Speicher gehalten werden.

[0002] Gegenwärtige Implementationen der Texturabbildung, wie sie detaillierter in der Europäischen Paten-
tanmeldung EP 0 749 100 A beschrieben ist und deren Inhalt hierin durch Bezugnahme aufgenommen ist,
speichern eine Kopie der Textur des Benutzers in Software, um eine Vorrichtung zur Texturabfrage zu schaffen,
und um eine Cache-Speicherung von Texeln oder Texturelementen in Hardware zu ermöglichen, wenn nicht
genug Speicher vorhanden ist, damit alle Texel zu einem Zeitpunkt in die Hardware passen.

[0003] Bei typischen Computergraphiksystemen wird ein Objekt, das auf dem Anzeigebildschirm dargestellt
werden soll, in eine Mehrzahl von Graphikgrundelementen gebrochen. Grundelemente sind Grundkomponen-
ten eines Graphikbildes und können Punkte, Linien, Vektoren und Polygone, wie z. B. Dreiecke, umfassen. Ty-
pischerweise ist ein Hardware/Software-Schema implementiert, um auf dem zweidimensionalen Anzeigebild-
schirm die Graphikgrundelemente, die die Ansicht eines oder mehrerer Objekte darstellen, die auf dem Bild-
schirm dargestellt werden, aufzubereiten oder zu zeichnen.

[0004] Typischerweise werden die Grundelemente, die das dreidimensionale Objekt definieren, das aufberei-
tet werden soll, von einem Hostcomputer geliefert, welcher jedes Grundelement in Grundelement-Daten defi-
niert. Wenn das Grundelement beispielsweise ein Dreieck ist, kann der Hostcomputer das Grundelement in
den Koordinaten x, y, z seiner Spitzen sowie in den R-, G-, B-Farbwerten jeder Spitze definieren. Eine Aufbe-
reitungshardware interpoliert die Grundelementdaten, um die Anzeigebildschirmpixel zu berechnen, die einge-
schaltet werden, um jedes Grundelement darzustellen, und um die R-, G-, B-Werte für jedes Pixel zu berech-
nen.

[0005] Frühere Graphiksysteme schafften es nicht, Bilder auf eine ausreichend realistische Art und Weise an-
zuzeigen, um komplexe dreidimensionale Objekte darzustellen oder zu modellieren. Die Bilder, die von sol-
chen Systemen angezeigt werden, zeigten außerordentlich weiche Oberflächen ohne Texturen, Stöße, Krat-
zer, Schatten oder andere Oberflächendetails, die in dem modellierten Objekt vorhanden sind.

[0006] Als Ergebnis wurden Verfahren entwickelt, um Bilder mit verbesserten Oberflächendetails anzuzeigen.
Die Texturabbildung ist ein solches Verfahren, das das Abbilden eines Quellenbilds, das hierin als eine "Textur"
bezeichnet wird, auf eine Oberfläche eines dreidimensionalen Objekts und anschließend das Abbilden des tex-
turierten dreidimensionalen Objekts auf den zweidimensionalen Graphikanzeigebildschirm betrifft, um das re-
sultierende Bild anzuzeigen. Oberflächendetailattribute, welche üblicherweise Textur-abgebildet sind, umfas-
sen eine Farbe, eine spieglige Reflexion, eine Vektorstörung, eine Spiegligkeit, eine Transparenz, Schatten,
Oberflächenungleichmäßigkeiten und Abstufungen.

[0007] Die Texturabbildung betrifft das Anlegen von einem oder mehreren Punkttexturelementen ("Texeln")
an jedes Punktelement ("Pixel") des angezeigten Abschnitts des Objekts, zu dem die Textur abgebildet wird.
Die Texturabbildungshardware ist üblicherweise mit Informationen versehen, die die Art und Weise anzeigen,
auf die die Texel in einer Texturabbildung den Pixeln auf dem Anzeigebildschirm, die das Objekt darstellen,
entsprechen. Jedes Texel in einer Texturabbildung wird durch Koordinaten S und T definiert, welche seine Po-
sition in der zweidimensionalen Texturabbildung identifizieren. Für jedes Pixel wird auf das entsprechende Te-
xel oder auf die entsprechenden Texel, die auf dasselbe abgebildet werden, von der Texturabbildung zugegrif-
fen, und dieselben werden in die endgültigen R-, G-, B-Werte aufgenommen, die für das Pixel erzeugt werden,
um das texturierte Objekt auf dem Anzeigebildschirm darzustellen.

[0008] Es sollte offensichtlich sein, daß jedes Pixel in einem Objektgrundelement nicht in einer
Eins-zu-Eins-Korrespondenz mit einem einzelnen Texel in der Texturabbildung für jede Ansicht des Objekts ab-
gebildet werden kann. Je näher das Objekt beispielsweise an dem Anzeigetor, das auf dem Anzeigebildschirm
dargestellt ist, positioniert ist, um so größer wird das Objekt erscheinen. Sowie das Objekt auf dem Anzeige-
bildschirm größer erscheint, wird die Darstellung der Textur detaillierter. Wenn das Objekt somit einen ziemlich
großen Abschnitt des Anzeigebildschirms einnimmt, wird eine große Anzahl von Pixeln verwendet, um das Ob-
jekt auf dem Anzeigebildschirm darzustellen, wobei jedes Pixel, das dem Objekt entspricht, in eine
Eins-zu-Eins-Korrespondenz mit einem einzigen Texel in der Texturabbildung abgebildet werden kann, oder
2/41

DE 197 23 063 B4 2009.05.07
ein einzelnes Texel kann auf viele Pixel abgebildet werden. Wenn das Objekt jedoch einen relativ kleinen Ab-
schnitt des Anzeigebildschirms einnimmt, wird eine viel kleinere Anzahl von Pixeln verwendet, um das Objekt
darzustellen, was darin resultiert, daß die Textur weniger detailliert dargestellt ist, derart, daß jedes Pixel in
mehrere Texel abgebildet werden kann. Zusätzlich kann jedes Pixel in mehrere Texel abgebildet werden, wenn
eine Textur auf einen kleinen Abschnitt eines Objekts abgebildet wird. Resultierende Texeldaten werden für je-
des Pixel berechnet, das auf mehr als ein Texel abgebildet wird. Da es üblich ist, daß ein Pixel auf mehrere
Texel abgebildet wird, stellen resultierende Texeldaten für ein Pixel typischerweise einen Mittelwert der Texel,
die auf das Pixel abgebildet werden, dar.

[0009] Texturabbildungshardwaresysteme umfassen typischerweise einen lokalen Speicher, der Daten spei-
chert, die einer Textur entsprechen, die mit dem aufzubereitenden Objekt verknüpft ist. Wie es oben erörtert
wurde, kann ein Pixel zu mehreren Texeln abgebildet werden. Wenn es nötig wäre, daß die Texturabbildungs-
hardware eine große Anzahl von Texeln liest, die auf ein Pixel von dem lokalen Speicher abgebildet werden,
um einen Durchschnittswert zu erzeugen, würde eine große Anzahl von Speicherlesevorgängen und das Bil-
den des Durchschnitts von vielen Texelwerten erforderlich sein, was zeitaufwendig sein würde und das Sys-
temverhalten verschlechtern würde.

[0010] Um dieses Problem zu überwinden, wurde ein Schema entwickelt, das das Erzeugen einer Serie von
Abbildungen, die "MIP"-Abbildungen genannt werden (MIP bedeutet "Multum In Parvo" = viele Dinge in einem
kleinen Platz), für jede Textur betrifft, wobei die MIP-Abbildungen der Textur, die mit dem aufzubereitenden Ob-
jekt verknüpft ist, in dem lokalen Speicher der Texturabbildungshardware gespeichert werden. Eine MIP-Abbil-
dung für eine Textur umfaßt eine Basis-("Ebene-0"-)Abbildung, die direkt der Texturabbildung entspricht, sowie
eine Serie von gefilterten Abbildungen, wobei jede aufeinanderfolgende Abbildung größenmäßig um einen
Faktor 2 in jeder der zwei Texturabbildungsdimensionen reduziert ist. Ein veranschaulichendes Beispiel eines
Satzes von MIP-Abbildungen ist in Fig. 1 gezeigt. Die MIP-Abbildungen umfassen eine Basisabbildung ("Ebe-
ne 0") 100, die eine Größe von 8 × 8 Texel aufweist, sowie eine Serie von Abbildungen 102, 104 und 108, die
die Ebene 1, welche 4 × 4 Texel ist, die Ebene 2, welche 2 × 2 Texel ist bzw. die Ebene 3 darstellen, welche
eine Größe von einem Texel aufweist.

[0011] Die Ebene-1-Abbildung 102, die eine Größe von 4 × 4 aufweist, wird erzeugt, indem die Basisabbil-
dung 100 Kasten-gefiltert (dezimiert) wird, derart, daß jedes Texel in der Ebene-1-Abbildung 102 einem Durch-
schnitt von vier Texeln von der Ebene-0-Basisabbildung 100 entspricht. Das Texel 110 in der Ebene-1-Abbil-
dung 102 gleicht beispielsweise dem Durchschnitt der Texel 112 bis 115 in der Ebene-0-(Basis-)Abbildung 100.
Auf ähnliche Weise gleichen die Texel 118 und 120 in der Ebene-1-Abbildung 102 den Durchschnitten der Te-
xel 121 bis 124 bzw. 125 bis 128 in der Ebene-0-(Basis-)Abbildung 100. Die 2 × 2-Abbildung 104 (die Ebe-
ne-2-Abbildung) wird durch Kastenfiltern der Ebene-1-Abbildung 102 erzeugt, derart, daß ein Texel 130 in der
Ebene-2-Abbildung 104 dem Durchschnitt der Texel 110 und 118 bis 120 in der Ebene-1- Abbildung 102
gleicht. Das einzige Texel in der Ebene-3-Abbildung 108 wird erzeugt, indem die vier Texel in der Ebene-2-Ab-
bildung 104 gemittelt werden.

[0012] Herkömmliche Graphiksysteme laden allgemein von dem Hauptspeicher des Hostcomputers die voll-
ständige Serie von MIP-Abbildungen für jede Textur, die mit den auf dem Anzeigebildschirm aufzubereitenden
Grundelementen verwendet werden soll, in den lokalen Speicher der Texturabbildungshardware. Wie es für
Fachleute verständlich ist, meint eine komplette Serie von MIP-Abbildungen alle MIP-Abbildungen von der
Ebene 0 bis zur Ebene N, wobei die Ebene N eine 1 × 1-MIP-Abbildung ist. Somit kann die Texturabbildungs-
hardware auf Texturdaten von irgendeiner der Ebenen der Serie von MIP-Abbildungen zugreifen. Die Bestim-
mung, auf welche Abbildung zugegriffen wird, um die Texeldaten für ein spezielles Pixel zu liefern, basiert auf
der Anzahl von Texeln, auf die das Pixel abgebildet wird. Wenn das Pixel beispielsweise in einer
Eins-zu-Eins-Korrespondenz mit einem einzigen Texel in der Texturabbildung abgebildet wird, dann wird auf
die Basisabbildung 100 zugegriffen. Wenn das Pixel jedoch auf 4, 16 oder 64 Texel abgebildet wird, dann wird
auf die Abbildungen 102, 104 bzw. 108 zugegriffen, da diese Abbildungen jeweils Texeldaten speichern, die
einen Durchschnitt von 4, 16 und 64 Texeln in der Texturabbildung darstellen.

[0013] Wie es erkannt werden wird, kann eine Serie von Textur-MIP-Abbildungen eine große Menge an Sys-
temsoftwarespeicher zur Speicherung erfordern. Eine Serie von MIP-Abbildungen für eine Textur mit einer Tex-
turbasisabbildung von 1.024 × 1.024 Texeln erfordert mehr als fünf Megabyte an Systemsoftwarespeicher, um
eine Kopie der MIP-abgebildeten Textur zu speichern. Somit verwenden die mehreren gespeicherten Kopien
der MIP-abgebildeten Textur eine wesentliche Menge an Systemsoftwarespeicher.

[0014] Während der Systemsoftwarespeicher in der Lage sein kann, bis zu ein paar Gigabytes Softwaredaten
3/41

DE 197 23 063 B4 2009.05.07
zu speichern, besteht ein anderer Punkt, welcher angegangen werden muss, darin, wo die MIP-Abbildungen
tatsächlich gespeichert werden. Um eine Aufbereitung von Graphikbildern mit hoher Geschwindigkeit zu errei-
chen, ist es insbesondere wichtig, in der Lage zu sein, die Texelinformationen von der geeigneten Ebene der
MIP-Abbildung zu der Graphikanzeige so schnell als möglich zu übertragen. Obwohl es am besten wäre, wenn
die Position aller Ebenen von vornherein bekannt sein würde, macht die Art und Weise, auf die eine typische
Graphikanwendungsprogrammierschnittstelle ("API"; API = Application Programmer Interface) arbeitet, dieses
zu einer speziell schwierigen Aufgabe. Insbesondere erlaubt eine Graphik-API, die "OpenGL" genannt wird
und von Hewlett Packard erhältlich ist, daß der Benutzer MIP-Abbildungsebenen derart herunterlädt, daß die
verschiedenen Ebenen in einer beliebigen (Ebenen-)Reihenfolge zu dem Speicher gesendet werden können.
Siehe z. B. Segal M., Akeley K.: „The OpenGLTM Graphics System: A Specification (Version 1.0)", 1993, Kapitel
3.8, Texturing, Seiten 78 bis 89.

[0015] Bisher wurden solche MIP-Abbildungsebenen einzeln im Speicher gespeichert, wobei als Position für
jede der Ebenen der Speicher verwendet wird, der von einer Betriebssystemspeicherzuordnungsroutine ("Mal-
locing"-Routine; Mallocing = Memory ALLOCatING) zurückgegeben wird. Somit wurden die tatsächlichen Po-
sitionen in Speicher, in denen Ebenen der MIP-Abbildung gespeichert werden, dem Betriebssystem überlas-
sen. Wenn daher eine einzelnen Ebene benötigt wurde, musste sie geortet werden, was in einer allgemeinen
Verlangsamung des Betriebs des Systems resultierte.

[0016] Die EP 0 447 227 A beschreibt ein Verfahren und eine Vorrichtung zur Erzeugen von texturierten Gra-
phikgrundelementen in einem Computergraphiksystem mit einem Rahmenpuffer. Zunächst wird für eine Ober-
fläche eine zweidimensionale ursprüngliche Texturabbildung bestimmt und in dem Rahmenpuffer abgespei-
chert. Anschließend wird die ursprüngliche Texturabbildung unabhängig voneinander in zwei Richtungen neu
abgetastet, unter Verwendung eines asymmetrischen Filters, um vielfache Versionen einer Textur zu schaffen,
und um texturierte Pixel auf einer Anzeige in dem Rahmenpuffer zu adressieren. Die texturierten Pixel werden
Bereichen in dem Rahmenpuffer zugeordnet und die texturierten Graphikgrundelemente werden angezeigt.

[0017] Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren zum Speichern von Texturdaten
zu schaffen, das es ermöglicht, Texturdaten einer MIP-Abbildung unabhängig von der Reihenfolge der Bereit-
stellung der Texeldaten für unterschiedliche MIP-Abbildungsebenen und unabhängig davon, ob Texeldaten für
andere Texturen bereitgestellt werden, für eine schnelle und zuverlässige Wiedergewinnung zu speichern.

[0018] Diese Aufgabe wird durch ein Verfahren gemäß Anspruch 1 gelöst.

[0019] Gemäß dem bevorzugten Ausführungsbeispiel der Erfindung wird eine Vorrichtung geschaffen, mit der
es möglich ist, Ebenen einer MIP-verarbeiteten OpenGL-Texturabbildung in einem zusammenhängenden
Speicher zu speichern, während die Datenintegrität beibehalten wird. Somit reduziert oder eliminiert die vorlie-
gende Erfindung Speichercachefehlschläge, wenn eine vollständig MIP-verarbeitete Texturabbildung zur
Hardware heruntergeladen wird, oder wenn eine Texturabbildung eine Softwarerasterisierung verwendet.
Ebenfalls hält die vorliegende Erfindung die Integrität der heruntergeladenen Daten bei, selbst wenn die Daten
nicht in die Beschreibung der gegenwärtigen vollständigen MIP-Abbildung passen.

[0020] Gemäß der Erfindung wird ein Algorithmus geschaffen, welcher in der Lage ist, den Gesamtspeicher
zu berechnen, der benötigt wird, um eine volle MIP-Abbildung zu speichern, und zwar basierend auf der ersten
Ebene, die zu dem Graphikkern geleitet wird, sowie basierend auf folgenden Basisabbildungsebenenänderun-
gen. Jede Ebene wird dann in dem zusammenhängenden Speicher gespeichert, wenn die Ebene gültig ist,
oder in einer temporären Speicherposition, wenn die Ebene nicht gültig ist. Jedesmal, wenn sich die Basise-
bene verändert, werden alle Ebenen nach ihrer Gültigkeit getestet, wobei die gültigen Ebenen in dem zusam-
menhängenden Speicher plaziert werden.

[0021] Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend bezugnehmend
auf die beiliegenden Zeichnungen detaillierter erörtert. Es zeigen:

[0022] Fig. 1 eine Graphikdarstellung eines Satzes von Textur-MIP-Abbildungen; und

[0023] Fig. 2 bis Fig. 6 ein Flußdiagramm, das das Verfahren der vorliegenden Erfindung darstellt.

[0024] Dieser Beschreibung beigefügt und in die Beschreibung aufgenommen ist ein Anhang, welcher den
Quellencode (in der Programmiersprache C) für das bevorzugte Ausführungsbeispiel der Erfindung enthält.
Obwohl davon ausgegangen wird, daß der Quellencode die Details der Erfindung ausreichend beschreibt, der-
4/41

DE 197 23 063 B4 2009.05.07
art, daß ein Fachmann auf dem Gebiet der Computergraphik in der Lage sein wird, die vorliegende Erfindung
ohne weiteres zu verstehen, werden zusätzliche Details der Erfindung nachfolgend bezugnehmend auf die
Flußdiagramme der Fig. 2 bis Fig. 6 beschrieben, welche das Verfahren darstellen, das von der Erfindung ver-
wendet wird.

[0025] Bezugnehmend auf Fig. 2 wird das Flußdiagramm allgemein als das Gesamtverfahren 10 bezeichnet.
Gemäß der vorliegenden Erfindung 10 sollen die Texturdaten beim Durchführen des erfindungsgemäßen Ver-
fahrens in einen zusammenhängenden Block eines Speichers plaziert werden. Wie es oben dargelegt wurde,
bestehen die Texturdaten aus den Daten, die mit allen Ebenen von der Ebene 0 bis zu Ebene n, wobei die
Ebene n ein 1 × 1-Array ist, verknüpft sind. Zur Erklärung ist es ausreichend, zuerst festzustellen, daß die erste
Sache, die bestimmt werden muß, darin besteht, ob ein ausreichender Speicher existiert, um alle Texeldaten
in einen einzigen Speicherblock zu plazieren. Bezugnehmend auf Fig. 2 ist diese Bestimmung durch einen
Entscheidungsblock 14 dargestellt. Wenn es nicht bekannt ist, ob ausreichend Speicher vorhanden ist, dann
muß die Größe des zusammenhängenden Speicherblocks berechnet werden, welcher benötigt werden wird
(16), und der Speicher muß zugeordnet werden (18). Folgendes Beispiel sei genannt: wenn die Ebe-
ne-0-MIP-Abbildung eine 8 × 8-Abbildung ist, besetzt dieselbe 64 "Positionen", wobei die tatsächliche Spei-
chermenge durch die Anzahl von Bytes pro Texel (mal 64) bestimmt werden würde. Somit würde die Ebe-
ne-1-MIP-Abbildung 4 × 4 oder 16 Positionen besetzen, während die Ebene-2-MIP-Abbildung 2 × 2 oder vier
Positionen besetzen würde, und die Ebene-3-MIP-Abbildung 1 × 1 oder eine Position besetzen würde. Somit
würde die Gesamtanzahl von Positionen 85 "Positionen" mal der Anzahl von Bytes pro Texel sein. Wie es zu
sehen ist, bedeutet die Kenntnis, daß die Ebene-2-MIP-Abbildung eine 2 × 2-Abbildung ist, daß die Basisab-
bildung eine 8 × 8-Abbildung ist. Wenn also die Ebene und die Größe einer MIP-Abbildung gegeben ist, ist es
ohne weiteres möglich, die Größe eines zusammenhängenden Speicherblocks zu bestimmen, welcher benö-
tigt werden wird, um die volle MIP-Abbildung zu speichern.

[0026] Wenn es bestimmt wird, daß kein ausreichender Speicher zugeordnet werden kann 20, wird eine Feh-
lerbedingung 22 resultieren. Alternativ werden die Basis-Abbildungs-(Ebene-0-)Werte gespeichert werden 24.
Anschließend wird eine Flag, die "LevelOK" (LevelOK = Ebene in Ordnung) genannt wird, bei dem bevorzugten
Ausführungsbeispiel der Erfindung bei 26 auf "0" eingestellt, wonach eine Überprüfung durchgeführt wird, um
zu bestimmen, ob die Ebenen-Informationen in Ordnung sind 28. Dies bedeutet, daß eine Bestimmung durch-
geführt wird, ob die Informationen, die mit der MIP-Abbildungsebene, die geladen ist, verknüpft sind, mit den
Informationen in Einklang sind, die vorher über die MIP-Abbildung bekannt waren. Wenn beispielsweise eine
"Ebene-1"-MIP-Abbildung mit einer Größe von 4 × 4 heruntergeladen wurde, und wenn dann eine Ebe-
ne-0-MIP-Abbildung mit einer Größe von 8 × 8 heruntergeladen wird, würden die Daten in Einklang sein, wobei
die Ebene in Ordnung sein würde. Wenn alternativ eine "Ebene-1"-MIP-Abbildung mit einer Größe von 4 × 4
heruntergeladen wird, und wenn dann eine Ebene-0-MIP-Abbildung mit einer Größe von 4 × 4 heruntergeladen
wird, würden die Daten nicht in Einklang sein, und die Ebene würde nicht in Ordnung sein. Wenn es bestimmt
wird, daß die Daten mit vorher heruntergeladenen Daten in Einklang sind, wird die LevelOK-Flag auf "1" ge-
setzt 30.

[0027] Wenn die LevelOK-Flag "0" ist, wird eine Überprüfung durchgeführt 32, um zu bestimmen, ob die
MIP-Abbildung für die Basisabbildung (Ebene 0) war. Wenn dies nicht so ist, oder wenn es so ist und die Le-
velOK-Flag gleich "1" war, wird zu einem Punkt "C" 36 gegangen (siehe Fig. 5). Wenn die MIP-Abbildung für
die Basisabbildung (Ebene 0) ist, und wenn die LevelOK-Flag auf "0" eingestellt ist, d. h. Schritt 34, wird zu
einem Punkt "A" 38 gegangen (siehe Fig. 3), wobei die Basisebeneninformationen 50 und ein Zeiger auf einen
existierenden Speicher 40 gespeichert werden.

[0028] Weiter bezugnehmend auf Fig. 3 wird nun die Größe eines zusammenhängenden Speichers berech-
net 42, und der zusammenhängende Speicher wird zugeordnet 44. Nach einem Test, um zu bestimmen, ob
der zusammenhängende Speicher korrekt zugeordnet wurde 46, ist nichts mehr zu tun, wenn es bestimmt
wird, daß ein Fehler auftrat 48. Ein Zähler 52, eine Inkrementiereinrichtung 54 und eine Testprozedur 56 wer-
den eingestellt, um eine wiederholte Iteration durch eine Schleife zu erlauben. Bei dem bevorzugten Ausfüh-
rungsbeispiel der Erfindung umfasst die Schleife die Schritte des Erhaltens eines Zeigers auf die gegenwärtige
Ebene 62 und des Bestimmens, daß die gegenwärtige Ebene noch nicht auf eine Position in dem Speicher 64
zeigt. Diese Schleife wird wiederholt iteriert, und der Schleifenzähler 54 wird jedesmal inkrementiert, bis der
Schleifenzähler anzeigt, daß die Schleife die maximale Anzahl von möglichen unterstützten Ebenen iteriert
worden ist. Bei dem gegenwärtigen Ausführungsbeispiel der Erfindung werden basierend auf einer gegenwär-
tig verwendeten Hardware und basierend auf Speicherkapazitäten nicht mehr als 16 Ebenen unterstützt. Dem-
gemäß kann die Schleife nicht mehr als 15 mal verarbeitet werden, obwohl es für Fachleute offensichtlich sein
wird, daß diese Anzahl vergrößert werden würde, wenn eine zukünftige Hardware- und Speicher-Verfügbarkeit
5/41

DE 197 23 063 B4 2009.05.07
die Verwendung einer größeren Anzahl von MIP-Abbildungsebenen vorschreiben würden.

[0029] Wenn es in dem Entscheidungskasten 64 bestimmt wird, daß die gegenwärtige Ebene auf einen Spei-
cher zeigt, dann wird die Größe der gegenwärtigen Ebene berechnet 70, und es wird eine Variable, d. h. Le-
velOK, die anzeigt, daß die Ebenendaten korrekt sind, in einem Schritt 72 auf "0" initialisiert, was anzeigt, daß
es nicht bekannt ist, ob die Daten korrekt sind.

[0030] Die Ebenendaten werden nun bezüglich ihrer Genauigkeit 74 getestet, und wenn eine Bestimmung
durchgeführt wird, daß die Ebenendaten genau sind, wird in einem Schritt 88 LevelOK auf "1" eingestellt, was
anzeigt, daß die Ebenendaten genau sind, und es wird ein Versatz in dem zusammenhängenden Speicher der
Basisabbildung für die Ebene berechnet 90. Anschließend werden die Texel für die gegenwärtige Ebene in die
geeigneten Positionen in dem zusammenhängenden Speicher 92 kopiert.

[0031] An diesem Punkt wird in einem Schritt 94 ein Test durchgeführt, um zu bestimmen, ob die Zeigerflag
auf "1" eingestellt war. Wenn sie es nicht war, wird wieder in die Schleife eingetreten, die oben beschrieben
wurde (siehe Fig. 3), und zwar an einem Punkt "E". Wenn die Zeigerflag andererseits auf "1" eingestellt war,
dann wird der Speicher für diese Ebene 96 freigemacht, dann wird die Zeigerflag in einem Schritt 97 auf "0"
eingestellt, und dann wird der Speicherversatz in der gegenwärtigen Ebene gespeichert 98. Anschließend wird
wieder an einem Punkt "E" in die oben beschriebene Schleife eingetreten (siehe Fig. 3).

[0032] Wenn es alternativ in einem Schritt 74 bestimmt wird, daß die Ebenendaten nicht korrekt waren, und
wenn die Zeigerflag auf "1" eingestellt ist, dann wird der Entscheidungskasten 76 anleiten, wieder in die oben
beschriebene Schleife (siehe Fig. 3) an einem Punkt "E" einzutreten.

[0033] Wenn es andernfalls in einem Schritt 74 bestimmt wurde, daß die Ebenendaten nicht korrekt waren,
und wenn die Zeigerflag auf "0" eingestellt ist, wird der Entscheidungskasten 76 bewirken, daß das Verfahren
in einem Schritt 78 die Zeigerflag auf "1" einstellt, einen temporären Speicherblock für diese Ebene zuordnet
80 und bestätigt, daß der Speicher korrekt zugeordnet wurde 82. Wenn bei der Speicherzuordnung ein Fehler
auftrat, kann nichts weiter getan werden 84. Alternativ werden die Daten dieser Ebene anschließend in den
temporären Speicher kopiert, und es wird an dem Punkt "E" wieder in die oben beschriebene Schleife einge-
treten (siehe Fig. 3).

[0034] Wieder bezugnehmend auf Fig. 2 wird, wenn es in dem Schritt 32 bestimmt wurde, daß nicht die Ba-
sisebene vorhanden ist, in dem Verfahren zu dem Punkt "C" 36 weitergegangen (siehe Fig. 5). Alternativ wür-
de zu dem Punkt "C" 36 weitergegangen, wenn in dem Schritt 32 die Basisebene existieren würde, wenn je-
doch die Flag LevelOK in einem Schritt 34 nicht auf "0" gesetzt worden wäre.

[0035] Bezugnehmend nun auf Fig. 5 besteht der nächste Schritt 13 von dem Punkt "C" 36 aus darin, zu be-
stimmen, ob die Ebeneninformationen korrekt sind. Wenn das nicht so ist, wird die Ebenengröße 15 berechnet,
wird die Zeigerflag auf "1" eingestellt 17, und wird ein temporärer Speicherblock für diese Ebene 19 zugeord-
net. Anschließend wird bestätigt, daß der Speicher korrekt zugeordnet wurde 21. Wenn bei der Speicherzu-
ordnung ein Fehler auftrat, kann nichts weiter getan werden 23. Alternativ wird zum Punkt "D" 58 gegangen.

[0036] An dem Punkt "C" 36 in dem Verfahren wird, wenn in dem Schritt 13 bestimmt wurde, daß die Ebenen-
informationen korrekt waren, in dem Schritt 27 überprüft, ob die Zeigerflag auf "1" eingestellt ist. Wenn das der
Fall ist, wird der temporäre Speicher für diese Ebene 28 freigemacht, wird die Zeigerflag in dem Schritt 31 auf
"0" eingestellt, und wird ein Versatz für diese Ebene in dem zusammenhängenden Speicher 33 berechnet. An-
schließend wird zu dem Punkt "D" 58 weitergegangen.

[0037] Wenn die Zeigerflag in dem Schritt 27 "0" war, dann muß nur ein Versatz für diese Ebene in dem zu-
sammenhängenden Speicher 33 der Basisabbildung berechnet werden, bevor in dem Schritt 58 zu dem Punkt
"D" übergegangen wird.

[0038] Wenn bezugnehmend auf Fig. 3 die Schleife ihre fünfzehnte Iteration vollendet hat, dann wird in dem
Schritt 60 der alte zusammenhängende Speicher freigemacht, wobei die Schleife bei 56 verlassen wird, und
wobei das Verfahren in dem Schritt 58 bei "D" fortgesetzt wird.

[0039] Wenn an dem Punkt "D" angekommen wird, d. h. Schritt 58 des Verfahrens, werden Ebeneninforma-
tionen 39 gespeichert, wonach in dem Schritt 41 bestimmt wird, ob die Zeigerflag auf "1" eingestellt ist. Wenn
dies der Fall ist, ist das Verfahren fertig 47. Wenn die Zeigerflag auf "0" eingestellt wurde, dann wird in dem
6/41

DE 197 23 063 B4 2009.05.07
Schritt 43 überprüft, ob der Versatz größer als "0" ist. Wenn der Versatz "0" ist, dann ist das Verfahren fertig
47. Wenn die Zeigerflag "0" war, und wenn der Versatz größer als "0" ist, muß der Versatz für diese Ebene 45
gespeichert werden, wonach das Verfahren fertig ist 47.

[0040] Unter Berücksichtigung des Verfahrens der vorliegenden Erfindung, wie es oben bezugnehmend auf
die Fig. 2 bis Fig. 6 beschrieben wurde, und bezugnehmend auf den Code in der Sprache C im Anhang ist es
nun möglich, spezifische Beispiele darzulegen, wie die Erfindung arbeitet. Bei jedem der folgenden Beispiele
wird eine Herunterladesequenz gegeben sein, wobei jede Herunterladesequenz eine Ebenennummer, eine
Ebenengröße (Breite × Höhe) und einen Zeigerflagwert für die Ebene umfassen wird.

[0041] Im Beispiel 1 werden vier Ebenenabbildungen, die den Ebenen 0, 1, 2 und 3 entsprechen, herunter-
geladen, wobei sie 8 × 8-, 4 × 4-, 2 × 2- bzw. 1 × 1-Abbildungen sind. Somit kann beim Herunterladen der Ers-
te-Ebene-Abbildung für die Ebene 0 (d. h. die Basisabbildung) der gesamte Block des zusammenhängenden
Speichers zugeordnet werden, und es existieren keine Probleme. Dies ist der einfachste Fall, da alle Ebenen
heruntergeladen wurden, und zwar in der richtigen Reihenfolge, und da alle Ebenengrößen vollständig in Ein-
klang miteinander sind.

[0042] Im Beispiel 2 werden drei Ebenenabbildungen, die den Ebenen 2, 1 und 0 entsprechen, heruntergela-
den, wobei dieselben 1 × 1-, 2 × 2- bzw. 4 × 4-Abbildungen sind. Somit kann beim Herunterladen der Ers-
te-Ebene-Abbildung für die Ebene 2 der gesamte Block des zusammenhängenden Speichers zugeordnet wer-
den, wobei beim weiteren in Einklang stehenden Herunterladen der Ebenen 1 und 0 zu sehen ist, daß keinen
Problemen begegnet werden wird. Wieder waren alle Ebenennummer und Ebenengrößen vollständig in Ein-
klang miteinander.

[0043] Bei dem Beispiel 3 wurden vier Ebenenabbildungen, die den Ebenen 0, 1, 2 und 1 entsprechen, her-
untergeladen, und dieselben sind jeweils eine 4 × 4-, eine 16 × 16-, eine 1 × 1- bzw. 2 × 2-Abbildungen. Somit
wurde beim Herunterladen der Erste-Ebene-Abbildung für die Ebene 0 (d. h. die Basisabbildung) der gesamte
Block des zusammenhängenden Speichers zugeordnet, und es wurde angenommen, daß zusätzliche Ebe-
nenabbildungen empfangen werden, wobei die Ebene 1 eine 2 × 2-Abbildung, die Ebene 2 eine 4 × 4-Abbil-
dung, usw. sein würden. Es sei angemerkt, daß nicht bekannt ist, wieviele Abbildungen empfangen werden.
Bei dem Herunterladen einer Ebene-1-16 × 16-Abbildung ist jedoch zu erkennen, daß eine Inkonsistenz be-

Beispiel 1

Ebenennr. Ebenengröße (B, H) Zeigerflag

0 8 × 8 0

1 4 × 4 0

2 2 × 2 0

3 1 × 1 0

Beispiel 2

Ebenennr. Ebenengröße (B, H) Zeigerflag

2 1 × 1 0

1 2 × 2 0

0 4 × 4 0

Beispiel 3

Ebenenur. Ebenengröße (B, H) Zeigerflag

0 4 × 4 0

1 16 × 16 1

2 1 × 1 0

1 2 × 2 0
7/41

DE 197 23 063 B4 2009.05.07
steht. Demgemäß wird die Ebene-1-16 × 16-Abbildung in den temporären Speicher plaziert, wonach die Zei-
gerflag auf 1 eingestellt wird, was anzeigt, daß ein Problem vorhanden ist. Das Problem löst sich selbst, wenn
zusätzliche Herunterladevorgänge, die mit der ursprünglichen Ebene 0 in Einklang sind, heruntergeladen wer-
den (d. h. Ebene 2 mit 1 × 1 und Ebene 1 mit 2 × 2). Demgemäß kann die ursprünglich heruntergeladene "Ebe-
ne 1" mit 16 × 16 weggeworfen werden, und der temporäre Speicher kann freigemacht werden. Es sei ange-
merkt, daß der ursprüngliche zusammenhängende Speicherblock bei diesem Beispiel basierend auf der ersten
heruntergeladenen Ebene verwendet wurde.

[0044] Im Beispiel 4 werden vier Ebenenabbildungen, die den Ebenen 0, 1, 2 und 0 entsprechen, herunter-
geladen, wobei dieselben eine 8 × 8-, eine 2 × 2-, eine 1 × 1- bzw. 4 × 4-Abbildung sind. Bei dem Herunterladen
der Erste-Ebene-Abbildung für die Ebene 0 (d. h. die Basisabbildung) wurde ein gesamter Block des zusam-
menhängenden Speichers zugeordnet. Würde jedoch als nächste Ebene die Ebene 1 heruntergeladen wer-
den, und hätte sie eine Größe, die mit der Ebene-0-Größe nicht in Einklang ist, müßten die Ebene-1-(2 × 2-)Da-
ten in den temporären Speicher plaziert werden, und die Zeigerflag würde auf "1" eingestellt. Wenn die dritte
Ebene, d. h. die Ebene 2, als eine 1 × 1-Abbildung heruntergeladen werden würde, wäre dieselbe ebenfalls
mit der Größe der ursprünglichen Ebene 0 nicht in Einklang, weshalb sie ebenfalls in dem temporären Speicher
plaziert werden würde, und die Zeigerflag auf "1" eingestellt werden würde. Wenn schließlich die vierte Ebene
sich selbst als (eine neue) Ebene 0 identifizieren würde, und wenn dieselbe mit den anderen heruntergelade-
nen Ebenen 1 und 2 konsistent sein würde, könnten die neue Ebene 0 und die vorher heruntergeladenen Ebe-
nen 1 und 2 in dem zusammenhängenden Speicher gemäß der vorliegenden Erfindung plaziert werden.

[0045] Wie es für Fachleute offensichtlich ist, liefert das vorliegende erfindungsgemäße Verfahren eine Ein-
richtung zum Zuordnen eines zusammenhängenden Speicherblocks für alle Ebenen beim Empfang einer Ab-
bildung einer beliebigen Ebene. Wenn Abbildungen zusätzlicher Ebenen heruntergeladen werden, schafft die
vorliegende Erfindung ein Verfahren zum Bestätigen, daß sie mit der früheren Zuordnung in Einklang sind, oder
das vorliegende Verfahren speichert alternativ ihre Informationen vorübergehend, bis ein in Einklang stehender
Satz von Ebenenabbildungen heruntergeladen ist. Bei der Verifikation des Empfangs eines in Einklang stehen-
den Satzes von Ebenenabbildungen werden alle in Einklang stehenden Ebenenabbildungsdaten in einem ein-
zigen zusammenhängenden Speicherblock sein.

Anhang-Quellencode

[0046] /*
Copyright Hewlett-Packard Company, 1996. Alle Rechte sind reserviert. Ein Kopieren oder eine andere Repro-
duktion dieses Programms mit Ausnahme von Archivzwecken ist ohne die vorherige schriftliche Zustimmung
der Hewlett-Packard Company verboten.

ERKLÄRUNG DER BEGRENZTEN RECHTE

[0047] Eine Verwendung, Duplizierung und eine Offenbarung durch die U. S. Regierung ist Begrenzungen un-
terworfen, wie sie in der Unterteilung (b) (3) (ii) der Bestimmung zu Rechten auf technische Daten und Com-
putersoftware bei 52.227-7013 dargelegt ist.

Beispiel 4

Ebenennr. Ebenengröße (B, H) Zeigerflag

0 8 × 8 0

1 2 × 2 1

2 1 × 1 1

0 4 × 4 0
8/41

DE 197 23 063 B4 2009.05.07
HEWLETT-PACKARD COMPANY Fort Collins, Colorado
9/41

DE 197 23 063 B4 2009.05.07
10/41

DE 197 23 063 B4 2009.05.07
11/41

DE 197 23 063 B4 2009.05.07
12/41

DE 197 23 063 B4 2009.05.07
13/41

DE 197 23 063 B4 2009.05.07
14/41

DE 197 23 063 B4 2009.05.07
15/41

DE 197 23 063 B4 2009.05.07
16/41

DE 197 23 063 B4 2009.05.07
17/41

DE 197 23 063 B4 2009.05.07
18/41

DE 197 23 063 B4 2009.05.07
19/41

DE 197 23 063 B4 2009.05.07
20/41

DE 197 23 063 B4 2009.05.07
21/41

DE 197 23 063 B4 2009.05.07
22/41

DE 197 23 063 B4 2009.05.07
23/41

DE 197 23 063 B4 2009.05.07
24/41

DE 197 23 063 B4 2009.05.07
25/41

DE 197 23 063 B4 2009.05.07
26/41

DE 197 23 063 B4 2009.05.07
27/41

DE 197 23 063 B4 2009.05.07
28/41

DE 197 23 063 B4 2009.05.07
29/41

DE 197 23 063 B4 2009.05.07
30/41

DE 197 23 063 B4 2009.05.07
31/41

DE 197 23 063 B4 2009.05.07
32/41

DE 197 23 063 B4 2009.05.07
33/41

DE 197 23 063 B4 2009.05.07
Patentansprüche

1. Verfahren zum Speichern von Texeldaten einer Textur in einem zusammenhängenden Speicherblock ei-
nes Speichers einer Texturabbildungshardware in einem Computergraphiksystem, wobei einer Textur eine
MIP-Abbildung mit einer Mehrzahl von MIP-Abbildungsebenen (100, 102, 104, 108) zugeordnet ist, wobei das
Verfahren folgende Schritte aufweist
(a) Empfangen (12) von Texeldaten für eine erste heruntergeladene MIP-Abbildungsebene (100, 102, 104,
108);
(b) Berechnen (16) eines zusammenhängenden Speicherblocks für eine vollständige MIP-Abbildung, basie-
rend auf der Größe und der Ebenennummer der ersten heruntergeladenen MIP-Abbildungsebene (100, 102,
104, 108);
(c) Zuordnen (18) des zusammenhängenden Speicherbocks für die vollständige MIP-Abbildung;
(d) Bestimmen (33) eines Versatzwertes in dem zusammenhängenden Speicherblock, basierend auf der Ebe-
nennummer der ersten heruntergeladenen MIP-Abbildungsebene (100, 102, 104, 108), wobei der Versatzwert
der vorbestimmten Position zum Speichern von Texeldaten entspricht, die der ersten heruntergeladenen
MIP-Abbildungsebene (100, 102, 104, 108) zugeordnet sind;
(e) Speichern (39) der Texeldaten für die erste heruntergeladene MIP-Abbildungsebene (100, 102, 104, 108)
an der Position in dem zusammenhängenden Speicherblock, auf den durch den Versatzwert gezeigt wird;
(f) wiederholtes Empfangen zusätzlicher Texeldaten für zusätzliche MIP-Abbildungsebenen (100, 102, 104,
108), nachdem die Texeldaten für die erste heruntergeladene MIP-Abbildungsebene (100, 102, 104, 108) emp-
fangen worden sind, und für alle folgenden Texeldaten:
(1) Bestätigen (28), dass die neu empfangenen Texeldaten für die zusätzliche MIP-Abbildungsebene (100,
102, 104, 108) der MIP-Abbildung zugeordnet sind, der die erste heruntergeladene MIP-Abbildungsebene
(100, 102, 104, 108) zugeordnet ist, und wenn dies der Fall ist, Berechnen (33) eines Versatzes in dem zusam-
menhängenden Speicherblock und Plazieren der zusätzlichen Texeldaten an der Position in dem zusammen-
hängenden Speicherblock, auf die durch den Versatz gezeigt wird,
wenn dies nicht der Fall ist, Plazieren (29) der zusätzlichen heruntergeladenen Texeldaten in einem temporä-
34/41

DE 197 23 063 B4 2009.05.07
ren Speicher, und Einstellen (31) einer Zeigerflag auf einen Wert, der anzeigt, dass sich Texeldaten in dem
temporären Speicher befinden;
(2) Wiederholen des Schritts (e) (1), bis alle zum Speichern bereitgestellten Texeldaten heruntergeladen sind;
(3) falls in dem zusammenhängenden Speicherblock Texeldaten für eine MIP-Abbildung gespeichert sind, Ent-
fernen der in dem temporären Speicher befindlichen Texeldaten; und
(4) falls in dem zusammenhängenden Speicherblock keine Texeldaten für eine MIP-Abbildung gespeichert
sind und falls in dem temporären Speicher Texeldaten für eine MIP-Abbildung gespeichert sind, Platzieren der
in dem temporären Speicher befindlichen Texeldaten in dem zusammenhängenden Speicher.

2. Verfahren nach Anspruch 1, bei dem im Schritt (a) ein erster Datensatz empfangen wird, der der ersten
heruntergeladenen MIP-Abbildungsebene (100, 102, 104, 108) entspricht, und bei dem der Schritt (f)(1) fol-
gende Schritte umfaßt:
Analysieren des ersten Datensatzes, um eine Größe und eine Ebenennummer des ersten Datensatzes zu be-
stimmen;
Empfangen eines zweiten Datensatzes, der der zusätzlichen MIP-Abbildungsebene (100, 102, 104, 108) ent-
spricht;
Analysieren des zweiten Datensatzes, um eine Größe und eine Ebenennummer des zweiten Datensatzes zu
bestimmen;
Vergleichen der Größe und der Ebenennummer des zweiten Datensatzes mit der Größe und der Ebenennum-
mer des ersten Datensatzes; und
auf der Grundlage der Größe und der Ebenennummer des zweiten Datensatzes und auf der Grundlage des
Vergleichsschrittes, Bestimmen, ob die neu empfangenen Texeldaten für die zusätzliche MIP-Abbildungsebe-
ne (100, 102, 104, 108) der MIP-Abbildung zugeordnet sind, der die erste heruntergeladene MIP-Abbildungs-
ebene (100, 102, 104, 108) zugeordnet ist.

3. Verfahren nach Anspruch 2, das ferner den Schritt des Bestimmens einer Anzahl von MIP-Abbildungs-
ebenen (100, 102, 104, 108) basierend auf der Größe und der Ebenennummer des ersten Datensatzes um-
faßt.

Es folgen 6 Blatt Zeichnungen
35/41

DE 197 23 063 B4 2009.05.07
Anhängende Zeichnungen
36/41

DE 197 23 063 B4 2009.05.07
37/41

DE 197 23 063 B4 2009.05.07
38/41

DE 197 23 063 B4 2009.05.07
39/41

DE 197 23 063 B4 2009.05.07
40/41

DE 197 23 063 B4 2009.05.07
41/41

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

