US 20030101022A1

a2 Patent Application Publication o) Pub. No.: US 2003/0101022 A1

a9 United States

Shah et al.

43) Pub. Date: May 29, 2003

(549) NETWORK BASED SYSTEM FOR
ANALYZING A CLIENT SYSTEM AND
GENERATING A CONFIGURATION
DIAGRAM WHICH DESCRIBES THE
CLIENT SYSTEM

(75) Inventors: Mohammed Kamran Shah, Austin,

TX (US); David W. Fuller III, Austin,
TX (US); Jeftrey N. Correll, Cedar
Park, TX (US); Brian H. Sierer,
Austin, TX (US)

Correspondence Address:

Jeftrey C. Hood

Meyertons, Hood, Kivlin, Kowert & Goetzel
P.O. Box 398

Austin, TX 78767 (US)

(73)
@D
(22

Assignee: National Instruments Corporation

Appl. No.: 10/338,512

Filed: Jan. 8, 2003

Related U.S. Application Data
(63) Continuation-in-part of application No. 10/120,257,
filed on Apr. 10, 2002, which is a continuation-in-part
of application No. 10/101,512, filed on Mar. 19, 2002.

(60) Provisional application No. 60/312,359, filed on Aug.
15, 2001.

Publication Classification

(51) Int. CL7 oo GOGF 15/00
(52) US.CL oo 702/186; 702/182
(7) ABSTRACT

System and method for characterizing a system. Electronic
communication is established between a server computer
and a client system over a network. The client system
includes a plurality of devices coupled together, where at
least one of the devices includes one or more programs, e.g.,
graphical, text-based, and/or hardware configuration pro-
grams. The server programmatically determines presence of
the devices and programs of the client system, and program-
matically generates a diagram which visually represents the
client system. The diagram includes device icons represent-
ing the devices, link icons indicating coupling between the
devices, and program icons representing the programs. The
program icons are displayed proximate to the device icons
representing the devices which store and/or execute the
respective programs. The server transmits the diagram to the
client system. The diagram is displayed on a display of the
client system. The diagram is used to document, modify,
and/or debug the client system configuration.

Create a configuration diagram

which includes device icons that

represent devices in the system
202

!

Create one or more programs
which perform a desired
function
204

'

Display an iconic relationship
view of ﬂ;% é)rograms

!

Graphically configure program
deployment and/or invocation
e.g., 1) drag and drop program
icons onto device icons or other
program icons on the
configuration diagram to deploy
the programs; and/for 2) modify
links between program icons to
adjust invocation relationship
between programs
208

'

Display the updated
configuration diagram as the
user graphically configures
program deployment and/or
invocation
210

'

Deploy programs and/or modify

programs based on graphical

association performed by user
212

Patent Application Publication May 29, 2003 Sheet 1 of 52 US 2003/0101022 A1

Fig. 1

AN
Computer System
90

=
&
2
=
S——
=
<
=
S
=
<
—1

T
ﬁu E
i | 2
/ &
I &
5
o
/s 1 £
_ i 3
_—
I

US 2003/0101022 A1

Patent Application Publication May 29, 2003 Sheet 2 of 52

9el

142
spieog uonisinbay
ejeg-ul-bnid

001 l\\

8IEM}j0g

yJoMaN

Buiuonipuo)

INAIXA

¥0l
2

IoMaN

05}
jsa Japun iun

A4t
sjusNASY|
peseg-/aindwion

US 2003/0101022 A1

Patent Application Publication May 29, 2003 Sheet 3 of 52

gz 014

jouo)
uololy

8El
&

o@T\\

volL
9IBM)JOS n

)

HIOMJSN

alnjela

MOl

28INsSald

dwa|

$580044

NS NS

™

0G4

Ni{lele!
snnuns

spieog
uolisinboy
- Ejeg-uj-bnid

Buluonipuog

174}

leubis

juiodpield
a8l

May 29, 2003 Sheet 4 of 52 US 2003/0101022 A1

Patent Application Publication

& Biy 221~
o @) ovd | Juodpield ® [Xd
L& ==ooo
bed Skt A 1)
mN_‘ mW—‘ \\\\\. w_‘_\ l\

3L
_Em& E__Eg
mn_.w:

€zl
siosusg Bojeuy

Aeld g bnid

L2l
O/I pajnquisig

czr SQudD)
siosuag Bojeuy Aejd % Bnig %’ =sSsss

4]
WwaisAg
J8indwo)
urep

]

= —
sol==] =

ova W
- \ gLi

Ov(Q leuolipes |

19U}

06 \ﬁ . wialsAg Judweinsesyy panqLsiqg

US 2003/0101022 A1

Patent Application Publication May 29, 2003 Sheet 5 of 52

O — (

K sng JIOMjeN /

/ ~7

Y-yl 142 —
Emﬁwmwm:_ P1ED L8l z8l 081
oiqeonB uonisinboy aoepie)u| 08l
[gesnbyuoossy] e1eq MIOMISN 9ALQ pieH 03PIA
A
\K 0/1 sng uoisuedxy A
A
801
49]jonuo) sng
W /
291 sng1soH
))
¥9L __
18jjosuon 091
Alowsy Nndo
991
Aowspy urepy

May 29, 2003 Sheet 6 of 52 US 2003/0101022 A1

Patent Application Publication

.D.\n\ @ siaued usamjsq doip N Beip
SIUEd UoyeInblju0y saoiAIeg PUE Snusw ojj10ads 1xajuo0)
ay/
S|suedysaipadoud e J sisued || je Ajsnoaue)ugjsul
__ Pajo8Yial aq 1M (jaued/apou)
(423
(way eleg [elsusn)) sbe | (161 e g2 vogeayypoyy
A7
sppued Byuog oy i 57
7 S1o8lold ‘ddy ‘s ‘ssuiyoeyy S8pou ussmiag sdiysuopefey
9J3 ‘Ajundsg ‘d)
8¢/ —
YomjaN] mﬂwz
9¢7
Sjeued uojjeinbyuoo washg [
9¢/ : 4% 907
sjeued mo_“msm__v_coo sweJbe)q uonenByuoy sjeued ag/d4
7 | 50L
10}]Ip3 swajsAg o

10p8 A

0L
4! AT peinqusig

Patent Application Publication May 29, 2003 Sheet 7 of 52 US 2003/0101022 A1

Create a configuration diagram

which includes device icons that

represent devices in the system
- 202

'

Create one or more programs
which perform a desired
function
204

:

Display an iconic relationship
view of the programs
206

'

Graphically configure program
deployment and/or invocation
e.g., 1) drag and drop program
icons onto device icons or other
program icons on the
configuration diagram to deploy
the programs; and/or 2) modify
links between program icons to
adjust invocation relationship

between programs

208

;

Display the updated
configuration diagram as the
user graphically configures
program deployment and/or
invocation
210

'

Deploy programs and/or modify
programs based on graphical
association performed by user

212 ~

'Fig. 6

Patent Application Publication May 29, 2003 Sheet 8 of 52 US 2003/0101022 A1

Create a configuration diagram
(step 202)

Display a configuration dialog of devices and/
or programs
222

v

Computer system automatically detects one
or more devices and/or programs coupled to
computer system
224

Y

User manually specifies one or more
undetected devices or non-present devices
226

v

User selects devices and/or programs for the
system
228

v

Display a configuration diagram including the
selected device icons and/or program icons
230

v

User manually or automatically arranges
device icons, and/or program icons on the
configuration diagram
232

Fig. 7

Select a device icon
corresponding to a device
236

v
Y v

Display iconic relationship view Display elements (e.g., /O
of program icons comprised on channels, data points)
the device associated with device
237 238

Fig. 8

Patent Application Publication May 29, 2003 Sheet 9 of 52 US 2003/0101022 A1

Deploy a program onto a
device (step 208)

User assaciates a program icon
with a device icon
242

v

User specifies whether a
remote invocation of this
program is desired
244

v

Convert program type to
appropriate type for device,
if necessary
246

Y

Load program into
destination device
248

v

Display new program icon(s)
proximate to the device icon to
visually indicate that the
program is deployed on the
destination device
250

Remote
invocation?
252

Yes

Modify the application to invoke
the pragram on the
destination device

254

Y

Modify-original program icon in
application to visually indicate
that the program is being
invoked on the
destination device
256

Patent Application Publication May 29,2003 Sheet 10 of 52 US 2003/0101022 Al

Convert program type to
type appropriate for device,
if necessary
(step 246)

i

Examine type of program
26

l

Examine type of device
262

Device
compatible with
program?
264

Yes

Convert program into Load program into device
appropriate type for device 248
266 —

:

Load converted program
into device
248

Fig. 10

Patent Application Publication May 29,2003 Sheet 11 of 52

Drag and drop a program icon from a
source device icon to a destination
device icon
242a

v

User specifies type of operation
244a

v

Convert program type to appropriate
type for device, if necessary
248

Y

Load program into
destination device
248

v

Display new program icon(s) proximate
to the destination device icon to
visually indicate that the program is
deployed on the destination device
250

US 2003/0101022 A1

Copy program from
source device to
destination device

Done

Remote mvocatron from
source device to destination
devrce

Modify a program on the
source device to invoke the
program on the
destination device

' 254

y

Modify an original program
icon on the source device to
visually indicate that the
program is being invoked on
the destination device
256

Fig. 11

Transfer remote invocation
from source device to
destination device, where main
computer system now invokes
the program on the
destination device

v

Determine if computer system
is able to invoke programs on
the destination device
253

v

Madify the application to
invoke the program on the
destination device
254

v

Modify original program icon in
application to visually indicate
that the program is being
invoked on the
destination device
256A

Patent Application Publication May 29,2003 Sheet 12 of 52 US 2003/0101022 Al

Drag program icon from a
remote device icon to main
computer system icon to
configure main computer
system to invoke the program

Y

Drag and drop program icon
from a remote device icon to the
main computer system icon
282

y

User specifies that a remote
invocation of this program is
desired
284

v

Modify the application to invoke
the program on the
remote device
292

y

Create new program icon in the
application to visually indicate
that the application is calling the
program on the remote device
294

Fig. 12

May 29, 2003 Sheet 13 of 52 US 2003/0101022 Al

Patent Application Publication

veL b4

zle
uoninoaxa Jiey

0} uoydo ,Jjey, e 10393

29¢
a0IAap

ay) uo pakojdap welboid sy}
jo joued juol} 8y) maia o} uondo
Jeued ol usdo, ue 109j9g

¥9¢
@o1A8p 8y} uo welboid

ay] Jo uonnoaxa ulbaqg
0} uondo ,uny, e 1998199

! ! ,
29¢
. U0l 99188
g€l Q\& e Japun uooi weiboud e j0918Sg
>;%_wmmm_: sweiboid paingusip auy

oy} uj sweuboud Joyjo saxoaul
pue sajnosexs weibolid [pas| doy

a

Z8¢
uondo uoNoaXa 109|38

pue weibeip uoneinbyuod woly
uool weibolid [aas| doy jo8)es

!

uoneo|dde
ue 8)ndex3

JO maIA diysuone|as 21uodl Ue Yim
weibelp uoneinbijuoo ayy Ae|dsig

Patent Application Publication May 29,2003 Sheet 14 of 52 US 2003/0101022 Al

¥
LY Computing Nodes. vi B”
Network I Vintual Machln87| PIug-TI COMPUling Elements

M achine Name or IP
| |

Add

Discovered BT devices on local subnet m ‘_’I

4] [»

Discaver | Add ‘

Fig. 14

Hierarchy Window - |EI|[5]|

File Edit ¥Yiew Tools Browse Window Help

2 %

412 —|
.

404a —_|m\<= ~T o o
B E] be B
404b J / _ 404d
404c A
Beta 4] ['» 4

Patent Application Publication May 29,2003 Sheet 15 of 52 US 2003/0101022 Al

Hierarchy Window LT_@IZIJ
File Edit View Tools Browse Window Help

7 e B

412 —TL]) !

1 402

=
404a_f—/{él'§_ 'ﬁ 0 e

[E Hierarchy Window J
File Edit View Tools Browse Window Help
al <l B
=]

Bz (g lhe] B
402a —] R -l L

:
— 8

[=y
3

Betal 4]

’//—AE
4

Patent Application Publication May 29,2003 Sheet 16 of 52 US 2003/0101022 Al

Hierarchy Window | |

File Edit View Jools Browse Window Help

A Ws
SHEH / 3

—— 402
4012 —7 b

404d —

~— 404c

404d1 —

h

Betal «| 4

Fig. 18

Patent Application Publication May 29,2003 Sheet 17 of 52 US 2003/0101022 Al
Hieraichy Winﬂuw l
ﬁe Edit View Tools Browse Window Help

Lj /L%\
at (=4
402a 11— | B2 19 ke B
404a
405a
i at T AL
B2l 15| 59 [2l 40402
Betam 4
Fig. 19A
Hierarchy Window

File Edit View JYools Browse Window Help

[ca]

il <

4023 —

4

Patent Application Publication May 29,2003 Sheet 18 of 52 US 2003/0101022 Al

Hierarchy Window - I
File Edit View Tools Browse Window Help
M @9 T
SHARR E
"
=
405b
at =
z Te T
402a——— | R85 (P 69 kEa
I
404a
' at W AL
= . To]
B2l 16| |59 B =t~ 40402
'v
Beta\ﬂ L

Fig. 19C

Patent Application Publication May 29,2003 Sheet 19 of 52

US 2003/0101022 A1

Hierarchy Window

101

Eile Edt View Tools Browse Window Help

2

kil <i

SHRHR
. iy
_l
Highlight Connections

& R X

Bl | o |

o Hide All SubVls
Show VI Hierarchy
Show All SubYls
Show &ll Callers

i

)M

e

H FndAltnstances

Edit lcot...
VI Properties...

Open Front Panel
7 Print Documentation...

Run

Remote Call » |

B

Betal]

Fig. 20A

Patent Application Publication May 29,2003 Sheet 20 of 52 US 2003/0101022 Al
@ Hierarchy Window I
File Edit View Joolse Browse Window Help
2 %
SHAK . ;
ai |
Ad ™
Eo -‘;_t _rE = ﬁ' 5 g
To@ Highlight Connections B
Hide All SubVis
Show V| Hierarchy
Show All SubVls
Show All Callers
Find All Instances
Remote Call 4 NEIL
Shah
w
Betd 4] v 4

Fig. 20B

US 2003/0101022 A1

Patent Application Publication May 29,2003 Sheet 21 of 52

viz b4
Gt
N\ |
SSRIM
ova
oulo
5 auwi]-es =
= @ __V.A_n_ d =S 18)S80] §
[eLas g1d9 Julodpiat N
N
181anH

auIoju
poolanig _ /#4/:\\

AV = e —
O OO ﬂ e

o AN

|
O

SIBMBIA oM

/

191Se0]
Pe4OVd

19AI8g Buiuiy e12Q
Juswainsesiy

veel
gsn
O/l leuss
g1do
10d

Patent Application Publication May 29,2003 Sheet 22 of 52 US 2003/0101022 Al

i K

L) % T

— E
<1 4 g
45 j ST

o T B

g g

—I5lx]

Fig. 21B

8 i

=}

e
T

adjust
freq

Ml
]
]

Window H
e gr
:A e
A A

@G
.
AN
k-8
[Power |
|

R
8

187 2L}

B
&
'-W X

8

mofe
info

Fie Edii View Tools Browse
Bl <
@ feanrany)
SLAPE
B
Ennn]
bsor

£ Hierarchp Window

2]
Beta ¢

US 2003/0101022 A1

Patent Application Publication May 29,2003 Sheet 23 of 52

gLz ‘b4

anea
alnssald

10SU8S Josuag
ainssald / 8Inssaid elo pessadold QEO._.
oiz b4 PN _ | en
= = Juswinisu|
NN R | NN
] N _] N IXA
I “
yeel — _ , ,
| = asn = Juswinsy|
\
10d] EEmEm RN g8ido
¢ W

Patent Application Publication May 29,2003 Sheet 24 of 52 US 2003/0101022 Al

C Create a graphical program)

Create a graphical user interface or front panel
602

Y

Create a block diagram
604

Y

Store or deploy the graphical program
to a device
606

Y

Display a program icon for the
graphical program
608

Fig. 22

(Conﬁgure node for remote execution)

Display a block diagram of a graphical program
502

v

Select a node in the graphical program
504

v

Select device for remote execution; graphically
associate node with a device icon
506

v

Deploy node functionality on the
remote device
508

Y

Display new icon in the block diagram which
visually indicates that this node is
being remotely executed
510

v

Modify graphical program to invoke the node
on the remote device

512 Fig. 23

Patent Application Publication May 29,2003 Sheet 25 of 52 US 2003/0101022 Al
[Tank Simualation.vi Diagram = =[0l[x]

Fie Edt Operste Tools Browse Window Help

5‘@”@ Illll,nlla"uj“ 13pt Application Font

I~§|2=-]

] |2 |

g

]

o)

2 !
s}

b i

Continue monitesing the tank unul
Power button is pushed

=

DR1L

Iy

Visible ltems »
Help

Description and Tip...

Set Breakpoint

Craate 4
Replace »

Find All Instances
Relink To Subvi

QOpen Front Panel

Subv! Node Selup...
Enable Database Access
Shaw VI Hierarchy

Infine Subvl

- Remote Call- ~- - ——p—

]

]

Bet _i.l

_1biz

Fig. 24A

Patent Application Publication May 29,2003 Sheet 26 of 52 US 2003/0101022 Al

T ank Simulation.vi Diagram = E— I UI[ZI
Flle Edt Operste Tools Browse Window Help
[&]=] [@] 1] [@] [wal? [o#] [13nt Appication Fort__ [~ § [{75 ~{[€0~{ L'E-l

Continue monitenng the tank until
Power bunton is pushed

5 B2 3> — e/

100 ﬁ
[,

L—rllEIapsed Tme [sec]

At
g i

Beta[4] | L2 3

Fig. 24B

Patent Application Publication May 29,2003 Sheet 27 of 52 US 2003/0101022 Al

Graphically add a program
icon from a remote device
to a program

Drag first program icon onto
second device icon or second
program icon
522

Second

program icon represents

a graphical program?
524

Automatically display block

Automatically display textual diagram of the graphical

source code of second program

program
bl 532
User graphically navigates first ' User graphically navigates first
program icon to desired line in program icon to desired location
the textual source code in the block diagram
544 534

v v

First program icon is inserted
into the block diagram at the
desired location

Insert call to first program into
the second program

546 536
First program is optionally First program is optionally
deployed to the second device deployed to the second device
548 538

Fig. 25

Patent Application Publication May 29,2003 Sheet 28 of 52 US 2003/0101022 Al

C Create a block diagram)

Display the block diagram
642

'

Drag and drop one or more
device icons into the
block diagram
644

l

User graphically positions
device icon to desired location
in the block diagram
646

'

Create nodes in the block
diagram to publish or subscribe
to data to/from the
respective device
648

Fig. 26

US 2003/0101022 A1

Patent Application Publication May 29,2003 Sheet 29 of 52

=

—— -

N\

AN

Ay

la|jonuoy usnQ

\@

welbeiq uoneinbiuo) Alojoe 4 pealg

V.2 B4

beiq

welsbelq uoneinbiyuo)
Ai010B4 814000

Patent Application Publication May 29,2003 Sheet 30 of 52 US 2003/0101022 Al

Cookie Factory Configuration Diagram

N
= =L
i — i —)
Mfg Packing

Patent Application Publication May 29,2003 Sheet 31 of 52 US 2003/0101022 Al

Cookie Factory Configuration Diagram

<
g w—) i —)
% @& | mig Packing

o

<

NN

f——1t\
Baking

Fig. 27C

Patent Application Publication May 29,2003 Sheet 32 of 52 US 2003/0101022 Al

Cookie Factory Configuration Diagram

AN NN
i —\ i —
Mfg Packing
Il AN
NN
f—x)

) Baking

@ er

Fig. 27D

Patent Application Publication May 29,2003 Sheet 33 of 52 US 2003/0101022 Al

Untitled 1 Diagram *

[=107]

File Edt Operate Tools Browse Window Help

Wl

2@

¥

ba

=4

S—
7 T

Oven Controller

S
ven
l:l’l 13pt Application Font el

US 2003/0101022 A1

Patent Application Publication May 29,2003 Sheet 34 of 52

vez biH
sweled ,
098 ~ 818 9v8 ~ dois P8 sulbu3 Jos veys ;- v8
. SMijE]= ﬂ._l.
:hﬁh._ w:_m_._w_. 18] P
Jrif 5 D weed| |

lajjonuos sulbugy

1SOH

welbeiqg uoneinblyuo)

US 2003/0101022 A1

Patent Application Publication May 29,2003 Sheet 35 of 52

g9z b4
sweled
068 ;/ 8y8 ./% 998 ./ doyig Vv8 3\ osuibug 189 uels \. [44°]
SAIEYS +
Al lauiBn3 Hﬂu m}r\ Au
! rt

L] _....E
] P

[ReE

o

UIE e

Jajjosuo) suibug

1SOH

weibelq uoneinbyuo)

[~

o _.] =) <
ﬁ*\ﬂm_mnd p3 mﬁl
XS] -~ 2 penun]

Patent Application Publication May 29,2003 Sheet 36 of 52 US 2003/0101022 Al

N
N
>
= .
—
: 2
@
alwn
A
x
[
gl @
= o
IO ©
2 =F
‘ 0
£
o
=
[[72]
o)
2| £
(4] g
5 @ o
=) >
4= > o
c oy =
o] 0o Q
O O 2t

0.0.0.0

Host

Configuration Diagram

US 2003/0101022 A1

Patent Application Publication May 29,2003 Sheet 37 of 52

0¢ b4

ganiadold
“aqold

..... MoU PPY <

cOvV
10)4

A\
pu
LIV

N —
dwo| ««—

2INssald e—

Ol <-—

OV <—

[
r

Y

;&_ﬂ_ﬂ

Zsvvolioel di
0'X 1 M3IAgeT
lojensiuiwupy :sabajinug
|18jjosjuo)

1Al

L18]|onuoD

|joued SWoISAS

Patent Application Publication May 29,2003 Sheet 38 of 52 US 2003/0101022 Al

X
(Y)
ko)

_
5 LL
e
bt
o=y
@]
®)
I
I
I
I
I
|
o I
2 |
(]
o3 I
(@)]
@ I
(]
I
|
|

£ |

©

[@)]

©

(]

[

o —

"(G [7))

5 £

D

U—

C

(@]

@

US 2003/0101022 A1

Patent Application Publication May 29,2003 Sheet 39 of 52

i\

V)

N — |

dwo | -e—
8INSSal] <e—]

cOV Ul oY
OV j48]jouoy

weiberq uoneinbiuon

doig g Beiq

z¢ ‘b4

Buipuig |sued ejep |pued juoi4

»

-

gl=l=] F,.m__n.:cuu

Du_‘r_ U0 4 uonealddy we | _ —- __HQ_—.IAMM A__u_

digq mopuipf, sswmolg soo] 9imed wpd 9y

= L papnun il

IWH Buipjing

US 2003/0101022 A1

Patent Application Publication May 29,2003 Sheet 40 of 52

vee b1
W\

Co\
Ndd <—
dws] «—

2Insseld <«—

0lg -—

AG)
Thove-
OV }49(]0SUCD

weibeiq uonelnbyuon

sailadold/spoystu

— "

be |, weibeiq ooig

-

id

AKIIEN o
[-
ME._
pual] o] m.
[F1E] [E3L0NSIH DO HNIM_I
=] e yze
WY

A'AN @_%L NOER
|ﬁ_mg.m_. sipe] ==iedd w3 =4
_EE . weibeiq 7 papnupn ﬂ

ddy pajnquisiq pling

US 2003/0101022 A1

Patent Application Publication May 29,2003 Sheet 41 of 52

NdH +—
dwo| e—

2INSSold w—

Old <+

welbeig uoneinbiyuo)

Ll8j|onuon

4 4] _ »
Wdd o_\Ho
¢c8
]
oplforeaadsy e | €5 [N | &] [11 @) [@]a]
usAQ dloH wopuiy esnvalg spo] awiadd Ip3 919
XIEr] = weiber g | papnun B

Patent Application Publication May 29,2003 Sheet 42 of 52 US 2003/0101022 Al

'
oL
=J
cL
=
i <+
o e
™ D
. c% '
o -
To_ =
£ -1
(@]
(@]
£
S
[@)]
@
(M)
[o=
.9 -—
s &
35 I
D
b
(@]
(@)

US 2003/0101022 A1

Patent Application Publication May 29,2003 Sheet 43 of 52

g¢ .9& S92IAISS 8pIH / 818(8Q / PPY / 81881)

_ aaAE g I0dRT o
. 8v8

\
Fpg] o
ZERK:)

0S8 J

=1+
ede | |

$80I1AJISS ||B Yum 8]elado 0} uool aoiasp uo ,dn-dod, 10 109189 Jajjonuon suibugy

S90IAISG

US 2003/0101022 A1

Patent Application Publication May 29,2003 Sheet 44 of 52

9¢ b
I _ 73. aa0ay

G oy sBUPs fdo L
— 13RIy MINo2g :

4 LolRinbyuog / .

2 =

sbe | ,
B -

ddyg dn g

@ﬂj

Joneindy :ou Adaoy

w3 3id

A_U_u_u ‘juo ddos m

Li8j|onuo)

1SOH

welberq uonelnbyuod

Buiuojpjuonesdoy

Patent Application Publication May 29,2003 Sheet 45 of 52 US 2003/0101022 Al

C Characterize a Client System >

establish communication between server
computer and client system over a network
3702

l e
server computer programmatically determines
presence of devices and programs of client

system
3704

:

server computer programmatically generates
configuration diagram representing client
system
3706

'

server computer transmits configuration
diagram to client system
3708

l

display configuration diagram on display device
of client system
3710

Fig. 37

Patent Application Publication May 29,2003 Sheet 46 of 52 US 2003/0101022 Al

Deploy a Program on a System

:

display configuration diagram representing
devices in the system, including a first device
icon representing a first device
3802

l

deploy first program onto the first device
3804

l

programmatically animate the configuration
diagram to indicate deployment of the first
program onto the first device
3806

Fig. 38

Patent Application Publication May 29,2003 Sheet 47 of 52 US 2003/0101022 Al

Receive Purchase Information for a
Client System

'

display configuration diagram representing the
client system
3902

l

display product icons representing products
available for use in the client system
3904

l

receive user input associating a first product
icon with the configuration diagram indicating a
desire to purchase a first product
3906

l

display an updated configuration diagram
including the first product icon
3908

optionally display pricing information for the first
product
3910

Fig. 39

Patent Application Publication May 29,2003 Sheet 48 of 52 US 2003/0101022 Al

Specifying Products for a
Measurement System

'

receive configuration diagram from a user
representing a desired measurement system
4002

i

programmatically analyze configuration
diagram to determine pricing information for
one or more products
4004

l

send pricing information for the one or more
products fo the user
4006

Y

receive user input specifying purchase of the
one or more products
4008

send one or more products to user
4010

Fig. 40

Patent Application Publication May 29,2003 Sheet 49 of 52 US 2003/0101022 Al

Configuring a Client System

'

receive requirements from a user for a task to
be performed by a client system
4102

'

programmatically analyze the requirements to
determine one or more products for performing
the task
4104

l

provide a configuration diagram representing
the client system, including the one or more
products
4106

l

receive user input specifying purchase of the
at least one of the one or more products
4108

l

send the at least one of the one or more
products to user
4110

Fig. 41

Patent Application Publication May 29,2003 Sheet 50 of 52 US 2003/0101022 Al

Configuring a Client System

:

receive input from client system over a network
requesting access to a plurality of configuration
diagrams
4202

l

display at least a subset of the configuration
~ diagrams on display of client system
4204

l

receive input from client system selecting one
of the displayed configuration diagrams
indicating a solution for a task to be performed
by the client system
4206

l

provide the solution to the client system over
the network for use in configuring the client
system to perform the task
4208

Fig. 42

Patent Application Publication May 29,2003 Sheet 51 of 52 US 2003/0101022 Al

Configuring a Client System

'

receive requirements from a user over a
network for a task to be performed by a client
system
4102

'

programmatically analyze the received
requirements
4304

l

determine a configuration diagram from a
configuration diagram database specifying one
or more products for performing the task,
based on the analysis
4306

'

provide the configuration diagram te the client
system over the network for configuring the
client system to perform the task
4306

Fig. 43

Patent Application Publication May 29,2003 Sheet 52 of 52 US 2003/0101022 Al

Populating a Configuration Diagram
Database

:

receive requirements over a network for a task
to be performed by a client system
4102

'

determine a system configuration specifying
one or more products for performing the task
based on the requirements
4404

l

generate a configuration diagram representing
the determined system configuration
4406

l

store the configuration diagramin a
configuration diagram database
4408

Fig. 44

US 2003/0101022 Al

NETWORK BASED SYSTEM FOR ANALYZING A
CLIENT SYSTEM AND GENERATING A
CONFIGURATION DIAGRAM WHICH DESCRIBES
THE CLIENT SYSTEM

CONTINUATION DATA

[0001] This application is a Continuation-In-Part of U.S.
patent application Ser. No. 10/120,257 titled “Network-
based System for Configuring a Measurement System using
Configuration Information Generated based on a User Speci-
fication,” filed Apr. 10, 2002, whose inventors are David W.
Fuller III, Michael L. Santori, Brian Sierer, Ganesh Ranga-
nathan, John Pasquarette, Joseph E. Peck, Matthew
Novacek, Hugo A. Andrade, and Newton Peterson, which
was a Continuation-In-Part of U.S. application Ser. No.
10/101,512 titled “Network-based System for Configuring a
Measurement System using Configuration Information Gen-
erated based on a User Specification” filed Mar. 19, 2002,
whose inventors are Brian Sierer, Ganesh Ranganathan,
John Pasquarette, David W. Fuller III, Joseph E. Peck,
Matthew Novacek, and Hugo A. Andrade, which claimed
benefit of priority of U.S. provisional application Serial No.
60/312,359 titled “System and Method for Online Configu-
ration of a Measurement System” filed Aug. 15, 2001, whose
inventors are Brian Sierer, Ganesh Ranganathan, Hugo
Andrade and Joseph Peck.

FIELD OF THE INVENTION

[0002] The present invention relates to the fields of system
design and distributed software programming and deploy-
ment, and more particularly to a system and method for
analyzing a client system and generating a configuration
diagram that represents the client system. The present inven-
tion further relates to utilizing the configuration diagram to
analyze, modify, and/or debug the client system configura-
tion.

DESCRIPTION OF THE RELATED ART

[0003] With the advent of networked computer systems,
there has been a trend in computer software to provide more
distributed software applications. For example, in some
fields developers are attempting to distribute software appli-
cations among two or more nodes or computer systems in a
network, wherein the application may comprise a plurality
of different software programs executing in a plurality of
different computer systems.

[0004] Measurement and automation systems are moving
toward computer based systems wherein a computer system
performs much of the processing, analysis, or control for
measurement and automation applications. Measurement
and automation systems are also moving toward network-
based or distributed systems, wherein a plurality of network-
based devices operate together to perform a desired mea-
surement and/or automation function. Various new
intelligent devices are also starting to appear in measure-
ment and automation systems, such as smart sensors, smart
cameras, smart motion control devices, smart distributed
data acquisition devices, computer based instrument cards,
PXI and VXI systems which may include intelligent con-
trollers or reconfigurable devices, programmable logic con-
trollers (PLCs), etc.

[0005] Computer-based measurement and automation sys-
tems which employ intelligent devices have become increas-

May 29, 2003

ingly desirable in view of the increasing complexity of
measurement and automation tasks, and the variety of intel-
ligent or programmable instruments and devices available
for use. However, due to the wide variety of possible testing
and control situations and environments, and also the wide
array of instruments or devices available, it is often neces-
sary for a user to develop custom programs to control a
desired system.

[0006] Increasingly, computers are required to be used and
programmed by those who are not highly trained in com-
puter programming techniques. This is particularly true in
the measurement and automation fields, where engineers are
often required to develop a test, measurement or automation
application to accomplish a certain objective. As a result, in
many cases it is extremely difficult for a user to be able to
create various computer programs and distribute these pro-
grams among devices in a distributed system. Additionally,
in many cases a user may be uncertain as to the configuration
of his or her system, including devices, inter-device cou-
plings, and programs stored and/or installed on one or more
of the devices. This uncertainty may complicate efforts to
configure the system for performing a desired task. There-
fore, it would be desirable to be able to provide improved
systems and methods for characterizing systems over a
network.

SUMMARY OF THE INVENTION

[0007] Various embodiments are presented of a system
and method for characterizing systems through the creation
and use of configuration diagrams. The methods described
herein may be used for various types of operations in
configuring, managing and specifying systems and devices,
including creating programs, managing programs in the
system, deploying programs to various distributed devices,
configuring remote execution or inter-operation of distrib-
uted programs, and executing distributed applications.
Embodiments of the present invention may also be used for
device configuration, data distribution among or between
devices, system and I/O configuration, data storage/manage-
ment, and debugging and performance analysis. Embodi-
ments of the invention may utilize graphical iconic-based
techniques for performing the above operations.

[0008] Various embodiments of the invention may be
implemented or performed by a stand alone system. In other
embodiments, the system may be a client system, where, as
used herein, the term “client system” refers to a system
which communicates with another system, e.g., a server
computer system, to receive or use services provided by the
other system, as is well known in the art. The embodiments
described below relate to client/server embodiments of the
invention, where the client system and the server system
each perform respective portions of the method, although
this is not intended to limit the invention to any particular
form or functionality.

[0009] In one embodiment of the present invention, elec-
tronic communication may be established between a server
computer and a client system over a network, e.g., a LAN,
WAN, the Internet, or any other transmission medium. For
example, in one embodiment, a device in the client system,
such as a client computer, may initiate a network session
with the server computer, ¢.g., by directing a web browser to
a URL (Universal Resource Locator) of a website main-

US 2003/0101022 Al

tained on the server computer. Alternatively, the server
computer may initiate communications with the client sys-
tem, e.g., the client computer. The communication between
the server computer and the client system may utilize any
available communication protocols, e.g., TCP/IP, HTTP,
Ethernet, 802.11, etc., as is well known in the art.

[0010] The client system preferably includes a plurality of
devices coupled together, where at least one of the devices
includes one or more programs. Once communication is
established between the server computer and the client
system, then the server computer may programmatically
determine information, e.g., configuration information,
regarding the plurality of devices and the one or more
programs. For example, the server computer may program-
matically analyze the client system to determine the pres-
ence of one or more of the plurality of devices and the one
Or more programs.

[0011] In one embodiment, the server computer may
download a program to the client system which may execute
on the client system, e.g., on a device of the client system,
to programmatically determine the information, and may
provide the determined information to the server computer.
In another embodiment, the server computer may access at
least a portion of the information from at least one of the
devices in the system, e.g., by accessing plug and play
information to determine the presence of the devices and
programs, or by querying a configuration program resident
on one of the devices in the system to determine the presence
of the devices and programs.

[0012] Tt is noted that in different embodiments, the client
system may include devices and software related to various
applications and fields. For example, the client system may
comprise one or more of: a measurement system, a modeling
or simulation system, such as a rapid control prototype
system or a hardware-in-the-loop simulation, an automation
system, and so on. It is noted that the example applications
and fields described are exemplary only, and are not
intended to limit the application of the method or the types
of client systems to any particular domains or fields. Simi-
larly, the devices and programs included in the client system
may be of any of a variety of types. For example, the devices
may include one or more of analog devices, digital devices,
processor-based devices, and programmable hardware ele-
ments, e.g., field programmable gate arrays (FPGAs),
among others. Similarly, the programs included in the client
system may be text-based programs, such as C, C++, Java,
HTML, etc., graphical programs, such as LabVIEW graphi-
cal programs, and/or hardware configuration programs,
among others. In an embodiment where at least one of the
plurality of devices includes a field programmable gate array
(FPGA), a hardware configuration program may be deploy-
able on the FPGA to perform a function, e.g., a measure-
ment, control, automation, or modeling function, among
others.

[0013] In response to determining the information regard-
ing the device and programs in the client system, the server
computer may programmatically generate a diagram which
visually or graphically represents the system. The diagram
may include device icons representing each of the plurality
of devices, link icons indicating coupling relationships
between the plurality of devices, and program icons repre-
senting each of the one or more programs. In one embodi-

May 29, 2003

ment, the diagram is a configuration diagram representing
the hardware and software configuration of the client sys-
tem.

[0014] In one embodiment, the device icons each have an
appearance to visually indicate a type of the respective
device. In other words, each device icon may visually or
graphically indicate the type of device that the device icon
represents. Similarly, the program icons may each have an
appearance to visually indicate a type of the respective
program. As noted above, the configuration diagram may
also include links between the device icons indicating
respective couplings between the devices in the client sys-
tem. In one embodiment, the link icons may each have an
appearance to visually indicate a type of the respective link
between devices. For example, a link icon may visually
indicate whether the link is a serial, parallel, digital, analog,
and/or wireless link, among others, or may indicate such
characteristics as the signal or data type, e.g., power vs. data,
direction of data flow, numbers of wires in the link, com-
munication protocol, etc.

[0015] In one embodiment, the program icons may be
visually displayed indicating an association with respective
device icons representing respective devices in which the
programs are stored and/or executed. For example, the
program icons may be visually displayed proximate to
respective device icons representing respective devices in
which the programs are stored and/or executed. It should be
noted that as used herein, the term “proximate™ refers to
being on or near an item, €.g., an icon, i.e., if a first icon is
displayed proximate to a second icon, the first icon is
sufficiently close to the second icon such that the user would
presume or understand an intended relationship between the
two icons. Thus, a program icon may be located proximate
to a device icon to represent the fact that the corresponding
program is stored and/or executed on the corresponding
device. In another embodiment, link icons may be displayed
coupling the program icons with the respective device icons.
Other graphical techniques associating the program icons
with the respective devices are also contemplated.

[0016] In an embodiment where the server computer
downloads a program to the client system to determine the
information regarding the plurality of devices and the one or
more programs in the client system, rather than providing
the information to the server computer and the server
computer generating the diagram as described above, the
program may instead use the determined information to
generate the diagram. In other words, the program may
execute on (a device of) the client system to generate the
diagram based on the determined information.

[0017] Once the diagram has been generated, e.g., by the
server computer, then the server computer may transmit the
diagram to the client system. In an embodiment where the
diagram is generated by software executing on the client
system, the diagram may instead be transmitted by the client
system to the server computer, or alternatively, may not be
transmitted at all.

[0018] Finally, the diagram may be displayed, for
example, on a display device of the client system, e.g., for
viewing by a user of the client system. In different embodi-
ments, the server computer may cause the diagram to be
displayed on the display device of the client system, or the
client system may initiate the display of the diagram. In one

US 2003/0101022 Al

embodiment, the configuration diagram may be stored in a
memory medium of the client system (and/or in a memory
medium of the server computer), where the configuration
diagram is usable for one or more of: documenting the client
system configuration, modifying the client system configu-
ration, adding/removing programs or devices to/from the
client system, and/or debugging the client system.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] A better understanding of the present invention can
be obtained when the following detailed description of the
preferred embodiment is considered in conjunction with the
following drawings, in which:

[0020] FIG. 1 illustrates a network system comprising two
or more computer systems that may implement an embodi-
ment of the present invention;

[0021] FIG. 2A illustrates an instrumentation system
according to one embodiment of the invention;

[0022] FIG. 2B illustrates an industrial automation system
according to one embodiment of the invention;

[0023] FIGS. 3 illustrates an exemplary distributed mea-
surement system according to one embodiment of the inven-
tion;

[0024] FIG. 4 is an exemplary block diagram of the
computer systems of the preceding Figures;

[0025] FIG. 5 is a block diagram of an exemplary devel-
opment environment for creating and using configuration
diagrams;

[0026] FIG. 6 is a flowchart diagram illustrating creating
a configuration diagram and using the configuration diagram
to graphically configure program deployment and/or invo-
cation, e.g., deploy programs on devices in the system;

[0027] FIG. 7 is a flowchart diagram illustrating creation
of a configuration diagram according to one embodiment of
the invention;

[0028] FIG. 8 is a flowchart diagram illustrating display
of program icons or element icons corresponding to pro-
grams or elements comprised in a device;

[0029] FIG. 9 is a flowchart diagram illustrating deploy-
ing a program on to a device according to one embodiment
of the invention;

[0030] FIG. 10 is a flowchart diagram illustrating exam-
ining a program type of a program and selectively convert-
ing the program to a type compatible with the destination
device;

[0031] FIG. 11 is a flowchart diagram illustrating various
operations that may be performed when moving a program
icon from source device icon to a destination device icon;

[0032] FIG. 12 is a flowchart diagram illustrating asso-
ciation of a program icon from a remote device to the main
computer system to configure the main computer system to
invoke the program;

[0033] FIG. 13A is a flowchart diagram illustrating vari-
ous operations that may be performed on a program icon;

[0034] FIG. 13B is a flowchart diagram illustrating execu-
tion of an application;

May 29, 2003

[0035] FIG. 14 illustrates a configuration dialog which
may be used in creating a configuration diagram;

[0036] FIGS. 15-19 are screen shots illustrating graphical
deployment or invocation changes of programs in exemplary
simple configuration diagrams;

[0037] FIG. 20A illustrates selection of options on the
configuration diagram;

[0038] FIG. 20B illustrates selection of a “Remote Call”
feature;
[0039] FIGS. 21A and 21B illustrate exemplary configu-

ration diagrams for a measurement system;

[0040] FIG. 22 is a flowchart diagram illustrating creation
of a graphical program;

[0041] FIG. 23 is a flowchart diagram illustrating con-
figuration of a node in a graphical program for remote
execution;

[0042] FIG. 24A illustrates an exemplary block diagram
of a graphical program where the user is configuring a
remote call of a node;

[0043] FIG. 24B illustrates the exemplary block diagram
of FIG. 24A after the user has deployed the node to a remote
device for remote execution;

[0044] FIG. 25 is a flowchart diagram illustrating graphi-
cally incorporating a program icon from a remote device
into another program;

[0045] FIG. 26 is a flowchart diagram illustrating creation
of a graphical program which includes incorporation of
device icons into the graphical program;

[0046] FIGS. 27A-27E are screen shots illustrating a
sequence where the user drags a device icon onto another
configuration diagram, selects a particular device icon in the
configuration diagram, selects a particular program icon, and
inserts the device icon into the program represented by the
program icon;

[0047] FIGS. 28A and 28B are screen shots illustrating
incorporating a program icon from a configuration diagram
into a graphical program;

[0048] FIG. 29 illustrates a simple configuration diagram
where the user has selected a device icon to configure the
device;

[0049] FIG. 30 illustrates the configuration diagram of
FIG. 29 where the user has selected an option to view I/O
channels and data points of a device icon, and a context-
sensitive help window is displayed;

[0050] FIG. 31 illustrates operation whereby a user drags
and drops a program icon from a first device icon onto a
second device icon;

[0051] FIG. 32 illustrates operation whereby a user selects
a data point element from the configuration diagram and
drags and drops the data point element from the configura-
tion diagram on to the front panel of a graphical program;

[0052] FIG. 33A illustrates operation whereby a user
selects a data point element from the configuration diagram
and drags and drops the data point element from the con-
figuration diagram on to the block diagram of a graphical
program;

US 2003/0101022 Al

[0053] FIG. 33B illustrates operation whereby a user
“wires up” an icon representing the data point element with
other nodes or graphical program elements in the block
diagram;

[0054] FIG. 34 illustrates operation whereby a user selects
a program icon to start operations;

[0055] FIG. 35 illustrates exemplary service icons that
can be used to control device execution;

[0056] FIG. 36 illustrates operation whereby a user
desires to copy settings from a device icon to another device
icon;

[0057] FIG. 37 flowcharts an embodiment of a method for
characterizing a client system over a network;

[0058] FIG. 38 flowcharts an embodiment of a method for
animating deployment of a program to a client system.

[0059] FIG. 39 flowcharts an embodiment of a method for
receiving purchase information for a client system;

[0060] FIG. 40 flowcharts an embodiment of a method for
specifying products for a measurement system;

[0061] FIG. 41 flowcharts an embodiment of a method for
generating a configuration diagram for a measurement sys-
tem based on a user specification of a task;

[0062] FIGS. 42 and 43 flowchart embodiments of a
method for configuring a client system using a configuration
diagram database; and

[0063] FIG. 44 flowcharts one embodiment of a method
for populating a configuration diagram database. n

[0064] While the invention is susceptible to various modi-
fications and alternative forms, specific embodiments
thereof are shown by way of example in the drawings and
are herein described in detail. It should be understood,
however, that the drawings and detailed description thereto
are not intended to limit the invention to the particular form
disclosed, but on the contrary, the intention is to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the present invention as defined by the
appended claims.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Incorporation by Reference

[0065] The following references are hereby incorporated
by reference in their entirety as though fully and completely
set forth herein:

[0066] U.S. Pat. No. 4,914,568 titled “Graphical System
for Modeling a Process and Associated Method,” issued on
Apr. 3, 1990.

[0067] U.S. Pat. No. 5,481,741 titled “Method and Appa-
ratus for Providing Attribute Nodes in a Graphical Data
Flow Environment”.

[0068] U.S. Pat. No. 6,173,438 titled “Embedded Graphi-
cal Programming System” filed Aug. 18, 1997.

[0069] U.S. Pat. No. 6,219,628 titled “System and Method
for Configuring an Instrument to Perform Measurement

May 29, 2003

Functions Utilizing Conversion of Graphical Programs into
Hardware Implementations,” filed Aug. 18, 1997.

[0070] U.S. patent application Ser. No. 09/617,600 titled
“Graphical Programming System with Distributed Block
Diagram Execution and Front Panel Display,” filed Jun. 13,
2000.

[0071] U.S. patent application Ser. No. 09/745,023 titled
“System and Method for Programmatically Generating a

Graphical Program in Response to Program Information,”
filed Dec. 20, 2000.

[0072] U.S. Provisional Patent Application Serial No.
60/312,242 titled “System and Method for Graphically
Creating, Deploying and Executing Programs in a Distrib-
uted System” filed Aug. 14, 2001.

[0073] U.S. patent application Ser. No. 10/123,511 titled
“Graphical Association of Program Icons,” filed Apr. 16,
2002.

[0074] U.S. patent application Ser. No. 10/046,868 titled
“System and Method for Performing Rapid Control Proto-
typing Using a Plurality of Graphical Programs that Share a
Single Graphical User Interface,” filed Jan. 15, 2002.

[0075] U.S. patent application Ser. No. 10/046,861 titled
“System and Method for Performing a Hardware in the Loop
Simulation Using a Plurality of Graphical Programs that
Share a Single Graphical User Interface,” filed Jan. 15,
2002.

[0076] U.S. patent application Ser. No. 10/008,792 titled
“Measurement System Software Architecture for Easily
Creating High-Performance Measurement Applications,”
filed Nov. 13, 2001.

[0077] U.S. patent application Ser. No. 10/120,257 titled
“Network-based System for Configuring a Measurement
System using Configuration Information Generated based
on a User Specification,” filed Apr. 10, 2002.

[0078] U.S. application Ser. No. 10/101,512 titled “Net-
work-based System for Configuring a Measurement System
using Configuration Information Generated based on a User
Specification” filed Mar. 19, 2002, whose inventors are
Brian Sierer, Ganesh Ranganathan, John Pasquarette, David
W. Fuller II1, Joseph E. Peck, Matthew Novacek, and Hugo
A. Andrade.

[0079] U.S. Provisional Application Serial No. 60/312,359
titled “System and Method for Online Configuration of a
Measurement System” filed Aug. 15, 2001, whose inventors
are Brian Sierer, Ganesh Ranganathan, Hugo Andrade and
Joseph Peck.

[0080] The LabVIEW and BridgeVIEW graphical pro-
gramming manuals, including the “G Programming Refer-
ence Manual”, available from National Instruments Corpo-
ration, are also hereby incorporated by reference in their
entirety.

FIG. 1—Computer Network

[0081] FIG. 1 illustrates an exemplary system including a
first computer system 82 that is coupled to a second com-
puter system 90 over a network. The computer system 82
may be coupled through a network 84 (or a computer bus)
to the second computer system 90. The computer systems 82

US 2003/0101022 Al

and 90 may each be any of various types, as desired. Also,
the network 84 can also be any of various types, including
a LAN (local area network), WAN (wide area network), the
Internet, or an Intranet, among others.

[0082] The first and second computer systems 82 and 90
may comprise devices that form at least a portion of a
system, such as a distributed system. Alternatively, the
computer system 82 may comprise part of the system, and
the server computer system 90 may provide various services
to the system, such as a selection of programs and/or devices
for the system, or generation of a configuration diagram for
the system as described herein.

[0083] Additional computer systems (not shown) may also
couple to the first and/or second computer systems 82 and
90. Various other devices may connect or couple to one or
more of the computer systems 82 and 90, or to other
computer systems in the system. For example, any one or
more of the devices shown in FIGS. 2A and 2B may couple
to one or both of the computer systems 82 and 90. In
addition, the system may comprise a single computer sys-
tem, such as computer system 82, coupled to one or more
other devices.

[0084] As used herein, the term “system” is intended to
include a system comprising two or more interconnected or
coupled devices, i.e., two or more devices that are coupled
together in some fashion. The two or more devices may be
coupled together via wired or wireless means. Wired means
may include a network, such as a local area network (LAN)
and/or a wide area network (WAN), such as the Internet, a
computer bus, a serial or parallel bus, or other wired
communication methods. Example local area networks
include Ethernet networks, Token Ring networks, and vari-
ous industrial communication networks such as Foundation
Fieldbus, DeviceNet, and CAN (Controller Area Network)
networks. Example parallel buses include the PCI bus, PXI
bus, GPIB, and VXI bus, among others. Example serial
buses include USB (Universal Serial Bus), IEEE 1394,
RS-242, and RS-485, among others. Wireless means may
include wireless protocols such as IEEE 802.11 (wireless
Ethernet), Bluetooth, and other types of wireless communi-
cation.

[0085] As used herein, the term “device” is intended to
have its ordinary meaning as any of various types of devices,
units or components. The term “device” is intended to
include “programmable devices” and “non-programmable
devices™.

[0086] As used herein, the term “programmable device” is
intended to include any of various types of devices that
include one or more of: 1) a processor and memory; or 2) a
programmable hardware element or reconfigurable logic.
Exemplary types of processors include a conventional
microprocessor or CPU (such as an X86, PowerPC, Sun-
Sparc, etc.), a digital signal processor (DSP), microcontrol-
ler, or other type of processor. Exemplary types of program-
mable hardware elements include a programmable logic
device (PLD), e.g., an FPGA (field programmable gate
array), or other types of reconfigurable logic. It is noted that
a program may typically only be deployed to or stored on a
programmable device. In the description that follows, ref-
erences to devices in the context of deploying, storing, or
modifying programs on the device generally refer to pro-
grammable devices.

May 29, 2003

[0087] Exemplary types of programmable devices include
computer systems; network devices; personal digital assis-
tants (PDAs); television systems; measurement devices
(including instruments, industrial automation devices, pro-
cess control devices (e.g., for automation and measurement),
smart data acquisition devices, smart sensors (including
smart cameras), and smart actuators, etc.); video devices
(e.g., digital cameras, digital video cameras); audio devices;
computer peripherals; telephones; appliances; or other pro-
cessor-based or programmable hardware-based devices.
Exemplary measurement and automation devices include
any of the devices shown in FIGS. 2A and 2B. Exemplary
network devices include network interface cards, routers,
bridges, switches, hubs, etc.

[0088] The term “non-programmable device” is intended
to include any of various components, such as transducers,
sensors, connector blocks, cabling, and other non-program-
mable devices.

[0089] As used herein, the term “computer system” may
include any type of computer system, including a personal
computer system, mainframe computer system, workstation,
network appliance, Internet appliance, etc. In general, the
term “computer system” can be broadly defined to encom-
pass any device having at least one processor that executes
instructions from a memory medium.

[0090] As used herein, the term “application” includes one
or more programs. An application may comprise a plurality
of programs which operate together to perform a function or
accomplish a certain result. The plurality of programs may
operate together in a system, wherein various programs may
be deployed to various devices in the system for distributed
execution. An application may thus comprise a plurality of
programs distributed among a plurality of devices for dis-
tributed execution. An application may also include other,
data structures such as configuration files for configuring
hardware devices, help files, supporting documentation, etc.
The term “project” may be used similarly to an “applica-
tion”.

[0091] As used herein, the term “program” is intended to
include 1) a software program which may be stored in a
memory and is executable by a processor or 2) a hardware
configuration program useable for configuring a program-
mable hardware element or reconfigurable logic. A software
program may be any type of code, script and/or data that
may be stored in a memory medium and executed by a
processor. Exemplary software programs include programs
written in text-based programming languages, such as C,
C+4+, Pascal, Fortran, Cobol, Java, etc.; programs written in
assembly language; programs written in graphical program-
ming languages; programs that have been compiled to
machine language; scripts; and other types of executable
software. Exemplary hardware configuration programs
include netlists or bit files for elements such as FPGAs and
other reconfigurable hardware.

[0092] As used herein, the term “graphical program” or
“block diagram” is intended to include a program compris-
ing graphical code, e.g., two or more interconnected nodes
or icons, wherein the interconnected nodes or icons may
visually indicate the functionality of the program. The nodes
may be connected in one or more of a data flow, control flow,
and/or execution flow format. The nodes may also be
connected in a “signal flow” format, which is a subset of data

US 2003/0101022 Al

flow. Thus the terms “graphical program™ or “block dia-
gram” are each intended to include a program comprising a
plurality of interconnected nodes or icons which visually
indicate the functionality of the program.

[0093] A “data flow” graphical program or diagram refers
to a plurality of interconnected nodes or icons, wherein the
interconnections among the nodes visually indicate that data
produced by one node is used by another node. A“data flow”
graphical program or diagram may also include one or more
control flow constructs or other non-data flow constructs.

[0094] A graphical program may also optionally comprise
a user interface or front panel. The user interface may be
contained in the block diagram of the graphical program or
may be contained in one or more separate panels or windows
(or both). The user interface of a graphical program may
include various graphical user interface elements or front
panel objects, such as user interface controls and/or indica-
tors, that represent or display the respective input and/or
output that will be used by the graphical program or VI, and
may include other icons which represent devices being
controlled. The user interface or front panel may be com-
prised in a single window of user interface elements, or may
comprise a plurality of individual windows each having one
or more user interface elements, wherein the individual
windows may optionally be tiled together. As another
example, the user interface or front panel may comprise user
interface or front panel objects, e.g., the GUI, embedded in
the block diagram. The user interface of a graphical program
may display only output, only input, or both input and
output. The term “front panel” refers to a user interface
wherein the user is able to interactively control or manipu-
late the input being provided to the graphical program and
view resulting output. Any of various types of programs may
include a user interface or front panel, including graphical
programs, text-based programs, etc.

[0095] Examples of graphical program development envi-
ronments that may be used to create graphical programs
include LabVIEW, DasylLab, and DiaDem from National
Instruments, VEE from Agilent, WiT from Coreco, Vision
Program Manager from PPT Vision, Soft WIRE from Mea-
surement Computing, Simulink from the MathWorks, San-
script from Northwoods Software, Khoros from Khoral
Research, SnapMaster from HEM Data, VisSim from Visual
Solutions, ObjectBench by SES (Scientific and Engineering
Software), and VisiDAQ from Advantech, among others. In
the preferred embodiment, the system uses the LabVIEW
graphical programming system available from National
Instruments.

[0096] A program for performing an instrumentation,
measurement, network, automation or simulation function,
such as measuring phenomena of a Unit Under Test (UUT)
or device, controlling or modeling instruments, controlling
or measuring a system or process, managing a network, or
for modeling or simulating devices, may be referred to as a
virtual instrument (VI).

[0097] As shown in FIG. 1, at least one of the computer
systems 82 and/or 90 may be referred to as the “main”
computer system, i.e., the computer system used by the user
in creating, using and/or executing a configuration diagram.
For example, computer system 82 may be referred to as the
main computer system. Thus, the computer system 82 may
include a display device operable to display a graphical user

May 29, 2003

interface (GUI). The graphical user interface may comprise
any type of graphical user interface, e.g., depending on the
computing platform. The GUI may be useful in assembling,
creating, using and/or executing a configuration diagram as
described herein. Multiple computer systems may also be
used in assembling a configuration diagram.

[0098] As described below, a configuration diagram may
comprise one or more device icons which each correspond
to a device in the system. A configuration diagram may also
comprise one or more program icons which each correspond
to a program in the system. A configuration diagram may
also comprise one or more system icons and/or one or more
application icons or project icons. A configuration diagram
may comprise various other icons, e.g., for I/O channels or
data points of a device. A configuration diagram may also
display connections between icons, such as physical con-
nections between device icons and/or invocation or caller/
callee connections between program icons.

[0099] As described below, the configuration diagram may
be useful in representing the configuration of a system, e.g.,
for documentation or specification purposes. The configu-
ration design may also be useful in deploying programs
among a plurality of devices in the system. The configura-
tion diagram may also be used in creating one or more
programs and deploying these created programs in the
system. The configuration diagram may further be useful in
displaying and/or executing an application comprising a
plurality of programs distributed among a plurality of
devices in a system. The configuration diagram may further
be useful in controlling device or program execution. The
configuration diagram may be used for other purposes as
well. The display device may also be operable to display a
graphical program block diagram of a deployed program, or
other source code of a deployed program. The display device
may also be operable to display a graphical user interface or
front panel of deployed programs, wherein the GUI or front
panel of deployed programs may be selectively displayed
using the configuration diagram.

[0100] The computer system 82 and/or 90 may include a
memory medium(s) on which one or more computer pro-
grams or software components according to one embodi-
ment of the present invention may be stored. For example,
the memory medium may store one or more programs which
are executable to create, present and/or allow use of a
configuration diagram as described herein. Also, the
memory medium may store a programming development
environment application used to create and/or execute pro-
grams. For example, the memory medium may store a
graphical programming development environment applica-
tion used to create and/or execute graphical programs, such
as LabVIEW. The memory medium may also store various
programs in the system. The memory medium may also
store operating system software, as well as other software
for operation of the computer system.

[0101] The term “memory medium” is intended to include
an installation medium, e.g., a CD-ROM, floppy disks 104,
or tape device; a computer system memory or random access
memory such as DRAM, SRAM, EDO RAM, Rambus
RAM, etc.; or a non-volatile memory such as a magnetic
media, e.g., a hard drive, or optical storage. The memory
medium may comprise other types of memory as well, or
combinations thereof. In addition, the memory medium may

US 2003/0101022 Al

be located in a first computer in which the programs are
executed, or may be located in a second different computer
which connects to the first computer over a network, such as
the Internet. In the latter instance, the second computer may
provide program instructions to the first computer for execu-
tion.

[0102] The software programs which implement embodi-
ments of the present invention may be stored in a memory
medium of the respective computer 82, or in a memory
medium of another computer, and executed by the CPU. The
CPU executing code and data from the memory medium
thus may comprise a means for performing the methods
described herein. For example, the CPU executing code and
data from the memory medium may comprise a means for
graphically specifying or creating a configuration diagram,
creating applications or programs utilizing a configuration
diagram and/or enabling a user to graphically distribute,
deploy, configure and/or execute programs among a plural-
ity of different devices or nodes in a system according to the
description herein.

FIGS. 2A and 2B—Instrumentation and Industrial
Automation Systems

[0103] The following describes embodiments of the
present invention involved with creating distributed appli-
cations which perform test, measurement and/or automation
functions, including control and/or modeling of instrumen-
tation or industrial automation hardware. However, it is
noted that the present invention can be used for a plethora of
applications and is not limited to instrumentation or indus-
trial automation applications. In other words, the following
description is exemplary only, and the present invention may
be used in any of various types of systems. Thus, the system
and method of the present invention is operable to be used
in any of various types of applications, including distributed
systems which include other types of devices such as
multimedia devices, video devices, audio devices, telephony
devices, Internet devices, network devices, etc.

[0104] FIG. 2A illustrates an exemplary instrumentation
system 100 which may implement embodiments of the
invention. The system 100 comprises a host computer 82
which connects to one or more measurement devices or
instruments. The host computer 82 may comprise a CPU, a
display screen, memory, and one or more input devices such
as a mouse or keyboard as shown. Each of (or at least a
subset of) the measurement devices may include a processor
and/or a programmable hardware element, and may be
capable of receiving and executing programs in a distributed
application. The computer 82 may couple to one or more
other computers, such as computer 90, over a network,
wherein the one or more other computers may form part of
the distributed system. The computer 82 may operate with
the one or more measurement devices to analyze, measure or
control a unit under test (UUT) or process 150, to perform
simulation of a system, such as hardware-in-the-loop simu-
lation, to manage a network, or to perform system automa-
tion, among others.

[0105] The one or more measurement devices or instru-
ments may include a GPIB instrument 112 and associated
GPIB interface card 122, a data acquisition board 114 and
associated signal conditioning circuitry 124, a VXI instru-
ment 116, a PXI instrument 118, a video device or camera

May 29, 2003

132 and associated image acquisition (or machine vision)
card 134, a motion control device 136 and associated motion
control interface card 138, and/or one or more computer
based instrument cards 142, among other types of devices.

[0106] The GPIB instrument 112 may be coupled to the
computer 82 via the GPIB interface card 122 provided by the
computer 82. In a similar manner, the video device 132 may
be coupled to the computer 82 via the image acquisition card
134, and the motion control device 136 may be coupled to
the computer 82 through the motion control interface card
138. The data acquisition board 114 may be coupled to the
computer 82, and may interface through signal conditioning
circuitry 124 to the UUT. The signal conditioning circuitry
124 may comprise an SCXI (Signal Conditioning eXten-
sions for Instrumentation) chassis comprising one or more
SCXI modules 126.

[0107] The GPIB card 122, the image acquisition card
134, the motion control interface card 138, and the DAQ
card 114 are typically plugged in to an I/O slot in the
computer 82, such as a PCI bus slot, a PC Card slot, or an
ISA, EISA or MicroChannel bus slot provided by the
computer 82. However, these cards 122, 134, 138 and 114
are shown external to computer 82 for illustrative purposes.
These devices may also be connected to the computer 82
through a serial bus or through other means.

[0108] The VXI chassis or instrument 116 may be coupled
to the computer 82 via a VXI bus, MXI bus, or other serial
or parallel bus provided by the computer 82. The computer
82 may include VXI interface logic, such as a VXI, MXI or
GPIB interface card (not shown), which interfaces to the
VXI chassis 116. The PXI chassis or instrument may be
coupled to the computer 82 through the computer’s PCI bus.

[0109] A serial instrument (not shown) may also be
coupled to the computer 82 through a serial port, such as an
RS-232 port, USB (Universal Serial bus) or IEEE 1394 or
1394.2 bus, provided by the computer 82. In typical instru-
mentation control systems an instrument will not be present
of each interface type, and in fact many systems may only
have one or more instruments of a single interface type, such
as only GPIB instruments.

[0110] The measurement devices or instruments may be
coupled to a unit under test (UUT) or process 150, or may
be coupled to receive field signals, typically generated by
transducers. The system 100 may be used in a data acqui-
sition and control application, in a test and measurement
application, an image processing or machine vision appli-
cation, a process control application, a man-machine inter-
face application, a network management application, an
automation system, a simulation application, or a hardware-
in-the-loop validation application, among others.

[0111] FIG. 2B illustrates an exemplary industrial auto-
mation system 160 which may implement embodiments of
the invention. The industrial automation system 160 is
similar to the instrumentation or test and measurement
system 100 shown in FIG. 2A. Elements which are similar
or identical to elements in FIG. 2A have the same reference
numerals for convenience. The system 160 may comprise a
computer 82 which connects to one or more devices or
instruments. The computer 82 may comprise a CPU, a
display screen, memory, and one or more input devices such
as a mouse or keyboard as shown. Each of the devices shown

US 2003/0101022 Al

in FIG. 2B may include a processor and/or a programmable
hardware element, and may be capable of receiving and
executing programs in a distributed application. The com-
puter 82 may couple to one or more other computers, such
as computer 90, over a network, wherein the one or more
other computers may form part of the distributed system.
The computer 82 may operate with the one or more devices
to measure or control a process or device 150. The distrib-
uted system may perform an automation function, such as
MMI (Man Machine Interface), SCADA (Supervisory Con-
trol and Data Acquisition), portable or distributed data
acquisition, process control, advanced analysis, or other
control.

[0112] The one or more devices may include a data
acquisition board 114 and associated signal conditioning
circuitry 124, a PXI instrument 118, a video device 132 and
associated image acquisition card 134, a motion control
device 136 and associated motion control interface card 138,
a fieldbus device 170 and associated fieldbus interface card
172, a PLC (Programmable Logic Controller) 176, a serial
instrument 182 and associated serial interface card 184, or a
distributed data acquisition system 185, such as the Field-
point system available from National Instruments, among
other types of devices.

[0113] The DAQ card 114, the PXI chassis 118, the video
device 132, and the image acquisition card 134 may be
connected to the computer 82 as described above. The serial
instrument 182 may be coupled to the computer 82 through
a serial interface card 184, or through a serial port, such as
an RS-232 port, provided by the computer 82. The PLC 176
may couple to the computer 82 through a serial port,
Ethernet port, or a proprietary interface. The fieldbus inter-
face card 172 may be comprised in the computer 82 and may
interface through a fieldbus network to one or more fieldbus
devices. Each of the DAQ card 114, the serial card 184, the
fieldbus card 172, the image acquisition card 134, and the
motion control card 138 are typically plugged in to an I/O
slot in the computer 82 as described above. However, these
cards 114, 184, 172, 134, and 138 are shown external to
computer 82 for illustrative purposes. In typical industrial
automation systems a device will not be present of each
interface type, and in fact many systems may only have one
or more devices of a single interface type, such as only
PLCs. The devices may be coupled to the device or process
150.

[0114] As used herein, the term “measurement device” or
“instrument” is intended to include any of the devices that
are adapted to be connected to a computer system as shown
in FIGS. 2A, 2B and 3, traditional “stand-alone” instru-
ments, as well as other types of measurement and control
devices. The term “measurement function” may include any
type of data acquisition, measurement or control function,
such as that implemented by the instruments shown in
FIGS. 2A, 2B and 3. For example, the term “measurement
function” includes acquisition and/or processing of an
image. As described below, a distributed program (e.g., a
distributed graphical program) may be created that imple-
ments a measurement function. For example, the program
may be used to acquire a signal and perform the measure-
ment function on the acquired signal.

[0115] In the embodiments of FIGS. 2A and 2B above,
one or more of the various instruments may couple to the

May 29, 2003

computer 82 over a network, such as the Internet. In one
embodiment, the user operates to select one or more target
instruments or devices from a plurality of possible target
devices for programming or configuration according to the
methods described herein. Thus the user may create a
program on a computer, such as computer 82, and use the
program in conjunction with one or more target devices or
instruments that are remotely located from the computer 82
and coupled to the computer 82 through a network. As
described below, according to one embodiment of the inven-
tion, the user may use a configuration diagram to graphically
create and distribute or deploy programs among a number of
different devices in a distributed system. The configuration
diagram may also be used to initiate execution of the
programs, and optionally to control and/or monitor execu-
tion of the programs.

[0116] Software programs which perform data acquisition,
analysis and/or presentation, e.g., for measurement, instru-
mentation control, industrial automation, or simulation, such
as in the applications shown in FIGS. 2A and 2B, may be
referred to as virtual instruments.

[0117] Although in the preferred embodiment the methods
described herein are involved with measurement and auto-
mation applications, including data acquisition/generation,
analysis, and/or display, and for controlling or modeling
instrumentation or industrial automation hardware, as noted
above the present invention can be used for a plethora of
applications and is not limited to measurement, instrumen-
tation or industrial automation applications. In other words,
FIGS. 2A and 2B are exemplary only, and the present
invention may be used in any of various types of systems.
Thus, the system and method is operable for creating and
using configuration diagrams for deploying programs in
distributed systems for any of various types of applications.

[0118] Network System

[0119] As one example, embodiments of the invention
may be used to create, configure, deploy and/or execute
devices and/or programs for network systems. Exemplary
network systems may include a main computer system that
couples to one or more network devices, such as switches,
bridges, routers, hubs, network processors, etc. A configu-
ration diagram for a network system may include device
icons that represent the various network devices, as well as
program icons that represent programs in the system. Pro-
grams may be created, configured and/or deployed among
the network devices, (including having their invocation
relationships changed) using the configuration diagram and
the methods described herein. Commercial (or custom)
network management products may also be configured and/
or deployed according to various embodiments of the meth-
ods described below, e.g., network management products for
mapping, analyzing, configuring, controlling or otherwise
managing network architecture, operations, and/or function-
ality. For example, network functions may include, but are
not limited to, network traffic logging and/or traffic analysis,
e.g., data throughput, latency, topography, etc., as well as
routing, testing, and so forth. Examples of network man-
agement products include NetView provided by IBM Tivoli
Software, BMC Software’s Patrol, and SANPoint Control
by Veritas Software Corporation, among others.

US 2003/0101022 Al

FIG. 3—Distributed Measurement System

[0120] FIG. 3 is a block diagram of an exemplary distrib-
uted measurement system. As shown, an exemplary mea-
surement system may include a computer system 82 having
a display. The computer system 82 may couple through one
or more networks or buses to various measurement devices.

[0121] In this exemplary embodiment, the computer 82
may couple through the Internet to a second computer 90
and to a database 92. The computer 82 may couple to a
PCI/PXI chassis 118 comprising one or more DAQ cards,
which in turn couple to one or more Plug & Play analog
sensors 123 or other sensors 127. The computer 82 may
couple to a distributed I/O system (or distributed data
acquisition system) 185, such as the Fieldpoint system
available from National Instruments, which in turn couples
to one or more Plug & Play analog sensors 123 or other
sensors 127. The computer 82 may couple to a PCI/PXI
chassis 118 comprising one or more industrial network
cards, such as a CAN interface card 173 and a serial
interface card 184, which in turn may couple to one or more
networked smart sensors 125. The computer 82 may couple
to a PXI system 118 and/or distributed I/O system 185,
which in turn couples to one or more DAQ modules 115
connected in a wired manner, such as through a serial,
parallel, or network bus. The DAQ modules 115 may couple
to one or more Plug & Play analog sensors 123, smart
sensors 125, or other sensors 127. The PXI system 118
and/or distributed I/O system 185 may also couple to one or
more wireless DAQ modules 117 connected in a wireless
manner. The wireless DAQ module 117 may couple to one
or more Plug & Play analog sensors 123 and/or other sensors
127.

[0122] The exemplary distributed measurement system
may include a RIO (Reconfigurable I/0) system as described
in U.S. Provisional Patent Application Serial No. 60/312,
242 titled “System and Method for Graphically Creating,
Deploying and Executing Programs in a Distributed Sys-
tem” filed Aug. 14, 2001.

[0123] The computer system 82 may serve as the central
console (or main computer system) of the distributed mea-
surement system. The display of the computer system 82
may be used to assemble a configuration diagram of the
distributed measurement system. The configuration diagram
may include various device icons that represent or corre-
spond to the various physical (“real”) devices, and possibly
virtual or simulated devices, that are present in the distrib-
uted measurement system. The configuration diagram
shown on the display may also be used to create, configure
and/or deploy programs to any of the various devices in the
distributed measurement system.

[0124] The main computer system 82 may be part of the
system that executes programs during operation of the
system. Alternatively, the main computer system 82 may be
used solely to create a configuration diagram and dispatch,
configure or deploy programs to the various devices. In this
latter embodiment, after deployment, the various programs
may execute without further involvement of the main com-
puter system 82.

[0125] In one embodiment, the configuration diagram for
the system shown in FIG. 3 would resemble, e.g., be similar
or identical in appearance to, the block diagram shown in

May 29, 2003

FIG. 3. Thus, for the physical system represented by the
block diagram in FIG. 3, the configuration diagram for this
system that is displayed on a computer display may also
have the appearance of FIG. 3. Thus one goal of the
configuration diagram for a system is to represent in an
intuitive manner the system that the configuration diagram
represents. Other examples of configuration diagrams are
shown in FIGS. 21A and 21B. Simple configuration dia-
grams used to illustrate graphical deployment of programs
are shown in FIGS. 15-20. FIGS. 21A and 21B illustrate
more complex configuration diagrams.

FIG. 4—Computer System Block Diagram

[0126] FIG. 4 is a block diagram representing one
embodiment of the computer system 82 and/or 90 illustrated
in FIGS. 1,2A, 2B or 3. It is noted that any type of computer
system configuration or architecture can be used as desired,
and FIG. 4 illustrates a representative PC embodiment. It is
also noted that the computer system may be a general
purpose computer system, a computer implemented on a
VXI card installed in a VXI chassis, a computer imple-
mented on a PXI card installed in a PXI chassis, or other
types of embodiments. Elements of a computer not neces-
sary to understand the present description have been omitted
for simplicity.

[0127] The computer may include at least one central
processing unit or CPU 160 which is coupled to a processor
or host bus 162. The CPU 160 may be any of various types,
including an x86 processor, €.g., a Pentium class, a PowerPC
processor, a CPU from the SPARC family of RISC proces-
sors, as well as others. Main memory 166 is coupled to the
host bus 162 by means of memory controller 164. The main
memory 166 may store one or more programs which imple-
ment an embodiment of the invention, and may also store
one or more programs which may deployed to devices in a
distributed system according to an embodiment of the inven-
tion. The main memory may also store a program develop-
ment environment, operating system software, as well as
other software for operation of the computer system.

[0128] The host bus 162 may be coupled to an expansion
or input/output bus 170 by means of a bus controller 168 or
bus bridge logic. The expansion bus 170 may be the PCI
(Peripheral Component Interconnect) expansion bus,
although other bus types can be used. The computer 82
comprises a video display subsystem 180, hard drive 182,
and network interface 181, coupled to the expansion bus
170. The expansion bus 170 may also include various
exemplary devices such as a data acquisition board 114 and
a reconfigurable measurement device or instrument 190.
Each of the data acquisition card 114 and the reconfigurable
measurement device or instrument 190 may include a pro-
cessor and memory and/or a programmable hardware ele-
ment for receiving and executing deployed programs.

FIG. 5—System for Creating and Using
Configuration Diagrams

[0129] FIG. 5 illustrates the software programs of an
exemplary system for creating and using configuration dia-
grams according to an embodiment of the invention. FIG. §
illustrates an exemplary system which includes the distrib-
uted LabVIEW integrated development environment (IDE).
The system shown in FIG. 5§ may be used for managing a
distributed system as described herein.

US 2003/0101022 Al

[0130] As shown, the system includes a graphical program
editor or graphical program development environment, e.g.,
a LabVIEW editor 704. The system also may include one or
more graphical programs, e.g., may include a block diagram
and/or front panel 706 of a graphical program. The block
diagram and front panel may be created in any of various
graphical program development environments.

[0131] The system may also include a system editor 732.
The system editor may be used for creating a configuration
diagram 712, also referred to as a system panel. In the
present application, the terms “system panel” and configu-
ration diagram” are used interchangeably. The configuration
diagram 712 may include a plurality of nodes or icons 714
which represent items 718 in a system, such as devices,
machines, programs, applications, projects or other elements
in the configuration diagram 712. The configuration diagram
712 may also illustrate the relationship between nodes using
connections or links 716 as described herein.

[0132] The systems editor 732 may also include configu-
ration panels 734, which are similar to property pages. The
configuration panels 734 may include system configuration
panels 736 for configuring different system configuration
items such as network parameters 738, e.g., IP, security, etc
740. The configuration panels 734 may also include input/
output configuration panels 742 for configuring I/O points.
The configuration panels may also include the ability for
configuring data points (e.g., tags) 744 including methods,
properties and panels 746. The configuration panels 734 may
also include service configuration panels 750 for configuring
various services, as described below.

[0133] The system described in FIG. 5 may be used for a
plurality of different purposes. The system may be used to
represent a system, deploy programs in the system, distrib-
ute data among devices or programs in the system, and
perform various other functions. The system may provide
various levels of views. For example, the system configu-
ration diagram may present a view of the entire system, i.c.,
an entire system view; an individual system view, i.e., a View
of individual system within the entire system; an application
view, i.e., a view of the various programs or software
applications present in the system; and a program develop-
ment view, such as a view of a program development
environment, such as LabVIEW, Visual Basic, etc. In one
embodiment, the system includes tight integration with a
graphical program development environment such as Lab-
VIEW. The configuration diagram may also represent the
system in a hierarchical manner, and the user may be able to
“drill down” in the configuration diagram to view greater
detail on various subsystems or devices.

[0134] Flowcharts

[0135] The flowcharts described herein illustrate various
embodiments of the present invention, and various other
embodiments are also contemplated. It is noted that various
steps in the flowcharts described herein may occur concur-
rently or in different orders than that shown. Further, some
steps are optional and may be omitted, and/or additional
steps not shown may be added, as desired. In general, where
the context so indicates, steps performed in the flowcharts
below may be performed automatically or programmati-
cally, i.e., by a software program, and not by manual user
action.

May 29, 2003

FIG. 6—Flowchart

[0136] FIG. 6 is a flowchart diagram illustrating operation
of the user creating or assembling a configuration diagram
representing a distributed system, displaying program icons
corresponding to programs present in the distributed system,
and configuring or deploying one or more programs to
various devices in the distributed system. FIG. 6 illustrates
one embodiment of the invention, and it is noted that various
embodiments of the invention may be used to create, view
and use configuration diagrams using the concepts or meth-
ods described herein.

[0137] As shown, in step 202 a developer or user may
assemble or create a configuration diagram which includes
device icons that represent devices in the distributed system.
Thus, in a system which comprises two or more devices
coupled to each other, such as through a network, a serial or
parallel bus, or through wireless means, etc., the user may
create or assemble a configuration diagram which includes
a device icon for each of the devices, or a subset of the
devices, present in the system. The configuration diagram
may also include program icons corresponding to programs
resident in the system, e.g., in the various devices.

[0138] In one embodiment, the user may manually select
device icons from a graphical user interface, e.g., from a
palette or menu, to be displayed in the configuration dia-
gram. The user may also connect the device icons on the
configuration diagram, such as by using a pointing device.
For example, in creating or modifying a configuration dia-
gram, the user can associate, e.g., drag and drop, or other-
wise connect, a first device icon to a second device icon. For
example, the user may use a pointing device (e.g., a mouse),
and may possibly use a “wiring tool” icon on the display, to
connect a first device icon to a second device icon. This may
cause a connection, e.g., a wire, to appear between the
device icons to indicate a relationship or coupling between
the two (or more) device icons.

[0139] Inoneembodiment, the configuration diagram may
be automatically or programmatically created by the com-
puter system 82, or by separate server system 90, based on
an automatic detection of devices coupled to the computer
system 82. As used herein , the terms “programmatically” or
“automatically” mean that the particular function is per-
formed by software, as opposed to being performed manu-
ally by the user. For example, Plug & Play software, or other
similar detection software, may detect devices present in the
system and automatically display device icons in the con-
figuration diagram representing these detected devices. The
software may also automatically display connections or
links between the device icons which indicate the detected
buses or interfaces connecting the devices. In another
embodiment, at least a portion of the configuration diagram
may be automatically or programmatically created, and a
portion of the configuration diagram may be created at least
partly based on manual user input. For example, software
may detect and display device icons and links corresponding
to a subset of the devices in the system, and the user may
select (and “wire up” or connect) device icons correspond-
ing to other (e.g., non-detected or virtual) devices from a
palette or menu.

[0140] The device icons preferably have an appearance
which corresponds to the device they represent. This allows
the viewer to easily view and understand what devices are

US 2003/0101022 Al

present in the distributed system. In one embodiment, infor-
mation may be displayed proximate to various device icons
to indicate information about the device, such as type of
device, geographic location of the device, calibration infor-
mation, etc. This information may be selectively displayed
when the user selects (e.g., right clicks) a respective device
icon. In other embodiments, the information may be dis-
played in response to user activity with respect to the device
icon, e.g., in response to the user right-clicking on the device
icon, or in response to the cursor “hovering” over the device
icon, etc.

[0141] The connection that is displayed between two
device icons may be context sensitive. In other words, the
connection that is displayed or created on the display may
have a context or appearance that is associated with the types
of devices that are being connected, or that is associated with
the type of physical connection between the respective
devices. For example, the PCI bus may be shown with a first
type of visual representation, a USB (Universal Serial Bus)
connection may be shown with a second type of visual
representation, and an Ethernet connection may be shown
with a third type of visual representation. Alternatively, or in
addition, the connection that is displayed or created on the
display may have a context or appearance that is associated
with the data type of the data, or type of material, being
transmitted between the devices.

[0142] Inone embodiment, Plug & Play software or other
similar detection software may detect programs present in
the system and automatically or programmatically display
program icons in the configuration diagram representing
these detected programs. The software may also automati-
cally display connections or links between the program
icons which indicate the detected invocation relationships of
the programs. In another embodiment, respective portions of
the configuration diagram may be automatically or program-
matically created, and a portion of the configuration diagram
may be created at least partly based on manual user input.
For example, software may detect and display program
icons and links corresponding to a subset of the programs in
the system, and the user may use a GUI to register other
programs present in the system. The program icons may be
displayed directly in the configuration diagram, e.g., proxi-
mate to the devices in which they reside, or linked to the
device icons. Alternatively, the program icons may initially
appear on a separate palette or window, e.g., for deployment
to the various devices. The user may manually “connect” or
“wire up” links between various program icons to establish
or modify invocation relationships among the programs as
described further below.

[0143] In one embodiment, the configuration diagram is
operable to perform type checking of connections between
device icons, e.g., to verify that a first device corresponding
to a first device icon can interface to a second device
corresponding to a second device icon. For example, when
the user draws a link between a first device icon and a second
device icon, software may analyze the interface types of the
two devices to ensure that the connection is proper. The
configuration diagram may also be operable to perform type
checking of connections between program icons, e.g., to
verify that a first program corresponding to a first program
icon can invoke (or be invoked by) a second program
corresponding to a second program icon. For example, when
the user draws a link between a first program icon and a

May 29, 2003

second program icon, software may analyze the program
types of the two programs to ensure that the invocation can
be performed.

[0144] In addition, program icons may also have an
appearance to indicate the type of program, e.g., graphical
program, text-based program, hardware configuration pro-
gram, etc. Also, the connection that is displayed between
two program icons may be context sensitive. For example,
the connection between two program icons may have a
context or appearance that is associated with the type of
connection between the programs, e.g., caller/callee and
direction (e.g., using an arrow), event passing, etc.

[0145] The configuration diagram may be used to define
all of the desired system components, including measure-
ment phenomena, transducers, connector blocks, cabling,
measurement hardware, and program components. The con-
figuration diagram may also be used to enable distributed
management of the system components, including distrib-
uted definition of components, discovery of local and remote
components that are present and virtual, web service based
interaction, etc. For example, discovery may include not
only determining the presence of devices, but may also
include determining each device’s configuration, sub-de-
vices, connectivity between devices, and so on.

[0146] In one embodiment, the user may assemble a
configuration diagram that represents a system that the user
desires. Thus, the user may select among device icons in a
palette and generate a configuration diagram representing a
desired system. In this embodiment, the configuration dia-
gram is a specification of a desired system. A configuration
diagram may also include a first portion that represents an
actual system (one or more physically present devices) and
a second portion that represents a desired system (one or
more non-present devices).

[0147] In one embodiment, the user may use the configu-
ration diagram as a mechanism for specifying devices to be
purchased from a vendor. For example, the user can
assemble a configuration diagram including device icons
(and/or program icons) which represent devices (and/or
programs) that the user desires to use or purchase for his/her
system. The user may then connect to a server computer
system and provide the configuration diagram as a specifi-
cation for the devices and/or programs the user desires to
purchase. The server computer system, which may be
located at a manufacturing site, may receive the configura-
tion diagram, determine the desired devices (and/or pro-
grams) from the configuration diagram, and present infor-
mation to the user indicating the total cost for the requested
devices (and/or programs). The user may then choose to
purchase one or more of the recommended devices (and/or
programs) from the server computer system. These devices
may then be shipped to the user. In another embodiment, the
server may programmatically query the devices and/or pro-
grams present in the user system, and generate a configu-
ration diagram that is displayed on the user’s computer
system representing the current state of the user’s system.
The user may then add device icons and/or program icons
from a palette on the server or the client computer to indicate
desired modifications to the user system. This updated
configuration diagram may then be provided back to the
server as a purchase request as described above.

[0148] In step 204 the user may create one or more
programs which perform a desired function within the

US 2003/0101022 Al

distributed system. Alternatively, or in addition, one or more
programs may be automatically or programmatically created
(created by a software program), based on user input or
requirements. For example, the computer system may dis-
play a graphical user interface which is used by the user to
enter requirements or desired operation of a program. The
system may then programmatically create a program based
on these requirements. This programmatic creation of pro-
grams may be performed by the user’s computer system 82
or a separate server computer system 90.

[0149] The user (or computer system) may create one or
more text-based programs in text-based programming lan-
guages such as C, C++, Fortran, Basic, Cobol, Java, etc.
Software programs may be created or used which are
software objects or software components such as C++
objects, ActiveX controls, Java objects, etc. The user may
also create one or more graphical programs in various
graphical programming development environments. In the
preferred embodiment, the computer system includes the
LabVIEW graphical programming development system for
creating LabVIEW programs. As described below, the user
may create and/or modify programs using the configuration
diagram. This operation is discussed with respect to FIGS.
26, 27, 32 and 33.

[0150] Alternatively, the user may simply use one or more
pre-existing programs that have been previously created.
The user may use programs stored on the computer system
82 or stored on any of the various remote devices. In
addition, where the computer system 82 is coupled to a
network, such as the Internet, the user may use programs
stored on a server (e.g., server 90) coupled to the network.

[0151] For example, in a measurement application, a
server at National Instruments may store or host various
measurement applications or programs that can be used by
any user, or registered users. The user may choose to connect
to a server and view icons corresponding to the programs,
applications, or projects present on the server, and incorpo-
rate these program icons (or application or project icons)
into the configuration diagram using graphical association
techniques described herein. The user may purchase a pro-
gram by dragging and dropping a program icon from a
palette displayed by the server 90 onto the user’s configu-
ration diagram. The user may be required to submit payment
to purchase programs from a third party server. As described
above, the user may also choose to connect to a server for
programmatic generation of programs.

[0152] The user may also create one or more programs
which perform a desired function within the distributed
system using the configuration diagram. For example, the
user may create a graphical program which communicates
with one or more measurement devices by dragging and
dropping corresponding device icons into the graphical
program diagram (or user interface). As one example, the
user may open a LabVIEW block diagram and create a
While loop structure. The user may then drag and drop
device icons corresponding to sensors into the While loop
structure. This may cause the graphical program diagram to
be configured to access these sensors and read data produced
by these sensors. This operation is described with respect to
FIGS. 26 and 27A-E. The user may also drag and drop
icons representing data points or I/O channels into the
graphical program diagram (or user interface) to configure

May 29, 2003

the graphical program to access (read or write) these data
points or I/O channels. Programs may also be created and/or
modified in response to other actions performed by the user,
as described herein.

[0153] In step 206 the system may display an iconic
relationship view of the various programs, e.g., graphical
programs, present within the system. The iconic relationship
view may comprise icons (“program icons”) representing
various programs, wherein the program icons may be
arranged and/or interconnected with links to indicate their
relationship. The program icons may be arranged proximate
to, and/or connected by a link to, the respective device icons
corresponding to the devices in which the programs are
stored. This may visually indicate which programs are stored
on which devices. Alternatively, the iconic relationship view
of the various programs may be displayed separately without
the device icons. The iconic relationship view may comprise
an object-oriented view, a hierarchy view, a tree view, a data
flow view, an execution flow view, a control flow view, or
combinations thereof.

[0154] Thus, in the case of a program which is configured
as a hierarchy of a main program and one or more sub-
programs, the system may display a hierarchy view com-
prising an icon representing the main program and an icon
representing each of the one or more sub-programs. The
relationship view may also display connections or links
between the program icons. In the hierarchy view, the
program icons are arranged and are preferably connected to
visually indicate the hierarchy. In the case of a plurality of
software objects configured to invoke methods and trigger
events on each other, the system may display an object-
oriented view comprising an icon representing each of the
programs, and possibly connections indicating the method
invocation and/or event messaging. In the case of a graphical
program which is configured as a hierarchy of a main
graphical program and one or more sub-graphical programs
(e.g., a main VI and one or more sub-VIs), the system may
display a hierarchy view comprising an icon representing
each of the main graphical program, an icon representing
each of the one or more sub-graphical programs, and con-
nections between the program icons to visually indicate the
hierarchy. An example of a hierarchy view of graphical
programs is shown in FIGS. 15-20 and 21B. This allows the
viewer to easily view the programs present in the system
which may be used in configuring the distributed system. In
another embodiment, the program icons resident in a device
may simply be displayed, without any type of relationship
view.

[0155] The iconic relationship view of the various soft-
ware programs may be displayed in a separate window on
the display, or may be displayed in the configuration dia-
gram. For example, where most or all of the programs are
initially comprised in the main computer system 82, the
program icons may be displayed in the configuration dia-
gram proximate to the device icon (or shown connected to
the device icon) corresponding to the main computer system
82, or in a separate window to avoid cluttering the configu-
ration diagram. In one embodiment, the user can select
various views of the configuration diagram, as described
herein.

[0156] In step 206 the system may also display an iconic
relationship view of the various devices present within the

US 2003/0101022 Al

system. For example, the user may choose a menu option,
such as shown in FIG. 18, to display the caller/callee
relationships between different devices present in the dis-
tributed system.

[0157] In one embodiment, the program icons may be
visually displayed indicating an association with respective
device icons representing respective devices in which the
programs are stored and/or executed. For example, the
program icons may be visually displayed proximate to
respective device icons representing respective devices in
which the programs are stored and/or executed. It should be
noted that as used herein, the term “proximate™ refers to
being on or near an item, e.g., an icon, i.e., if a first icon is
displayed proximate to a second icon, the first icon is
sufficiently close to the second icon such that the user would
presume or understand an intended relationship between the
two icons. Thus, a program icon may be located proximate
to a device icon to represent the fact that the corresponding
program is stored and/or executed on the corresponding
device. In another embodiment, link icons may be displayed
coupling the program icons with the respective device icons.
Other graphical techniques associating the program icons
with the respective devices are also contemplated.

[0158] In step 208 the user may graphically configure
program deployment and/or invocation using the configu-
ration diagram. The user may graphically configure program
deployment and/or invocation by providing graphical user
input to the configuration diagram to associate (e.g., drag
and drop), icons with other icons, change connections
between icons, etc.

[0159] For example, in one embodiment the user may
select various program icons, €.g., graphical program icons,
from the relationship view (within or outside the configu-
ration diagram) and associate (e.g., drag and drop) them with
various device icons contained in the configuration diagram.
The user may also select a program icon and associate the
program icon with another program icon in the configuration
diagram. This may cause a deployment of a program to
another device, or may configure a program invocation
relationship (caller/callee relationship) between programs,
or may cause another type of operation. For example, the
operation of associating program icons with device icons (or
other program icons) in the configuration diagram may
operate to deploy, either immediately or when the use selects
“apply”, the respective programs on the various devices
which correspond to the device icons.

[0160] Deploying a program may comprise: 1) moving the
program from a first device to a second device (where the
program is deleted from the first device), 2) copying the
program from a first device to a second device (where the
program remains stored on the first device), 3) transferring
or moving the program from a first device to a second device
for remote execution on the second device, wherein the
program moved to the second device is invoked for execu-
tion by a program on the first device, and wherein at least
one program on the first device may be configured or
modified to invoke the moved program on the second
device; 4) transferring remote execution of the program
from a first device to a second device, wherein the program
is originally to be remotely invoked on the first device, and
after the operation the program is remotely invoked on the
second device, wherein the remote invocation is performed

May 29, 2003

by a program or application on a different device, such as the
main computer system (FIG. 11); or 5) creating a call or
invocation in a program on the second device to invoke the
program on the first device, wherein the program remains on
the first device, and at least one program on the second
device may be configured or modified to invoke the program
on the first device (FIG. 12). Further details of the deploy-
ment of programs on various devices is described with
respect to the flowcharts of FIGS. 9-12 and the screen shots
of FIGS. 15-20. Various other deployment operations are
also contemplated.

[0161] As another example, in one embodiment the user
may draw a link or connection between two program icons
to configure an invocation relationship between the program
icons. For example, the user may position a pointing device
at a first program icon and draw a link from the first program
icon to a second program icon. The displayed link may
include an arrow or other graphical means to indicate the
direction of the invocation, i.e., that the first program icon is
invoking the second program icon, and not vice versa. This
operation of drawing the link between the first and second
program icons may operate to modify the first program
represented by the first program icon to invoke the second
program represented by the second program icon. In one
embodiment, the source code of the first program may be
displayed, or a GUI may be displayed, so that the user can
more precisely configure where and how the first program
invokes the second program.

[0162] The user may also select an existing link or con-
nection displayed between two program icons and may
associate (e.g., graphically modify or drag and drop) the end
of one link to a different program icon to change an
invocation relationship among the programs. For example,
the configuration diagram may initially display a link con-
necting a first program icon with a second program icon,
indicating that a first program represented by the first
program icon invokes a second program represented by the
second program icon. The user can select the end of the link
proximate to the second program icon and graphically move
or drag this end of the link to a third program icon to
configure the first program to invoke a third program rep-
resented by the third program icon.

[0163] As another example, the user may select a device
icon, or an icon representing a data point or I/O channel, and
associate (e.g., drag and drop) the device icon with a
program icon in the configuration diagram. This may be
used in creating a program, e.g., may cause the creation of
code in the program to access the device, data point, or I/O
channel. For example, an icon representing a device, data
point and/or I/O channel may be associated with or dropped
in the source code or user interface of a program, e.g., the
block diagram or front panel of a graphical program. This
may cause various operations to be performed, as described
below.

[0164] Various other operations using the configuration
diagram are also contemplated.

[0165] The term “associate” used herein generally means
or includes some type of user input that is provided to
indicate that one icon should be associated with another
icon. Each icon may be a device icon, program icon, a link
(link icon) displayed between device icons and/or program
icons, a data point icon, an I/O channel icon, or another icon

US 2003/0101022 Al

that represents an element in the system. The term “associ-
ate” includes various types of graphical techniques, such as
drag and drop techniques, and use of graphical user interface
elements, such as menus, dialog boxes, etc. The term “asso-
ciate” also encompasses the use of speech recognition
techniques to indicate that one icon should be associated
with another icon.

[0166] The “association” may indicate that some relation-
ship should be established between the two icons (a rela-
tionship between programs and/or devices represented by
the icons, e.g., an invocation or caller/callee relationship,
etc.), or that some operation should be performed (e.g.,
deployment of a program, creation or modification of a
program, etc.).

[0167] As noted above, the operation of associating icons
with other icons, e.g., associating program icons with device
icons (or other program icons), in the configuration diagram
may be performed with “drag and drop” techniques, menu-
based techniques, dialog box techniques, speech recognition
techniques, or other techniques. The “drag and drop”
method may comprise the user selecting an icon (device
icon, program icon, link icon, etc.) with a pointing device
(e.g., a mouse) and dragging the icon on the display to be on
top of or proximate to another icon, such as another device
icon, program icon, or link icon. Drag and drop techniques
are well known in the art. Other similar graphical input
techniques may also be used.

[0168] As one example, the operation of associating pro-
gram icons with device icons in the configuration diagram
may operate to deploy, or cause to be deployed, the respec-
tive programs on the various devices which correspond to
the device icons. Stated another way, if the user selects a first
program icon and associates (e.g., drags and drops) this first
program icon on to a first device icon which represents a first
device, and the user optionally selects “apply”, this operates
to deploy a first program corresponding to that first program
icon on to the first device which corresponds to that first
device icon. The “drag and drop” method may comprise the
user selecting the first program icon with a pointing device
(e.g., a mouse) and dragging the first program icon on the
display to be on top of or proximate to the first device icon.
This provides a greatly simplified mechanism for deploying
programs on various devices in a distributed system. Further
details of the deployment of programs on various devices is
described with respect to the flowcharts of FIGS. 9-12 and
the screen shots of FIGS. 15-20.

[0169] In step 210 the configuration diagram may be
updated as the user performs iconic operations, such as the
deployment operations discussed above. Thus the configu-
ration diagram may display an updated iconic relationship
view of the distributed programs and distributed devices as
the user associates (e.g., drags and drops) the program icons
on the device icons, the program icons on other program
icons, the device icons on other device icons, etc. For
example, as the user drags and drops program icons (e.g.,
from the configuration diagram) on to various device icons
on the configuration diagram in step 208, the system may
operate to display the updated relationship (e.g., hierarchy)
of programs proximate to, e.g., underneath, the respective
device icon to where they have been deployed. For example,
FIGS. 15-20 illustrate a configuration diagram which shows
a main graphical program 402 and four sub-graphical pro-
grams 404A-D at the next level of the hierarchy.

May 29, 2003

[0170] In one embodiment, when the user associates pro-
gram icons with various device icons contained in the
configuration diagram, the configuration diagram is imme-
diately updated accordingly, but this operation of associating
does not operate to deploy programs at that time. Rather, the
user may be required to select an “apply” feature for the
deployment to actually occur. This allows the user to view
various configuration diagram options before a deployment
actually occurs. In another embodiment, the system may
provide a configuration diagram preview window where the
user can view proposed changes to the configuration dia-
gram prior to these changes being made in the actual
configuration diagram. In another embodiment, the configu-
ration diagram (and/or the preview window) may support
multiple levels of undo/redo, thereby allowing the user to
“back out” changes that have been made.

FIG. 7—Creating a Configuration Diagram

[0171] FIG. 7 is a flowchart diagram illustrating an exem-
plary embodiment of operation of creation or assembly of a
configuration diagram representing a system.

[0172] As shown in FIG. 7, a developer or user may
assemble or create (and/or a software program may create)
a configuration diagram which includes device icons that
represent devices in the distributed system. The configura-
tion diagram may also include program icons that represent
programs in the system. The configuration diagram may
further include other icons or elements, such as links dis-
played between device icons and/or program icons, icons
representing I/O channels, icons representing data points or
tags, and icons representing other elements in the system,
e.g., named configurations (such as named channels) etc.

[0173] Thus, in a distributed system which comprises two
or more devices connected to each other, such as through a
network, a serial or parallel bus, or through wireless means,
etc., the user or system may create or assemble a configu-
ration diagram which includes a device icon for each of the
devices present in the system, program icons created for
programs resident in the devices, and icons representing I/0
channels, data points, named configurations etc. The con-
figuration diagram may at least partially (or completely) be
automatically or programmatically created. For example, the
configuration diagram may be created by software executing
on the computer system 82 which is part of the system, or
the configuration diagram may be created by software
executing on a separate server computer 90 which analyzes
the system and generates the configuration diagram for the
computer system 82.

[0174] In step 222 the computer system 82 may display a
graphical user interface, such as a configuration dialog,
which may be useful in creating a configuration diagram. An
exemplary configuration dialog is shown in FIG. 14. The
configuration dialog may have various appearances, and
FIG. 14 is an exemplary embodiment. The configuration
dialog may include various tabs, may include the ability to
discover or manually add new devices, and may visually
display the various devices present (or “virtually present”) in
the distributed system. The configuration dialog may include
the ability to discover or manually add new programs, and
may visually display the various program present (or “vir-
tually present”) in the distributed system. The configuration
dialog may also include the ability to discover or manually

US 2003/0101022 Al

add I/O channels, data points, or other items relevant to the
system. In one embodiment where the configuration diagram
is mostly or completely automatically or programmatically
created, the configuration dialog may not be displayed.

[0175] Instep 224 the computer system 82 may automati-
cally or programmatically detect devices coupled to the
computer system 82 and/or programs present in the system.
For example, Plug & Play software executing in the com-
puter system 82 may have previously (such as at system boot
time) automatically detected Plug & Play devices and/or
programs. Plug & Play software may also be invoked from
the configuration dialog. Other application programs execut-
ing in the computer system 82 may also automatically detect
devices present in the distributed system, and may be
optionally invoked from the configuration dialog. For
example, the Measurement and Automation Explorer
(MAX) software program from National Instruments may be
used to automatically detect measurement and automation
devices (such as those shown in FIGS. 2A, 2B and 3) and/or
programs present in the distributed system. Software may
also automatically or programmatically detect other ele-
ments in the system, such as I/O channels, data points,
named configurations, etc.

[0176] In one embodiment, a server (e.g., server 90) may
access the system (e.g., computer system 82) over a network
and automatically or programmatically detect elements in
the system, such as devices coupled to the computer system
82, connections between devices, programs resident in the
system, program relationships, I/O channels, data points,
and possibly other elements. For example, a server 90 at
National Instruments may access a user’s computer system
82 at a remote location and, optionally with the user’s
permission, detect devices and programs installed in the
user’s system and cause a configuration diagram to be
displayed on the display of the user’s computer system 82.

[0177] In step 226 the user may manually specify one or
more devices, such as undetected devices. Thus, for those
devices that were not automatically detected, the user may
be required to manually specify these devices. In one
embodiment, all devices present in the distributed system
are automatically detected, and thus no manual specification
is required. In step 226 the user may also manually specify
one or more programs, such as undetected programs. The
user may also manually specify other elements.

[0178] In step 226 the user may also specify one or more
non-present or “virtual” devices or programs. Thus, for
those devices or programs which the user desires to be
present in the distributed system, but which are not actually
currently physically present, the user may include a “place-
holder” by creating a “virtual device icon” or “virtual
program icon” that represents the non-present device or
program, respectively. Virtual device icons and/or virtual
program icons may also be automatically or programmati-
cally generated. For example, the user may provide input
indicating the desired operation of the system represented by
the configuration diagram, and the software may automati-
cally display a virtual device icon or virtual program icon
representing a device or program, respectively, that the
system may require to perform the desired operation. Thus
software may display suggested device or program icons
based on the task requirements entered by the user. Virtual
device/program icons are described further below.

May 29, 2003

[0179] In step 228 the user may select one or more
devices, programs, and/or other elements for the distributed
system. In other words, the user may select one or more
devices, programs, and/or other elements to be not included
in the distributed system shown in the configuration dia-
gram. For those elements (devices, programs, etc.) that are
selected to not be included, corresponding icons (device
icons, program icons, etc.) may not appear in the configu-
ration diagram, or may have an altered appearance, e.g., be
“grayed out” or may be shown in a separate window.

[0180] For example, for those devices that are not selected
(or are selected to not be included), corresponding device
icons may not appear in the configuration diagram, or may
have an altered appearance. This feature may be used in
situations where there are devices coupled to the computer
system 82, but the user does not desire to use these devices
at the present time. Thus the user can choose to deselect
these devices so that corresponding device icons will not
appear in the configuration diagram. This helps to prevent
cluttering the configuration diagram with device icons cor-
responding to unused or undesired devices. In an alternate
embodiment, device icons corresponding to unused or
undesired devices may appear in a separate palette of the
configuration diagram so that they do not clutter the con-
figuration diagram, yet the user is reminded of their pres-
ence. In another embodiment, device icons corresponding to
unused or undesired devices may appear in the configuration
diagram, but these device icons may be “grayed out” or have
a different appearance to indicate they are not being used. In
a similar manner, for programs that are not selected to be
included, corresponding program icons may not appear in
the configuration diagram, or may have an altered appear-
ance. Non-selected program icons may appear in a separate
palette. This also helps to prevent cluttering the configura-
tion diagram with program icons corresponding to unused or
undesired programs.

[0181] Inone embodiment, all detected devices, programs
and other elements are displayed in the configuration dia-
gram, and thus user selection in step 228 may not be
performed.

[0182] In step 230 the computer system 82 may display a
configuration diagram including device icons, program
icons, and possibly other elements. In one embodiment, the
configuration diagram includes device icons corresponding
to all detected devices. Alternatively, the computer system
82 may display the configuration diagram with only the
devices selected in step 228. As described above, the device
icons each preferably have an appearance that visually
indicates the type of device. The configuration diagram may
display connections between the various device icons to
visually indicate how the devices are coupled to each other.
These connections may be automatically displayed, or cre-
ated by the user, or both. As described above, the connec-
tions displayed between the devices may each have an
appearance that visually indicates the type of connection.
The configuration diagram may also include program icons
corresponding to programs, as well as other elements
described herein.

[0183] Inoneembodiment, the configuration diagram may
present different views, such as an entire system view, a
subsystem view, an individual device view, a program
relationship view, etc. Thus the user can select different

US 2003/0101022 Al

options to display the configuration diagram with different
views or different levels of granularity. Example configura-
tion diagrams are shown in Figures FIG. 21A and 21B, as
well as in other Figures.

[0184] FIG. 21A illustrates an exemplary configuration
diagram comprising a plurality of device icons. Certain of
the device icons represent computer systems, such as a
“Data Mining” computer, a “Measurement Server”, etc.
Certain of the device icons represent measurement or auto-
mation devices, such as a GPIB instrument, Fieldpoint
Toaster, etc.

[0185] As noted above, the configuration diagram may
include device icons that represent the various devices in the
distributed system. Each of the device icons preferably has
an appearance which corresponds to the device it represents.
Thus, a computer system 82 may be represented by a device
icon that has the appearance of a computer system. In a
similar manner, other device icons may have an appearance
which is similar to the appearance of the device it represents.
This allows the viewer to easily view and understand what
devices are present in the distributed system.

[0186] In another embodiment, a program stored on a
device may optionally be represented by a device icon. This
may be desirable where a certain program performs a
“device-like” function. In another embodiment, a non-
present device may have a device icon (virtual device icon),
and the functionality of the non-present device may be
simulated by a program executing on the main computer
system or another device.

[0187] The configuration diagram may include connec-
tions (“connection icons”) such as lines, that are displayed
between the various device icons to show the interrelation-
ship or coupling between the respective devices. In one
embodiment, the connections that are displayed may be
context sensitive to indicate the type of interconnection or
interface (e.g., bus type), and/or the type of data or phe-
nomena being provided between the devices.

[0188] The displayed connections between device icons
may correspond to couplings between the plurality of
devices. In one embodiment, the displayed connections
between respective device icons may have an appearance to
visually indicate a type of connection between the devices
corresponding to the respective device icons. For example,
the displayed connections may have an appearance that
varies according to one or more of color, size or shading to
indicate the type of connection between the devices. The
appearance of the respective connections may indicate
whether the connection is a network connection, internal bus
connection, external parallel bus connection, external serial
bus connection (e.g., USB or IEEE 1394) or a wireless
connection. The appearance of the respective connections
may also, or instead, indicate the type of data or material
flow between devices. In another embodiment, the configu-
ration diagram may include labels displayed proximate to
the connections to visually indicate types of connection. The
displayed connections or displayed information may also
operate to indicating cabling or connection requirements, or
recommend cabling or connection types between devices.

[0189] In a measurement application, the device icons
may represent the various measurement devices present in
the system, such as those shown in FIGS. 2A, 2B and 3. For

May 29, 2003

example, there may be device icons present for any one or
more of the various measurement or automation devices
shown in FIGS. 2A, 2B and 3. Thus, as one example, where
a computer system is coupled to a PXI chassis that includes
a plurality of PXI instrument cards comprised in the chassis,
the configuration diagram may include a device icon which
represents the computer system, and a device icon which
represents each of the respective PXI instruments comprised
in the PXI chassis. The configuration diagram may also
optionally include a device icon which represents the PXI
chassis, with further device icons comprised in or proximate
to the PXI chassis device icon representing each of the
respective PXI instrument cards. As another example, where
one or more smart sensors are present in the measurement
system, device icons may be present which represent each of
the various smart sensors. In a machine vision application,
device icons may be present for a host computer system 82,
an image acquisition board 134, and a camera 132, which
may be a smart camera as desired. Thus, the configuration
diagram graphically displays a plurality of device icons
which represent the devices that are present in the system,
for which the user is desiring to configure or create an
application.

[0190] Instep 232 the user may manually or automatically
arrange the various icons on the configuration diagram. For
example, the configuration diagram may include an “auto-
arrange” feature which automatically arranges the device
icons and/or program icons to improve the appearance of the
configuration diagram. The user may also manually arrange
the device icons and/or program icons on the configuration
diagram as the user desires.

[0191] In one embodiment, one or more of the devices
may communicate geographic location information indicat-
ing the geographic location of the device. For example,
where the distributed system includes a first computer
system or other device located in Austin, Tex. and a second
computer system or other device located in San Jose, Calif.,
each of these devices may communicate their geographic
location information. The user may optionally select a
feature which causes the geographic location of each device
(or a selected subset of devices) to be displayed on the
configuration diagram. This enables the user to more readily
understand the distributed system.

[0192] The configuration diagram may include a “device
view” that only shows interconnected device icons. The
configuration diagram may also include a “program view”
that shows program icons. The program view may show
only program icons, or may show the program icons proxi-
mate the respective device icons on which they are stored.
As discussed above, in steps 204 and 206 one or more
existing or created programs may be displayed in a relation-
ship view in the configuration diagram. The program icons
may be displayed proximate to (e.g., under) and/or con-
nected to the device icon on which they are stored or located
(deployed). For example, programs that are stored on the
main computer system 82 are displayed proximate to the
main computer system device icon. Alternatively, as men-
tioned above, the configuration diagram may support a
program relationship view that displays only program icons,
without device icons. Links may be displayed between the
program icons to indicate invocation (caller/callee) relation-
ships.

US 2003/0101022 Al

[0193] Where the plurality of programs are configured to
execute according to a specified relationship, the plurality of
program icons may be displayed on the display according to
the specified relationship. The plurality of program icons
may thus be displayed to visually indicate the specified
relationship of the plurality of programs, e.g., according to
their corresponding relationship or program execution hier-
archy. FIGS. 15-20 and 21B show a configuration diagram
with program icons arranged in a program execution hier-
archy.

[0194] As shown in FIG. 8, in one embodiment in step
236 the user may select a device icon (e.g., by double
clicking or right clicking on the device icon). This may cause
certain actions to occur, or a menu may open with different
selections. For example, in step 237 the program icons
corresponding to the programs comprised on or deployed on
the device may be shown. As noted above, the program icons
corresponding to the programs comprised on or deployed on
the device may be shown proximate to the respective device
icon, e.g., under the device icon, and/or connected to the
device icon, as shown in FIGS. 15-20 and 21. Alternatively,
the user may select a feature to show the program icons
corresponding to all of the device icons. The configuration
diagram may initially also display various program icons
that are stored with each of the various devices.

[0195] As another example, the user may select a device
icon in step 236 to view various other elements contained in
the respective device in step 238, such as I/O channels, data
points, named configurations, and programs stored in or
deployed on the device.

[0196] Therefore, in one embodiment, the configuration
diagram may be automatically or programmatically created
by the computer system 82 based on an automatic detection
of devices coupled to the computer system 82. In another
embodiment, the computer system 82 may automatically or
programmatically create a first portion of the configuration
diagram for devices that it detects as being coupled to or
comprised in the computer system 82, and the user may
optionally create a second portion of the configuration
diagram for devices that could not be detected by the
computer system 82 through automatic means, and/or which
include virtual devices that are not physically present.

[0197] The computer system 82 preferably stores the
configuration diagram, e.g., data structures (which may be
referred to as configuration data) corresponding to the
configuration diagram. This configuration data may be saved
in memory and reloaded on the system 82 or on other
devices.

[0198] Connecting Device Icons

[0199] In one embodiment, the user can use a wiring tool
to connect two device icons, similarly to the wiring tool used
in LabVIEW. This may cause a connection, e.g., a wire, to
appear between the device icons to indicate that the devices
are coupled to each other. As noted above, connections
between two device icons may also be displayed automati-
cally. In one embodiment, the connection that is displayed
between two device icons is context sensitive. In other
words, the connection that is displayed or created on the
display has a context or appearance that is associated with
the types of devices that are being connected, the type of
physical interface (e.g., bus type), and/or the type of data or
information flow between the devices.

May 29, 2003

[0200] For example, where the link icon indicates the type
of physical interface, when the user connects two device
icons representing first representing first and second devices,
the method may examine the interface type supported by the
first and second devices and generate a connection or link
between the two device icons having an appearance corre-
sponding to the interface type or bus type being used.
Alternatively, the user may select a link or connection from
a palette based on the type of devices that the user desires to
connect.

[0201] For example, where the link icon indicates the type
of information flow, if the user is connecting a device icon
representing a laser to a device icon representing a mirror or
other optical device, when the user associates the first device
icon with the second device icon (e.g., by clicking on the
first device icon and dragging the cursor to the second device
icon to create the connection), the configuration diagram
may automatically draw a laser beam connection, ie., a
connection icon which has the appearance of a laser beam or
optical signal. This visually indicates to the user the type of
data or signals that are being passed between the devices.
Alternatively, in a measurement, automation or simulation
application, when the user connects a tank icon representing
a tank to, for example, a valve icon representing a valve, the
diagram may automatically draw the connection with the
appearance of a pipe to visually indicate to the user the type
of signals, data or phenomena that is being transferred
between the devices.

[0202] In one embodiment, the configuration diagram is
operable to perform type checking of connections between
device icons. For example, if the user attempts to connect a
PCI device to a USB device, the method may determine that
the devices are incompatible and generate an error indica-
tion, such as a broken connection. As another example, if the
user attempts to connect a tank icon to a laser icon, the
configuration diagram may perform type checking and
determine that the two device icons are incompatible types
that cannot share the same physical phenomena.

[0203] However, if the user is connecting a first device
icon to a second device icon to deploy a program or indicate
program invocation, then type checking may not be per-
formed, i.e., may be unnecessary.

[0204] Virtual Device Icons

[0205] As described above, the user may create a “virtual
device icon” or “virtual program icon” that represents a
non-present device or program, respectively. Virtual device
icons and/or virtual program icons may also be automati-
cally or programmatically created. For example, virtual
device icons and/or virtual program icons may be automati-
cally created for devices or programs that are purchased by
user, wherein the virtual icons are displayed and used in the
configuration diagram until the actual device or program is
received and installed. For example, where the user pur-
chases a device from a server computer 90, the server 90
may provide a virtual device icon to be temporarily dis-
played in the user’s configuration diagram until the actual
device is received and installed. In one embodiment, simu-
lation code may be created or used to simulate operation of
the virtual device until the physical device is installed.

[0206] In one embodiment, from the user’s perspective,
programs can be deployed to virtual devices (a program icon

US 2003/0101022 Al

deployed to a virtual device icon) just as if the device was
physically present. The program is not actually deployed or
transferred to a virtual device until the corresponding physi-
cal device is added to the distributed system. When this
occurs, the new device may be automatically detected, the
new device may be correlated with the previously created
virtual device, and programs that have been previously
“deployed” to the virtual device by the user in the configu-
ration diagram may now be physically or actually deployed
to the real or physical device that has been installed. When
a program is automatically deployed to a device icon, the
configuration diagram may be animated to visually indicate
to the user the deployment operation that is occurring to the
newly installed device. For example, when a program is
automatically deployed from the main computer system 82
to a first device, the corresponding program icon may be
animated on the configuration diagram to “flow” from the
computer system device icon to the first device icon corre-
sponding to the first device.

[0207] In a similar manner, a virtual program may be
deployed to a device just as if the program was actually
installed. For example, a virtual program icon that represents
a hardware configuration program may be deployed to a
device that includes a programmable hardware element. A
virtual program icon may be used in the instance where the
actual hardware configuration program is in the process of
being compiled and is not yet ready for deployment. In one
embodiment, the operation of the hardware configuration
program may be simulated by software executing on the
computer system until the hardware configuration program
has been compiled and deployed.

[0208] In another embodiment, where a user specifies a
non-present or “virtual” device, or attempts to deploy a
program to a non-present or “virtual” device, the method
may optionally use another “present” device as a stand-in.

FIG. 9—Deploying a Program on a Device

[0209] FIG. 9 is a flowchart diagram illustrating operation
of graphically deploying a program on a device. The method
of FIG. 9 can be used to distribute an application among a
plurality of devices in a distributed system, wherein the
application comprises one or more programs. The method
executes on a first computer system, such as computer
system 82, which includes or is coupled to a display for
displaying the configuration diagram. In one embodiment,
the configuration diagram may be shown on client computer
82 and the method may execute on server computer 90,
which displays the configuration diagram on the client
computer 92.

[0210] 1t presumed that the configuration diagram (or
another window) displays one or more program icons,
preferably a plurality of program icons, wherein each of the
program icons corresponds to at least one program in the
application. The configuration diagram also displays one or
more device icons on the display, wherein each device icon
corresponds to a device in the system. Each device may be
coupled to the first computer system 82 in some manner, or
may be a virtual device as described above.

[0211] In step 242 the user associates a first program icon
of the plurality of program icons with a device icon in
response to user input, wherein the first program icon
corresponds to a first program in the application. The device

May 29, 2003

icon represents a device in the system. For example, the
device icon may correspond to a remote device in the
distributed system, i.e., a device other than the main com-
puter system 82. In the preferred embodiment, associating
the first program icon with the device icon in response to
user input comprises “dragging and dropping” the first
program icon on to the device icon. This may comprise the
user selecting a program icon on the display in the configu-
ration diagram with a pointing device, such as a mouse, and
dragging and dropping the program icon on to a device icon.
The concept of “dragging and dropping” icons is well
known in the computer arts. The user may also associate the
first program icon with the device icon using speech recog-
nition techniques. For example, the user might say “associ-
ate program A with device B” or “deploy program A on
device B” to cause the association. Other types of user input
to create the association are also contemplated.

[0212] The step of associating (e.g., dragging and drop-
ping) the first program icon with the device icon may include
receiving further user input (e.g., a modifier) in step 244
indicating a certain operation. The type of operation may
include moving the program; copying the program; deploy-
ing the program for remote execution (steps 254 and 256);
changing the location of remote execution of a program
from a first device to a second device (FIG. 11) or creating
a call or invocation to the program (FIG. 12) without
moving the program. The step of associating may also have
a default mode, e.g., that the first program is to be deployed
on to the device for remote execution. Further user input
may be provided by the user if a different operation than the
default mode is desired.

[0213] This further user input may comprise the user
pressing a key on the keyboard during the drag and drop
operation performed in step 242. For example, in one
embodiment, when the user drags and drops the first pro-
gram icon on to the device icon without pressing a key on
the keyboard, the first program corresponding to the first
program icon is copied to the device, but is not deployed for
remote execution. When the user drags and drops the first
program icon on to the device icon while pressing a key on
the keyboard (e.g., the ALT key), the first program corre-
sponding to the first program icon is copied to the device and
deployed for remote execution. In another embodiment,
when the user associates (e.g., drags and drops) the first
program icon on to the device icon, a dialog box or menu
appears which queries the user as to the type of association
the user desires. Speech recognition techniques may also be
used.

[0214] In step 246 the method may convert the program
type of the first program to a different program type sup-
ported by the device, if necessary. In one embodiment, each
program may have a program type, such as executable,
text-based source code (un-compiled), graphical program,
hardware configuration file, etc. In one embodiment, the
method (e.g., the computer system 82) may operate to
automatically convert programs between different device
types to ensure that deployed programs work properly on the
devices to which they are deployed. The conversion method
may involve: determining the first program type of the first
program; determining the one or more program types sup-
ported by the device; determining if the device is incom-
patible with the first program type of the first program; and
converting the first program to a different program type

US 2003/0101022 Al

supported by the device if the device is incompatible with
the first program type of the first program. Step 246 is
discussed in greater detail with respect to the flowchart of
FIG. 9. The conversion method may also display an error if
conversion is not possible.

[0215] Instep 248 the method may load or deploy the first
program on to the device in response to the association
performed in step 242. For example, the method may
transfer or load (e.g., move or copy) the program to the
specified device for later (or immediate) execution. The type
of load or deploy operation in step 248 may be performed
based on the input received in step 244. This transfer step
may utilize any of various standard bus protocols. Where the
source and destination devices are coupled to the Internet,
the transfer may use TCP/IP. Where the source device is the
main computer system 82 and the destination device is a
USB device coupled to the computer system 82, the transfer
may use USB communication (USB packets).

[0216] In one embodiment, the plurality of programs are
configured to execute according to a specified relationship.
For example, the plurality of programs may be configured to
execute according to a specified execution hierarchy. In this
embodiment, the first program may be configured to call one
or more other (e.g., lower level) programs according to the
specified relationship or hierarchy. In this instance, the
deploying step 248 comprises deploying the first program
and the one or more other (e.g., lower level) programs on to
the device. In other words, the respective program selected
by the user in step 242 may be loaded in step 248, and all
programs beneath the respective program in the hierarchy
may be loaded as well.

[0217] Instep 250 the method may display a new program
icon proximate to the device icon after the associating step.
The new program icon may be displayed in response to the
deploying performed in step 248. The new program icon is
preferably a copy of, or has the appearance of the first
program icon proximate to, or connected to, the device icon.
The new program icon (e.g., the copy of the first program
icon) displayed proximate to, or connected to, the device
icon visually indicates that the first program is deployed on
the device. In another embodiment, the method may modify
the device icon after or in response to the deploying step 248
or the associating step 242. The modified device icon
visually indicates that the first program is deployed on the
device.

[0218] Inone embodiment as noted above, the plurality of
programs may be configured to execute according to a
specified relationship (such as a specified execution hierar-
chy), and the first program may be configured to invoke one
or more other (e.g., lower level) programs according to the
specified relationship or hierarchy. In this instance, step 250
comprises displaying the first program icon corresponding to
the first program, as well as program icons corresponding to
the one or more other (e.g., lower level) programs, proxi-
mate to the device icon.

[0219] This is illustrated in FIGS. 15-17. For example,
FIG. 15 illustrates an exemplary configuration diagram
including a hierarchy of program icons 402 and 404A-D and
a device icon 412. The hierarchy of program icons com-
prises a main program icon 402 at the top level of the
program hierarchy and four program icons (“sub-program
icons) 404A-D at the next level of the program hierarchy.

May 29, 2003

When the user associates the program icon 402 with the
device icon 412 (e.g., drags and drops the program icon 402
on to the device icon 412), as shown by the “dotted line”
icon in FIG. 16, the resulting configuration diagram appears
as shown in FIG. 17. As shown in FIG. 17, the program icon
402, as well as the lower level program icons 404A-D are
copied proximate to (e.g., under) the device icon labeled
“Shah”412. This visually indicates that the entire program
hierarchy has been deployed on or copied to the device
represented by the device icon 412. In another embodiment,
the user can configure the deployment where only the
selected program is transferred, and any lower level pro-
grams are not transferred.

[0220] In step 252 the method determines if the action
being performed is a remote invocation. If the action being
performed is simply a copy step, then operation completes,
the copy having been performed in step 248.

[0221] 1If the action being performed is a remote invoca-
tion as determined in step 252, then in step 254 the method
may modify the application to invoke the first program on
the remote device. This may comprise modifying at least one
program in the application to invoke the first program on the
device. Thus, during execution of the application, the appli-
cation is operable to invoke the first program on the device,
wherein the first program executes on the device. Where the
plurality of programs are configured to execute according to
a specified relationship, and where the first program (e.g.,
callee program) is invoked by a second program (e.g., caller
program) according to the specified relationship, step 254
may comprise modifying the second program in the appli-
cation to invoke the first program on the device. If the action
being performed involves associating a program icon from
a source device to a destination device to configure remote
invocation of the program on the destination device from the
source device, then at least one remaining program on the
source device (which may be referred to as the caller
program) may be modified to invoke the program on the
destination device.

[0222] Instep 256 the method may comprise displaying a
new icon (e.g., a modified version of an existing icon) on the
display in the configuration diagram to represent the invo-
cation being performed. This new icon may visually indicate
that the first program is deployed on the device and will be
executing on the device. In other words, this new icon may
visually indicate that the application invokes the first pro-
gram on the device. For example, the new icon may be
displayed in place of the first program icon. In one embodi-
ment, the new icon is a modified version of the first program
icon which visually indicate that the first program is
deployed on the device and will be executing on the device.
For example, the modified version of the first program icon
may comprise modifying the first program icon to include
the appearance of the device icon.

[0223] Forexample, as noted above, FIG. 15 illustrates an
exemplary configuration diagram including a hierarchy of
program icons 402 and 404a-d and a device icon 412. The
hierarchy of program icons comprises a main program icon
402 at the top level of the program hierarchy and four
program icons (“sub-program icons) 404a-d at the next level
of the program hierarchy. When the user associates the
program icon 4044 with the device icon 412 (e.g., drags and
drops the program icon 4044 on to the device icon 412), as

US 2003/0101022 Al

shown in FIG. 16, for the purpose of deploying the program
remotely, the resulting configuration diagram appears as
shown in FIG. 18. As shown in FIG. 18, the program icon
404d is copied under the device icon labeled “Shah”412.
Also the appearance of the original program icon 4044 is
changed to include the appearance of the device icon 412
resulting in new icon 404d1. This visually indicates that the
program 404d in the program hierarchy is deployed on the
device represented by the device icon 412 and will be
executing on the device.

[0224] After programs have been deployed to the various
devices as desired, the application may be executed, as
described with respect to FIG. 13b During execution, a
portion of the application may execute on the main computer
system 82, or another device, and the application may
invoke various programs on various devices in the distrib-
uted system. For example, the application on the main
computer system 82 execution may invoke a first program
that has been deployed on a remote device. The first program
may execute on the device and then either invoke other
devices or return control to the application on the main
computer system 82.

FIG. 10—Converting a Program to a Different
Program Type

[0225] FIG. 10 is a flowchart diagram illustrating more
detail regarding step 246 of FIG. 9. FIG. 10 illustrates more
detail regarding examining the program type of a program
being deployed and ensuring that the program type is
compatible with the device to which it is being deployed. As
described above, the method of FIG. 10 is performed when
a user deploys a program on a device, e.g., when the user
drags and drops a program icon on to a respective device
icon. The method of FIG. 10 may also be performed in
response to other operations preferred by the user, such as an
automatic deployment of a program.

[0226] As noted above, the program icon may represent
any of various types of programs (“program types”) such as
executable (compiled) programs, source code (uncompiled)
programs of various types, graphical programs, hardware
configuration programs (hardware descriptions), etc. The
target device represented by the device icon may be any of
various device types, e.g., may include a processor and
memory or may include a programmable hardware element.

[0227] Inone embodiment, the main computer system 82,
which may be different from the source device which
currently stores the program and the destination device to
which the program is being deployed, may store conversion
software which examines both the type of the program being
deployed and the type of device icon to which the software
program is being deployed. The main computer system 82
may execute this conversion software to automatically con-
vert programs to different types on an as needed basis,
thereby ensuring that the destination device is able to receive
a program having a type that is executable or useable by the
destination device. In another embodiment, one or both of
the source device and the destination (or target) device may
include conversion software for converting programs
between various types.

[0228] In step 260 the method examines the type of
software program being deployed, i.e., whether the software
program is an executable program, uncompiled program,

May 29, 2003

graphical program, software object, etc. The method may
also determine more specific information regarding the
program type. For example, if the software program is an
uncompiled program, the method may determine the type of
source code, e.g., C, C++, Java, etc., to determine the
appropriate compiler, if necessary. If the software program
is a graphical program, the method may determine whether
the software program is a LabVIEW VI, a Simulink dia-
gram, a VEE diagram etc. The method may also determine
different types of hardware configuration programs or files
(hardware descriptions).

[0229] Instep 262 the method examines the type of device
(“device type”) to which the software program is being
deployed, i.e., the type of device represented by the device
icon with which the program icon was associated. The
various types of devices may include devices which include
a CPU with memory, a programmable hardware element,
such as an FPGA, and/or may include respective types of
execution engines or compilers for different software types.

[0230] 1If the program icon has been associated (dragged
and dropped) with or deployed to another program, i.e., (the
destination program icon) the method may examine the
destination program icon in step 262. This may be necessary
to ensure that the destination program corresponding to the
destination program icon can interoperate with the program
being deployed. The method may also examine the destina-
tion device which includes the destination program.

[0231] In step 264 the method determines whether the
device is compatible with the respective program. For
example, if the device includes a CPU and memory and an
appropriate operating system and/or execution software, and
the software program is a conventional executable which
can be executed by the software currently present on the
device, then the device is determined to be compatible with
the program. However, as another example, if the program
is a software program such as a compiled executable or
source code, and the device contains only a programmable
hardware element such as an FPGA, then the software
program would be determined to be incompatible with the
device. As another example, if the program is a graphical
program such as a LabVIEW graphical program developed
in the LabVIEW program development environment, and
the device is a computer system which does not include the
LabVIEW execution environment or LabVIEW run time
system, then the software program would be determined to
be incompatible with the device.

[0232] If the device is determined to be compatible with
the program in step 264, then in step 248 the program is
loaded into the memory of the device or configured on to the
device for later execution. Thus, if the program is a software
program and the device includes a processor and memory
medium, the software program can be loaded into the
memory medium of the device for later execution. As
another example, if the program is a hardware configuration
program or file for configuring a programmable hardware
element such as an FPGA, and the device is, for example, a
smart sensor which includes an FPGA, loading the program
on to the device may comprise configuring the FPGA of the
device with the hardware configuration program. Step 248
was discussed above with respect to the flowchart of FIG.

8.

[0233] If the device is determined to be incompatible with
the program in step 264, then in step 266 the program may

US 2003/0101022 Al

be converted into the appropriate format for the device, if
possible. As one example, if the program is a software
program such as an executable (compiled) program, a
graphical program, a source code program, etc., and the
device includes a programmable hardware element such as
an FPGA, the software program may be programmatically
converted into a hardware configuration program in step
266. As another example, if a program is a particular type of
program which requires a particular execution engine, such
as a LabVIEW graphical program or VI which requires a
LabVIEW execution engine, and the destination device does
not include the LabVIEW execution engine, then the Lab-
VIEW graphical program may be converted into a text based
programming language, e.g., a C program, and then com-
piled into executable format in step 266. As yet another
example, if the program is a hardware configuration program
intended for an FPGA or other programmable hardware
element, and the device to which the program is being
deployed comprises a CPU and memory and does not
include a programmable hardware element, then the hard-
ware configuration program may be converted into a soft-
ware program for execution by the device in step 266. As
another example, if the program is currently in a source code
format, an appropriate compiler may be selected based on
the type of target device, or the type of software present on
the target device.

[0234] In step 248 the converted program is loaded on to
the device. For example, where the main computer system
82 is the source device, the main computer 82 may execute
the conversion program to convert the program to the
appropriate program type, and transfer the converted pro-
gram to the destination device. If the main computer system
82 is not the source device, the program may first be
transferred to the main computer system 82 for conversion,
followed by transferring the converted program to the des-
tination device.

[0235] 1t is noted that the operation of converting the
program into the appropriate format for the device in step
232 and then loading the converted program on to the device
in step 234 may occur invisibly to the user. In other words,
the user may simply drag and drop the program icon on to
the device icon in step 242 and enter other information in
step 244. Steps 246, 248, 250, 252, 254 and 256 of FIG. 8
(and the steps of FIG. 9) may be performed invisibly to the
user. Thus, the user may never know that the program
corresponding to the program icon that the user dragged and
dropped on to the device icon was initially incompatible
with the device, the conversion of the program to the
appropriate format in step 246 having been performed
invisibly to the user.

[0236] In another embodiment, if the device is determined
to be incompatible with the program in step 264, a dialog
may appear alerting the user as to this incompatibility and
asking if the user desires for the conversion to occur. In some
instances there may be a plurality of appropriate formats or
program types for the device. In this instance, the dialog box
may request the user to select which format or program type
in to which to convert the program in step 266. Alternatively,
the user may choose to not complete the deployment due to
the incompatibility.

[0237] In another embodiment, instead of converting the
program to the appropriate type, the method may transfer

May 29, 2003

software, such as an execution engine, to the device to
enable the device to execute the program. For example, if the
program is a graphical program such as a LabVIEW graphi-
cal program developed in LabVIEW, and the device does not
include the LabVIEW execution environment or LabVIEW
runtime system, then the computer system 82 may transfer
the LabVIEW execution engine, e.g., LabVIEW or Lab-
VIEW RT, to the device.

FIG. 11—Association of a Program Icon From a
Source Device to a Destination Device

[0238] FIG. 11 is a generalized flowchart diagram illus-
trating association of a program icon from a first or source
device to a second or destination device. Stated another way,
FIG. 11 illustrates where a program icon corresponding to
a first or source device icon may be associated with a second
or destination device icon, or a program icon of the desti-
nation device icon. The flowchart of FIG. 10 describes
operation where the source device icon may be the main
computer system 82 or a remote device coupled to the main
computer system 82. In a similar manner, the destination
device or second device may be the main computer system
82 or a remote device coupled to the main computer system.

[0239] The flowchart of FIG. 11 is similar to the flowchart
of FIG. 9. However, the flowchart of FIG. 11 further
includes case 4 described above, which involves transferring
remote execution of a program from a first device to a
second device, wherein in each case the program is being
remotely invoked by a third device.

[0240] As shown, in step 242 the user may associate a
program icon from a first source device to a second desti-
nation device. As described above with respect to step 242,
this may be performed using iconic drag and drop tech-
niques.

[0241] In step 244 the user may specify the type of
operation. As described above, this may comprise pressing
a selected key on the keyboard during the drag and drop
operation, using a dialog box before or after the drag and
drop operation, or using speech recognition techniques.

[0242] 1In step 246 the method may convert the program
type of the source or first program to a different program
type supported by the destination device. As described
above with respect to 246 of FIG. 9, where the source and
destination devices are both remote devices, this may
involve the main computer system 82 detecting that a
conversion is needed, reading the respective program from
the source device, performing the conversion to the new
program type, and then sending the converted program to the
destination device in step 248. In another embodiment,
various devices in the distributed system may include the
capability of performing this program type conversion as
desired.

[0243] 1In step 248 the program may be deployed on the
destination device. This may be performed by the source
device directly sending the program or the converted pro-
gram to the destination device. Alternatively, the program
may be routed through the main computer system 82, e.g.,
may be transferred from the source device to the main
computer system 82 and then to the destination device.

[0244] In step 250 a new program icon may be displayed
proximate to the destination device icon in the configuration

US 2003/0101022 Al

diagram to indicate that this program has been transferred or
copied to the destination device.

[0245] Upon completion of step 250, various different
operations may be performed depending on the type of
operation selected by the user. As shown, if the user has
indicated a desire to simply copy the program from the
source device to the destination device then operation com-
pletes, the copy operation having been performed in step
248.

[0246] 1If the user has indicated in step 244 that a remote
invocation from the first remote device to the second remote
device is desired, then in step 254 the method modifies the
caller program on the source device to invoke the callee
program (the program that was transferred in step 248) on
the destination device. In step 256 the caller program icon is
modified on the source device or first device to initially
indicate that the program is being invoked on the second or
destination device. This operation is similar or identical to
operation in steps 254 and 256 of FIG. 9.

[0247] The user may also indicate in step 244 that the user
desires remote invocation of this program from a third
device (e.g., the main computer system 82) to this program
on the second or destination device. In other words, the user
may have previously deployed this program on the source
device, and may later decide to instead have the remote
execution of this program occur on a different device, i.c.,
the destination device instead of the source device. Thus,
instead of the user having to move the program icon corre-
sponding to this program back to the main computer system
device icon and then to the new destination device where
remote execution is desired, the user can simply drag and
drop the program icon for this program from the first or
source remote device to the second or destination remote
device and indicate that the user desires this program to be
called from the main computer system 82 and execute on
this second destination device. In this instance, in step 253
the computer system 82 may determine if it is able to invoke
the program from the destination device. If so, then in step
254A the computer system 82 modifies the application, e.g.,
one of the programs on the application contained on the
computer system 82, to invoke the program on the second
destination device. In step 256A the original program icon,
i.e., the caller program icon proximate to the computer
system device icon is modified to visually indicate that the
program is now being invoked on the second or destination
remote device and is no longer being invoked on the first or
source remote device.

[0248] As noted above, the user may also associate (e.g.,
drag and drop) a program icon from a first device icon to a
second device icon and indicate that the user desires for a
program or application on the second device icon to invoke
the program corresponding to the program icon being asso-
ciated on the first icon. In this situation, as shown in FIG.
12, in step 292 a program or application on the second
device, e.g., one or more programs in the second device,
may be modified to invoke the program that is stored on the
first device. In step 294 the method may modify the original
program icon on the second device to visually indicate that
the program is being invoked on the first device. FIG. 12 is
described further below.

May 29, 2003

FIG. 12—Association of a Program Icon From a
Remote Device to the Main Computer System

[0249] FIG. 12 is a flowchart diagram illustrating asso-
ciation of a program icon from a remote device to the device
icon for the main computer system 82. It is noted that the
flowchart of FIG. 12 can also apply readily to associating a
program icon from a first remote device to the device icon
of a second remote device.

[0250] In one embodiment, the user can select program
icons comprised on a device that is not the main device 82
and associate these program icons with the main device 82
using the drag and drop techniques described above. The
user can select various operations to be performed, as
described below. For example, in step 282 the user can select
a program residing on a remote device and drag and drop the
corresponding program icon on to the device icon of the
main device 82.

[0251] In step 284 the user can select among various
options, e.g., either to 1) move or 2) copy the program to the
main computer system 82, 3) to deploy the program in the
main computer system; 4) to transfer execution from a first
device to a second device; or 5) to cause remote execution
of this program by the programs on the main computer
system 82. This selection may be performed by providing
certain user input, such as holding down a certain key during
the drag and drop operation, or through a dialog box, or
using speech recognition. Here it is presumed that the user
selects option 5. Options 1, 2 and 3 were described above in
FIG. 9 and options 1, 2, 3 and 4 were described above in
FIG. 11.

[0252] 1If the user selects the option to cause remote
execution of this program by the application on the main
computer system 82 as determined in step 286, then steps
292 and 294 are performed. In step 292 the application, e.g.,
one or more programs in the application, may be modified
to invoke the program that is stored on the remote device. In
step 294 the method may modify the original program icon
in the application to visually indicate that the program is
being invoked on the remote device.

[0253] Thus, in this instance, the program on the remote
device is not actually copied to the main device, rather
dragging and dropping the program on the remote device to
the main device icon causes the main device icon to include
a call to this program on the remote device. Thus, when the
main program on the main device executes, a call is made to
this program on the remote device to invoke execution of
this program on the remote device during execution of the
main application program.

[0254] Instep 282 the user can drag the program from the
remote device to a particular program icon in the hierarchy
of program icons displayed on the main device. Thus the
user can select which program in the hierarchy of the main
device 82 will call this program on the remote device. If the
user drags a first program icon from the remote device on to
a second program icon residing on the main device 82 in this
fashion, then in the embodiment of FIG. 12, the second
program is configured to place a call to the first program.
Thus, after the second program (corresponding to the second
program icon) in the main device 82 executes, it places a call
to the first program (corresponding to the first program icon)
on the remote device to invoke execution of this first

US 2003/0101022 Al

program on the remote device. If the user desires to specify
with finer granularity where in a respective second program
on the main device this call should be made, the user may
open up the source code of the second program and specify
the exact location. For example, if the program is a graphical
program, such as a LabVIEW VI, the user may open the
block diagram of the second program (e.g., by right clicking
on the program icon in the configuration diagram and
selecting this option) and then further select a particular
node where this call is to be made. In one embodiment, the
user may drag and drop the program icon from the remote
device on to a particular location (e.g., on to a node or wire)
in the diagram to select where this call is to be made. In one
embodiment, when the user drags a program from a remote
device to a program icon on the main device, and where the
program on the main device is a graphical program, the
graphical program block diagram automatically appears on
the display, allowing the user to easily navigate and place the
call to the program in the calling program.

FIG. 13A—Possible Operations with Program
Icons

[0255] As described above, the system displays the con-
figuration diagram with an iconic view, preferably an iconic
relationship view (e.g., hierarchy view), of the distributed
software programs. The user can select various options
associated with device icons and/or program icons. FIG.
20A illustrates an exemplary screen shot showing a user
selecting options (e.g., by right clicking on the icon) from a
menu associated with a program icon. The follow are
representative examples of operations that may be per-
formed with respect to a program icon.

[0256] In step 360 the configuration diagram is displayed
with an iconic relationship view of the distributed programs.

[0257] In step 362 the user can select a program icon
associated with a device icon, e.g., by right clicking on the
respective program icon. Alternatively, the user may select
a device icon, e.g., by right clicking on the device icon and
then selecting a run option for the device icon.

[0258] In step 364 the user can then select a “run” option
to begin execution of the program that has been deployed on
to the device. If the user has selected a device icon, the user
can select a run option for the device icon. This operates to
begin execution of the top level program, or all of the
programs, that have currently been deployed on the device.
This Run option is shown in FIG. 18.

[0259] In step 368 the user may select an “Open Front
Panel” option to view the front panel or user interface of the
program deployed on or executing on the device. If the
program is not currently executing, selection of this option
will cause the user interface panel(s) or front panel to be
displayed for the program. If the program is currently
executing on the device, and the user selects this option to
view the user interface panel, the user interface panel may
appear wherein the user interface panel may show one or
more of the inputs and/or outputs of the program being
executed. Where the program is executing on a remote
device, i.e., a device separate from the computer system, the
panel or user interface information may be transferred to the
main computer system 82 for display. The data being
received by or generated by the program may be transferred
over a bus or network to the main computer system 82 where

May 29, 2003

the user interface panel is displayed, and the data may
appear in the user interface panel much like the programs
executing directly on the main machine. In one embodiment,
the user may also be able to interactively manipulate input
provided to the program using the user interface panel on the
main program, wherein this user input is received by the
main computer system and transferred to the device where
the program is actually executing. Output produced by the
program in response to this input may then be transferred
back to the main computer system 82 and displayed on the
user interface panel that is being displayed on the display of
the main computer system 82. The “Open Front Panel”
option is shown in FIG. 20A.

[0260] As shown in step 372, the user may also select an
option to cause the program represented by the program icon
to halt execution. This may also cause all programs below
this program in the hierarchy to also halt execution. Alter-
natively, the user may select an option for a device icon to
select a stop or halt menu item, which causes all programs
executing on the respective device to stop execution.

[0261] In one embodiment, the may also select an option
to cause the source code of the program to be displayed. For
example, if the program is a graphical program, then user
selection of this option may cause the block diagram of the
graphical program to be displayed. If the program is a text
based program, such as a C-language program, then user
selection of this option may cause the textual source code of
the program to be displayed. The user may also select
various debugging features to executing on the program.

[0262] Various other operations are possible. For example,
FIG. 20A illustrates a menu which includes options such as
“Highlight Connections”, “Hide All Sub-VIs”, “Show VI
Hierachy”, “Show All Sub-VIs”, “Show All Callers”, “Find
All Instances”, “Edit Icon”, VI Properties”, “Open Front
Panel” (see step 368), “Print Documentation”, “Run” (see
step 362), “CloseVI”, and “Remote Call”.

[0263] Selection of the “Remote Call” feature is shown in
FIG. 20B. As shown, selection of the “Remote Call” feature
may cause the names of other program icons or device icons
to be displayed in a menu. The user may then select the name
of an icon to configure a remote call or invocation. A new
link may then be displayed in the configuration diagram to
visually indicate this remote call. Alternatively, when the
user selects the “Remote Call” feature, program icons or
device icons themselves may be highlighted in the diagram.
The user may then select from among these icons to con-
figure the remote call.

[0264] In one embodiment, if the user drags and drops a
first device icon on to a second device icon, this causes all
programs stored on the first device icon to be copied to or
deployed to the second device icon.

[0265] Inoneembodiment, the configuration diagram may
support an application icon or project icon, wherein the
application icon or project icon represents one or more
programs and possibly other information. For example, the
application icon or project icon may also include or repre-
sent information that specifies how the various programs,
help files, etc. are to be distributed among the various
devices in a system. The configuration diagram may also
support a system icon, wherein the system icon represents a
distributed system comprising a plurality of devices
(wherein each device may have its own device icon).

US 2003/0101022 Al

[0266] The user may associate (e.g., drag and drop) the
configuration icon or project icon on to a system icon,
wherein this causes the various programs to be distributed or
deployed among the devices in the system represented by
the system icon. Information represented by the application
icon may be used in deploying the programs to the various
devices.

FIG. 13B

[0267] FIG. 13B illustrates execution of an application.
As shown, the user can select the top level program icon in
the relationship or hierarchy and begin execution of the top
level program, e.g., by right clicking on the top level
program icon and selecting a “run” feature. Alternatively,
the user can select the device icon and select a “run” feature,
which causes the top level program to begin execution.

[0268] During execution, a portion of the application may
execute on the main computer system 82 in step 382, and the
application may invoke various programs on various devices
in the distributed system in step 384. For example, the
application on the main computer system 82 execution may
invoke a first program that has been deployed on a remote
device. The first program may execute on the device and
then either invoke other devices or return control to the
application on the main computer system 82. In another
embodiment, the main computer system 82 may be used for
configuration only, and the application may execute on
various other devices.

[0269] Where two or more of the programs are configured
for concurrent or parallel execution, such as on different
devices, selecting the “run” option for the top level program
icon and/or the device icon may cause these two or more
programs to begin concurrent or parallel execution.

[0270]

[0271] When a user installs a new program on the main
computer system 82 or on another device in the distributed
system, the new program may be automatically detected,
e.g., by the main computer system 82, and a new program
icon may be automatically displayed on the configuration
diagram displayed on the main computer system 82 corre-
sponding to the new program. The new program icon may be
automatically displayed on the configuration diagram proxi-
mate to, and/or connected to, the device on which the
program has been installed. For example, if the new program
is installed on the first computer system, a new program icon
may appear proximate to, and/or connected to, the first
computer system device icon on the configuration diagram.

Installing New Programs

[0272] Example Configuration Dialog for Assembling a
Configuration Diagram

[0273] FIG. 14 illustrates one embodiment of a configu-
ration dialog for creating or specifying a configuration
diagram. FIG. 14 illustrates a configuration dialog or user
interface panel which is used for detecting or discovering
devices connected within the system. As noted above, the
computer system 82 may act as the central console of the
distributed system, and may operate to execute software
which displays the configuration diagram, as well as the
configuration dialog used in configuring the configuration
diagram.

[0274] The computer system 82 preferably has the ability
to discover devices, e.g., other computers, smart sensors,

May 29, 2003

FPGA devices, or other types of nodes or devices that are
comprised and are coupled to the computer, ¢.g., coupled to
the computer through a network. The system preferably
discovers or detects devices and adds them to the configu-
ration diagram. In one embodiment, one or more of the
various devices may have the capability to report their
presence and device type to the main computer system 82.
For example, various smart sensors may publish their pres-
ence and device type to the main computer system 82.

[0275] Inone embodiment, the system also has the ability
to create virtual devices in cases where the actual device is
not presently available, but the device will be present when
the system executes the application being created. Thus, the
user can create a virtual device for devices that are not
actually present during design time. In one embodiment, a
physical device may be used as a “stand in” device for a
virtual device, wherein the program desired to be deployed
to the virtual device instead is deployed to or executes on the
“stand in” device until a physical device is installed in the
system that corresponds to the virtual device. In another
embodiment, a software program may be used to simulate
operation of a virtual device, i.e., a physical device that is
not present.

[0276] Inone embodiment, as devices or nodes of interest
are added to the user interface panel in FIG. 14, they appear
as devices icons or computing element icons in the configu-
ration diagram. Thus, when the main computer system 82 is
started, devices which are automatically detected may
immediately and automatically appear as device icons in the
configuration diagram. As the user later inputs the presence
of other devices to the configuration dialog, corresponding
device icons may also automatically appear in the configu-
ration diagram. When the user or other party couples a new
device to the distributed system, the new device may be
automatically detected, and a new device icon correspond-
ing to the new device may be automatically displayed on the
configuration diagram.

[0277] In another embodiment, more advanced wizards
may be used to create the configuration diagram. In one
embodiment, a configuration wizard may execute on a
server 90, or on the user’s system 82, where the server 90
also stores a plurality of different programs. The configura-
tion wizard may ask the user a series of questions regarding
desired operation of the system, the hardware devices the
user’s system contains, etc. The configuration wizard may
then automatically create a configuration diagram for the
user and display this configuration diagram on the user’s
display. The configuration wizard may also transfer the
corresponding configuration data to the user’s computer 82.
This configuration data may be executable to automatically
deploy programs on various of the user’s hardware devices.
Alternatively, the server 90 may automatically deploy pro-
grams on various of the user’s hardware devices over a
network.

[0278] Inoneembodiment, the configuration diagram may
support a find or discovery tool. The find tool may support
various filters that the user can configure with logical
expressions in order to locate various devices, programs, I/O
channels, data points, etc. For example, the user can enter
the following “find” expressions:

[0279] Find Only FP2000 or Devices with Al
[0280] Find device that has a tag named . . .

US 2003/0101022 Al

[0281]
[0282]
[0283]
[0284]

IP starts with 130.164.*
Add all RT devices on my subnet. Etc
Find devices on building No 2

Do not show nodes on Building 1

FIG. 15—Deploying Programs and Changing
Invocation Relationships

[0285] FIGS. 15-19 illustrate embodiments of how pro-
grams may be deployed using a configuration diagram. FIG.
32 illustrates an example of deployment of a program to a
target device.

[0286] FIG. 15 illustrates a configuration diagram
(labeled “hierarchy window”) which includes a main pro-
gram icon 412 and four sub-program icons 404A-404D. In
this example, the user has added a computer system on the
network into the configuration panel of FIG. 14 wherein the
name of this computer system is “Shah”. Thus, the configu-
ration diagram appears as shown in FIG. 15 with a device
icon 412 representing the computer system labeled “Shah”.

[0287] As shown in FIG. 16, when the user desires to
distribute an application among various devices, €.g., to
deploy a program on to a device, the user can select a
program icon with a pointing device, and drag and drop the
icon on to a device icon. As shown in FIG. 16, the user has
selected the main program icon 402 and has dragged and
dropped this icon 402 on to the device icon 412. This is
represented by the box outlined with dashed lines shown in
FIG. 16.

[0288] When this operation is completed the main soft-
ware program corresponding to the program icon 402 and all
of the sub-programs within the hierarchy are copied to the
destination device. Also, the program icon 402 and all of the
sub-program icons 404A-D are copied to appear proximate
to (e.g., under) the device icon 412. The configuration
diagram then appears as shown in FIG. 17. Thus, the same
application hierarchy of program icons 402 and 404 A, 404B,
404C and 404D appear below the device icon 412, indicat-
ing that these programs are now deployed on the device
represented by device icon 412.

[0289] As described above, in one embodiment when the
user drags a program icon from the hierarchy of program
icons on to a device icon, this may operate to copy the
underlying program corresponding to the program icon on to
the respective device. Thus, for example, the configuration
window may display a hierarchy of program icons that are
resident on the main computer system. If the user selects the
top level program from this hierarchy and drags this top
level program on to a device icon corresponding to a
different device in the system, this causes the various
programs corresponding to the main program and all pro-
grams below this main program in the hierarchy to be copied
to the respective device. If the user selects a sub-program in
the hierarchy resident on the main computer system and
copies this over to a device, this causes the sub-program and
all sub-programs below this sub-program in the hierarchy to
be copied over to the device. Thus, when the user drags a
program icon to a respective device, this causes the program
corresponding to that program icon and all programs below
that program icon in the hierarchy to be copied to the
respective device.

25

May 29, 2003

[0290] In one embodiment, the user may desire to distrib-
ute parts of an application to different devices in the dis-
tributed system for distributed execution, which also effec-
tively changes the operation of the programs contained on
the original or source device (e.g., the main computer
system) that are being executed. For example, assume the
user desires to deploy a sub-program of a main program on
to a different device for execution. In one embodiment, the
user simply drags the program icon corresponding to the
sub-program from the main program hierarchy on to the
device icon and may further indicate a “deployment for
remote execution” (such as by holding down the ALT key
during the drag and drop operation). This causes the sub-
program to be transferred to the device. This also causes the
main program to be automatically modified to include a call
of the sub-program to the target device to which the program
was deployed. Thus, the high level program in the hierarchy
is automatically modified to include a call to the device to
call or invoke execution of this program on the remote or
target device. The corresponding configuration window
would appear as shown in FIG. 18, wherein the top level
program in the program hierarchy has three sub-program
icons 404A-404C which are resident on the main machine
82, and an icon 404D1 corresponding to the remote device
in the hierarchy indicates that a call is being made to a
remote device during execution.

[0291] One example of this operation is as follows. Pre-
sume an application is measuring the temperature of a tank
and is performing calculations and control as well as logging
data values to a non-volatile memory or disk. If the tem-
perature sensor used in the application is connected to a
different computer system or a different device (device B),
then the user may desire to run the program that measures
the temperature on that separate or remote device (device B).
The user can accomplish this result without requiring
manual modification of the application. The user can simply
drag the temperature program to the different device or
machine (device B). In one embodiment, the user presses the
ALT key while dragging and dropping the sub-program icon
on to the remote device. This causes the temperature pro-
gram to be downloaded to device B. The top level applica-
tion, i.e., the program immediately above this program in the
program hierarchy, is preferably automatically modified to
make a call to this temperature program, which is now
located on device B. Also, the configuration diagram would
appear as shown in FIG. 18. Here, the top level application
is calling the temperature program on the machine referred
to as “SHAH”. It is noted that the user can easily change
where this remote call is made simply by dragging the
program to another device or by using a pop-up menu.

[0292] In one embodiment, the user may also change the
invocation relationship between two (or more) programs by
selecting a link or link icon between two programs and
manipulating or changing one or both ends of the link to
connect one or more different programs. The user can also
draw links between program icons to configure an invoca-
tion relationship between the respective programs.

[0293] For example, FIG. 17 illustrates a program rela-
tionship view of various programs. The program relation-
ship view shows the invocation relationship or caller/callee
relationship between the programs. If the user no longer
desires the program represented by program icon program
4024 to invoke or call the program represented by program

US 2003/0101022 Al

icon 404d2, the user can sclect the link icon 405 and
graphically reconfigure the link icon to be drawn between
program icon 404a and program icon 404d2. For example,
the user may select the end of the link proximate to the
program icon 402ag and drag this end of the link with a
pointing device over to the other program icon 404a, cre-
ating a new link 405a. After this operation, the configuration
diagram would appear as shown in FIG. 19A. As shown,
program icon 4044 is now connected by link icon 4054 to
program icon 404d2, and link icon 405 between program
icons 4024 and 404d2 is no longer displayed. This indicates
that the program represented by program icon 404a is
configured to call the program represented by program icon
40442, instead of the program represented by program icon
4024 being configured to call the program represented by
program icon 404d2.

[0294] If the user had desired both programs represented
by program icons 402a and 404a to call program 404d2, the
user could simply draw a new link between program icon
404a and program icon 404d2. The resulting diagram would
then appear as shown in FIG. 19B. As shown in FIG. 19B,
links are displayed between program icons 4024 and 404d2
as well as between program icons 404a and 404d2.

[0295] Use of the Configuration Diagram with Graphical
Programs

[0296] Where a program icon on the configuration dia-
gram corresponds to a graphical program, the user may
perform various additional operations. Since the graphical
program is itself an iconic program, the user is able to
graphically specify particular locations in the graphical
program or invocation to occur. For example, if the user
desires to choose a specific location in the graphical program
to have a call made to a remote device, this may be
performed graphically within the graphical program. In
other words, if the user desires to choose a particular
function node in the graphical program to make a call or
invoke a program on a remote device (e.g., different com-
puter), or if the user desires to have one or more nodes or
sub-programs in the graphical program execute on a remote
device, this may be easily performed using the block dia-
gram of the graphical program. The user may further incor-
porate device icons or program icons directly into a graphi-
cal program using the graphical association techniques
described herein.

[0297] Creation of a Graphical Program

[0298] A graphical program may be created on the com-
puter system 82 (or on a different computer system). The
graphical program may be created or assembled by the user
arranging on a display a plurality of nodes or icons and then
interconnecting the nodes to create the graphical program. In
response to the user assembling the graphical program, data
structures may be created and stored which represent the
graphical program. The nodes may be interconnected in one
or more of a data flow, control flow, or execution flow
format. The graphical program may thus comprise a plural-
ity of interconnected nodes or icons which visually indicate
the functionality of the program. As noted above, the graphi-
cal program may comprise a block diagram and may also
include a user interface portion or front panel portion. Where
the graphical program includes a user interface portion, the
user may assemble the user interface on the display. As one

May 29, 2003

example, the user may use the LabVIEW graphical pro-
gramming development environment to create the graphical
program.

[0299] In an alternate embodiment, the graphical program
may be created by the user creating or specifying a proto-
type, followed by automatic or programmatic creation of the
graphical program from the prototype. This functionality is
described in U.S. patent application Ser. No. 09/595,003
titled “System and Method for Automatically Generating a
Graphical Program to Implement a Prototype” and U.S.
patent application Ser. No. 09/587,682 titled “System and
Method for Automatically Generating a Graphical Program
to Perform an Image Processing Algorithm”, which are both
hereby incorporated by reference in their entirety as though
fully and completely set forth herein. The graphical program
may be created in other manners, either by the user or
programmatically, as desired. The graphical program may
implement a measurement function that is desired to be
performed by an instrument or measurement device. The
graphical program may also implement an automation func-
tion (including process control), a simulation function, a
network management function, or any other type of func-
tion, as desired.

FIG. 22—Creating the Graphical Program

[0300] FIG. 22 is a flowchart diagram illustrating one
embodiment of a method for creating a graphical program
operable to receive and respond to user interface events. It
is noted that steps in the following flowcharts may occur
concurrently or in different orders than that shown.

[0301] Instep 602, a graphical user interface or front panel
for the graphical program may be created, e.g., in response
to user input. The graphical user interface may be created in
any of various ways, e.g., depending on the graphical
programming development environment used.

[0302] In step 604, a block diagram for the graphical
program may be created. The block diagram may be created
in or using any graphical programming development envi-
ronment, such as LabVIEW, Simulink, VEE, or another
graphical programming development environment. The
block diagram may be created in response to direct user
input, e.g., the user may create the block diagram by placing
or “dragging and dropping” icons or nodes on the display
and interconnecting the nodes in a desired fashion. Alterna-
tively, the block diagram may be programmatically created
from a program specification. The plurality of nodes in the
block diagram may be interconnected to visually indicate
functionality of the graphical program. The block diagram
may have one or more of data flow, control flow, and/or
execution flow representations. The block diagram may
have one or more nodes which represent sub-graphical
programs (e.g., sub-VIs), and thus may be hierarchical. An
exemplary block diagram is shown in FIGS. 24 and 24B.

[0303] It is noted that the graphical user interface and the
block diagram may be created separately or together, in
various orders, or in an interleaved manner. In one embodi-
ment, the user interface elements in the graphical user
interface or front panel may be specified or created, and
terminals corresponding to the user interface elements may
appear in the block diagram in response. For example, when
the user places user interface elements in the graphical user
interface or front panel, corresponding terminals may appear

US 2003/0101022 Al

in the block diagram as nodes that may be connected to other
nodes in the block diagram, e.g., to provide input to and/or
display output from other nodes in the block diagram. In
another embodiment, the user interface elements may be
created in response to the block diagram. For example, the
user may create the block diagram, wherein the block
diagram includes terminal icons or nodes that indicate
respective user interface elements. The graphical user inter-
face or front panel may then be automatically (or manually)
created based on the terminal icons or nodes in the block
diagram. As another example, the graphical user interface
elements may be comprised in the diagram.

[0304] In step 606, the graphical program may be stored
on or deployed to a device, and in step 608 a corresponding
graphical program icon may appear in the configuration
diagram

[0305] The graphical program may then be deployed to
various other device using the graphical deployment tech-
niques described herein, or may be executed as described
herein. The graphical program may be executed on any of
the various devices present in the distributed system.

FIG. 23—Configuring A Graphical Program Node
For Remote Execution

[0306] FIG. 23 is a flowchart diagram illustrating one
embodiment of operation of configuring a graphical program
node for remote execution. The method of FIG. 23 may be
used for deploying nodes of a graphical program to various
different devices for remote execution.

[0307] As shown, where the program is a graphical pro-
gram, such as a LabVIEW VI, the user can display the main
block diagram of the graphical program (LabVIEW VI) in
step 502.

[0308] In step 504 the user can select a node in the
graphical program, e.g., a sub-program or sub-VI node, a
primitive node, or other type of node. The user may also be
able to select a group of nodes by drawing a “box” around
the desired nodes. The user may select a node by using a
pointing device or by other means.

[0309] In step 506 the user may then select among the
various devices in the configuration diagram, e.g., other
computer systems or devices on which the user desires to
have this node or sub-VI execute. For example, where the
graphical program is stored on a first device, the user may
select a second device icon corresponding to a second device
and graphically associate the node with the second device
icon. The term “remote device” in this context simply means
a different device than the one which currently stores the
graphical program. This selection may be performed in the
same manner as an association, e.g., by using drag and drop
techniques, menus, dialog boxes, or speech recognition,
among other methods.

[0310] For example, FIG. 24A illustrates a block diagram
of a LabVIEW graphical program or VI wherein the user has
selected a menu of a node, e.g., by right clicking on the node,
and has selected a remote call feature from the menu. When
the user selects the remote call feature, a list of devices may
appear for the user to select. User selection of a device from
this menu may cause deployment of the respective node
(e.g., deployment of the functionality represented by the
node icon) to the selected device. Alternatively, the user may

May 29, 2003

drag and drop a graphical program node from the block
diagram on to a device icon representing another device to
deploy the graphical program node onto the device for
remote execution. For example, the user can select one or
more nodes in the graphical program and “drag and drop”
them onto a device icon to deploy these nodes onto the
respective remote device.

[0311] In step 508 the functionality of the node (or nodes)
may be deployed to the selected remote device, i.c., the
device selected in step 506. In step 508 the functionality
(e.g., program instructions and/or data structures) of the
node (or nodes) may be automatically transferred to the
selected remote device based on the user input in step 506.
In other words, each node in a graphical program may have
associated program instructions and/or data structures, and
these may be automatically transferred to the selected
remote device. As noted above, the user input may comprise
selecting a remote device in step 506 from a menu, or may
comprise graphically associating or dragging and dropping
the node onto a device icon of a device in the configuration
diagram.

[0312] This deployment operation in step 508 may also
involve determining if the device is capable of natively
executing graphical programming code. If the device is not
capable of executing graphical programming code, the
graphical program code corresponding to this node may be
converted to a DLL, hardware configuration program, or
other software format.

[0313] In step 510 a new icon may be displayed in the
block diagram to visually indicate to the user that this node
is being remotely executed. The new icon may be a modified
node icon which includes at least a portion of the appearance
of the original node, as well as an additional image portion
to indicate the remote execution. For example, FIG. 24B
illustrates one example of the block diagram of FIG. 24A
after the user has selected this feature to remotely call this
graphical program node or VI on a different device. As
shown, the icon in the block diagram changes its appearance
to visually indicate to the user that this node or sub-program
is deployed on a remote device and will execute on the
remote device. In another embodiment, the icon in the block
diagram does not change its appearance to visually indicate
remote execution. In this embodiment, the user may option-
ally select a certain view of the block diagram to highlight
respective nodes that are configured for remote execution.

[0314] Instep 512 the graphical program may be modified
to be able to invoke the node on the remote device. In other
words, the graphical program may include program instruc-
tions and/or data structures, and these may be modified, e.g.,
new program instructions and/or data structures may be
added, to invoke the node on the remote device during
graphical program execution. Alternatively, the graphical
program execution engine (the software that executes the
graphical program) may be modified to implement this
remote invocation. Graphical code in the graphical program
may also be modified (or added) in the graphical program to
invoke the node on the remote device. For example, one or
more nodes may be added or modified in the graphical
program (e.g., as described in step 510) to visually indicate
that the invocation is occurring, and that the respective node
is being invoked on the remote device. Added nodes may

US 2003/0101022 Al

include associated program instructions and/or data struc-
tures that are executable to invoke the node on the remote
device.

[0315] Thus this remote call feature can be used to cause
a selected node or program, e.g., the selected sub-VI, to
execute on a different device or computer system, wherein
the main graphical program or main VI calls this sub-VI to
execute on the remote device.

[0316] The deployment of a sub-program of a graphical
program block diagram on a remote device is particularly
useful where there are multiple instances of the same
sub-program in the main graphical program, and the user
desires to select a particular sub-program for deployment.

[0317] Therefore, the user can configure a graphical pro-
gram node for remote execution. Where the program is a
graphical program, such as a LabVIEW VI, the user can
display the main block diagram of the graphical program.
The user can select nodes in the graphical program and
associate, e.g., drag and drop, these graphical program nodes
to device icons in the configuration diagram. As a result, the
functionality of the nodes may be deployed to the selected
remote devices. This provides a very simple mechanism for
a user to distribute execution of a graphical program among
a plurality of different devices in a system.

[0318] In one embodiment, the user may graphically con-
figure or deploy portions of any of various types of pro-
grams, including programs written in text-based and graphi-
cal programming languages. The method may involve
displaying source code of a program on the display of the
computer system. The program may be written in a text-
based programming language, or may be a graphical pro-
gram. The computer system display may also include a
configuration diagram that displays a first device icon that
corresponds to a first device and a second device icon that
corresponds to a second device. The program may be stored
on the first device. The user may then select a portion of the
source code of the program and graphically associate the
portion of the source code with the second device icon.

[0319] Where the program is written in a text-based pro-
gramming language, the user may highlight the desired
source code portion (e.g., highlight the C code portion, such
as a subroutine) and associate, e.g., drag and drop, this code
portion onto the second device icon. Thus, the user can
deploy portions of the source code onto devices other than
the device on which the program is stored. Where the
program is written in a graphical programming language, as
described above, the user may select one or more nodes in
the graphical program and drag and drop them on the second
device icon, e.g., or various device icons.

[0320] This graphical association may cause deployment
of the source code portion onto the second device for
execution on the second device. In addition, the system may
modify the program to configure the program to invoke
execution of the source code portion on the second device.
Thus, when the program executes, the program invokes
execution of the deployed source code portion on the second
device.

[0321] Alternatively, where the program is written in an
object-oriented programming language, and the software
objects are represented by icons, the user may associate or

May 29, 2003

drag and drop the various software object icons to various
device icons to deploy these software objects on various
devices.

FIG. 25—Adding Program Code to Another
Program

[0322] In one embodiment, the user can manipulate pro-
gram icons to add program code to other programs. For
example, the user can select a first program icon or node,
which may be associated with a device (e.g. a first device),
and associate this first program icon with (e.g., drag and
drop onto) a second program icon of a second device (or of
the first device). This may cause the code (source code) of
the second program (which corresponds to the second pro-
gram icon) to be displayed. The user may then further
graphically navigate, e.g., move or drag, the first program
icon within the source code of the second program that has
been displayed and drop or place the first program icon at a
respective location in the source code. The first program
corresponding to the first program icon may be deployed to
the second device for execution within the second program
on the second device. Alternatively, at the user’s option, the
first program may remain on the first device, and be con-
figured for remote invocation by the second program on the
second device.

[0323] In another embodiment, the user may first cause the
source code of the second program (e.g., a block diagram of
a graphical program) to be displayed, and then the user may
associate a first program icon with (or into) the displayed
source code (e.g., the displayed block diagram). The user
may then further graphically navigate the first program icon
within the displayed source code of the second program and
drop or place the first program icon at a respective location
in the source code. This may cause the various operations to
be performed as mentioned above.

[0324] FIG. 25 is a flowchart diagram illustrating one
embodiment of operation of adding program code to another
program. FIG. 25 illustrates an embodiment where the user
associates a first program icon with a second program icon,
thereby causing the source code of the second program to be
displayed. Many of the operations described below are
similar where the user associates a first program icon with
source code of a program that is already displayed.

[0325] As shown, in step 522 the user can select a first
program icon or node associated with a device (e.g. a first
device) and associate this first program icon with (e.g., drag
and drop onto) a second program icon of a second device (or
of the first device). As noted above, this association may be
performed using any of the techniques described above, e.g.,
by using drag and drop techniques, menus, dialog boxes, or
speech recognition, among other methods. The user may
also provide additional user input (e.g., using the keyboard
or a pop-up dialog) indicating that the first program is to be
configured as a node in the graphical program.

[0326] This association may cause the code (e.g., the
source code) of the second program corresponding to this
second program icon to automatically be displayed. The first
program icon (or another node which represents the first
program) may be displayed in the displayed source code of
the second program to allow the user to further position the
first program icon (or other node) at a desired location in the
displayed source code. In one embodiment, a new node,

US 2003/0101022 Al

which may represent an invocation of the first program, may
be displayed in the source code. When the source code is
graphical source code, the graphical program or block
diagram may appear, and the program icon (or another node
that is operable to invoke the respective program) may be
displayed within the graphical program. When the source
code is a text-language program, the text language source
code may be displayed, and the first program icon may
appear within the displayed text language source code.

[0327] Thus, where the second program icon corresponds
to a graphical program in step 524, this association may
cause the block diagram corresponding to this program icon
to automatically be displayed in step 532. For example,
when the user drags and drops the first program icon
proximate to or onto the second program icon, the block
diagram that corresponds to the second program icon may
automatically appear at the location of the second program
icon (or at a different location). The first program icon (or a
new node, possibly having a different iconic appearance)
may appear in the displayed block diagram for further
positioning or navigation by the user.

[0328] Inone embodiment, the first program icon appears
in the displayed block diagram for further positioning or
navigation by the user. The first program icon may also be
configured as a node (referred to as the “first program node™)
at this time. Configuring the first program icon as a first
program node may simply comprise creating (or storing)
program instructions and or data structures that are associ-
ated with the first program icon. This configuration is
described below in step 536.

[0329] As used herein, the term “first program node”
simply connotes a node in the graphical program that is
associated with the first program in some way, e.g., is
operable or executable in the graphical program to access
functionality or capabilities of the first program. For
example, the first program node may be operable to invoke
execution of the first program, read and/or write values
from/to the first program, get/set attributes of the first
program, transmit/receive events to the first program, pro-
grammatically modify the first program, programmatically
deploy the first program, or perform other functions asso-
ciated with the first program. The first program node pref-
erably has an icon that appears in the graphical program, and
underlying program instructions and/or data structures that
implement the operation of the first program node. The first
program node icon may have the appearance of the first
program icon, or another appearance. For example, the first
program node icon may have an appearance similar to the
first program icon, but modified to include the appearance of
the first device icon of the first device on which the first
program is executing. The user may also create or select a
custom appearance for the first program node, as desired.

[0330] Alternatively, a new node may appear in the
graphical program for further navigation by the user,
wherein the new node is associated with the first program as
described above. The new node may be present in the
graphical program development environment and specifi-
cally designed for accessing functionality of the first pro-
gram. For example, the new node may be specifically
designed for accessing functionality of programs in general,
or of certain types of programs.

[0331] In step 534 the user may then further graphically
navigate, e.g., move or drag, the first program icon (or “new

May 29, 2003

node”) within the block diagram that has been displayed and
drop or place the first program icon (or “new node™) at a
respective location in the block diagram. Thus, where the
second program icon corresponds to a graphical program,
the user may graphically position the first program icon
within the block diagram of the graphical program. In one
embodiment, the user may select a flow path, such as a data
flow wire, in which to position or “drop” the first program
icon. The first program icon may then be inserted on to or in
the execution or data path of the selected wire in the second
block diagram of the graphical program and configured to
execute. For example, when the user selects a data flow path
connected between a source node and a destination node, the
first program icon may be inserted as a node in the data flow
path with an input terminal connected to an output terminal
of the source node and with an output terminal connected to
an input terminal of the destination node. The input and
output terminals may be automatically created for the first
program icon. Where the first program is also a graphical
program, the first program icon may be inserted as a sub-VI
in the second graphical program or block diagram.

[0332] Where the first program icon is dropped or inserted
the path of a selected wire in the second graphical program,
the method may automatically create one or more input
terminals and/or one or more output terminals on the first
program icon based on at least one of: parameters of the first
program and parameters of the graphical program, e.g.,
parameters of the source and/or destination nodes to which
the first program icon is being connected. The input termi-
nals and/or output terminals may be automatically created
with the appropriate data types based on the preceding
and/or subsequent (source and/or destination) nodes in the
block diagram to which the first program icon will connect.
The method may also involve automatically (or manually)
connecting at least one of the input terminals and/or output
terminals of the first program icon to an existing node in the
graphical program.

[0333] Instep 536 positioning of the first program icon in
the source code may cause additional source code, e.g.,
program instructions/data structures and/or one or more
nodes, to be included in the second program. For example,
where the second program icon corresponds to a graphical
program, the first program icon may be copied or inserted
into the displayed block diagram at the selected location,
effectively resulting in a new node (the “first program node™)
in the block diagram. This may also cause program instruc-
tions and/or data structures to be included in the second
graphical program which represent functionality of the first
program, or which are operable to call the first program.
These program instructions and/or data structures may be
associated with the first program node in the second graphi-
cal program. Thus, in one embodiment, the first program
node may comprise an icon having the appearance of the
first program icon, and underlying program instructions
and/or data structures that execute the functionality of the
first program node. The first program node may be created
during or after positioning in step 536, when the first
program icon is initially displayed in step 532, or at other
times during the method.

[0334] In one embodiment, the program instructions and/
or data structures associated with the first program icon (e.g.,
comprising a part of the first program node) may be execut-
able to access functionality or capabilities of the first pro-

US 2003/0101022 Al

gram in some fashion. For example, in one embodiment, the
program instructions and/or data structures associated with
the first program icon (e.g., comprising a part of the first
program node) may be executable to invoke execution of the
first program on the first device. Thus the graphical program
(including the program instructions and/or data structures)
may execute on the second device, and when the first
program icon node in the graphical program executes, the
first program icon node (or the underlying program instruc-
tions and/or data structures) may operate to invoke the first
program to execute on the first device. In another embodi-
ment, the executable code which comprises the first program
icon may be deployed to the device (e.g., the second device)
on which the second graphical program is located, and the
first program icon may appear as a node (first program node)
in the second graphical program and be associated with the
executable code. Thus, when the first program node in the
graphical program executes, the first program node (or the
underlying program instructions and/or data structures) may
operate to invoke the first program to execute on the second
device. Alternatively, the executable code comprising the
first program may itself be the “underlying program instruc-
tions and/or data structures” of the first program node. As
another example, the program instructions and/or data struc-
tures associated with the first program icon (e.g., comprising
a part of the first program node) may be executable to read
data from the first program, write data to the first program,
get/set attributes of the first program, modify the first
program, or perform other functions associated with the first
program, as mentioned above.

[0335] In another embodiment, a new node (e.g., a node
whose special purpose is to invoke execution of programs on
other devices) may be created in the second graphical
program that is operable to invoke the first program. In this
instance, the first program may remain where it is and be
remotely accessed or invoked.

[0336] Where the first program is a software object, in one
embodiment the program instructions and/or data structures
associated with the first program icon may be executable to
invoke methods of the software object, get/set properties of
the software object, and/or provide/receive events to/from
the software object, or otherwise access functionality of the
software object.

[0337] In step 538 the first program corresponding to the
first program icon may be deployed to the second device for
execution with the block diagram on the second device.
Alternatively, at the user’s option, the first program may
remain on the first device, and configured for remote invo-
cation and execution on the first device by a node (e.g., first
program node) in the block diagram executing on the second
device.

[0338] As noted above, the first program may not be a
graphical program. For example, the first program may be
written in a text-based programming language, such as
Pascal, Fortran, C, C++, Java, Basic, etc. In one embodi-
ment, the graphical program is created in a first graphical
program development environment, and the first program is
not present in the first graphical program development
environment. For example, the first program may be created
in a second program development environment, wherein the
second program development environment is different than
the first graphical program development environment. The

May 29, 2003

first program thus may be operable to execute independently
of the graphical program and/or the first program may exist
prior to creation of the graphical program.

[0339] As noted above, the first program icon that is being
dragged and dropped into the block diagram may be of a
different type than the graphical program, such as a DLL or
an executable program compiled from a text based program-
ming language, etc. When the user drags and drops this first
program icon into the block diagram corresponding to the
second or destination program icon (e.g., on to a respective
dataflow path) this mismatch in types may be automatically
detected (or the user may manually indicate the mismatch),
and a node may be automatically created that is able to
invoke or call this type of program. For example, if the first
program is a DLL, and the user drags the first program icon
into a block diagram (e.g., on to a data flow wire of a block
diagram), the graphical program development environment
(or other software) may detect that the first program is a
DLL, and a node, ¢.g., a “DLL node” may be inserted into
the block diagram that is configured to invoke the first
program as a DLL. The DLL node may have the appearance
of the first program icon. The user may then “wire up” the
DLL node, or if the user dropped the first program icon on
to a respective data flow wire, the DLL node may appear
connected to the wire. As another example, if the first
program is a software object, and the user drags the first
program icon into a block diagram, the graphical program
development environment may detect that the first program
is a software object, and a node, e.g., an “object node” may
be inserted into the block diagram that is configured to
invoke methods, get/set attributes, etc, of the first program
as a software object. Alternatively, the first program may be
programmatically converted into a graphical code format,
e.g., LabVIEW code, and this created graphical code may
execute natively in the block diagram. As another alterna-
tive, a graphical program code “wrapper” may be created
around the first program, thus enabling the first program to
execute in the graphical program development environment.

[0340] Where the second program icon corresponds to a
textual programming language based program in step 524,
this association may cause the textual source code corre-
sponding to this program icon to automatically be displayed
in step 542.

[0341] In step 544 the user may then further graphically
navigate, e.g., move or drag, the first program icon within
the textual source code that has been displayed and drop or
place the first program icon at a respective location in the
textual source code.

[0342] Instep 546 this may cause a call or invocation (e.g.,
a function call) to the first program to be copied or inserted
into the displayed textual source code of the second program
at the selected location. The type of call inserted into the
displayed textual source code of the second program may
depend on whether the first program is a graphical program
or another type of program.

[0343] In step 548 the first program corresponding to the
first program icon may be deployed to the second device for
execution with the block diagram on the second device.
Alternatively, at the user’s option, the first program may
remain on the first device, and configured for remote invo-
cation by the textual source code program (after compila-
tion) on the second device.

US 2003/0101022 Al

[0344] Thus the user can select a first program icon
associated with a device and associate this first program icon
with (e.g., drag and drop onto) a second program icon of a
different device. Where the second program icon corre-
sponds to a graphical program, this association may cause
the block diagram corresponding to the second program icon
to automatically be displayed. In another embodiment, the
user may first cause the graphical program or block diagram
to be displayed, and then may select a first program icon
associated with a device and associate this first program icon
with (e.g., drag and drop into) the displayed graphical
program or block diagram. The user may then further
graphically navigate, e.g., move or drag, the first program
icon within the block diagram that has been displayed and
drop or place the first program icon at a respective location
in the graphical program.

[0345] This may cause different things to happen:

[0346] In response to the association, the first pro-
gram icon may be copied or inserted into the dis-
played block diagram at the selected location. The
first program corresponding to the first program icon
may be deployed from the first device onto the
second device for execution on the second device
with the block diagram

[0347] In response to the association, the first pro-
gram may remain on the first device and be config-
ured for remote invocation by the block diagram on
the second device. For example, the user can drag
and drop other program icons onto a node icon in the
graphical program to specify that the respective
programs are invoked by the graphical program, e.g.,
by a specific node in the graphical program.

[0348] If the user drags and drops the first program
icon onto a second program icon that corresponds to
a graphical program, then that first program icon
may be inserted at the appropriate location in the
destination graphical program as a graphical pro-
gram node, or a sub-program or “sub-VI”. For
example, the block diagram of the destination
graphical program may appear and the user may then
select a flow path, such as a data flow wire, in which
to “drop” the first program icon. The first graphical
program may then be inserted on to or in the execu-
tion or data path of the selected wire in the second
block diagram of the graphical program and config-
ured to execute. If the first program icon which is
being associated (e.g., dragged and dropped) also
corresponds to a graphical program, then the first
program icon may be inserted as a sub-VI.

[0349] The first program icon that is being dragged
and dropped into the source code, e.g., block dia-
gram, may also be of a different type, such as a DLL
or an executable program compiled from a text based
programming language, etc. When the user drags and
drops this first program icon into the block diagram
corresponding to the destination program icon, and
optionally on to a respective dataflow path, a node
may be automatically created, e.g., in the respective
dataflow path, that is able to invoke or call this
program, or that represents execution of this pro-
gram. For example, if the first program is a DLL, and
the user drags the first program icon on to a data flow

May 29, 2003

wire of a block diagram, a “DLL node” may be
inserted into the block diagram that is configured to
invoke the first program as a DLL. Alternatively, the
first program may be programmatically converted
into a graphical code format, e.g., LabVIEW code.

[0350] Where the second program icon corresponds
to a textual programming language based program,
this association may cause the textual source code
corresponding to this program icon to automatically
be displayed. The user may then further graphically
navigate, e.g., move or drag, the first program icon
within the textual source code that has been dis-
played and drop or place the first program icon at a
respective location in the textual source code. This
may cause a call or invocation (e.g., a function call
or method invocation) to the first program to be
copied or inserted into the displayed textual source
code of the second program at the selected location.
The type of call inserted into the displayed textual
source code of the second program may depend on
whether the first program is a graphical program or
another type of program.

FIG. 26—Incorporating a Device Icon Into a
Program

[0351] As mentioned above, the user may associate (e.g.,
drag and drop) a device icon into the source code of a
program, similar to dragging and dropping a program icon
into the source code of a program as described above. The
device may correspond to a first device, and the program
may be stored on a second different device. The following
describes this operation where the program or source code is
a graphical program or block diagram. However, the
description below also applies where the program or source
code is written in a textual programming language.

[0352] After the association of a device icon with (or into)
a block diagram or graphical program, the user may then
optionally indicate an operation that is desired with respect
to this device in the block diagram. For example, the user
may drag and drop a device icon of a first device into a block
diagram, wherein this indicates that the block diagram
should create code and/or data structures, and/or should
include a node icon in the diagram, which operates to
programmatically access this device to publish and/or sub-
scribe data to/from the device. Other types of operations are
also contemplated.

[0353] FIG. 26 is a flowchart illustrating operation of
creating or modifying a graphical program by associating
device nodes with the graphical program. For example, the
user may use a configuration diagram as described herein to
aid in creating (or configuring) a portion or all of a graphical
program.

[0354] As shown, in step 642 the graphical program may
be displayed on the display. For example, where the graphi-
cal program includes a block diagram, the block diagram
may be displayed. The user may have previously included
various nodes or icons in the graphical program and may
have connected various ones of these nodes.

[0355] As described above, the block diagram may auto-
matically be displayed in response to an association per-
formed by the user in step 644. In other words, the user may

US 2003/0101022 Al

drag and drop a device icon onto a program icon in the
configuration diagram. Where the program icon represents a
graphical program, this may cause the block diagram cor-
responding to the program icon to be automatically dis-
played. The device icon may then automatically appear in
the block diagram for further navigation or positioning by
the user.

[0356] In step 644 the user may associate (e.g., drag and
drop) one or more device icons into the block diagram. For
example, the user may associate, e.g., drag and drop a first
device icon corresponding to a first device into the block
diagram of a graphical program stored on a second device.
Where the block diagram is already displayed, this may
comprise the user simply selecting a device icon with a
mouse and dragging the device icon into the displayed block
diagram. As described above, where the block diagram is not
already displayed, and a program icon is displayed on the
configuration diagram that represents the graphical program
or block diagram, the user can select the device icon with a
mouse and drag the device icon proximate to or onto the
program icon (or use other graphical association tech-
niques). This may cause the graphical program or block
diagram corresponding to this program icon to be displayed,
with the device icon displayed in the graphical program or
block diagram for further graphical positioning by the user.
This may instead cause a “new node”, such as a “device
access node” to be displayed in the block diagram, wherein
this “new node” may be graphically positioned by the user.

[0357] In step 646 the user may graphically position the
device icon to a desired location in the block diagram. For
example, in step 646 the user may then further graphically
navigate, e.g., move or drag, the device icon (or “new node”)
within the block diagram that has been displayed and drop
or place the device icon (or “new node”) at a respective
location in the block diagram. Thus, where the program icon
corresponds to a graphical program, the user may graphi-
cally position the device icon (or new node) within the block
diagram of the graphical program. In one embodiment, the
user may select a flow path, such as a data flow wire, in
which to position or “drop” the device icon (or new node).
The device icon (or new node) may then be inserted on to or
in the execution or data path of the selected wire in the
second block diagram of the graphical program and config-
ured to execute. For example, when the user selects a data
flow path connected between a source node and a destination
node, the device icon may be inserted as a node in the data
flow path with an input terminal connected to an output
terminal of the source node and with an output terminal
connected to an input terminal of the destination node. The
input and output terminals may be automatically created for
the device icon.

[0358] In step 648 the actions performed by the user in
steps 644 and 646 may cause the automatic creation of nodes
in the block diagram to publish and/or subscribe to data from
the respective device(s), or perform other functions associ-
ated with the devices. Automatic creation of a node in the
block diagram may comprise displaying the device icon in
the block diagram, and automatically creating program
instructions and/or data structures associated with the device
icon which perform functionality associated with the device,
such as accessing (reading and/or writing data values from/
to the device). Automatic creation of a node in the block
diagram may also comprise displaying a new node (e.g., “a

May 29, 2003

device access node”), and creating or including program
instructions and/or data structures associated with the new
node, that is operable to access the device during graphical
program execution. Where the new node has the appearance
of the device icon, then the above two operations may be
similar.

[0359] Thus the automatic creation of node(s) in the block
diagram may comprise automatic creation of program
instructions and/or data structure which perform function-
ality of the node(s). For example, the device icon may
appear in the block diagram, and underlying code or data
structures may be created that correspond to the device icon
which operate to publish and/or subscribe to data from the
respective device(s), or perform other functions associated
with the devices.

[0360] As one example, the user may configure a mea-
surement application by inserting a loop structure, such as a
While loop, into a block diagram. The user may then drag
and drop one or more device icons into the While loop. The
device icons may correspond to various devices which
produce data, such as sensor or transducer devices, or
instrument devices. As described above, when a user asso-
ciates (e.g., drags) a device icon on to a program icon, and
the program icon corresponds to a graphical program, this
may cause the block diagram of the graphical program to
automatically appear in the display, whereby the user can
then further navigate the device icon at an appropriate
location in the block diagram. Alternatively, if the block
diagram window of the graphical program is already open
on the display, such as in a separate window, the user may
simply drag and drop a device icon from the configuration
diagram onto the graphical program block diagram.

[0361] When the device icon(s) corresponding to the sen-
sors or instruments are dropped into the While loop of the
block diagram, code and/or graphical program data struc-
tures may be created with respect to the block diagram that
are operable to access these devices, or use these devices in
some way. The device icons which are dragged and dropped
into the block diagram may retain the same appearance, i.c.,
as device icons contained in the block diagram. Alterna-
tively, this may cause new nodes to be programmatically
created in the diagram which are operable to access these
devices and obtain the data.

[0362] After this operation, the device icons (or other
nodes) may appear within the block diagram, indicating that
data is being accessed from (or other functions are being
performed with respect to) these devices. A further visual
indication may also be provided as to whether these devices
are publishing data to the diagram or subscribing to data
from the diagram, i.e., whether the diagram is subscribing to
data from these devices, or publishing data to these devices.
The While loop may indicate repetitive operation of the
device icon(s) in reading and/or writing data from/to the
respective device(s).

FIGS. 27A-E—Example of Incorporating a Device
Icon into a Program

[0363] FIGS. 27A-E are screen shots illustrating a
sequence where the user drags a device icon onto a particular
program icon, and inserts the device icon into the program
represented by the program icon. The example described in
FIGS. 27A-E applies whether the user is incorporating a

US 2003/0101022 Al

device icon or a program icon into the program. In other
words, although FIGS. 27A-E are described in the context of
the user dragging a device icon into the source code of a
program, this example operates a similar manner (and in one
embodiment in an identical manner) when the user drags a
program icon into the source code of a program.

[0364] As shown, FIG. 27A illustrates a first configura-
tion diagram (“bread factory configuration diagram”) which
includes two computer system device icons and an oven
controller device icon. The user can associate or drag-and-
drop the oven controller device icon onto a configuration
diagram icon, another device icon, a program icon, or other
icon present in the configuration diagram. As shown in FIG.
27A, the user associates or drags-and-drops the oven con-
troller device icon onto a configuration diagram icon, i.e., an
icon that represents a second configuration diagram. In FIG.
27A, the second configuration diagram is referred to as the
“cookie factory configuration diagram”.

[0365] When the user associates or drags and drops the
oven controller device icon on the cookie factory configu-
ration diagram, the cookie factory configuration diagram
may be automatically expanded to show one or more device
icons comprised in the configuration diagram. In the screen
shot of FIG. 27B, the cookie factory configuration diagram
has been expanded to show two device icons representing
computer systems that perform manufacturing and packing.
These two computer system device icons may be connected
by a link, as shown.

[0366] As shown in FIG. 27C, the user may further
choose to expand the manufacturing computer device icon to
reveal another device icon referred to as “Baking”. For
example, the manufacturing device icon may be expanded in
a hierarchical fashion to reveal devices that perform manu-
facturing functionality. Alternatively, all device icons
present in the configuration diagram may be automatically
displayed when the configuration diagram is initially
expanded in FIG. 27B.

[0367] As shown in FIG. 27D, the user may then choose
to view one or more program icons present in the device
icon. As shown, a program icon related to oven management
(“Oven Mgt”) has been displayed. In one embodiment, when
the user positions the oven controller device icon over the
final device icon in the hierarchy (i.e., there are no further
device icons in the hierarchy, the top level (or all) program
icons may be automatically displayed.

[0368] The user may then select an option to view the
program represented by this program icon. In one embodi-
ment, when the user positions a device icon, such as the oven
controller device icon, over the respective program icon, the
program (source code and/or user interface of the program)
may be automatically displayed. Alternatively, when the
user positions the oven controller device icon over the
respective program icon, the user may provide further input
to view one or more aspects of the program (source code
and/or user interface of the program). In this exemplary
embodiment, the program is a graphical program, and a
graphical program block diagram is displayed as shown in
FIG. 27E. FIG. 27E illustrates a very simple and exemplary
graphical block diagram which includes a loop structure and
includes a single existing icon or node. The graphical
program may have a larger number of interconnected nodes,
such as those shown in FIGS. 24A and 24B.

May 29, 2003

[0369] In one embodiment, when the user associates a
device icon with a program icon corresponding to a graphi-
cal program, and the diagram portion of the graphical
program is displayed, the device icon appears in the diagram
portion. In another embodiment, when the user associates a
device icon with a program icon corresponding to the
graphical program, and the diagram portion of the graphical
program is displayed, a new graphical program node appears
in the diagram portion. This new graphical program node
corresponds to the respective device and may represent
functionality performed by the device. This graphical pro-
gram node may have the same or a different appearance than
the device icon to which it corresponds. The graphical
program node may be programmatically created based on
information in the device icon, or may be a generic device
access node for accessing a device.

[0370] Although not shown in FIG. 27E, the user may
then choose to navigate or move the device icon or graphical
program node within the graphical block diagram. For
example, the user can position the device icon at a certain
location in the diagram, which indicates a certain type of
operation. As another example, the user can “wire up” the
device icon (or the created graphical program node) with
other nodes or icons already present in the block diagram. In
this operation, the graphical program may automatically
create terminals on the device icon (or on the created
graphical program node), possibly based on the terminals of
the existing nodes in the block diagram to which the user is
connecting the device icon.

[0371] As another example, the user can navigate or move
the device icon or node onto an existing wire or connection
path and place the device icon or node as a graphical
program node in this connection path. For example, the user
can navigate or position the device icon or node to a first
location on a wire in the graphical program after a first node
in the graphical program. The method may then display the
device icon or node as a node connected to an output of the
first node in the graphical program. The user can also
navigate or position the device icon to a first location on a
wire in the graphical program before a second node in the
graphical program. The method may then display the device
icon or node as a node in the graphical program connected
to provide an output to the second node in the graphical
program. As another example, the user can navigate or
position the device icon or node to a wire or connection path
in the diagram between a first node and a second node, and
cause the device icon to appear in the diagram as a node
connected in the connection path between the first node and
the second node.

[0372] The device icon, or a node that represents the
device icon, may have various functionality. For example,
the node may invoke functionality of the device represented
by the device icon, simulate operation of the device, invoke
programs on the device, acquire data from the device,
generate data to the device, etc. In one embodiment, a GUI
element may appear, such as a menu, and the user can select
the functionality desired.

[0373] As described above, the method may programmati-
cally create a node in the diagram which performs an
operation associated with the device icon. In one embodi-
ment, the device icon is automatically modified, or a new
node is automatically created, which includes one or more

US 2003/0101022 Al

input terminals and/or one or more output terminals for
connection to other nodes in the diagram. The input termi-
nals and/or output terminals may be created based on
parameters of the respective graphical program (or nodes in
the graphical program) or of the device corresponding to the
device icon. The user may then connect these terminals to
other nodes in the diagram. The respective terminals may
also be programmatically connected to other nodes in the
diagram. Alternatively, the user may manually configure
terminals for the node, e.g., configure a connector pane for
the node. Type propagation checking may also be performed
to ensure that incompatible data types are not connected
to/from this node.

[0374] Therefore, this embodiment of the present inven-
tion allows the user to associate or drag and drop a device
icon onto a respective program icon. The user can associate
a device icon directly onto a respective program icon that is
currently displayed, or the user can navigate through a
configuration diagram/device icon/program icon hierarchy
to view a desired program icon. The source code of the
program may be displayed, and the user can position the
device icon in the source code. If the respective program
icon corresponds to a graphical program, the diagram por-
tion of the graphical program may be displayed, with the
respective device icon (or a node corresponding to the
device icon) displayed in the graphical program diagram.
The user may then navigate or move the device icon (or
node) to a desired location in the graphical program, and
optionally wire up or connect the device icon with other
nodes in the graphical program, etc.

[0375] The method described above may also operate
where the program represented by the program icon is a text
based program. For example, when the user associates or
drags and drops a device icon onto a program icon that
represents a text based program, the text based source code
of the program may be displayed. The user may then be able
to navigate the device icon into a particular location into the
textual source code. This may cause a function call or other
appropriate textual source code to be inserted at this location
in the textual source code.

[0376] In another embodiment, when the user associated
or drags and drops a device icon onto a program icon, the
user interface (e.g., front panel) of the program may appear.
In one embodiment, the user has the choice of having either
the source code or diagram portion of the program appear,
or the user interface or front panel of the program to appear,
or both. Alternatively, the user may open the user interface
or front panel of the program and then drag and drop the
device icon directly to the user interface. The user may
navigate the device icon (or node) to an appropriate location
in the user interface. The operation of associating a device
icon with a user interface may cause a GUI element (e.g., a
control or indicator) to appear in the user interface. This
operation may also cause a “binding” to occur between the
GUI element and data generated by and/or acquired by the
respective device.

[0377] The above operations greatly facilitate the creation
of graphical programs and the distribution of portions of
these graphical programs to different devices in a distributed
system. For example, the user can create a graphical pro-
gram in various manners and then during or after the
graphical program creation the user can associate (e.g., drag

May 29, 2003

and drop) icons from within the block diagram to different
devices to deploy or distribute the functionality represented
by these node icons in the diagram on to these respective
devices. Also, the user can associate device icons into a
graphical program, or can associate other program icons for
various devices into the graphical program.

[0378] These techniques provide a simple and convenient
way for a user to create an application using a graphical
program, whereby the user can deploy different programs of
the graphical program application to different devices, or
incorporate functionality associated with other devices or
programs using device icons or program icons, respectively.

FIGS. 28A and 28B

[0379] FIGS. 28A and 28B are screen shots illustrating
incorporating a program icon from a configuration diagram
into a graphical program. FIG. 28A illustrates a configura-
tion diagram which includes a device icon 802 that repre-
sents a host computer, and a device icon 804 that represents
a measurement or control device, in this case a Fieldpoint
device (referred to as “Engine Controller”) from National
Instruments Corporation. The device icon 804 includes a
number of associated program icons 842-850. In this
example the program icons are service icons 842-850. The
service icons 842-850 include a Start icon 842 for starting
the application program, a Set Engine Params icon 844 for
modifying or viewing parameters of the application or
device, a Stop icon 846 for stopping the application, an
Engine Status icon 848 for checking the status of the
application or device and a Shut Down icon 850 for shutting
down the application or device. Service icons represent a
high level mechanism for interacting with an application or
a device, and are described further below.

[0380] FIG. 28B illustrates an example where the user
associates or drags and drops a program icon (e.g., program
icon 846) onto a block diagram of a graphical program. In
one embodiment, the program icon 846 may be dragged and
dropped into the block diagram, and the program icon does
not change its appearance during this operation. In another
embodiment, when the program icon 846 crosses the border
of the block diagram window during the drag and drop
operation, the program icon 846 may change its appearance,
or a new node icon may be displayed in its place.

[0381] Once the program icon has been “dragged” or
positioned in the block diagram, the user can then wire up
this program icon 846 with other nodes in the graphical
program. Alternatively, the user can drop or place this
program icon 846 onto a wire or link in the graphical
program. This may cause the program icon 846 to appear as
a node in the graphical program connected in the path of this
wire or link. In one embodiment, terminals may be auto-
matically added to the program icon, wherein the wire or
link connects to these terminals. Thus the program icon may
be configured to connect to one or more other nodes in the
graphical program.

[0382] Configuring a Device Icon in a Configuration Dia-
gram

[0383] FIG. 29 illustrates a simple configuration diagram
or system panel. As shown, this exemplary configuration
diagram includes a device icon 802 which represents a host
computer, and a device icon 804 which represents a mea-

US 2003/0101022 Al

surement or control device. In this example, the device icon
804 represents a Fieldpoint device from National Instru-
ments, which may be used for measurement or control
applications. As shown, the user can select the device icon
804 representing the Fieldpoint device, upon which one or
more menus may be displayed. The user can select various
options from these menus.

[0384] As shown, the user can select the configuration
option on a first menu. This selection produces a second
menu that has items for network, /O, and data points, e.g.,
tags. As used herein, the term “data point” includes a data
point, I/O point, data tag, I/O channel data values, and other
types of data values. The data point may be associated with
or generated by a device, or may be calculated by a program.
When the user selects the network option, the user may
receive further options for configuring the IP address of the
device, or a security aspect of the device.

[0385] Although not shown in FIG. 29, when the user
selects the 1/0 selection, in one embodiment a measurement
configuration program, such as Measurement and Automa-
tion Explorer from National Instruments, may be initiated to
configure I/O channels. If I/O channels already exist or have
previously been configured, then these items may be dis-
played, as shown in FIG. 30. Thus, when the user selects the
I/O or tags items in FIG. 29, if physical I/O points had
previously been configured, or data points or tags had
previously been configured, then information regarding
these may be displayed. For example, as shown in FIG. 30,
if the user selects the I/O menu item, various configured I/O
channels may be illustrated, such as analog input, analog
output, or digital I/O. As also shown in FIG. 30, if the user
selects the tags or data points item, various configured data
points may be shown, such as, e.g., pressure, temperature,
RPM etc. Thus, as shown in FIG. 30, the system may
display configured I/O or configured data points. These
items may be displayed in a “tree view”, or other suitable
view. The system may also display an “add new” feature
which allows the user to add new physical I/O or data points
directly to the tree structure shown in FIG. 30.

[0386] FIG. 30 also shows an example where a user may
select a help feature for a device icon. For example, the user
may right click on the controller 1 device icon 804 and select
a help feature. The help window “Context Help” may then
appear as shown in FIG. 30. The help window may provide
various information about the device, such as the name of
the device, security privileges, installed software, IP
address, calibration information and other information. The
help window may be context sensitive. Thus, once a help
feature has been selected, and a help window appears as
shown, the user may move his/her mouse across the con-
figuration diagram to view context sensitive help related to
other device icons, program icons, or other items displayed.
Thus, as the user moves the mouse onto different device
icons, this causes context sensitive help for that respective
device to appear in the help window. Similar operation
occurs for other icons, such as program icons.

[0387] As also shown in FIG. 30, the user can select a data
point item and select various options. For example, the user
can select an analog input item (e.g., All), which causes a
menu to be displayed, from which the user can probe the I/O
point (data point) or configure properties of the I/O point.
Another feature of the “tree view” shown in FIG. 30 is that

May 29, 2003

every individual tree is preferably collapsible. Thus, the user
can choose to see only programs, only data points, only I/O
channels, or an entire hierarchical view.

[0388] In large distributed systems, the configuration dia-
gram (or system panel) can include a number of different
device icons. In one embodiment, the user can select a
particular device icon and cause this device icon to be the
only device icon displayed on the screen. Alternatively, the
user can select a device icon, causing the device icon to be
displayed in a separate panel. The user can then expand the
device icon to view various views (e.g., tree views) of the
device icon, such as program icons representing programs
stored on the device, data points present in the device (such
as I/O channels), configuration data such as IP address, etc.
The user can also use a browse feature to browse among or
discover new/old devices. The user can further select an
option to add/show new (or un-configured) devices auto-
matically.

FIG. 31—Deploying a Program to a Device

[0389] FIG. 31 illustrates an example of deploying a
program represented by a program icon onto a target device.
The example shown in FIG. 31 corresponds to the methods
described above with respect to FIGS. 15-18. As shown,
FIG. 31 illustrates a configuration diagram which includes
a device icon 802 that represents a host computer, and a
device icon 804 that represents a measurement or control
device, in this case a Fieldpoint device (referred to as
“Controller]”) from National Instruments Corporation. As
shown, the host computer device icon 802 includes a pro-
gram icon referred to as PID 806, which represents a PID
control program. In this example, the PID program icon 806
represents a PID virtual instrument or VI developed in
LabVIEW. As shown, the user can select the PID program
icon 806 and associate (e.g., drag and drop) the PID program
icon 806 onto the target device icon 804, i.e., the Fieldpoint
device icon 804 referred to as Controllerl. After the user has
performed this drag and drop operation, the program repre-
sented by the program icon 806 is deployed onto the target
device (Controllerl). This is graphically illustrated in the
configuration diagram whereby the PID program icon 806a
is shown displayed associated with, e.g., underneath (and
possibly connected with), the device icon corresponding to
the Fieldpoint device.

[0390] After a program icon has been deployed onto the
device, it may be desirable to run the program or perform
various debugging operations. In one embodiment, the user
can select the program icon and start the program, or
configure the program to start at a selected time. In the case
where the device does not include its own native display
capability, in one embodiment, debugging operations can be
performed using the display of the host computer system.
The display of the host computer system may be used to
display debugging operations, such as execution highlight-
ing, single stepping and other debugging features, for a
program that is executing inside the target device.

FIG. 32—Associating a Data Point (or I/O
Channel) with a Program Front Panel

[0391] FIG. 32 illustrates an example of a user selecting
a data point item associated with a device icon (Controllerl)
and associating or dragging and dropping this data point

US 2003/0101022 Al

item onto the user interface or front panel of a program.
Similar operations may be performed when the user asso-
ciates a device icon with the user interface or front panel of
a program. In this example, the user has selected the RPM
(Revolutions Per Minute) data point item and has dragged
and dropped this data point item onto the front panel of a
graphical program, such as the front panel of a LabVIEW
VI. When the user associates or drags and drops a data point
item onto the user interface or front panel of a program, in
one embodiment, the system may automatically create or
display a GUI element, e.g., an indicator or control, in the
user interface or front panel that is associated with this data
point. This GUI element may be “bound” to the data point.
For example, the GUI element may be used to monitor the
value of the data point in a “live” fashion, e.g., the value of
the data point may be displayed in the GUI element in real
time during program execution. The binding may be accom-
plished using data socket technology as described in U.S.
Pat. No. (application Ser. No. 09/185,161) titled
“Data Socket System and Method for Accessing Data
Sources Using URLs”, which is hereby incorporated by
reference. If the GUI element is a control, the GUI element
may be used to control or change the value or parameters of
the data point, either statically or dynamically during run-
time. This drag and drop operation may thus cause a data
binding to be created between the GUI element and the data
point. Thus, the user can view this GUI element to monitor
the value of the data point in a “live” fashion, and may
optionally adjust the data point value or parameters associ-
ated with the data point value.

[0392] In one embodiment, when the user associates or
drags and drops a data point onto a program front panel or
user interface, the system automatically creates (e.g., selects
an displays) a type of GUI element that is appropriate for the
type of data represented by the data point. For example, if
the data point represents a signal, the system may automati-
cally create or display a chart, waveform or graph GUI
element that is capable of displaying the signal. The range or
scale of the GUI element may also be configured to display
the signal appropriately. As another example, if the data
point represents a Boolean value, the system may automati-
cally create a Boolean indicator. In addition, if the data point
is a read-only data point, that the system may create a an
indicator for this data point. If the data point is write only,
the system may create a control for this data point. If the data
point is both readable and writeable, then the system may
create both a control and indicator for this item, or a single
GUI element that is both readable and writeable.

[0393] TItis noted that similar operations to those described
above may be performed when the user associates (e.g.,
drags and drops) an icon representing other types of data
points, such as an I/O element or channel icon (such as AIl)
onto a program front panel. Thus, when the user associates
(e.g., drags and drops) an I/O element or channel (such as
AlIl) onto a program front panel, a GUI element (e.g.,
control or indicator) may be created which can be used to
display the value of the channel and/or manipulate the value
of the channel. When the user associates a device icon onto
a program user interface or front panel, a GUI element may
be created which displays data associated with the device, or
which can control data associated with the device.

May 29, 2003

FIGS. 33A and 33B—Associating a Data Point (or
I/O Channel) with a Program Block Diagram

[0394] FIG. 33A illustrates an example where the user has
selected a data point item, such as RPM, and has associated
or dragged and dropped this data point item onto the block
diagram of a graphical program. As shown, this drag and
drop operation may cause a graphical program element, e.g.,
a node 824, to appear in the block diagram that corresponds
to the data point item. The graphical program element 824
may correspond to the data point icon and may be operable
to programmatically access, i.e., read and/or write values
from/to the data point. In other words, the graphical program
element may be operable to read and/or write the data point
during graphical program execution. This graphical program
element or node 824 may be configured with various func-
tions or properties. In the example shown in FIG. 33A, the
graphical program element has the capability to “Log His-
torical Data” of the data point or “Get Trend” of the data.

[0395] As shown in FIG. 33B, the user can then connect
this graphical program element with other nodes in the block
diagram to affect programmatic access, i.e., reading of or
writing to, data and/or parameters of this data point. The user
can also connect this graphical program element with GUI
elements (or a terminal of a GUI element) to enable user
access or control of the data point.

[0396] For example, the user can connect the output of a
function node (e.g., “Calc RPM 822) in the graphical
program to the graphical program element 824 that repre-
sents the RPM data point (the “RPM graphical program
element). Thus, during graphical program execution, a func-
tion node may write a value to the RPM graphical program
element 824 that programmatically changes a parameter
value or data value of the RPM data point. As another
example, the user can wire an output of the RPM graphical
program element 824 to another function node (e.g., node
826) so that this other function node 826 can read parameter
values or data values of this data point. As another example,
the user can wire a GUI element (or the terminal of a GUI
element) to the RPM graphical program element to enable
the user to view or modify values associated with the data
point during (or either before or after) program execution.

[0397] In the example of FIG. 33B, the user has wired a
“Calc RPM” node 822 to an input of the RPM node 824,
wherein the Calc RPM node 822 operates to calculate the
RPM value for the data point and write this calculated RPM
value to the RPM data point represented by node 824. The
user has also wired a data logging node 826 to an output of
the RPM node 824, wherein the data logging node 826
operates to log values of the RPM data point to a file.

[0398] Thus, as described above with respect to FIGS. 32,
33A and 33B, with a simple drag and drop operation of a
data point item onto the block diagram of a graphical
program, a graphical program element corresponding to this
data point is included in the diagram. The user can easily
configure the graphical program element that corresponds to
this particular data point for programmatic access or user
access. With a simple drag and drop operation of a data point
item onto the front panel of a graphical program, a GUI
element corresponding to this data point is included in the
front panel. This allows user viewing or modification of
parameters or data of this data point during program execu-
tion. In addition, the same functionality may be used for

US 2003/0101022 Al

other items associated such as a device icon or program icon,
or various types of data points such as I/O channels, e.g.,
analog input, analog output or digital I/O channels.

[0399] The user can of course also drag and drop other
items associated with device icons into a program, such as
the block diagram of a graphical program. For example, as
described above, the user can drag and drop program icons
for a program stored on a device into the block diagram of
a graphical program. As another example, a device repre-
sented by device icon may include one or more files or
configuration data, whereby the user can select a graphical
item or icon representing this file or configuration data and
drag and drop this item onto the block diagram (or front
panel) of a graphical program. This may also allow pro-
grammatic access to this file or configuration data.

[0400] Tt is also noted that the method described in FIGS.
32 and 33 may also be used with text based programs rather
than graphical programs. For example, the user may drag
and drop a data point item (e.g., I/O channel item) into a
particular location in a C-language program, causing appro-
priate function call or C programming statements to auto-
matically be included in the program. These textual pro-
gramming statements may be operable to programmatically
read and/or write to this data point. The user may also drag
and drop a data point item (e.g., I/O channel item) into the
user interface associated with a text language program, with
similar operation as described above for the user interface of
a graphical program.

FIG. 34—Start Up Application Feature

[0401] FIG. 34 illustrates an example where the user has
previously deployed a program onto a target device as
described above with respect FIG. 31. In FIG. 34, the user
has selected the PID program icon associated with Control-
lerl and has selected a “start up application” feature. When
this feature is selected, every time the respective target
device is powered on or boots up, the program correspond-
ing to the program icon is executed.

FIG. 35—Service Icons

[0402] FIG. 35 illustrates a device icon which includes a
number of associated service icons. Service icons represent
a high level mechanism for interacting with an application or
a device. As one exemplary use, it may be presumed that a
developer desires to create an application that may then be
used by other users. In this example, the user may desire to
hide various program icons which represent underlying
program functionality, and rather only expose certain basic
services of the application. In FIG. 35, service icons 842-
850 are displayed which correspond to starting the applica-
tion program (842), modifying or viewing parameters of the
application or device (844), stopping the application (846),
checking the status of the application or device (848), or
shutting down the application or device (850). Thus, the user
can package up an application and distribute his application
to a number of different users, whereby the receiving users
may only view the service icons 842-850. These service
icons 842-850 provide basic high level functionality, with-
out exposing the underlying program structure.

FIG. 36—Copying Device Settings to other
Devices

[0403] FIG. 36 illustrates an example where a user desires
to copy the settings from a first device icon and then

May 29, 2003

optionally “paste” or configure the settings onto a second
device icon corresponding to a second device. Here, the user
may select or right click on a first device icon (e.g., device
icon 804) and select a “Copy settings from” option from a
menu. This operates to copy the settings of the respective
device corresponding to the first device icon 804. The user
may then select a second device icon (not shown) corre-
sponding to a second device and paste the settings onto that
second device. This provides an easy mechanism to copy
settings among various devices.

[0404] Remote Debugging

[0405] In another embodiment, remote debugging of
graphical program block diagrams may be performed in a
distributed system. For example, where a graphical program
is deployed on a remote device, the user at the main
computer 82 may be able to select the device icon and/or
select a respective program icon associated with the device
and view the block diagram of the graphical program. The
user may be able to view the block diagram on the display
of the main computer system, wherein this block diagram is
actually executing on a remote device. The user may then be
able to use various debugging tools that are useful with
respect to block diagrams, such as break points, single
stepping, and execution highlighting.

[0406] The user thus may be able to use the displayed
block diagram as a graphical user interface for debugging
the block diagram executing on the remote device. The user
can single step through the block diagram executing on the
remote device using the block diagram GUI displayed on the
main computer system display. Also, as a block diagram
executes on a remote device, the user may be able to view
the block diagram on the main computer system, wherein the
respective nodes in the block diagram displayed on the main
computer system are highlighted as these nodes execute on
the remote device. The user may also be able to view the
data output from each of the respective nodes on the block
diagram displayed on the main computer system 82 as the
respective nodes produce data executing on the remote
device.

[0407] Viewing Front Panels of Graphical Programs

[0408] As mentioned above, the user can select an option
on a program icon which represents a program having a
corresponding user interface or front panel, wherein this
selected option enables the user to view the user interface or
front panel, either statically or dynamically during execu-
tion. Thus, where the user has a configuration diagram
including device nodes and/or program nodes representing
programs distributed throughout the system, the user may be
able to select any program icon in the distributed system and
view the corresponding user interface or front panel of the
program as it executes. This provides the user the ability to
view the status of execution of programs to put on any of the
various devices present in the system.

[0409] Asynchronous Data Flow Node

[0410] In another embodiment, the user may be able to
include an asynchronous data flow node or icon in two or
more block diagrams or graphical programs to allow dis-
tributed execution among the two or more block diagrams or
graphical programs. An asynchronous data flow icon may
include two portions which comprise part of the same queue
or memory. One portion of the asynchronous data flow icon

US 2003/0101022 Al

may be a reader portion and the other portion may be a writer
portion. The user may then distribute the reader and writer
portions with different devices or different programs, e.g.,
using the association techniques described above. Thus, a
writer portion of the asynchronous dataflow node in a first
block diagram may operate to write data to the queue, and
a reader portion of a second different block diagram may
operate to read data from this queue. These reads and writes
may occur asynchronously to each other. This allows a first
block diagram to communicate data to a second block
diagram, wherein the data may be communicated asynchro-
nously with respect to the second block diagram. This
asynchronous data flow may also be configured for bi-
directional communication, i.e., with readers and writers in
both the first and second block diagrams or graphical
programs. This asynchronous data flow may be particularly
desirable between a computer system and a remote device.

[0411] Therefore, with simple graphical tools, the present
system helps a user select and manage a system, such as a
measurement system (e.g., a data acquisition system)
throughout its complete lifecycle. The tools described herein
allow the user to select and order complete systems, includ-
ing sensors, signal conditioning, data acquisition, industrial
computers and software, (including machine vision, motion
control, etc.). For example, the configuration diagram dis-
played on computer 82 may be used by a user to aid in
ordering devices or programs from an electronic commerce
site presented by server computer 90. The system may also
operate to ensure that all components are compatible with
each other and that all required parts are order to enable the
user to get up and running quickly.

[0412] The present system also may be used to help the
user in connecting his/her system together, providing
cabling diagrams to help understand how sensors, signal
conditioning and data acquisition hardware connect
together. The present system helps avoid polarity problems,
ground current loops, and missing connections. The system
may even assist with sensor excitation requirements. One
embodiment of the invention allows the user to design
his/her own custom cabling interfaces.

[0413] In one embodiment, the present system starts with
the user’s graphical system description and automatically
configures easy-to-use DAQ Channel Names—with sensor
scaling and unit information built in. A configuration pro-
gram, such as Measurement & Automation Explorer from
National Instruments Corporation, can verify each of the
input and output channels—in units or by reading raw
voltages.

[0414] The present system may also operate to analyze the
quality-of-measurement characteristics of configured
devices to help the user understand and document the overall
measurement uncertainty in the system using industry-stan-
dard formulae and terminology. This informs the user about
the quality of the measurements.

[0415] As the user constructs a system, the graphical tools
of the present system make it easy for the user to document
the system—whether the documentation of the system is for
the user, or intended to satisfy thorough corporate or legis-
lative standards. Asset data can be stored locally or in a
variety of SQL-compatible databases. The user may have
complete control over the format of generated reports. A
number of templates are included, such as calibration
reports, and financial asset management.

May 29, 2003

[0416] The present system may also simplify system
maintenance. The system may operate to remind the user
when devices need to be re-calibrated. The system may even
be configured to prevent the user from taking measurements
with devices that have expired calibration certificates.

[0417] The present system may also aid the user in deploy-
ing systems as the user moves from the R&D lab to the
production floor. The network deployment tools of the
present system make it easy to replicate system configura-
tion to one or many destination machines. The system may
operate to update information about the physical assets
connected to each deployed machine—device serial num-
bers and calibration data, for example. The system may also
include configuration management tools that verify that all
changes to a system are recorded.

[0418] Therefore, the system offers a number of advan-
tages to the user. The present system allows the user to create
a graphical description (configuration diagram) of his/her
physical system. The user may operate to select sensors,
signal conditioning devices, data acquisition hardware
devices, measurement devices, automation devices, etc. for
the system being developed.

[0419] Various other features of one embodiment of the
invention are as follows:

[0420] The system does not require hardware to operate.

[0421] The system creates custom DAQ Channels for the
user’s inputs and outputs.

[0422] The system verifies that the configuration diagram
elements or parts are compatible.

[0423] The system may assists with cabling.

[0424] The user can annotate his diagram with additional
free-form information.

[0425] The system can examine hardware to further docu-
ment his system. The system can, for example, query
hardware for transducer electronic data sheets (TEDS),
calibration dates, serial numbers, etc. The user can supply
this same data manually.

[0426] The system creates/modifies scaling information
for the DAQ channels based on the TEDS.

[0427] The system can help a user produce a virtual TEDS
for his sensor. (Physical Metrology).

[0428] The user can generate reports displaying this data.
The display formats are user-definable, and the system ships
with several example templates.

[0429] The system can be used a pre-sales tool or an
electronic commerce tool, including specification and vali-
dation of customer orders

[0430] The system can help a user perform end-to-end
calibration.

[0431] The system can help a user modify his documen-
tation when a system is deployed—e.g., re-detect hardware
information, step the user through physical or end-to-end
calibration, etc.

[0432] The system informs the user when calibration is
due. The user can configure the system to produce warnings
or fail to run entirely when calibration is overdue.

US 2003/0101022 Al

[0433] The system can combine quality-of-measurement
information from the sensors, conditioning and DAQ boards
to produce an overall error estimate. The system can assist
users with expression of measurement uncertainty conform-
ing to a variety of industry and government standards.

[0434] The user can design custom cabling interfaces
between DAQ hardware and sensors.

[0435] The system handles measurement and automation
property management. The system not only records calibra-
tion information, but also can report on inventory, reliability
data, financial records, etc. (Alternatively, the system can
interoperate with third-party property management tools
such as Fluke’s MET/TRACK or MET/CAL.)

[0436] The system supports configuration management.
The system at least records all changes to the system, but
perhaps also allows different levels of user access. The
system may integrate with deployment tools so that changes
due to deployment are handled well.

FIGS. 37-44—Methods Related to the Creation and
Use of Configuration Diagrams

[0437] FIGS. 37-44 flowchart various embodiments of
methods for creating and using diagrams, e.g., configuration
diagrams, for performing various functions on or for a
system. It should be noted that in various embodiments of
the methods of FIGS. 37-44, some of the steps may be
performed in a different order than shown, or may be
omitted. Additional steps may also be performed as desired.
It is further contemplated that various portions of the dif-
ferent methods described below may be combined.

[0438] Various embodiments of the invention may be
implemented or performed by a stand alone system. In other
embodiments, the system may be a client system, where, as
used herein, the term “client system” refers to a system
which communicates with another system, e.g., a server
computer system, to receive or use services provided by the
other system, as is well known in the art. The embodiments
described below relate to client/server embodiments of the
invention, where the client system and the server system
each perform respective portions of the method, although
this is not intended to limit the invention to any particular
form or functionality. In the embodiments described below,
the client system may include a plurality of devices coupled
together. In some embodiments, at least one of the devices
includes, or is operable to include, one or more programs.

[0439] 1t is noted that in different embodiments, the client
system may include devices and software related to various
applications and fields, such as, for example, measurement,
modeling/simulation, network management, control, and
automation, among others, although these example applica-
tions and fields are exemplary only, and are not intended to
limit the application of the method or the types of client
systems to any particular domains or fields. Similarly, the
devices and programs included in the client system may be
of any of a variety of types. For example, the devices may
include one or more of analog devices, digital devices,
processor-based devices, and programmable hardware ele-
ments, e.g., field programmable gate arrays (FPGAs),
among others. Similarly, the programs included in the client
system may be text-based programs, such as C, C++, Java,
HTML, etc., graphical programs, such as LabVIEW graphi-

May 29, 2003

cal programs, and/or hardware configuration programs,
among others. For example, in an embodiment where at least
one of the plurality of devices includes a field programmable
gate array (FPGA), a hardware configuration program may
be deployable on the FPGA to perform a function, e.g., a
measurement, control, automation, or modeling function,
among others.

[0440] In one embodiment, the client system may com-
prise a rapid control prototyping (RCP) system. As is known
in the art, a goal of rapid control prototyping is to enable new
product prototypes to be implemented and tested on real-
time hardware, e.g., before the design of the product has
been finalized and before the product has actually gone into
production. For example, according to the rapid control
prototyping process, a control algorithm can be developed
and deployed on a target controller or target device. For
example, the target device may include real-time hardware
that can execute the control algorithm, e.g., on configurable
hardware such as an FPGA or DSP. The target device may
be chosen to have characteristics similar to what the pro-
duction device will have, e.g., in characteristics such as
CPU, memory, 1/O, etc.

[0441] The target controller or device that executes the
control algorithm under test may be coupled to a real
physical system, i.e., the physical system that the production
device will be used to control. Thus, the target device
executing the control algorithm may behave much the same
as if the production device were controlling the physical
system. However, the process of deploying a control algo-
rithm on the target device may be performed significantly
easier and more quickly than if a production device were
manufactured to test each version of a control algorithm
under test. For example, the programming environment used
to create the control algorithm may provide support for
automatically deploying the algorithm on the target device.
Thus, the design/test process may be a very tightly closed
loop, allowing designs to be quickly and easily tested and
significantly speeding up the product development process.

[0442] Another typical use of simulation is known as
“hardware-in-the-loop” simulation. With hardware-in-the-
loop simulation, a real product may be tested in conjunction
with a simulated physical system. For example, consider a
control unit designed to control a physical system. It may be
impractical to test the control unit with the real physical
system the control unit is designed to control. For example,
the tests may be too expensive, too dangerous, or impos-
sible, e.g., the real physical system may not exist yet. Thus,
it may be desirable to couple the real control unit to a
simulated physical system to perform the tests. The simu-
lation of the physical system may execute on real-time
hardware so that the simulation closely approximates the
real system. As one example, consider a control unit
designed to control an automobile. It may be desirable to test
how the control unit responds in a crash situation. By
performing a hardware-in-the-loop simulation, the crash
situation can be simulated without actually crashing a real
automobile.

[0443] In one embodiment of a system for performing a
hardware-in-the-loop simulation, a measurement/control
program may be utilized to measure characteristics of the
real product being tested, e.g., a real control unit, and/or to
control operation of the real product. For example, the

US 2003/0101022 Al

measurement/control program may be utilized to gather
information that can be analyzed to determine how well the
real product under test is performing. Also, the measure-
ment/control program may be utilized to change operation
parameters of the real product, e.g., to determine how this
affects the operation of product under test. For further details
regarding rapid control prototyping and hardware-in-the-
loop techniques, please see U.S. patent application Ser. No.
10/046,868 titled “System and Method for Performing
Rapid Control Prototyping Using a Plurality of Graphical
Programs that Share a Single Graphical User Interface,”
filed Jan. 15, 2002, and U.S. patent application Ser. No.
10/046,861 titled “System and Method for Performing a
Hardware in the Loop Simulation Using a Plurality of
Graphical Programs that Share a Single Graphical User
Interface,” filed Jan. 15, 2002, which were both incorporated
by reference above.

[0444] In various embodiments of the methods described
below, a diagram, e.g., a configuration diagram, may be
created and/or used to specify, manage, configure, and/or
represent a system, e.g., a client system. The diagram may
include device icons representing each of the plurality of
devices in the system, link icons indicating coupling rela-
tionships between the plurality of devices, and program
icons representing each of the one or more programs. In one
embodiment, the diagram is a configuration diagram repre-
senting the hardware and software configuration of the
system. Examples of configuration diagrams are described
above with reference to FIGS. 21A and 21B, although it is
noted that these configuration diagrams are exemplary only,
and are not intended to limit the diagrams to any particular
form, style, or functionality. In other embodiments, the
configuration diagram may represent a desired configuration
of the client system. In other words, some or all of the
products, i.e., devices and/or programs, represented in the
configuration diagram may not currently be included in the
system, but may instead comprise desired or proposed
components of the system.

[0445] 1In one embodiment, the device icons in a configu-
ration diagram may each have an appearance to visually
indicate a type of the respective device. In other words, each
device icon may visually or graphically indicate the type of
device that the device icon represents. Similarly, program
icons in the diagram may each have an appearance to
visually indicate a type of the respective program. As noted
above, the configuration diagram may also include links
between the device icons indicating respective couplings
between the devices in the client system. In one embodi-
ment, the link icons may each have an appearance to visually
indicate a type of the respective link between devices. For
example, a link icon may visually indicate whether the link
is a serial, parallel, digital, analog, and/or wireless link,
among others, or may indicate such characteristics as the
signal or data type, e.g., power vs. data, direction of data
flow, numbers of wires in the link, communication protocol,
etc.

[0446] In one embodiment, the program icons may be
visually displayed indicating an association with respective
device icons representing respective devices in which the
programs are stored and/or executed. For example, the
program icons may be visually displayed proximate to
respective device icons representing respective devices in
which the programs are stored and/or executed. It should be

May 29, 2003

noted that as used herein, the term “proximate™ refers to
being on or near an item, €.g., an icon, i.e., if a first icon is
displayed proximate to a second icon, the first icon is
sufficiently close to the second icon such that the user would
presume or understand an intended relationship between the
two icons. Thus, a program icon may be located proximate
to a device icon to represent the fact that the corresponding
program is stored and/or executed on the corresponding
device. In another embodiment, link icons may be displayed
coupling the program icons with the respective device icons.
Other graphical techniques associating the program icons
with the respective devices are also contemplated.

FIG. 37—Characterizing A Client System Over A
Network

[0447] FIG. 37 flowcharts one embodiment of a method
for characterizing a client system over a network. More
specifically, the flowchart describes a method for generating
a diagram representing the hardware and software configu-
ration of the client system. The embodiment of FIG. 37 is
preferably implemented in the system described above with
reference to FIG. 1, where a client computer, e.g., the first
computer system 82, is coupled to a server computer system,
e.g., the second computer system 90, through a network 84
(or a computer bus).

[0448] As FIG. 37 shows, in 3702, electronic communi-
cation may be established between a server computer and a
client system over a network, e.g., a LAN, WAN, the
Internet, or any other transmission medium. For example, in
one embodiment, a device in the client system, such as a
client computer 82, may initiate a network session with the
server computer, e.g., by directing a web browser to a URL
(Universal Resource Locator) of a website maintained on the
server computer. Alternatively, the server computer 90 may
initiate communications with the client system, e.g., the
client computer 82. It should be noted that in various
embodiments the communication between the server com-
puter and the client system may utilize any available com-
munication protocols, e.g., TCP/IP, HTTP, Ethernet, 802.11,
etc., as is well known in the art. Thus, through any of a
variety of approaches, electronic communication may be
established between the server computer and the client
system over a network.

[0449] As mentioned above, in a preferred embodiment,
the client system includes a plurality of devices coupled
together, where at least one of the devices includes one or
more programs. Once communication is established
between the server computer and the client system, then in
3704, the server computer may programmatically determine
information regarding the plurality of devices and the one or
more programs. For example, the server computer may
programmatically analyze the client system to determine the
presence of one or more of the plurality of devices and the
one or more programs. Thus, the determined information
may comprise configuration information for the client sys-
tem.

[0450] In one embodiment, the server computer may
download an agent or program to the client system. The
agent or program may then execute on the client system,
e.g., on a device of the client system, to programmatically
determine the information regarding the plurality of devices
and the one or more programs in the client system, and may

US 2003/0101022 Al

provide the determined information to the server computer.
In another embodiment, the server computer may access at
least a portion of the information from at least one of the
devices in the system. For example, the server computer (or
the downloaded agent or program) may programmatically
determine the information by accessing plug and play infor-
mation to determine the presence of the plurality of devices
and the one or more programs. As another example, pro-
grammatically determining the information may include
querying a configuration program resident on one of the
devices in the system to determine the presence of the
devices and programs.

[0451] As noted above, in different embodiments, the
client system may include devices and software related to
various applications and fields. Thus, for example, in an
embodiment where the client system is a measurement
system, the plurality of devices may include one or more
measurement devices which are each operable to perform a
respective measurement function. Similarly, the one or more
programs may include one or more measurement programs
for performing measurement functions. Thus, the server
computer programmatically determining information
regarding the plurality of devices and the one or more
programs may include programmatically determining a con-
figuration of the one or more measurement devices and the
one or more measurement programs in the measurement
system.

[0452] In an embodiment where the client system is a
simulation or modeling system, the plurality of devices may
include one or more devices which are each operable to
perform a respective simulation or modeling function, and
the one or more programs may include one or more simu-
lation or modeling programs for simulating or modeling a
process, device, and/or system. In this embodiment, the
server computer programmatically determining information
regarding the plurality of devices and the one or more
programs may include programmatically determining a con-
figuration of the one or more devices and the one or more
programs in the simulation or modeling system.

[0453] As yet another example, in an embodiment where
the client system is an automation system, the plurality of
devices may include one or more devices which are each
operable to perform a respective automation function, and
the one or more programs may include one or more auto-
mation programs for automating a process, device, and/or
system. Thus, in this embodiment, programmatically deter-
mining information regarding the plurality of devices and
the one or more programs may include programmatically
determining a configuration of the one or more automation
devices and the one or more automation programs in the
automation system.

[0454] Similarly, in an embodiment where the client sys-
tem is a network system, the plurality of devices may
include one or more devices which are each operable to
perform a respective network function, e.g., a network
management function, and the one or more programs may
include one or more network programs for managing a
network, such as, for example, configuring and/or managing
hardware, such as switches, bridges, routers, hubs, network
processors, etc., as well a network management programs, as
described above in detail. For example, as also noted above,
network functions may include, but are not limited to,

May 29, 2003

network traffic logging and/or traffic analysis, e.g., data
throughput, latency, topography, etc., as well as routing,
testing, and so forth. Examples of network management
products include NetView provided by IBM Tivoli Soft-
ware, BMC Software’s Patrol, and SANPoint Control by
Veritas Software Corporation, among others.as described in
detail above. Thus, in this embodiment, programmatically
determining information regarding the plurality of devices
and the one or more programs may include programmati-
cally determining a configuration of the one or more net-
work devices and the one or more network programs in the
network system.

[0455] Inresponse to determining the information regard-
ing the device and programs in the client system, the server
computer may programmatically generate a diagram which
visually or graphically represents the system, as indicated in
3706. In other words, the diagram may be a configuration
diagram representing the hardware and software configura-
tion of the client system. As described above, the diagram
may include device icons representing each of the plurality
of devices, link icons indicating coupling relationships
between the plurality of devices, and program icons repre-
senting each of the one or more programs.

[0456] In an embodiment where the server computer
downloads an agent or program(s) to the client system to
determine the information regarding the plurality of devices
and the one or more programs in the client system, rather
than providing the information to the server computer and
the server computer generating the diagram as described
above, the agent or program(s) may instead use the deter-
mined information to generate the diagram. In other words,
the agent or program(s) may execute on (a device of) the
client system to generate the diagram based on the deter-
mined information.

[0457] Once the diagram has been generated, e.g., by the
server computer, then in 3708, the server computer may
transmit the diagram to the client system. In an embodiment
where the diagram is generated by software executing on the
client system, the diagram may instead be transmitted by the
client system to the server computer, or alternatively, may
not be transmitted at all.

[0458] Finally, in 3710, the diagram may be displayed,
e.g., on a display device of the client system, e.g., for
viewing by a user of the client system. In different embodi-
ments, the server computer may cause the diagram to be
displayed on the display device of the client system, or the
client system may initiate the display of the diagram. In one
embodiment, the configuration diagram may be stored in a
memory medium of the client system (or in a memory
medium of the server computer), where the configuration
diagram is usable for one or more of: documenting the client
system configuration, modifying the client system configu-
ration, and adding/removing programs or devices to/from
the client system. In some embodiments, the diagram may
also be usable in debugging the client system.

[0459] In one embodiment, a tree diagram which visually
represents the system may be programmatically generated
based on the programmatically determined information,
where the tree diagram displays a hierarchical view of the
plurality of devices and the one or more programs. The tree
diagram may also be displayed on the display. Thus, based
on the determined information, a second or alternative view

US 2003/0101022 Al

of the client system may be generated and displayed. In one
embodiment, any changes made to one of the diagrams may
automatically be reflected in the other diagram.

[0460] As noted above, in various embodiments, respec-
tive portions of the method may be performed by the client
system and the server system. Thus, in various embodi-
ments, the server computer may perform at least one of the
programmatically determining information and the pro-
grammatically generating the diagram, and/or the client
computer may perform at least one of the programmatically
determining information and the programmatically generat-
ing the diagram. Alternatively, either or both of the client
system and the server system may perform at least a portion
of the programmatically determining information and the
programmatically generating the diagram.

[0461] Forexample, in one embodiment, where the system
includes a first computer system, and where a server com-
puter is coupled to the system over a network, the first
computer system may programmatically determine the
information, e.g., based on Plug and Play information, by
performing a discovery process on the system, etc. Elec-
tronic communication between the server computer and the
system may be established over a network, and the server
computer may programmatically generate the diagram based
on the programmatically determined information. For
example, the server system may query the first computer
system for the information, then generate the diagram based
on the information, or the first computer system may pro-
actively send the information to the server and request the
diagram, in response to which the server system may gen-
erate the diagram.

[0462] Alternatively, the server computer may program-
matically determine the information, and the first computer
system may programmatically generate the diagram based
on the programmatically determined information. For
example, as described above, the server computer may
programmatically determine the information in a variety of
ways, e.g., by downloading an agent or program to the client
system, by querying the client system, etc. The server
system may then provide the information to the client
system, and the client system may generate the diagram
based on the information. In one embodiment, the client
system may generate the diagram using software down-
loaded from the server system. Thus, in various embodi-
ments, the client system and the server system may coop-
eratively implement the method described above.

[0463] In one embodiment, subsequent changes in the
client system configuration may automatically be reflected
in the diagram. For example, after displaying the diagram a
first program may be deployed on the client system. The
method may then display a first program icon in the diagram,
where the first program icon corresponds to the first pro-
gram. Thus, in one embodiment, the diagram may automati-
cally be updated when the hardware and/or software con-
figuration of the client system changes.

[0464] Insome embodiments, the diagram may be used to
change the configuration of the client system. For example,
user input may be received graphically associating a first
program icon with a first device icon, where graphically
associating operates to deploy a first program corresponding
to the first program icon with a first device corresponding to
the first device icon. In one embodiment, the user may drag

May 29, 2003

the first program icon onto the first device icon, thereby
initiating deployment of the first program onto the first
device. Other approaches for associating the program icon
with the device icon are also contemplated. For example, the
user may invoke a pop-up menu, e.g., by right-clicking on
the device icon or the program icon. The menu may then
receive user input specifying the program for deployment on
the device, or alternatively, specifying the device as a target
for deployment of the program. As yet another example, the
user may use a pointing device to draw a line from the
program icon to the device icon, indicating the desired
deployment. Thus, if the user determines that the configu-
ration diagram is incomplete or otherwise in need of modi-
fications, the method may included receiving user input,
e.g., adding (or removing) icons, indicating additional hard-
ware and/or software to add to (or remove from) the system
represented by the diagram. In other words, the user may
manually specify additional hardware and/or software or
removal of hardware and/or software for the system con-
figuration.

[0465] Inone embodiment, the deployment of the program
onto the device may be animated. In other words, the
diagram or a program associated with the diagram, may
animate the deployment of the first program onto the device.
It is noted that any of a variety of animation techniques may
be used to perform the animation. For example, animating
the deployment of the program may include moving the first
program icon to a location in the diagram proximate to the
first device icon as the program is deployed. As another
example, one or more moving arrows may be displayed
moving from the program icon to the device icon. Of course,
once the deployment is complete, the animation may be
stopped. Further information regarding animation of pro-
gram deployment is provided below with reference to FIG.

FIG. 38—Animating Deployment of a Program in
a System

[0466] FIG. 38 flowcharts one embodiment of a method
for animating deployment of a program in a system, e.g., in
a client system. More specifically, the flowchart describes a
method for animating program deployment using a configu-
ration diagram representing the hardware and software con-
figuration of the client system. The embodiment of FIG. 38
may be implemented on computer system 82, or may be
implemented in the system described above with reference
to FIG. 1, where the client computer, e.g., the first computer
system 82, is coupled to a server computer system, e.g., the
second computer system 90, through a network 84 (or a
computer bus).

[0467] In a preferred embodiment, the client system
includes a plurality of devices coupled together, where at
least one of the devices includes one or more programs. As
noted above, in different embodiments the client system may
include devices and software related to various applications
and fields. For example, in various embodiments, the client
system may be a measurement system, where the plurality of
devices include one or more measurement devices which are
each operable to perform a respective measurement func-
tion, or, the client system may be a simulation (e.g., mod-
eling) system, where the plurality of devices include one or
more devices which are each operable to perform a respec-
tive simulation function, and where the one or more pro-

US 2003/0101022 Al

grams include one or more simulation programs for simu-
lating a process, device, and/or system. In yet another
embodiment, the client system may be an automation sys-
tem, where the plurality of devices include one or more
devices which are each operable to perform a respective
automation function, and where the one or more programs
include one or more automation programs for automating a
process, device, and/or system. In a further embodiment, the
client system may be a network system, where the plurality
of devices include one or more devices which are each
operable to perform a respective network function, and
where the one or more programs include one or more
network programs for managing a network. Of course, other
applications and/or fields of use are also contemplated, the
examples given being exemplary only.

[0468] As FIG. 38 shows, in 3802, a configuration dia-
gram may be displayed, e.g., on a display device of the client
system, where the configuration diagram represents the
devices in the client system. As described in detail above, the
diagram may include device icons representing each of the
plurality of devices, link icons indicating coupling relation-
ships between the plurality of devices, and program icons
representing each of the one or more programs.

[0469] Once the diagram has been displayed, then in 3804,
a first program may be deployed to the first device in the
client system. For example, in one embodiment, the user
may initiate deployment of the program onto the first device,
e.g., user input may be received graphically associating a
first program icon with a first device icon, where graphically
associating operates to deploy a first program corresponding
to the first program icon with a first device corresponding to
the first device icon. In one embodiment, the user may drag
the first program icon onto the first device icon, thereby
initiating deployment of the first program onto the first
device. Other approaches for associating the program icon
with the device icon are also contemplated. For example, the
user may invoke a pop-up menu, e.g., by right-clicking on
the device icon or the program icon. The menu may then
receive user input specitying the program for deployment on
the device, or alternatively, specifying the device as a target
for deployment of the program. As yet another example, the
user may use a pointing device to draw a line from the
program icon to the device icon, indicating the desired
deployment. In other embodiments, the user may initiated
deployment of the program by various other means, as is
well known in the art, such as, for example, by double-
clicking on the program icon, by entering text commands on
a command line, etc.

[0470] In other embodiments, the deployment of the first
program onto the first device may be performed program-
matically, e.g., automatically. For example, in one embodi-
ment, the program may be deployed automatically in
response to installation of the first device in the client
system. In other words, the user may install or connect the
first device in the client system, and the program may be
programmatically deployed, i.e., without user input speci-
fying the deployment, in response to the installation. For
example, the first device may be installed in the system, the
presence of the first device may be programmatically
detected, and the program may be programmatically
deployed in response to said programmatically detecting
presence of the first device.

May 29, 2003

[0471] In another embodiment, the program may be
deployed automatically in response to the user purchasing
the program, e.g., over the network, e.g., over the Internet.
In other words, the user may access a second computer
system, e.g., an e-commerce server, over the network, place
an order for the program, optionally providing payment
information, and the server may download or deploy the
program onto the client system, e.g., a first computer system,
automatically. The communication between the server com-
puter and the client system may utilize any available com-
munication protocols, e.g., TCP/IP, HTTP, Ethernet, 802.11,
etc., as is well known in the art. Thus, in one embodiment,
the deployment of the program onto the first device may be
performed by a second computer system coupled to the first
computer system.

[0472] 1In 3806, the deployment of the program onto the
device may be animated. In other words, the diagram or a
program associated with the diagram, may animate the
deployment of the first program onto the first device. It is
noted that any of a variety of animation techniques may be
used to perform the animation. For example, animating the
deployment of the program may include moving the first
program icon to a location in the diagram proximate to the
first device icon as the program is deployed. In other words,
the method may display propagation of a first program icon
on the display from a first location on the display to the first
device icon, wherein the first program icon corresponds to
the first program, and where displaying propagation visually
indicates that the first program is being deployed on the first
device. As another example, the method may display propa-
gation of one or more icons from the first program icon on
the display to the first device icon to visually indicate that
the first program is being deployed onto the first device, e.g.,
one or more moving arrows may be displayed moving from
the program icon to the device icon. Of course, once the
deployment is complete, the animation may be stopped.

[0473] 1t should be noted that the animation may be
presented or displayed whether the program is deployed
manually or programmatically. In a preferred embodiment,
the animation of the deployment is displayed substantially
concurrently with the deployment. For example, when a
program is automatically deployed to a device, the configu-
ration diagram may be animated to visually indicate to the
user the deployment operation that is occurring. In one
embodiment, the configuration diagram includes a second
device icon corresponding to a second device, where the
second device initially stores the first program. In this
embodiment, the method may display propagation of the
first program icon on the display from the second device
icon to the first device icon. For example, when a program
is automatically deployed from a computer system, e.g., the
client computer system or a server computer, to the first
device, the corresponding program icon may be animated on
the configuration diagram to “flow” from the computer
system device icon to the first device icon corresponding to
the first device.

[0474] Inanembodiment where the configuration diagram
includes links interconnecting various ones of the plurality
of device icons representing respective couplings between
devices corresponding to the device icons, displaying propa-
gation may include displaying propagation of the first pro-
gram icon on the display on a link connecting the second
device icon and the first device icon, i.e., the animation may

US 2003/0101022 Al

reflect the particular coupling or transmission medium used
to deploy the program to the device.

[0475] As noted above with reference to FIG. 37, in one
embodiment, a tree diagram may be displayed on the display
of the first computer system, where the tree diagram displays
a hierarchical representation of the plurality of devices. In
one embodiment, the tree diagram may also be animated to
visually indicate the deploying.

[0476] Thus, in various embodiments, the deployment of
a program onto a device in a client system may be animated
in a configuration diagram representing the system.

FIG. 39—Receiving Purchase Information for a
Client System

[0477] FIG. 39 flowcharts one embodiment of a method
for receiving purchase information for a client system, e.g.,
a measurement system. More specifically, the flowchart
describes a method for using a configuration diagram rep-
resenting the hardware and software configuration of the
client system to receive purchase information regarding
products for use in the client system. The embodiment of
FIG. 39 may be implemented in the system described above
with reference to FIG. 1, where the client system, e.g., a
client computer, e.g., the first computer system 82, is
coupled to a server computer system, e.g., the second
computer system 90, through a network 84 (or a computer
bus).

[0478] In a preferred embodiment, the client system
includes a plurality of devices coupled together. In one
embodiment, at least one of the devices may include one or
more programs. As noted above, in different embodiments
the client system may include devices and software related
to various applications and fields, including, for example,
the fields of measurement, modeling, networks, and auto-
mation, among others.

[0479] As FIG. 39 shows, in 3902, a configuration dia-
gram may be displayed, e.g., on a display device of the client
system, where the configuration diagram represents a plu-
rality of products, e.g., devices and/or programs, in the client
system. In other words, the configuration diagram may
represent the current configuration of the client system. As
described above, in one embodiment, the diagram may
include device icons representing each of the plurality of
devices, link icons indicating coupling relationships
between the plurality of devices, and program icons repre-
senting any programs currently stored or installed in the
client system. More specifically, the configuration diagram
may include a first device icon representing a first device in
the client system. Examples of configuration diagrams are
described above with reference to FIGS. 21A and 21B,
although it is noted that these configuration diagrams are
exemplary only, and are not intended to limit the diagrams
to any particular form, style, or functionality. In some
embodiments, the configuration diagram may also be dis-
played on a display device of the server computer system, if
desired.

[0480] In one embodiment, a tree diagram which visually
represents the system may be displayed, where the tree
diagram displays a hierarchical view of the plurality of
products, e.g., devices and programs. The tree diagram may
also be displayed on the display. Thus, a second or alterna-

May 29, 2003

tive view of the client system may be displayed. In one
embodiment, any changes made to one of the diagrams (the
configuration diagram or the tree diagram) may automati-
cally be reflected in the other diagram.

[0481] In one embodiment, the server computer may
download an agent or program to the client system, which
may then execute on the client system, e.g., on a device of
the client system, to programmatically determine the infor-
mation regarding the plurality of devices and the one or
more programs in the client system. The agent or program
may then provide the determined information to the server
computer. In another embodiment, the server computer may
access at least a portion of the information from at least one
of the devices in the system. For example, the server
computer (or the downloaded agent or program) may pro-
grammatically determine the information by accessing plug
and play information to determine the presence of the
plurality of devices and the one or more programs. As
another example, programmatically determining the infor-
mation may include querying a configuration program resi-
dent on one of the devices in the system to determine the
presence of the devices and programs.

[0482] 1In 3904, a plurality of product icons may be
displayed representing products available for use in the
client system. The products may include hardware devices
and/or programs. For example, in an embodiment where the
client system is a measurement system, the product icons
may correspond to various measurement devices and/or
measurement programs that may be added to or installed in
the client system. The plurality of product icons may be
displayed in a palette, e.g., in a graphical user interface
(GUI) window, in a menu, a dialog box, etc., as is well
known in the art.

[0483] In one embodiment, the particular product icons
displayed may be dependent upon the configuration diagram
or information related to the configuration diagram. In other
words, the product icons displayed may be based on the
current configuration of the client system. For example, the
displayed product icons may correspond to devices and/or
programs that are compatible with those devices and/or
programs represented in the configuration diagram. Thus, in
this embodiment, the method may include programmatically
analyzing the current configuration diagram, selecting prod-
uct icons for display based on the analysis, and displaying
the selected product icons.

[0484] In one embodiment, information related to the
products may be displayed with, or accessible through, the
displayed product icons, such as, for example, a brief
description, pricing, and/or availability of each product. For
example, right-clicking on a product icon may invoke a
pop-up dialog box displaying the information for that prod-
uct, or “hovering” the cursor over the icon may invoke
display of the information.

[0485] Once the product icons have been displayed, then
in 3906, user input graphically associating at least one first
product icon with the configuration diagram may be
received, where the first product icon represents a first
product. The user input may indicate a desire to purchase the
first product. The graphical association between the at least
one first product icon and the configuration diagram may be
performed in a variety of ways. For example, the user input
may graphically associate the at least one first product icon

US 2003/0101022 Al

with a first location in the configuration diagram, e.g., using
“drag and drop” techniques, as is well known in the art. The
first location in the configuration diagram may simply be a
blank area within the borders, e.g., the frame, of the con-
figuration diagram, or may correspond to a displayed ele-
ment, e.g., an icon, in the diagram. For example, the user
input may graphically associate the at least one first product
icon proximate to a link icon in the configuration diagram,
indicating a coupling between the first product icon and an
icon in the diagram already associated with the link.

[0486] More generally, receiving user input graphically
associating the at least one first product icon with the
configuration diagram may include receiving user input
graphically associating the at least one first product icon
with a first location in the configuration diagram, and
receiving user input graphically coupling the at least one
first product icon with a second icon in the configuration
diagram, where the coupling indicates an intended relation-
ship between the first product and a component of the client
system corresponding to the second icon. Thus, for example,
the user may drag and drop a program icon from the palette
onto or proximate to a device icon in the configuration
diagram, thereby indicating that the program is to be stored
and/or executed on the device corresponding to the device
icon. In one embodiment, after said graphically associating,
the at least one first product icon may be modified to reflect
the association. For example, the color of the icon may be
changed to indicate that the product (icon) has been selected.
As another example, the icon’s appearance may be modified
to indicate the particular relationship implied by the asso-
ciation, e.g., using different colors to indicate whether the
corresponding product is a data source or target, and so on.

[0487] In one embodiment, type checking may be per-
formed regarding the intended relationship between the first
product and the component of the measurement system
corresponding to the second icon. For example, if the
program icon were dragged to a location proximate to the
device icon, the method may programmatically, i.e., auto-
matically, analyze the indicated relationship, e.g., that the
program is to be stored and/or executed on the device, and
determine whether such a relationship is feasible. If the
program should not or cannot be stored or executed on the
device, then an error message (or graphical equivalent) to
that effect may be presented to the user. As another example,
if an icon representing a PCI device were associated with a
link icon which in turn was coupled to a device icon
representing a USB device, then a message or icon may be
presented to the user indicating the incompatibility between
USB and PCL

[0488] In one embodiment, the message may also include
suggestions as to how to resolve the issue. For example, the
message may suggest that a bridge device or converter be
inserted between the USB device and the PCI device to
facilitate communication between the otherwise incompat-
ible devices. If not already included in the displayed product
icons (e.g., in the palette), then an icon representing the
suggested converter device may be added to the palette.
Thus, in one embodiment, in response to receiving the user
input indicating a desired relationship, second product icons
may be displayed representing second products available for
use in the client system, where the second products are
related to the first product. More generally, where graphi-
cally associating the at least one first product icon with the

May 29, 2003

configuration diagram includes indicating a selection of the
first product from the plurality of products, the method may
automatically display a second plurality of product icons
representing second products available for use in the mea-
surement system based on one or more past selections. In
this way, the method may successively refine the presenta-
tion of product options to the user as the user provides
successive selection information. Similarly, if the user modi-
fies the configuration diagram, e.g., changes the connectivity
among the diagram elements or removes an element from
the configuration, the method may modify the displayed
product icons in accordance with the new configuration.

[0489] Once the user input has been received graphically
associating the at least one first product icon with the
configuration diagram, then as indicated in 3908, an updated
configuration diagram may be displayed that represents the
configuration of the measurement system after the user input
has been received, where the updated configuration diagram
includes the at least one first product icon. In other words,
after, or in response to, receiving the user input, the con-
figuration diagram may be modified to include the at least
one first product icon and displayed on the client system
display device. For example, in the embodiment described
above where user input was received graphically associating
the at least one first product icon proximate to a link icon in
the configuration diagram, displaying the updated configu-
ration diagram may include displaying the at least one first
product icon connected to the link icon.

[0490] In one embodiment, once the user has provided
user input selecting the first product icon for inclusion in the
configuration, e.g., by graphically associating the first prod-
uct icon with the configuration diagram, pricing information
for the first product may optionally be displayed, as indi-
cated by 3910 of FIG. 39. In the case that the user input
graphically associates a plurality of product icons with the
configuration diagram, where each of the plurality of prod-
uct icons represents a respective product, accumulated
prices of the respective products may be displayed as each
product icon is graphically associated with the configuration
diagram. For example, the user may select the first product
icon, thereby invoking display of pricing information for the
first product, then the user may select a second product icon
representing a second product, thereby invoking display of
pricing information for the second product. The method may
then display cumulative pricing information for the two
products together, i.e., may display a total price for the
cumulative selected products.

[0491] In various embodiments, displaying pricing infor-
mation may include displaying a total price for all of the
products on the diagram, displaying pricing information for
each of the proposed products on the diagram, displaying an
unpaid balance for the cost of the proposed products on the
diagram, and/or displaying a total cost for the proposed
products on the diagram.

[0492] In response to displaying the pricing information,
user input may be received initiating purchase of the first
product. For example, the user may select an option from a
menu or a pop-up dialog box indicating purchase of the
selected products, and then may provide payment informa-
tion such as a billing account or credit card number. In
response to receiving user input initiating purchase of the
first product, the first product may be provided to the user.

US 2003/0101022 Al

For example, if the product is a program, the program may
be downloaded from the server computer 90 (or another
server coupled to the network), or delivered via any other
means as desired. In this embodiment, the user may drag and
drop the program icon onto a device icon in the configura-
tion diagram to invoke deployment of the program onto the
device corresponding to the device icon. For more detailed
information regarding deployment of programs using a
configuration diagram, please see U.S. patent application
Ser. No. 10/113,067, titled “Graphically Deploying Pro-
grams on Devices in a System”, filed Apr. 01, 2002, and U.S.
patent application Ser. No. 10/123,511 titled “Graphical
Association of Program Icons,” filed Apr. 16, 2002, which
were incorporated by reference above. If the product is a
hardware device, the device may be delivered via standard
delivery means, e.g., by mail.

[0493] Thus, according to various embodiments of the
invention, the user can log onto a server and view a palette
of icons representing products such as hardware devices or
programs. The user can drag and drop hardware device icons
from the server palette onto a configuration diagram dis-
played on the client system. This may indicate that the user
desires to purchase these products. The user can also drag
and drop in program icons from the server palette onto the
configuration diagram to deploy programs from the server
onto devices in the client system.

FIG. 40—Specifying Products for a Client System

[0494] FIG. 40 flowcharts one embodiment of a method
for specifying products for a client system, e.g., a measure-
ment system. More specifically, the flowchart describes a
method for using a configuration diagram, representing a
current and/or desired hardware and/or software configura-
tion of the client system, to specify products for use in the
client system. The embodiment of FIG. 40 may be imple-
mented in the system described above with reference to
FIG. 1, where the client system, e.g., a client computer, e.g.,
the first computer system 82, is coupled to a server computer
system, e.g., the second computer system 90, through a
network 84 (or a computer bus).

[0495] As FIG. 40 shows, in 4002, a configuration dia-
gram may be received, e.g., from a client system, where the
configuration diagram represents a desired configuration of
the client system, including, for example, a plurality of
hardware devices and/or programs. As described above, the
diagram may include device icons representing each of the
plurality of devices, link icons indicating coupling relation-
ships between the plurality of devices, and program icons
representing any programs currently stored or installed in
the client system. As also described above, in various
embodiments, the client system may be one or more of a test
and measurement system, a modeling or simulation system,
an automation system, a network system, etc., among others.
In one embodiment, the client system may comprise a rapid
control prototyping (RCP) system, as described above.

[0496] 1t should be noted that the configuration diagram
may be received in a variety of different ways. For example,
in one embodiment, electronic communication may be
established between the server computer 90 and the client
system 82 over the network, e.g., a LAN, WAN, the Internet,
or any other transmission medium. For example, in one
embodiment, a device in the client system, such as a client

May 29, 2003

computer 82, may initiate a network session with the server
computer, e.g., by directing a web browser to a URL
(Universal Resource Locator) of a website maintained on the
server computer. Alternatively, the server computer 90 may
initiate communications with the client system, e.g., the
client computer 82. It should be noted that in various
embodiments the communication between the server com-
puter and the client system may utilize any available com-
munication protocols, e.g., TCP/IP, HTTP, Ethernet, 802.11,
etc., as is well known in the art.

[0497] Inwvarious embodiments, the configuration diagram
may be created in a number of different ways. For example,
a user of the client system may manually generate the
configuration diagram, e.g., using a software program
executing on the client computer 82, by dragging and
dropping various icons representing devices, programs, and/
or links onto the diagram, and/or by drawing the diagram. As
another example, a current configuration of the client system
may be determined, and an initial configuration diagram
representing the current configuration of the client system
generated or retrieved from a database. The user may then
modify the initial configuration diagram to produce the
configuration diagram representing the desired configuration
of the client system and provide the desired configuration
diagram to the server computer 90 over the network 84.

[0498] In one embodiment, the current configuration of
the client system may be determined programmatically, i.e.,
automatically. For example, in one embodiment, the current
configuration of the client system may be determined by the
server computer over the network, e.g., the server computer
may access the client system over the network, determine
the current configuration of the client system, generate the
initial configuration diagram, and provide the diagram to the
user over the network. In another embodiment, the current
configuration of the client system may be determined by
software executing on the client system, e.g., the client
computer 82. In one embodiment, the software for deter-
mining the current configuration of the client system may be
downloaded to the client computer from the server computer
over the network, then executed on the client computer.
Thus, the current configuration of the client system may be
determined by programmatically analyzing the client system
to determine devices and/or programs currently in the sys-
tem.

[0499] Once the configuration diagram has been received,
e.g., by the server computer 90, then in 404 the server
computer 90 may programmatically analyze the configura-
tion diagram to determine information regarding a plurality
of products, e.g., at least one hardware device and at least
one program. For example, the server computer 90, e.g.,
software executing on the server computer, may program-
matically analyze the client system to determine pricing
information for the devices and/or programs represented in
the configuration diagram. In one embodiment, the configu-
ration diagram may include information indicating which, if
any, of the components or products represented in the
configuration diagram are already included in the client
system 82. For example, the icons representing the various
devices and/or programs may be labeled or color-coded to
indicate their respective presence (or not) in the actual client
system. The server computer 90 may then determine pricing
information for those components or products represented in
the diagram which are not currently included in the client

US 2003/0101022 Al

system, e.g., as proposed products for the system. It should
be noted that in different embodiments, other information
related to the products, such as availability, model numbers,
descriptions, estimated delivery times, etc., may also be
determined and optionally displayed.

[0500] In 4006 after the pricing information has been
determined for the proposed products, the pricing informa-
tion may be provided to the user, e.g., over the network. The
pricing information (and possibly additional information)
may be provided to the user in a variety of different forms,
including text-based and/or graphical information, among
others. For example, in one embodiment, the configuration
diagram may be modified to include the pricing information,
and the modified configuration diagram provided to the user.

[0501] In various embodiments, displaying pricing infor-
mation may include displaying a total price for all of the
products on the diagram, displaying pricing information for
each of the proposed products on the diagram, displaying an
unpaid balance for the cost of the proposed products on the
diagram, and/or displaying a total cost for the proposed
products on the diagram.

[0502] Once the pricing information has been provided to
the user, then in 4008, user input specifying purchase of at
least one of the proposed products may optionally be
received, and the purchased products may be provided to the
user in response, as indicated in 4010. For example, the user
may specify purchase of the products by dragging and
dropping icons from a palette to the configuration diagram,
or, in an embodiment where the products are represented by
icons in the (modified) configuration diagram, the user may
right-click on a respective icon, thereby invoking a menu or
pop-up dialog box that displays purchase options for the
corresponding product, e.g., payment methods, etc. The user
may select a desired purchase option and may be prompted
for additional payment information, such as a billing
account or credit card number, which may then be entered
and provided to the server computer over the network.

[0503] In one embodiment, the user may select products
for purchase by modifying the configuration diagram and
providing the modified diagram back to the server. For
example, the user may mark at least a subset of the displayed
product icons to indicate purchase of the corresponding
products, e.g., by right-clicking on each product icon and
selecting an option from a pop-up menu indicating a desire
to purchase the corresponding product. In one embodiment,
payment information may also be entered, as described
above. In response to the selected option, the selected
product icon may be modified to indicate the purchase, e.g.,
by a color change, etc. The configuration diagram may then
be provided to the server where it may be programmatically
analyzed to determine the products marked for purchase by
the user. In another embodiment, once the user has selected
the products for purchase using the configuration diagram,
information indicating the purchase may be provided to the
server without the configuration diagram, i.e., just the pur-
chase information may be provided.

[0504] Inone embodiment, the user may select a plurality
of products for purchase, e.g., from the configuration dia-
gram or from a palette of available or proposed products. As
the user selects products for purchase, accumulated prices of
the respective products may be displayed as each product
icon is selected. For example, the user may select a first

May 29, 2003

product icon, thereby invoking display of pricing informa-
tion and/or purchase options for a first product, then the user
may select a second product icon representing a second
product, thereby invoking display of pricing information
and/or purchase options for the second product. The method
may then display cumulative pricing information for the two
products together, i.e., may display a total price for the
cumulative selected products. The cumulative price may be
updated with each product purchase selection until the user
indicates completion of the selection process, e.g., by select-
ing a payment method, finalizing the purchase, etc.

[0505] In response to receiving user input indicating or
initiating purchase of the product(s), the product(s) may be
provided to the user, as indicated above. For example, if the
product is a program, the program may be downloaded from
the server computer 90 (or another server coupled to the
network), or delivered via any other means as desired. In this
case, the user may drag and drop the program icon onto a
device icon in the configuration diagram to invoke deploy-
ment of the program onto the device corresponding to the
device icon. For more detailed information regarding
deployment of programs using a configuration diagram,
please see U.S. patent application Ser. No. 10/113,067, titled
“Graphically Deploying Programs on Devices in a System”,
filed Apr. 01, 2002, and U.S. patent application Ser. No.
10/123,511 titled “Graphical Association of Program Icons,”
filed Apr. 16, 2002, which were incorporated by reference
above. If the product is a hardware device, the device may
be delivered via standard delivery means, e.g., by mail or
other delivery means.

[0506] In one embodiment, in response to receiving the
configuration diagram, the server computer may program-
matically analyze the diagram and propose one or more
products for inclusion in the client system. For example, the
method may include programmatically analyzing the con-
figuration diagram to perform type checking among com-
ponents, e.g., devices and/or programs, represented in the
configuration diagram. In response to the analysis type
checking information may be generated and provided to the
user. As described above, type checking may include ana-
lyzing the relationships between components represented in
the configuration diagram to determine the validity or appro-
priateness of the relationships, or to determine alternatives
to the expressed relationships. For example, in one embodi-
ment, type checking among components represented in the
configuration diagram may include determining one or more
incompatibilities and/or omissions among the components,
where the type checking information includes information
describing the determined one or more incompatibilities
and/or omissions.

[0507] Inone embodiment, the type checking information
may also include proposed changes to the configuration of
the measurement system to resolve the determined incom-
patibilities and/or omissions. For example, as described
above with reference to FIG. 39, if an icon representing a
PCI device were associated with a link icon which in turn
was coupled to a device icon representing a USB device,
then the type checking information may indicate the incom-
patibility between USB and PCI, and the method may, for
example, propose that a bridge device or converter be
inserted between the USB device and the PCI device to
facilitate communication between the otherwise incompat-
ible devices. The proposed product(s), along with pricing

US 2003/0101022 Al

information, may be included in the type checking informa-
tion provided to the user, e.g., the client system.

[0508] Inone embodiment, the type checking information
may be provided to the user by modifying the configuration
diagram to include the type checking information, and
providing the modified configuration diagram to the user.
For example, if the method determines that a needed product
is omitted from the configuration, e.g., the converter above,
then modifying the configuration diagram to include the type
checking information may include adding one or more icons
to the configuration diagram representing one or more
proposed products, e.g., the converter and associated links,
for use in the measurement system. Thus, if not already
included in the displayed product icons (e.g., in the con-
figuration diagram), then icons representing the suggested
converter device and links may be added to the diagram.

[0509] As another example, the method may program-
matically analyze the configuration diagram and determine
that one or more of the components represented in the
configuration diagram could be changed or replaced to
provide an improved solution or configuration for the client
system. For example, alternate couplings between compo-
nents or alternative devices may be proposed. Thus, in one
embodiment, in response to analyzing the configuration
diagram, product icons may be displayed representing prod-
ucts available for use in the client system, where the
products are proposed to augment or replace components in
the current configuration of the client system. In one
embodiment, the icons representing the proposed products
may replace the icons representing the components proposed
to be replaced. In another embodiment, the icons represent-
ing the proposed replacement products may be added to the
configuration diagram, where textual or graphical means are
used to indicate the proposed replacements. For example, a
proposed replacement link may be presented in one color or
line style (e.g., a dashed line), while the “replaced” link may
be presented in a different color or line style.

[0510] Thus, a configuration diagram may be used to
specify products, including hardware devices and/or pro-
grams, for inclusion in a client system, e.g., a measurement
system. Additionally, the configuration diagram may be used
to specify and/or communicate product information, such as
pricing information and/or proposed products, related to the
client system.

FIG. 41—Generating a Configuration Diagram
Based on User Specification of a Task

[0511] FIG. 41 flowcharts one embodiment of a method
for generating a configuration diagram for a client system,
e.g., a measurement system, based on user specification of a
task, e.g., a measurement task. The embodiment of FIG. 41
may be implemented in the system described above with
reference to FIG. 1, where the client system, e.g., a client
computer, e.g., the first computer system 82, is coupled to a
server computer system, e.g., the second computer system
90, through a network 84 (or a computer bus). As noted
above, in various embodiments, the client system may be
one or more of a test and measurement system, a modeling
or simulation system, a network system, and an automation
system, among others. In one embodiment, the client system
may comprise a rapid control prototyping (RCP) system, as
also mentioned above. It should be noted that although the

May 29, 2003

method presented in FIG. 41 is described in terms of a
measurement system for performing a measurement task,
this domain of application is meant to be exemplary only,
and is not intended to limit the application and use of the
present invention to any particular field or domain.

[0512] As FIG. 41 shows, in 4102, one or more require-
ments may be received, e.g., from the client system, speci-
fying a task to be performed by the client system, such as a
measurement task. In a preferred embodiment, the one or
more requirements may be provided in response to input
from a user. For example, the user may provide user input to
the client computer system 82 indicating the one or more
requirements for the measurement task, and the client com-
puter system 82, in response to the user input, may send the
one or more requirements to server computer system 90.

[0513] The user input (requirements) may include domain
specific user input. For example, in a measurement appli-
cation, the user input may be measurement specific user
input. The measurement specific user input or requirements
may include, but is not limited to, one or more of a
measurement function (i.e., instrument) type, such as an
oscilloscope function, multimeter function, DAQ function,
machine vision function, image processing function, motion
control function, process control function, simulation func-
tion, automation function, plant control function, or mea-
surement analysis function; sampling rate; gain; measure-
ment type, such as voltage, resistance, temperature, current,
pressure, photonic intensity, frequency, etc.

[0514] In one embodiment, the one or more requirements
may comprise a task specification, e.g., a measurement task
specification. In another embodiment, the measurement task
specification may be determined based on the one or more
requirements. For example, software executing on the server
computer system 90 may receive the one or more require-
ments from the client computer system 82 over the network,
and may programmatically determine the measurement task
specification based on the received requirements. As another
example, software executing on the client computer system
82 may determine or generate the measurement task speci-
fication based on the requirements. Thus, in various embodi-
ments, the one or more requirements for the measurement
task may include, or may be used to generate, the measure-
ment task specification. For further discussion of the gen-
eration of a measurement task specification from user pro-
vided requirements, please see U.S. patent application Ser.
No. 10/008,792 titled “Measurement System Software
Architecture for Easily Creating High-Performance Mea-
surement Applications,” filed Nov. 13, 2001, and U.S. patent
application Ser. No. 10/120,257 titled “Network-based Sys-
tem for Configuring a Measurement System using Configu-
ration Information Generated based on a User Specifica-
tion,” filed Apr. 10, 2002, both of which were incorporated
by reference above.

[0515] In response to receiving the one or more require-
ments (and/or the task specification), then in 4104, a plu-
rality of measurement products may be determined, where
the plurality of measurement products are operable to per-
form the measurement task, optionally in conjunction with
the client computer system and/or other devices or programs
included in the measurement system. The plurality of mea-
surement products may include at least one measurement
device and/or at least one software product, e.g., a measure-

US 2003/0101022 Al

ment program. In a one embodiment, software executing on
the server computer system 90 may programmatically ana-
lyze the one or more requirements to determine the plurality
of measurement products. In an embodiment where a mea-
surement task specification was determined based on the one
or more requirements, e.g., by the client computer 82 or the
server computer system 90, the one or more measurement
products may be determined by programmatically analyzing
the measurement task specification. For example, if the
requirement and/or task specification indicate that a tem-
perature is to be measured and represented as a voltage, then
the method may propose a voltage-based temperature sensor
coupled to a data acquisition (DAQ) device, and may also
propose additional items, such as a signal conditioner or
suitable transmission medium.

[0516] In one embodiment, determining the plurality of
measurement products may include determining a current
configuration of the measurement system. In this embodi-
ment, the plurality of measurement products may be deter-
mined by programmatically analyzing the one or more
requirements and the current configuration of the measure-
ment system. For example, the method may determine
whether the specified task may be performed using the
current configuration of the measurement system. If the
current configuration of the measurement system is not
adequate for the task, then the method may determine
additional measurement products needed to perform the
task, and that are also compatible with the current devices
and/or programs in the current configuration of the mea-
surement system. If the method determines that some of the
current components, i.e., devices and/or programs, are not
suitable for performing the specified task, then one or more
measurement products may be proposed for replacement of
the unsuitable components. The determination of the current
configuration of the measurement system (e.g., the client
system) may be performed in a variety of ways.

[0517] In one embodiment, the server computer may
download an agent or program to the client system, which
may then execute on the client system, e.g., on a device of
the client system, to programmatically determine the current
configuration of the client system. The agent or program
may then provide the determined configuration information
to the server computer. In another embodiment, the server
computer may access at least a portion of the information
from at least one of the devices in the system. For example,
the server computer (or the downloaded agent or program)
may programmatically determine the current configuration
by accessing plug and play information to determine the
presence of the plurality of devices and the one or more
programs. As another example, programmatically determin-
ing the current configuration may include querying a con-
figuration program resident on one of the devices in the
system to determine the presence of the devices and pro-
grams.

[0518] In one embodiment, a configuration diagram rep-
resenting the current configuration of the measurement
system may be determined, as indicated in 4106. In other
words, a configuration diagram may be generated or
retrieved from a database that iconically represents the
devices and/or programs currently included in the measure-
ment system. As described above, in one embodiment, the
(current) configuration diagram may include device icons
representing each of the plurality of devices, link icons

May 29, 2003

indicating coupling relationships between the plurality of
devices, and program icons representing any programs cur-
rently stored or installed in the measurement system.
Examples of configuration diagrams are described above
with reference to FIGS. 21A and 21B, although it is noted
that these configuration diagrams are exemplary only, and
are not intended to limit the diagrams to any particular form,
style, or functionality.

[0519] In one embodiment, a tree diagram which visually
represents the system may be generated or retrieved from a
database, where the tree diagram displays a hierarchical
view of the plurality of devices and the one or more
programs, and the tree diagram displayed on the display,
thus providing a second or alternative view of the system.

[0520] In an embodiment where the current configuration
of the measurement system is used to generate a (current)
configuration diagram which iconically represents the cur-
rent configuration of the measurement system, the generated
diagram may be displayed on a display of the client com-
puter system 82, and/or on a display device of the server
computer system 90. In one embodiment, the configuration
diagram representing the current configuration of the mea-
surement system may be modified, e.g., by the server
computer 90, to include the proposed one or more measure-
ment products, in which case, displaying the diagram may
include displaying information representing at least a subset
of the plurality of measurement products to the user as
proposed hardware and/or software products for the mea-
surement system. For example, modifying the diagram may
include adding one or more measurement product icons to
the diagram representing the proposed measurement prod-
ucts for use in the measurement system, where the icons of
the proposed products may be displayed differently from the
other product icons to visually indicate that they are pro-
posed products. In one embodiment, modifications made to
either of the configuration diagram or the tree diagram may
automatically result in corresponding changes to the other
diagram.

[0521] As described above with reference to FIG. 40, in
one embodiment, the method may programmatically analyze
the current configuration, e.g., the configuration diagram (in
light of the requirements), and determine that one or more of
the components represented in the configuration diagram
could be changed or replaced to provide an improved
solution or configuration for the measurement system. For
example, alternate couplings between components or alter-
native devices may be proposed. Thus, in one embodiment,
in response to analyzing the configuration diagram, product
icons may be displayed representing products available for
use in the client system, where the products are proposed to
augment or replace components in the current configuration
of the measurement system. In one embodiment, the icons
representing the proposed products may replace the icons
representing the components proposed to be replaced. In
another embodiment, the icons representing the proposed
replacement products may be added to the configuration
diagram, where textual or graphical means are used to
indicate the proposed replacements. For example, a pro-
posed replacement link may be presented in one color or line
style (e.g., a dashed line), while the “replaced” link may be
presented in a different color or line style. In another
embodiment, the proposed measurement products may be

US 2003/0101022 Al

presented to the user in a palette, e.g., as part of, or in
addition to, the configuration diagram.

[0522] In one embodiment, the diagram may also be
modified to include pricing information for the proposed
measurement products, and optionally, the other products in
the diagram, as well. For example, in one embodiment,
pricing information may be displayed proximate to respec-
tive measurement product icons in the configuration dia-
gram, e.g., in response to the user right-clicking on an icon,
or in response to the user “hovering” the cursor over an icon.
In other embodiments, additional information related to the
proposed products may also be included in the configuration
diagram, such as, for example, availability, order informa-
tion, model numbers, descriptions, and so forth, as men-
tioned above. For example, the diagram may be modified to
include estimated delivery times for the proposed products,
e.g., in response to the user right-clicking or hovering over
a product icon.

[0523] Once the (modified) configuration diagram has
been provided for display to the user, e.g., via the client
computer system 82, then in 4108, user input may be
received indicating purchase of at least one of the one or
more measurement products. For example, the user may
specify purchase of the products by dragging and dropping
icons from a palette to the configuration diagram, or, in an
embodiment where the products are represented by icons in
the (modified) configuration diagram, the user may right-
click on a respective icon, thereby invoking a menu or
pop-up dialog box that displays purchase options for the
corresponding product, e.g., payment methods, etc. The user
may select a desired purchase option and may be prompted
for additional payment information, such as a billing
account or credit card number, which may then be entered
and provided to the server computer over the network.

[0524] In response to receiving user input specifying pur-
chase of the proposed measurement products, then in 4110,
at least one of the one or more proposed measurement
products may be provided to the user. For example, if the
product is a program, the program may be downloaded from
the server computer 90 (or another server coupled to the
network), or delivered via any other means as desired. In one
embodiment, the user may drag and drop the program icon
onto a device icon in the configuration diagram to invoke
deployment of the program onto the device corresponding to
the device icon. For more detailed information regarding
deployment of programs using a configuration diagram,
please see U.S. patent application Ser. No. 10/113,067, titled
“Graphically Deploying Programs on Devices in a System”,
filed Apr. 01, 2002, and U.S. patent application Ser. No.
10/123,511 titled “Graphical Association of Program Icons,”
filed Apr. 16, 2002, which were incorporated by reference
above. If the purchased product is a hardware device, the
device may be delivered via standard delivery means, e.g.,
by mail.

[0525] In one embodiment, providing the at least one of
the proposed products to the user may include displaying
order-tracking information for the purchased products. For
example, once the purchase has been finalized, the user may
right-click or hover the cursor over the icon to check the
order and/or tracking status of the product.

[0526] In one embodiment, the proposed (and optionally
purchased) measurement products may include at least one

May 29, 2003

measurement device and at least one software product or
program. For example, at least one of the one or more
software products or programs may be operable to be
deployed on at least one of the one or more measurement
devices to perform a respective measurement function or
operation. In one embodiment, information indicating at
least one measurement device of the one or more measure-
ment devices and at least one software product of the one or
more software products may be provided to a manufacturer
in response to determining the proposed measurement prod-
ucts. The manufacturer may then configure the at least one
measurement device with the at least one software product
to produce at least one configured measurement device,
where the at least one configured measurement device is
operable to perform at least a portion of the measurement
task. The manufacturer may then send the configured at least
one measurement device to the user.

[0527] As mentioned above, the measurement devices and
programs may be of various types and functionality. For
example, in one embodiment, a proposed and purchased
measurement device may include a programmable hardware
element, such as an FPGA. A program proposed and pur-
chased for use with the device may be a hardware configu-
ration program which when deployed onto the FPGA con-
figures the measurement device (the FPGA) to perform a
measurement function. Thus, the manufacturer may receive
the information indicating the measurement device and the
hardware configuration program (and may also receive the
program itself) from the server, deploy the program onto the
FPGA of the measurement device, and provide the config-
ured device to the user. In an alternative embodiment, the
manufacturer may receive a program, e.g., a graphical
program, which is compilable or convertible to the hardware
configuration program. In this case, the manufacturer may
generate the hardware configuration program from the
received program and deploy the generated hardware con-
figuration program onto the FPGA, as described above.

FIGS. 42-44—Configuration Diagram Database

[0528] FIGS. 42-44 flowchart various embodiments of
methods for the creation and use of a configuration database.
More specifically, FIGS. 42 and 43 flowchart embodiments
of a method for using a configuration diagram database to
configure a client system, e.g., a measurement system, and
FIG. 44 flowcharts an embodiment of a method for creating
the configuration database. The embodiments of FIGS.
42-44 may be implemented in the system described above
with reference to FIG. 1, where the client system, e.g., a
client computer, e.g., the first computer system 82, is
coupled to a server computer system, e.g., the second
computer system 90, through a network 84 (or a computer
bus). As noted above, in various embodiments, the client
system may be one or more of a test and measurement
system, a modeling or simulation system, a network system,
and an automation system, among others. It should be noted,
however, that the these domains or fields of application are
meant to be exemplary only, and are not intended to limit the
application and use of the present invention to any particular
field or domain.

[0529] FIG. 42 flowcharts one embodiment of a method
for configuring a client system using a configuration data-
base. As FIG. 42 shows, in 4202, first input may be received
from a client system over a network requesting access to a

US 2003/0101022 Al

plurality of configuration diagrams, e.g., stored in a con-
figuration diagram database. For example, a user of the
client system may wish to configure the client system to
perform a desired task, e.g., a measurement task, but may be
unsure as to how to do so. Each of the plurality of configu-
ration diagrams may include or represent a solution to a
respective task. In other words, each configuration diagram
may graphically, e.g., iconically, represent one or more
products, e.g., devices and/or programs, that are together
operable to perform a respective task. In various embodi-
ments, the configuration diagram database storing a plurality
of configuration diagrams may include one or more of:
storing respective bitmaps of the configurations, storing
graphical programs that implement the configuration dia-
grams, storing data from which the configuration diagram
may be generated, and storing links for accessing configu-
ration diagrams stored on other systems, e.g., in a distributed
database, among other implementations.

[0530] Inone embodiment, the first input may be provided
in response to user input. For example, the client system may
access a configuration diagram server computer system over
the network, the user of the client system may enter user
input to the client system, e.g., via a keyboard or mouse, and
the client system may in response send the first input to the
server computer system over the network.

[0531] In response to receiving the first input, in 4204, at
least a subset of the plurality of configuration diagrams may
be displayed on a display device of the client system for
viewing by the user of the client system. For example, the at
least a subset of the plurality of configuration diagrams may
be retrieved from the configuration database and displayed
to the user. In one embodiment, the user of the client system
may browse one or more configuration diagrams from the
configuration diagram database, e.g., using a web-browser,
as is well-known in the art. In one embodiment, the user may
browse or search through the various configuration diagrams
using keywords or other information related to the configu-
ration diagrams, as discussed in more detail below.

[0532] Then, as indicated in 4206, second input may be
received from the client system selecting one of the at least
asubset of the plurality of configuration diagrams, where the
selected configuration diagram indicates a solution for the
desired task to be performed by the client system. In other
words, the user may indicate which of the configuration
diagrams provides a suitable solution for performing the
desired task. Said another way, the selected configuration
diagram may be usable to configure the client system,
thereby enabling the client system to perform the task.

[0533] In one embodiment, information related to each of
the at least a subset of the plurality of configuration diagrams
may be provided to the user, and the selection made based
on the provided information. For example, the information
may include one or more of: identification information for
the configuration diagram; version information for the con-
figuration diagram; a functional description of the configu-
ration diagram; platform information for the configuration
diagram; searchable information for the configuration dia-
gram; a list of devices and/or programs represented in the
configuration diagram, possibly including pricing informa-
tion; and one or more tasks for which the configuration
diagram comprises a solution, among others.

[0534] In one embodiment, payment information may be
received from the client system prior to providing the

May 29, 2003

solution. In other words, information such as a credit card
number or a billing account may be provided by the client
system (e.g., the user) for payment for the provided solution.

[0535] Finally, in 4208, the solution may be provided to
the client system over the network. In one embodiment,
providing the solution to the client system may include
providing information related to one or more products to the
user as proposed hardware and/or software products for the
client system, where the proposed hardware and/or software
is operable to perform the task. In one embodiment the
selected configuration diagram may be provided to the client
system, where the selected configuration diagram includes
information representing the proposed hardware and/or soft-
ware products for the client system.

[0536] For example, the configuration diagram may
graphically represent one or more (or a plurality of) devices
in a proposed system, as well as one or more programs (or
a plurality of programs) stored on the one or more devices
in the proposed system. In the case that the configuration
diagram represents a plurality of devices, the configuration
diagram may include a plurality of device icons representing
the plurality of devices in the proposed system. The plurality
of device icons may be connected by link icons indicating
couplings between the plurality of devices in the proposed
system.

[0537] Inoneembodiment, the configuration diagram may
comprise a tree diagram which visually represents the pro-
posed system, wherein the tree diagram displays a hierar-
chical view of the plurality of devices and the one or more
programs in the proposed system. In another embodiment,
one or more of the configuration diagrams may comprise the
plurality of device icons connected by link icons indicating
couplings between the plurality of devices in the proposed
system, as well as the tree diagram presenting a hierarchical
view of the devices (and optionally the programs) in the
proposed system. Further details regarding various embodi-
ments of configuration diagrams are provided above with
reference to FIGS. 21A and 21B, although it is noted that
these configuration diagrams are exemplary only, and are not
intended to limit the diagrams to any particular form, style,
or functionality.

[0538] The configuration diagram may further graphically
represent configuration information for at least one of the
one or more devices and the one or more programs in the
proposed system. In other words, the provided configuration
diagram may comprise a proposed configuration for the
client system.

[0539] As mentioned above, the configuration diagram
may include pricing or other related information for the one
or more devices in the proposed system and the one or more
programs stored on the one or more devices in the proposed
system, e.g., displayed proximate to respective product icons
in the diagram.

[0540] In an embodiment where the provided configura-
tion diagram comprises a proposed configuration of the
client system, the method may further include receiving a
modified version of the provided solution from the client
system over the network, where the modified version of the
provided solution includes one or more changes to the
proposed configuration. In other words, once the client
system, e.g., the user, has received the proposed solution,

US 2003/0101022 Al

e.g., the provided configuration diagram, the user may
modify the configuration diagram to reflect desired changes
in the proposed configuration. For example, if the user
already owns a signal conditioning unit, a signal condition-
ing unit proposed for use in the configuration diagram may
be replaced (by the user) with the already owned unit. The
modified configuration diagram may then be provided by the
client system to the server computer system over the net-
work.

[0541] In one embodiment, providing information related
to one or more products to the user as proposed hardware
and/or software products for the client system may include
determining a current configuration of the client system,
analyzing the current configuration of the client system and
the selected configuration diagram, and determining the one
or more products based on the analysis. In other words, the
server system may determine the current configuration of the
client system, and determine the proposed configuration
based at least partly on the current configuration.

[0542] In one embodiment, once the client system has
received the proposed solution from the server computer
system, user input may be received indicating purchase of at
least one of the proposed hardware and/or software products.
The at least one of the proposed hardware and/or software
products may then be provided to the user in response. For
example, as described above, purchased software products
may be downloaded and/or deployed directly to the client
system over the network, and purchased hardware devices
may be delivered via traditional means, e.g., via mail or any
other delivery means.

[0543] In one embodiment, the selected configuration dia-
gram may include vendor information indicating one or
more vendors able to configure a solution in accordance with
the selected configuration diagram. For example, the vendor
information may include one or more of: an email address,
a website address, a telephone number, a postal address, and
vendor identification, among other information. As noted
above, the term “vendor” refers to a business, enterprise,
supplier, or manufacturer that sells products and/or provides
services related to products, such as, for example, installing
hardware and/or software. An example of a vendor is a
National Instruments Alliance member.

[0544] In a further embodiment, input may be received
from the client system indicating a desire to correspond with
a first vendor of the one or more vendors, and the method
may include programmatically corresponding with the first
vendor in response to said third input. For example, the user
may click on an email address or otherwise indicate a desire
to contact the vendor, in response to which an email message
(or other correspondence means) may be sent to the vendor,
or alternatively, presented to the user for modification and
sending to the vendor. As another example, the user may
right-click on the icon to invoke a pop-up menu presenting
various means of contacting the vendor, e.g., an auto-dialer
for automatically establishing telephone contact, a web link
or URL (Universal Resource Locator) for accessing the
vendor’s website, and so forth.

[0545] FIG. 43 illustrates an alternative embodiment of
the method of FIG. 42. More specifically, in the embodi-
ment shown in FIG. 43, a configuration diagram from the
configuration diagram database is determined programmati-
cally based on user provided requirements, as described

May 29, 2003

below. Where the steps are substantially the same as those of
the above methods, the descriptions have been abbreviated.

[0546] As FIG. 43 shows, in 4302, requirements may be
received over a network for a task to be performed by a
client system. In a preferred embodiment, the requirements
may be provided in response to input from a user. For
example, the user may provide user input to the client
computer system 82 indicating the requirements for the task,
and the client computer system 82, in response to the user
input, may send the requirements to server computer system
90.

[0547] As noted above with reference to step 4102 of FIG.
41, the user input (and/or requirements) may include domain
specific user input, such as measurement-, simulation-auto-
mation-, or network-specific input. As also noted above, the
requirements may comprise, or may be used to generate, a
task specification, e.g., a measurement task specification.

[0548] Once the requirements have been received, then in
4304, the received requirements may be programmatically
analyzed, and in 4306, a configuration diagram determined
from a configuration diagram database in response to the
analysis, where the configuration diagram represents a pro-
posed system configuration for the client system for per-
forming the task. As described in detail above, the system
configuration diagram may specify one or more devices
and/or one or more programs for the client system to
perform the task.

[0549] The determined configuration diagram may then be
provided to the client system over the network for display to
a user of the client system, as indicated in 4308. As
described in detail above, the determined configuration
diagram may be usable to configure the client system,
thereby enabling the client system to perform the task. As
also noted above, the configuration diagram may graphically
represent one or more devices present in a proposed system,
and one or more programs stored on the one or more devices
in the proposed system.

FIG. 44—Population of a Configuration Diagram
Database

[0550] FIG. 44 flowcharts an embodiment of a method for
populating a configuration diagram database. As FIG. 44
shows, the first step of FIG. 44 is substantially the same as
in the methods of FIGS. 41 and 43, where, in 4102,
requirements may be received over a network for a task to
be performed by a client system, preferably in response to
input from a user. As noted above, the task may be any type
of task, such as, for example, a measurement task, a control
task, an automation task, a modeling and/or simulation task,
and a network management task, among others. As also
noted above, in one embodiment, the requirements for the
task may include or may be used to generate a task speci-
fication.

[0551] 1n 4404, a system configuration may be determined
in response to the received requirements, where the system
configuration specifies one or more devices and/or one or
more programs for the client system to perform the task. In
other words, based on the requirements, a system configu-
ration may be determined such that, if the client system were
so configured, the client system would be operable to
perform the task.

US 2003/0101022 Al

[0552] Then, in 4406, a configuration diagram may then
be generated in response to the determination of the system
configuration, where the configuration diagram graphically
represents the determined system configuration for the client
system. As described in detail above, the configuration
diagram may specify and/or graphically represent, one or
more devices and/or one or more programs for the client
system to perform the task. As noted above, further details
regarding various embodiments of configuration diagrams
are provided above with reference to FIGS. 21A and 21B.

[0553] Once the configuration diagram has been gener-
ated, then in 4408 the generated configuration diagram may
be stored in a configuration diagram database. A plurality of
stored configuration diagrams, including the generated con-
figuration diagram, may be retrievable from the configura-
tion diagram database for provision to a plurality of users
over the network. In other words, the configuration diagram
database may function as a configuration solutions “clear-
inghouse” for clients, where a plurality of users may access
a configuration diagram database server for configuration
solutions for desired tasks. For example, the configuration
diagram database may be browsable by a plurality of users
to view stored configuration diagrams, including the gener-
ated configuration diagram, where one or more configura-
tion diagrams are user selectable and retrievable from the
configuration diagram database. As noted above, the con-
figuration diagram may include device icons and links
indicating couplings between the devices, and/or may be a
tree diagram presenting a hierarchical view of the proposed
system.

[0554] In an alternate approach, users may provide
requirements for a task, and an appropriate solution (e.g., a
configuration diagram) programmatically determined (and
retrieved) from the database. Various embodiments of meth-
ods for using the configuration diagram database are
described above with reference to FIGS. 42 and 43.

[0555] In addition to the above-described approach for
populating the configuration diagram database, other
approaches may also be used to populate the database with
configuration diagrams. For example, a plurality of pre-
defined configuration diagrams may be generated represent-
ing a corresponding plurality of pre-defined system configu-
rations, where each pre-defined system configuration
comprises a respective solution for performing a task. The
plurality of pre-defined configuration diagrams may then be
stored in the configuration diagram database, where the
plurality of stored configuration diagrams, including the
generated pre-defined configuration diagrams, may be
retrievable from the configuration diagram database for
provision to a plurality of users over the network.

[0556] In another approach to populating the configuration
diagram database, one or more configuration diagrams may
be received from a second client system over the network,
where the one or more configuration diagrams each com-
prise a solution to a respective task. The received one or
more configuration diagrams may be stored in the configu-
ration diagram database, and as above, the plurality of stored
configuration diagrams, including the received configuration
diagrams, may be retrievable from the configuration dia-
gram database for provision to a plurality of users over the
network. In other words, respective users of client systems
may devise their own solutions to desired tasks and provide

May 29, 2003

them for storage and subsequent retrieval in the configura-
tion database. For example, a user may draw at least a
portion of the configuration diagram, e.g., using a graphical
tool, and provide the diagram for storage in the database. In
another embodiment, a vendor may provide one or more
configuration diagrams for storage in the configuration dia-
gram database, where each configuration diagram represents
a system that the vendor is able to install. In one embodi-
ment, at least one of the configuration diagrams may include
a plurality of product icons representing respective devices
from a plurality of vendors.

[0557] For example, in one embodiment, one or more of
the product icons may represent used products, e.g., resale
products, which may be available for purchase from one or
more vendors, thus providing a more affordable solution to
users who may not otherwise wish to or be able to purchase
the products new.

[0558] In an alternative embodiment, rather than receiving
one or more configuration diagrams from the second client
system, one or more system configurations may be received
from the second client system over the network, each
comprising a solution to a respective task. One or more
corresponding configuration diagrams may then be gener-
ated in response, where the generated configuration dia-
grams graphically represent the received system configura-
tions. The generated configuration diagrams may then be
stored in the configuration diagram database, as described
above.

[0559] As noted above, in a preferred embodiment, each
of the configuration diagrams may include associated infor-
mation describing the respective configuration diagrams,
where at least a portion of the received information is stored
in the configuration diagram database. In another embodi-
ment, information related to each of the plurality of stored
configuration diagrams may be stored, where the stored
information is usable to retrieve the stored configuration
diagrams. For example, in various embodiments, the infor-
mation related to each configuration diagram may include
one or more of: identification information for the configu-
ration diagram, version information for the configuration
diagram, a functional description of the configuration dia-
gram, platform information for the configuration diagram,
searchable information for the configuration diagram, a list
of devices and/or programs represented in the configuration
diagram, and one or more tasks for which the configuration
diagram comprises a solution. Of course, other information
related to each configuration diagram may also be used as
desired or needed.

[0560] Thus, various embodiments of the systems and
methods described above may provide improved network-
based means for configuring client computer systems to
perform desired tasks.

[0561] Various embodiments further include receiving or
storing instructions and/or data implemented in accordance
with the foregoing descriptions upon a carrier medium.
Suitable carrier media include a memory medium as
described above, as well as signals such as electrical,
electromagnetic, or digital signals, conveyed via a commu-
nication medium such as networks and/or a wireless link.

[0562] Although the embodiments above have been
described in considerable detail, numerous variations and

US 2003/0101022 Al
54

modifications will become apparent to those skilled in the art
once the above disclosure is fully appreciated. It is intended
that the following claims be interpreted to embrace all such
variations and modifications.

We claim:

1. A method for characterizing a system, wherein the
system comprises a plurality of devices coupled together,
wherein at least one of the devices includes one or more
programs, the method comprising:

programmatically determining information regarding the
plurality of devices and the one or more programs;

programmatically generating a diagram which visually
represents the system, wherein said programmatically
generating is performed based on the programmatically
determined information, wherein the diagram includes
device icons representing each of the plurality of
devices, wherein the diagram also includes link icons
indicating coupling relationships between the plurality
of devices, and wherein the diagram also includes
program icons representing each of the one or more
programs; and

displaying the diagram on a display.
2. The method of claim 1,

wherein said displaying comprises displaying the diagram
on a display of the system for viewing by a user of the
system.

3. The method of claim 1, further comprising:

storing the diagram on a memory medium of the system.
4. The method of claim 1,

wherein the diagram is a configuration diagram.
5. The method of claim 1,

wherein the program icons are visually displayed to
indicate associations with respective device icons rep-
resenting respective devices in which the programs are
stored and/or executed.

6. The method of claim 1,

wherein at least one of the one or more programs is a
hardware configuration program.
7. The method of claim 1,

wherein at least one of the plurality of devices comprises
a field programmable gate array (FPGA); and

wherein said hardware configuration program is deploy-
able on the FPGA to perform a function.
8. The method of claim 1,

wherein said programmatically determining comprises
programmatically analyzing the system to determine
presence of one or more of the plurality of devices and
the one or more programs.

9. The method of claim 1,

wherein said programmatically determining comprises
accessing at least a portion of said information from at
least one of the devices in the system.

10. The method of claim 1,

wherein said programmatically determining comprises
accessing plug and play information to determine pres-
ence of the plurality of devices and presence of the one
Or more programs.

May 29, 2003

11. The method of claim 1,

wherein said programmatically determining comprises
querying a configuration program resident on one of the
devices in the system to determine presence of the
plurality of devices and presence of the one or more
programs.

12. The method of claim 1, further comprising:

receiving user input graphically associating a first pro-
gram icon with a first device icon, wherein said graphi-
cally associating operates to deploy a first program
corresponding to the first program icon with a first
device corresponding to the first device icon.

13. The method of claim 12, further comprising:

animating said deploying the first program onto the
device.
14. The method of claim 13,

wherein said animating comprises moving the first pro-
gram icon to a location in the diagram proximate to the
first device icon.

15. The method of claim 1, further comprising:

deploying a first program on the system after said dis-
playing the diagram; and

displaying a first program icon in the diagram, wherein
the first program icon corresponds to the first program.
16. The method of claim 1,

wherein the device icons each have an appearance to
visually indicate a type of the respective device.
17. The method of claim 1,

wherein the program icons each have an appearance to
visually indicate a type of the respective program.
18. The method of claim 1,

wherein the link icons each have an appearance to visu-
ally indicate a type of the respective link between
devices.

19. The method of claim 1,

wherein the system comprises a measurement system;

wherein the plurality of devices comprise one or more
measurement devices which are each operable to per-
form a respective measurement function;

wherein the one or more programs comprise one or more
measurement programs for performing measurement
functions; and

wherein said programmatically determining information
regarding the plurality of devices and the one or more
programs comprises programmatically determining a
configuration of the one or more measurement devices
and the one or more measurement programs in the
measurement system.

20. The method of claim 1,

wherein the system comprises a simulation system;

wherein the plurality of devices comprise one or more
devices which are each operable to perform a respec-
tive simulation function;

wherein the one or more programs comprise one or more
simulation programs for simulating a process, device,
and/or system; and

US 2003/0101022 Al

wherein said programmatically determining information
regarding the plurality of devices and the one or more
programs comprises programmatically determining a
configuration of the one or more devices and the one or
more programs in the simulation system.

21. The method of claim 1,

wherein the system comprises an automation system;

wherein the plurality of devices comprise one or more
devices which are each operable to perform a respec-
tive automation function;

wherein the one or more programs comprise one or more
automation programs for automating a process, device,
and/or system; and

wherein said programmatically determining information
regarding the plurality of devices and the one or more
programs comprises programmatically determining a
configuration of the one or more automation devices
and the one or more automation programs in the
automation system.

22. The method of claim 1,

wherein the system comprises a network system;

wherein the plurality of devices comprise one or more
devices which are each operable to perform a respec-
tive network function;

wherein the one or more programs comprise one or more
network programs for managing a network; and

wherein said programmatically determining information
regarding the plurality of devices and the one or more
programs comprises programmatically determining a
configuration of the one or more automation devices
and the one or more programs in the network system.
23. The method of claim 1, further comprising:

receiving user input specifying a modification to the
diagram after said displaying, wherein said modifica-
tion indicates hardware and/or software to be added to
or removed from the system; and

modifying the configuration diagram in response to said
receiving user input.
24. The method of claim 1,

wherein a server computer is coupled to the system over
a network;

the method further comprising:

establishing electronic communication between the
server computer and the system over a network;

wherein the server computer performs at least one of
said programmatically determining information and
said programmatically generating the diagram.
25. The method of claim 1,

wherein the system includes a first computer system;

wherein a server computer is coupled to the system over
a network;

wherein the first computer system and the server com-
puter system perform respective portions of said pro-
grammatically determining information and said pro-
grammatically generating the diagram.

May 29, 2003

26. The method of claim 1,
wherein the system includes a first computer system;

wherein the first computer system performs at least one of
said programmatically determining information and
said programmatically generating the diagram.

27. The method of claim 1,

wherein the system includes a first computer system;

wherein a server computer is coupled to the system over
a network;

wherein the first computer system performs said program-
matically determining information;

the method further comprising:

establishing electronic communication between the
server computer and the system over a network;

wherein the server computer performs said program-
matically generating the diagram based on the pro-
grammatically determined information.
28. The method of claim 1,

wherein the system includes a first computer system;

wherein a server computer is coupled to the system over
a network;

the method further comprising:

establishing electronic communication between the
server computer and the system over a network;

wherein the server computer performs said program-
matically determining information; and

wherein the first computer system performs said program-
matically generating the diagram based on the pro-
grammatically determined information.

29. The method of claim 1, further comprising:

programmatically generating a tree diagram which visu-
ally represents the system, wherein said programmati-
cally generating the tree diagram is performed based on
the programmatically determined information, wherein
the tree diagram displays a hierarchical view of the
plurality of devices and the one or more programs; and

displaying the tree diagram on the display.
30. A method for characterizing a client system, the
method comprising:

establishing electronic communication between a server
computer and the client system over a network,
wherein the client system comprises a plurality of
devices coupled together, wherein at least one of the
devices includes one or more programs;

the server computer programmatically determining infor-
mation regarding the plurality of devices and the one or
more programs;

the server computer programmatically generating a dia-
gram which visually represents the client system,
wherein the diagram includes device icons representing
each of the plurality of devices, wherein the diagram
also includes link icons indicating coupling relation-
ships between the plurality of devices, and wherein the

US 2003/0101022 Al
56

diagram also includes program icons representing each
of the one or more programs; and

displaying the diagram on a display.

31. A method for characterizing a client system, wherein
the client system comprises a plurality of devices coupled
together, and wherein at least one of the devices includes one
or more programs, the method comprising:

the server establishing electronic communication with the
client system over a network;

the server programmatically analyzing the client system
to determine presence of the plurality of devices and
presence of the one or more programs;

the server programmatically generating a configuration
diagram which visually represents the client system,
wherein the configuration diagram includes device
icons representing each of the plurality of devices,
wherein the configuration diagram also includes link
icons indicating coupling relationships between the
plurality of devices, and wherein the configuration
diagram also includes program icons representing each
of the one or more programs;

providing the configuration diagram from the server over
the network; and

displaying the configuration diagram on a display of the
client system.
32. The method of claim 31, further comprising:

storing the configuration diagram in a memory medium of
the client system, wherein the configuration diagram is
usable for one or more of: documenting the client
system configuration, modifying the client system con-
figuration, and adding or removing programs or devices
to or from the client system.

33. The method of claim 31,

wherein the program icons are visually displayed proxi-
mate to respective device icons representing respective
devices in which the programs are stored and/or
executed.

34. A carrier medium which stores program instructions
for characterizing a system, wherein the system comprises a
plurality of devices coupled together, wherein at least one of
the devices includes one or more programs, wherein the
program instructions are executable to perform:

programmatically determining information regarding the
plurality of devices and the one or more programs;

programmatically generating a diagram which visually
represents the system, wherein said programmatically
generating is performed based on the programmatically
determined information, wherein the diagram includes
device icons representing each of the plurality of
devices, wherein the diagram also includes link icons
indicating coupling relationships between the plurality
of devices, and wherein the diagram also includes
program icons representing each of the one or more
programs; and

displaying the diagram on a display.

35. A carrier medium which stores program instructions
for characterizing a client system, wherein the program
instructions are executable to perform:

May 29, 2003

establishing electronic communication between a server
computer and the client system over a network,
wherein the client system comprises a plurality of
devices coupled together, wherein at least one of the
devices includes one or more programs;

the server computer programmatically determining infor-
mation regarding the plurality of devices and the one or
more programs;

the server computer programmatically generating a dia-
gram which visually represents the client system,
wherein the diagram includes device icons representing
each of the plurality of devices, wherein the diagram
also includes link icons indicating coupling relation-
ships between the plurality of devices, and wherein the
diagram also includes program icons representing each
of the one or more programs; and

displaying the diagram on a display.

36. A system for characterizing a client system, wherein
the client system comprises a plurality of devices coupled
together, and wherein at least one of the devices includes one
or more programs, the system comprising:

a processor; and
a memory medium coupled to the processor; and

a display coupled to the memory medium and the pro-
Cessor;

wherein the memory medium stores program instructions
which are executable to perform:

electronically connecting to the client system over a
network;

programmatically determining information regarding
the plurality of devices and the one or more pro-
grams;

programmatically generating a diagram which visually
represents the client system, wherein the diagram
includes device icons representing each of the plu-
rality of devices, wherein the diagram also includes
link icons indicating coupling relationships between
the plurality of devices, and wherein the diagram
also includes program icons representing each of the
one or more programs; and
displaying the diagram on the display.
37. A system, comprising:
a server computer system, wherein the server system is
coupled to a network;

a client system, comprising a plurality of devices coupled
together, wherein at least one of the devices includes
one or more programs, and wherein the client system
further comprises a display;

wherein the client system is operable to access the server
system over the network;

wherein the server computer system is operable to:

programmatically determine information regarding the
plurality of devices and the one or more programs;

programmatically generate a diagram which visually
represents the client system, wherein the diagram
includes device icons representing each of the plu-
rality of devices, wherein the diagram also includes
link icons indicating coupling relationships between
the plurality of devices, and wherein the diagram

US 2003/0101022 Al
57

also includes program icons representing each of the
one or more programs; and

transmit the diagram to the client system over the
network;

wherein the client system is further operable to:

receive the diagram from the server computer system;
and

display the diagram on the display of the client system;
wherein the diagram is usable for one or more of:

documenting the client system configuration;

modifying the configuration of the client system; and

debugging the configuration of the client system.
38. A method for characterizing a system, the method
comprising:

electronically connecting to a system over a network,
wherein the system comprises a plurality of devices
coupled together, wherein at least one of the devices
includes one or more programs;

programmatically determining information regarding the
plurality of devices and the one or more programs in the
system, wherein said programmatically determining
includes accessing at least one of the devices in the
system over the network;

programmatically generating a diagram which visually
represents the system, wherein the diagram includes
device icons representing each of the plurality of
devices, wherein the diagram also includes link icons
indicating coupling relationships between the plurality
of devices, and wherein the diagram also includes
program icons representing each of the one or more
programs; and

displaying the diagram on a display.
39. A method for characterizing a client system, the
method comprising:

establishing electronic communication between a server
computer and the client system over a network,
wherein the client system comprises a plurality of
devices coupled together, wherein at least one of the
devices includes one or more programs;

the server computer providing a first software program to
the client system over the network;

executing the first software program on the client system,
wherein said executing comprises:

the first software program programmatically determin-
ing information regarding the plurality of devices
and the one or more programs in the client system;

the first software program programmatically generating
a diagram which visually represents the client sys-
tem, wherein the diagram includes device icons

May 29, 2003

representing each of the plurality of devices, wherein
the diagram also includes link icons indicating cou-
pling relationships between the plurality of devices,
and wherein the diagram also includes program icons
representing each of the one or more programs; and

displaying the diagram on a display device of the client
system.
40. A method for characterizing a client system, the
method comprising:

establishing electronic communication between a server
computer and the client system over a network,
wherein the client system comprises a plurality of
devices coupled together, wherein at least one of the
devices includes one or more programs;

the server computer providing a first software program to
the client system over the network;

executing the first software program on the client system,
wherein said executing comprises:

the first software program programmatically determin-
ing information regarding the plurality of devices
and the one or more programs in the client system;
and

the first software program providing the determined
information to the server computer;

the server computer programmatically generating a dia-
gram which visually represents the client system,
wherein the diagram includes device icons representing
each of the plurality of devices, wherein the diagram
also includes link icons indicating coupling relation-
ships between the plurality of devices, and wherein the
diagram also includes program icons representing each
of the one or more programs; and

displaying the diagram on a display device of the client
system.
41. A carrier medium for transmission of a first software
program, wherein the first software program comprises
program instructions executable to:

programmatically determine information regarding a plu-
rality of devices and one or more programs in a client
system,

programmatically generate a diagram which visually rep-
resents the client system, wherein the diagram includes
device icons representing each of the plurality of
devices, wherein the diagram also includes link icons
indicating coupling relationships between the plurality
of devices, and wherein the diagram also includes
program icons representing each of the one or more
programs; and

display the diagram on a display device of the client
system.

