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ABSTRACT

The present invention provides a unique intra prediction process which improves the
efficiency of video coding. H.264/AVC uses reference pixels in a horizontal boundary located
immediately above a target block to be predicted and reference pixels in a vertical boundary
located immediately left of the target block. In the present invention, at least some of one of
an array of horizontal boundary pixels and an array of vertical boundary pixels are retrieved.
Then, the retrieved pixels are added to the other boundary pixels to extend the array thereof.

Intra prediction is performed, based solely on the extended array of boundary pixels.
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LOW-COMPLEXITY INTRA PREDICTION FOR VIDEO CODING

The present application is a divisional of Canadian Patent Application Serial No. 2,934,184,
which is a divisional of Canadian National Phase Patent Application Serial No. 2,804,762 filed
July 14, 2011.

BACKGROUND OF THE INVENTION
1. Technical Field text

[0001] The present invention relates to video coding and in particular to intra-frame
prediction in which a block of sample is predicted, using previously encoded and reconstructed

pixels from the same video frame.
2. Background Information

[0002] Digital video requires a large amount of data to represent each and every frame of
a digital video sequence (e.g., series of frames) in an uncompressed manner. It is not feasible for
most applications to transmit uncompressed digital video across computer networks because of
bandwidth limitations. In addition, uncompressed digital video requires a large amount of storage
space. The digital video is normally encoded in some manner to reduce the storage requirements

and reduce the bandwidth requirements.

[0003] One technique for encoding digital video is inter-frame prediction, or inter
prediction. Inter prediction exploits temporal redundancies among different frames. Temporally
adjacent frames of video typically include blocks of pixels, which remain substantially the same.
During the encoding process, a motion vector interrelates the movement of a block of pixels in
one frame to a block of similar pixels in another frame. Accordingly, the system is not required to
encode the block of pixels twice, but rather encodes the block of pixels once and provides a

motion vector to predict the other block of pixels.

[0004] Another technique for encoding digital video is intra-frame prediction or intra
prediction. Intra prediction encodes a frame or a portion thereof without reference to pixels in
other frames. Intra prediction exploits spatial redundancies among blocks of pixels within a frame.
Because spatially adjacent blocks of pixels generally have similar attributes, the efficiency of the

coding process is improved by referencing the spatial correlation between adjacent blocks. This

1
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correlation may be exploited by prediction of a target block based on prediction modes used in

adjacent blocks.
SUMMARY OF THE INVENTION

[0004a] According to an aspect of the present disclosure, there is provided a video
encoding method comprising computer executable steps executed by a processor of a video
encoder to implement an intra-prediction operation that derives a prediction block of a target
block with boundary pixels of the target block interpolated along an intra prediction angle,
wherein the boundary pixels comprise a horizontal array of horizontal boundary pixels and a
vertical array of vertical boundary pixels, the intra-prediction operation comprising: obtaining
a value of an inverse angle parameter, corresponding to the intra prediction angle, from a
look-up table which lists values of inverse angle parameters in relation, respectively, to a
plurality of different intra prediction angles; identifying at least some of the vertical boundary
pixels located in the vertical array at positions which are a function of multiplication between
the obtained value of the inverse angle parameter and a value of a horizontal location
identifier which is a variable representing positions in an extension of an extended horizontal
array; adding the identified at least some of the vertical boundary pixels as horizontal
boundary pixels to the extension of the extended horizontal array; and using only the
horizontal boundary pixels in the extended horizontal array, without using the vertical _
boundary pixels, to derive the prediction block of the target block, and wherein the horizontal
location identifier takes values of -1 ... (size x the intra prediction angle)/rangelimit, where
size represents a size of a target block to be predicted and rangelimit represents a range limit

of the plurality of intra prediction angles, which is fixed to a constant of 32.

[0004b] According to an aspect of the present disclosure, there is provided a video
decoding method comprising computer executable steps executed by a processor of a video
decoder to implement an intra-prediction operation that derives a prediction block of a target
block with boundary pixels of the target block interpolated along an intra prediction angle,
wherein the boundary pixels comprise a horizontal array of horizontal boundary pixels and a
vertical array of vertical boundary pixels, the intra-prediction operation comprises: obtaining a

value of an inverse angle parameter, corresponding to the intra prediction angle,

2
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from a look-up table which lists values of inverse angle parameters in relation, respectively, to
a plurality of different intra prediction angles; identifying at least some of the vertical
boundary pixels located in the vertical array at positions which are a function of multiplication
between the obtained value of the inverse angle parameter and a value of a horizontal location
identifier which is a variable representing positions in an extension of an extended horizontal
array; adding the identified at least some of the vertical boundary pixels as horizontal
boundary pixels to the extension of the extended horizontal array; and using only the
horizontal boundary pixels in the extended horizontal array, without using the vertical
boundary pixels, to derive the prediction block of the target block, and wherein the horizontal
location identifier takes values of -1 ... (size x the intra prediction angle)/rangelimit, where
size represents a size of a target block to be predicted and rangelimit represents a range limit

of the plurality of intra prediction angles, which is fixed to a constant of 32.

[0004c¢] According to an aspect of the present disclosure, there is provided a video encoder
comprising a processor of a computer system and a memory that stores programs executable by
the processor to implement an intra-prediction operation that derives a prediction block of a target
block with boundary pixels of the target block interpolated along an intra prediction angle,
wherein the boundary pixels comprise a horizontal array of horizontal boundary pixels and a
vertical array of vertical boundary pixels, the intra-prediction operation implemented by the
processor to: obtain a value of an inverse angle parameter, corresponding to the intra predicition
angle, from a look-up table which lists values of inverse angle parameters in relation, respectively,
to a plurality of different intra prediction angles; identify at least some of one of the vertical
boundary pixels located in the vertical array at positions which are a function of multiplication
between the obtained value of the inverse angle parameter and a value of a horizontal location
identifier which is a variable representing positions in an extension of an extended horizontal
array; add the identified at least some of the vertical boundary pixels as horizontal boundary
pixels to the extension of the extended horizontal array; and use only the horizontal boundary
pixels in the extended horizontal array, without using the vertical boundary pixels, to derive the
prediction block of the target block, and wherein the horizontal location identifier takes values

of -1 ... (size x the intra prediction angle)/rangelimit, where size represents a size of a target block
to be predicted and rangelimit represents a range limit of the plurality of intra prediction angles,

which is fixed to a constant of 32.

2a
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[0004d] According to an aspect of the present disclosure, there is provided a video decoder
comprising a processor of a computer system and a memory that stores programs executable by
the processor to implement an intra-prediction operation that derives a prediction block of a target
block with boundary pixels of the target block interpolated along an intra prediction angle,
wherein the boundary pixels comprise a horizontal array of horizontal boundary pixels and a
vertical array of vertical boundary pixels, the intra-prediction operation implemented by the
processor to: obtain a value of an inverse angle parameter, corresponding to the intra predicition
angle, from a look-up table which lists values of inverse angle parameters in relation, respectively,
to a plurality of different intra prediction angles; identify at least some of the vertical boundary
pixels located in the vertical array at positions which are a function of multiplication between the
obtained value of the inverse angle parameter and a value of a horizontal location identifier which
is a variable representing positions in an extension of an extended horizontal array; add the
identified at least some of the vertical pixels as horizontal boundary pixels to the extension of the
extended horizontal array; and using only the horizontal boundary pixels in the extended
horizontal array, without using the vertical boundary pixels, to derive the prediction block of the
target block, and wherein the horizontal location identifier takes values of -1 ... (size x the intra
prediction angle)/rangelimit, where size represents a size of a target block to be predicted and
rangelimit represents a range limit of the plurality of intra prediction angles, which is fixed to a

constant of 32.

[0005] The present invention provides a unique intra prediction process which improves
the efficiency of video coding. H.264/AVC uses reference pixels in a horizontal boundary located
immediately above a target block to be predicted and reference pixels in a vertical boundary
located immediately left of the target block. In the present invention, at least some of either an
array of horizontal boundary pixels or an array of vertical boundary pixels are retrieved. Then, the
retrieved pixels are added to the other boundary pixels to extend the array thereof. Intra
prediction is performed, based solely on the extended array of boundary pixels. In an embodiment
of the present invention, at least some of the vertical boundary pixels are retrieved and added to

the horizontal boundary pixels to extend the array thereof.

[0006] The present invention eliminates the decision process of selecting either the
horizontal boundary or the vertical boundary from which reference pixels are retrieved. The

present invention also eliminates the recurring process of calculating a position of the vertical
2b
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boundary intersecting with a prediction direction, wherein the recurring calculation process
typically includes a divisional operation. Elimination of these processes enables the intra
prediction process to be implemented on Single-Instruction Multiple Data (SIMD) architectures

2

thereby improving the computational efficiency of video coding.

[0007] In an embodiment according to the present invention, at least some of the pixels
among the vertical boundary pixels are retrieved, using a vertical pixel identifier which is

expressed by

size x col

angle

where size represents a size of a target block to be predicted, angle represents a prediction
direction and col is a counter which is decremented by 1 from -1 to the angle. The retrieved pixels

are added to the horizontal pixels at a location identified by a horizontal pixel identifier [col].

2¢
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[0008]  In another embodiment, in retrieving at least some of vertical boundary
pixels, InvAngle is calculated from

N x size

angle ’
where N is an integer power of 2. Then, at least some of the pixels among the
vertical boundary pixels are retrieved, using a vertical pixel identifier which is
expressed by [col x InvAngle >> log, N]. The retrieved pixels are added to the
horizontal pixels at a location identified by a horizontal pixel identifier [col].
[0009]  In another embodiment, JnvAngle is obtained from a look-up table
which lists values of Inv4ngle in relation to the values of angle.
[0010]  In another embodiment, a pixel is identified among the vertical
boundary pixels, using a vertical pixel identifier [row], where row is a counter
which is incremented by 1 from 0 to size. The retrieved pixel is added to the
horizontal boundary pixels at a location identified by a horizontal pixel identifier
[int + 1], where int is an integer representation of a position of a pixel intersecting
with a prediction direction.
[0011]  The present invention also provides an encoder and a decoder which
implement an intra prediction operation in which at least some of either an array of
horizontal boundary pixels or an array of vertical boundary pixels are retrieved.
Then, the retrieved pixels are added to the other boundary pixels to extend the
array thereof. Intra prediction is performed, based solely on the extended array of

boundary pixels.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012]  FIG. 1 is a block diagram showing an exemplary hardware architecture
on which the present invention may be implemented.

[0013]  FIG. 2 is a block diagram showing a general view of a video encoder to
which the present invention may be applied.

[0014]  FIG. 3 is a block diagram showing a general view of a video decoder to
which the present invention may be applied.

[0015]  FIG. 4 is a block diagram showing the functional modules of an

encoder according an embodiment of the present invention.
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[0016]  FIG. S is a flowchart showing an intra prediction process performed by
an intra prediction module of the embodiment of the present invention.

[0017]  FIG. 6 is a block diagram showing the functional modules of a decoder
according to an embodiment of the present invention.

[0018]  FIG. 7 is a diagram showing prediction directions illustrating Intra_4x4
prediction modes supported in H.264/AVC.

[0019]  FIG. 8 is a diagram showing the prediction directions proposed in
Document No. JCT-VC A119 (Authors: Kemal Ugur, et al; Title: Description of
video coding technology proposal by Tandberg, Nokia, Ericsson; JCT-VC of
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 st Meeting at Dresden,
Germany, 15-23 April, 2010}.

[0020]  FIG. 9 is a flowchart showing the process, proposed in JCT-VC A119,
of generating a predicted block along one of the prediction directions shown in
FIG. 7.

[0021]  FIG. 10 is a flowchart showing the process of low complexity intra
prediction performed according to an embodiment of the present invention.

[0022]  FIG. 11A is a schematic view showing a prediction block and arrays of
horizontal and vertical boundary pixels. \
[0023]  FIG. 11B is a schematic view showing an array of horizontal boundary
pixels extended with vertical boundary pixels.

[0024]  FIG. 12 is a flowchart showing the process of extending an array of
horizontal boundary pixels performed according to an embodiment of the present
invention.

[0025]  FIG. 13 is a flowchart showing another embodiment of extending an
array of horizontal boundary pixels.

[0026]  FIG. 14 a flowchart showing the process of low complexity intra
prediction performed according to another embodiment of the present invention.

DETAILED DESCRIPTION OF THE DRAWINGS AND THE
PRESENTLY PREFERRED EMBODIMENTS

[0027]  FIG. 1 shows an exemplary hardware architecture of a computer 100 on
which the present invention may be implemented. Please note that the hardware
architecture shown in FIG. 1 may be common in both a video encoder and a video
decoder which implement the embodiments of the present invention. The

computer 100 includes a processor 101, memory 102, storage device 105, and one

4
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or more input and/or output (I/O) devices 106 (or peripherals) that are
communicatively coupled via a local interface 107. The local interface 105 can
be, for example, but not limited to, one or more buses or other wired or wireless
connections, as is known in the art.

[0028]  The processor 101 is a hardware device for executing software,
particularly that stored in the memory 102. The processor 101 can be any custom
made or commercially available processor, a central processing unit (CPU), an
auxiliary processor among several processors associated with the computer 100, a
semiconductor based microprocessor (in the form of a microchip or chip set), or
generally any device for executing software instructions.

[0029]  The memory 102 comprises a computer readable medium which can
include any one or combination of volatile memory elements (e.g., random access
memory (RAM, such as DRAM, SRAM, SDRAM, etc.)) and nonvolatile memory
elements (e.g., ROM, hard drive, tape, CDROM, etc.). Moreover, the memory
102 may incorporate electronic, magnetic, optical, and/or other types of storage
media. A computer readable medium can be any means that can store,
communicate, propagate or transport the program for use by or in connection with
the instruction execution system, apparatus or device. Please note that the
memory 102 can have a distributed architecture, where various components are
situated remote from one another, but can be accessed by the processor 101.
[0030]  The software 103 in the memory 102 may include one or more separate
programs, each of which contains an ordered listing of executable instructions for
implementing logical functions of the computer 100, as described below. In the
example of FIG. 1, the software 103 in the memory 102 defines the computer
100's video encoding or video decoding functionality in accordance with the
present invention. In addition, although not required, it is possible for the memory
102 to contain an operating system (O/S) 104. The operating system 104
essentially controls the execution of computer programs and provides scheduling,
input-output control, file and data management, memory management, and
communication control and related services.

[0031]  The storage device 105 of the computer 100 may be one of many

different types of storage device, including a stationary storage device or portable
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storage device. As an example, the storage device 105 may be a magnetic tape,
disk, flash memory, volatile memory, or & different storage device. In addifion,
the storage device 105 may be a secure digital memory card or any other
removable stor(age device 105. .

5 [0032] The I/O devices 106 n';ay include input devices, for example, but not
limited to a touch screen, a keyboard, ﬁlousc, scanner, microphone or other input
device. Furthermore, the 1/0 devices 106 may also include output devices, for
example, but not limited 1o a display or other output devices. The VO devices 106
may fiwther include devices that communicate via both inputs and outputs, for

10 instence, but not limited to a modulator/demodulator (modem,; for accessing
another device, system, or network), a radio frequency (RF), wireless or other .
transceiver, a telephonic interface, a bridge, a router or other devices that fimection
both a5 an input and an output.
[0033]  Asis well known by those baving ordipary skill in the art, video

15 compression is achieved by removing redundant information in a video sequence.
Meny different video coding standards exist, examples of which include MPEG-1,
MFPEG-2, MPEG4, H261, H.263, and H.264/AVC. It should be noted that the
present invention is not intended to be limited in application of any specific video
coding standard. However, the following description of the present invention is

20 provided, using the example of H.264/AVC standard. H.264/AVC is the newest video
coding standard and achieves a significant performance improvement over the previous
coding standards such a MPEG-1, MPEG—Q, H.261 and H.263.

0034] InH.264/AVC, each frame or picture of a video can be broken into

25 several slices. The slices are then divided into blocks of 16x16 pixels called
macroblocks, which can then be further divided into blocks of 8x16, 16x8, 8x8,
4x8, 8x4, down 10 4%4 pixels. There are five types of slices supported by
H.264/AVC. In I slices, all the macroblocks are coded using intra prediction, In P
slices, macroblocks can be coded using intra or inter prediction. P slices allow '

30 only one motion compensated prediction (MCP) signal per macroblock to be used.
In B slices, macroblocks can be coded using intra or inter prediction. Two MCP
signals may be used per prediction. SP slices allow P slices to be switched

CA 3014052 2018-08-14
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between different video streams efficiently. An SI slice is an exact match for an
SP slice for random access or error recovery, while using only intra prediction.
[0035]  FIG. 2 shows a general view of a video encoder to which the present
invention may be applied. The blocks shown in the figure represent functional
modules realized by the processor 101 executing the software 103 in the memory
102. A picture of video frame 200 is fed to a video encoder 201. The video
encoder treats the picture 200 in units of macroblocks 200A. Each macroblock
contains several pixels of picture 200. On each macroblock a transformation into
transform coefficients is performed followed by a quantization into transform
coefficient levels. Moreover, intra prediction or inter prediction is used, so as not
to perform the coding steps directly on the pixel data but on the differences of
same to predicted pixel values, thereby achieving small values which are more
easily compressed.

[0036]  For each slice, the encoder 201 generates a number of syntax elements,
which form a coded version of the macroblocks of the respective slice. All
residual data elements in the syntax elements, which are related to the coding of
transform coefficients, such as the transform coefficient levels or a significance
map indicating transform coefficient levels skipped, are called residual data syntax
elements. Besides these residual data syntax elements, the syntax elements
generated by the encoder 201 contain control information syntax elements
containing control information as to how each macroblock has been encoded and
has to be decoded, respectively. In other words, the syntax elements are dividable
into two categories. The first category, the control information syntax elements,
contains the elements related to a macroblock type, sub-macroblock type and
information on prediction modes both of a spatial and temporal types, as well as
slice-based and macroblock-based control information, for example. In the second

category, all residual data elements, such as a significance map indicating the

locations of all significant coefficients inside a block of quantized transform

coefficients and the values of the significant coefficients, which are indicated in
units of levels corresponding to the quantization steps, are combined and become

residual data syntax elements.
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[0037]  The encoder 201 comprises an entropy coder which encodes syntax
elements and generates arithmetic codewords for each slice. When generating the
arithmetic codewords for a slice, the entropy coder exploits statistical
dependencies among the data values of syntax elements in the video signal bit
stream. The encoder 201 outputs an encoded video signal for a slice of picture
200 to a video decoder 301 shown in FIG. 3.

[0038]  FIG. 3 shows a general view of a video decoder to which the present
invention may be applied. Likewise, the blocks shown in the figure represent
functional modules realized by the processor 101 executing the software 103 in the
memory 102. The video decoder 301 receives the encoded video signal and first
entropy-decodes the signal back into the syntax elements. The decoder 301 uses
the syntax elements in order to reconstruct, macroblock by macroblock and then
slice after slice, the picture samples 300A of pixels in the picture 300.

[0039]  FIG. 4 shows the functional modules of the video encoder 201. These
functional modules are realized by the processor 101 executing the software 103 in
the memory 102. An input video picture is a frame or a field of a natural
(uncompressed) video image defined by sample points representing components of
original colors, such as chrominance (*chroma”) and luminance (“luma”) (other
components are possible, for example, hue, saturation and value). The input video
picture is divided into macroblocks 400 that each represent a square picture area
consisting of 16x16 pixels of the luma component of the picture color. The input
video picture is also partitioned into macroblocks that each represent 8x8 pixels of
each of the two chroma components of the picture color. In general encoder
operation, inputted macroblocks may be temporally or spatially predicted using
inter or intra prediction. It is however assumed for the purpose of discussion that
the macroblocks 400 are all I-slice type macroblocks and subjected only to intra
prediction.

[0040]  Intra prediction is accomplished at an intra prediction module 401, the
operation of which will be discussed below in detail. The intra prediction module
401 generates a prediction block 402 from horizontal and vertical boundary pixels
of neighboring blocks, which have previously been encoded, reconstructed, and

stored in a frame memory 403. A residual 404 of the prediction block 402, which
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is the difference between a target block 400 and the prediction block 402, is
transformed, scaled and quantized at a transformation/quantization module 405,
using methods and techniques known to those of skill in the video coding field.
Quantized transform coefficients 406 are then entropy-coded at an entropy coding
module 407 and transmitted (together with other information relating to the intra
prediction) as an encoded video signal 408.

[0041]  The video encoder 201 contains decoding functionality to perform intra
prediction on target blocks. The decoding functionality comprises an inverse
quantization/transformation module 409, which performs inverse quantization and
inverse transformation on the quantized transform coefficients 406 to produce the
decoded prediction residual 410, which is added to the prediction block 402. The
sum of decoded prediction residual 410 and prediction block 402 is a
reconstructed block 411, which is stored in the frame memory 403 and will be
read therefrom and used by the intra prediction module 401 to generate a
prediction block 402 for decoding of a next target block 400.

[0042]  FIG. 5 is a flowchart showing processes performed by the intra
prediction module 401. In accordance with the H.264/AVC Standard, intra
prediction involves predicting each pixel of the target block 400 under a plurality
of prediction modes, using interpolations of boundary pixels (“reference pixels™)
of neighboring blocks previously encoded and reconstructed. The prediction
modes are identified by positive integer numbers 0, 1, 2... each associated with a
different instruction or algorithm for predicting specific pixels in the target block
400. The intra prediction module 401 runs intra prediction under the respective
prediction modes and generates different prediction blocks. Under a full search
(“FS”) algorithm, each of the generated prediction blocks is compared to the target
block 400 to find the optimum prediction mode, which minimizes the prediction
residual 404 or produces a lesser prediction residual 404 among the prediction
modes. The identification of the optimum prediction mode is compressed and sent
to the decoder 301 with other control information syntax elements.

[0043]  Each prediction mode may be described by a general direction of
prediction as described verbally (i.e., horizontal up, vertical and diagonal down

left). A prediction direction may be described graphically by an angular direction
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which is expressed through a diagram with arrows such as shown in FIG. 7. In
this type of diagram, each arrow may be considered representing a prediction
direction or a prediction mode. The angle corresponding to a prediction mode has
a general relationship to the direction from the weighted average location of the
reference pixels used to predict a target pixel to the target pixel location. Please
note that the prediction modes include a DC prediction mode which is not
associated with any prediction direction and, thus, cannot be described graphically
in the diagram unlike the other prediction modes. In the DC prediction mode, the
prediction block 402 is generated such that each pixel in the prediction block 402
is set uniformly to the mean value of the reference pixels.

[0044]  Tumning back to FIG. 5, the prediction mode is initialized in Step 501.
It is then determined in Step 502 whether the prediction mode indicates the DC
prediction. If it does, the flow advances to Step 503, where a DC prediction block
402 is generated with the mean value of the reference pixels in Step 503. If the
prediction mode indicates otherwise, a prediction block 402 is generated according
the instruction or algorithm associated with the prediction mode in Step 504,
whose process will be discussed below in detail. After Step 503 or 504, the flow
advances to Step 505, where it is determined whether the prediction blocks are
generated for all of the prediction modes. If intra prediction is run under all of the
prediction modes, the flow advances to Step 506. Otherwise, the prediction mode
is incremented in Step 507 and the flow returns to Step 502. In Step 506, each of
the generated prediction blocks is compared to the target block 400 to determine
the optimum prediction mode, which minimizes the prediction residual 404.
[0045]  FIG. 6 shows the functional modules of the video decoder 301. These
functional modules are realized by the processor 101 executing the software 103 in
the memory 102. The encoded video signal from the encoder 201 is first received
by an entropy decoder 600 and entropy-decoded back into quantized transform
coefficients 601. The quantized transform coefficients 601 are inversely quantized
and transformed by an inverse quantization/transformation module 602 to generate
a prediction residual 603. An intra prediction module 604 is notified of the
prediction mode selected by the encoder 201. According to the selected prediction

mode, the intra prediction module 604 performs an intra prediction process similar

10
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1o that performed m Steps 502, 503 and 504 of FIG. 5 to generate a prediction
block 605, using boundary pixels of neighboring blocks previously reconstructed
and stored in & frarme memory 606. The prediction block 605 is added to the
prediction residual 603 to reconstruct a block 607 of decoded video signal, The

5 reconstructed block 607 is stored in the frame memory 606 for use in prediction of
a pext block.
[0046] A detailed description will be given zs follows on the process of Step
504 performed by the intra prediction modules 401 and 604 to generate 2
prediction block under one of the prediction modes, except the DC prediction

10 mode. H.264/AVC supports Intra_4x4 prediction, Intra_8%8 prediction and
Intra_16x16 prediction. Intra_4x4 prediction is cornmonly used when there is
significant detail in the picture. Intra_4x4 prediction predicts the sixteen 4x4
luma blocks within one macroblock individually. Intra 4x4 prediction is
performed under nine prediction modes, including one DC prediction mode.

15 Spetial prediction directions along which Intra_4%4 prediction is performed are
shown in FIG. 7. Intra_8x8 prediction is performed under nine prediction modes,
including one DC prediction mode. Intra_16%16 prediction is performed under
four prediction modes, including one DC prediction mode.

[0047] Recent studies show that an increase in the number of prediction directions,

20 or an increase in the number of prediction modes, generally contributes to improving
the compression efficiency in video coding. See, for example, Document Nos. JCT-VC
A119 (“Angular Intra Prediction”) and JCT-VC Al124 (*Arbitraty Direction Intra” -
Authors: Ken McCann, et al.; Title: Samsung’s Response to the Call for Proposals
on Video Compression Technology:; JCT-VC of ITU-T SG16 WP3 and

25 ISO/IEC JTC1/SC29/WG11 1st Meeting at Dresden, Germany, 15-23 April, 2010)
submitted to Joint Collaborative Team on Video Coding (JCT-VC). An
increase in the mumber of prediction directions leads to an increase in the number
of angular intervels of available prediction directions and, thus, to an increase in
the number of prediction block candidates. The increased nmmber of prediction

30 block candidates simply increase chances to have a prediction block which is
nearly the same as a target block to be encoded. FIG. 8 is a diagram showing the
prediction directions proposed in Dociment No. JCT-VC A119. InFIG. 8, the
reference pixels consist of seventeen (17) horizontal pixels and seventeen (17)

vertical pixels, where the upper left pixel is common to both horizontal and
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vertical boundaries. Therefore, 33 different prediction directions are available to
generate prediction pixels in an 8x8 block. JCT-VC A124 proposes arbitrary
directional intra prediction in which the number of prediction directions is
adjusted according the size of a block to be predicted.

[0048]  FIG. 9 is a flowchart showing the process, proposed in JCT-VC A119,
of generating a prediction block along one of the prediction directions shown in
FIG. 8. In the following description of the process, some algorithms are simplified
for ease of explanation. Also, the described process is limited to intra prediction
along a prediction direction that is mainly vertical. Intra prediction along a
prediction direction that is mainly horizontal can be implemented symmetrically to
the process shown in FIG. 9, as demonstrated in the software provided by JCT-VC
Al119. Although FIG. 8 shows an 8x8 block to be predicted, the process shown in
FIG. 9 is expandable to be applied to various numbers of pixels in different
configurations. For example, a block to be predicted may comprises a 4x4 array
of pixels. A prediction block may also comprise an 88 array of pixels, a 16x16
array of pixels, or larger arrays of pixels. Other pixel configurations, including
both square and rectangular arrays, may also make up a prediction block.

[0049]  In Step 900 in FIG. 9, reference pixels in horizontal and vertical
boundaries, which lie immediately above and left of a target block, respectively,
are read from neighboring blocks which have been previously encoded,
reconstructed and stored in a frame memory, such as the memory 403 shown in
FIG. 4. The pixels from the horizontal boundary are stored in a memory area
called “refH”. The pixels from the vertical boundary are stored in another
memory area called “refV”’. Returning to FIG. 8, the reference pixels are
identified by their coordinates in a coordinate system having the origin at the
upper left pixel position in the 8x8 block. Thus, the horizontal boundary pixels
have coordinates expressed by p[x, y] withx = 0, 1...16 and y = 0. The vertical
boundary pixels have coordinates expressed by p[x, y] withx =0,y =0, -1, -2.. .-
I6.

[0050] It is assumed that the horizontal boundary pixels stored in the memory
area refH are identified by a logical address (x) with x = 0, 1...16 and that the

vertical boundary pixels stored in the memory area refV are likewise identified by
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a logical address (y) withy = 0, -1, -2...-16, where each pixel is stored in the
address having the number in the coordinate from which it is read. Therefore, as
the horizontal and vertical pixels are graphically represented in FIG. 8, the
memory areas refH and refV may be considered extending linearly and orthogonal
to each other and each having a length of 2 x size + 1, where “size” is a parameter
representing the size of the target block. It is assumed that size has a value equal
to an integer power of 2, such as 4, 8, 16... A low-pass filter as described in
Section 8.3.2.2.1 in H.264/AVC may optionally be applied to the pixels in refH
and refV.

[0051] In Step 901, a counter called “row” is set to zero (“0”). The counter
row takes a value from 0 to size and indicates a row position of a prediction pixel
in the prediction block. In Step 902, a parameter called “pos™ is calculated by
angle % (row + 1). angle is a parameter having a fractional number in a fixed-
point representation. As such, angle is formed with an integer part and a fraction
part, and the fraction part consists of a fixed number of binary digits. angle
represents one of the prediction directions shown in FIG. 8. For instance, “angle =
-size” identifies the prediction direction which goes through the coordinates [x = 0,
y =0]in FIG. 8. angle having a positive value identifies a prediction direction
which intersects only the horizontal boundary, whereas angle having a negative
value identifies a prediction direction which intersects both the horizontal and
vertical boundaries. angle varies within a range determined by the number of
prediction directions desired to be used. As proposed in JCT-VC A124, the
number of prediction directions to be used may be determined according the size
of a block to be predicted. In the following description, it is assumed that angle
takes a fractional number which varies within a range from “-size” to “size”.
Please note that the range limits of angle may be defined with other values.

[0052]  Like angle, the parameter pos consists of an integer part and a fraction
part, and the fraction part thereof consists of a fixed number of binary digits,
which is equal to the logarithm in base 2 of the range limit of angle, which may be
expressed by log2_size according to the above assumption that the range limit of
angle is set to size. pos identiﬁes the position of an intersection between the

horizontal boundary and the prediction direction represented by angle. Returning
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to Step 902, the operation “pos >> Jog2 size” identifies an integer number in pos,
which is stored in a parameter “inf”, and the operation “pos & (size - 1)” identifies
a fraction number in pos, which is stored in a parameter “frac”. The operator
“>> calls for an arithmetic right shift of binary digits. The operator “&” calls for
bit-wise “and” operation.

[0053] In Step 903, it is determined whether angle has a value equal to or
larger than zero (“0”). If angle has a value equal to or larger than zero, the flow
proceeds to Step 904. The flow otherwise proceeds to Step 913. angle equal to or
larger than zero suggests that only the reference pixels located in the horizontal
boundary, or stored in refH, can be relied upon to derive prediction pixelsin a
prediction block. On the other hand, angle smaller than zero suggests that
reference pixels located in the vertical boundary, or stored in refV, are needed to
derive prediction pixels in the prediction block. |
[0054]  In Step 904, it is determined whether frac is not zero. If frac is not zero,
the flow proceeds to Step 905. If fiac is zero, the flow proceeds to Step 906. frac
equal to zero suggests that a prediction pixel in the prediction block can be copied
directly from a reference pixel in the horizontal boundary. Non-zero frac suggests
that the prediction direction intersects the horizontal boundary at at non-integer
position, and an interpolation of more than one reference pixel is needed to derive
a prediction pixel in the prediction block.

[0055]  In Step 905, a counter called “col” is set to zero (“0”). The counter col
is used to address a reference pixel in refH. In Step 907, two reference pixels
indentified by “int + col + 1” and “int + col + 27 are retrieved from refH. These
two reference pixels are weight-averaged or interpolated with frac to derive a
prediction pixel v. Specifically, a reference pixel in refH identified by “int + col +
17 is multiplied by “size - frac” and stored in a parameter a. A reference pixel in
refH identified by “int + col + 2” is multiplied by “frac” and stored in a parameter
b. The parameters a and b are then added and divided by size, i.e., (size - frac) +
Jrac. The division by size can be replaced with right shift by log2 size. The
derived prediction pixel v is stored in an array of memory areas called “pred,”
which represents a prediction block for the target block under a particular

prediction direction. Each memory area in pred is identified by the parameters
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row and col. Then, col is incremented by 1 in Step 908 and compared to size in
Step 909. As long as col is smaller than size, Steps 907 and 908 are repeated.
When coi becomes equal to size, the flow proceeds to Step 920.

[0056]  If frac is determined zero in Step 904, the counter col is set to zero in
Step 906. In Step 910, the prediction pixel v is copied directly from refH (int + col
+ 1) and then stored in the corresponding memory area in pred. col is then
incremented by 1 in Step 911 and compared to size in Step 912. As long as col is
smaller than size, Steps 910 and 911 are repeated. When col becomes equal to size,
the flow proceeds to Step 920.

[0057]  Returning to Step 903, angle smaller than zero requires reference pixels
from refV to derive prediction pixels in the prediction block. The counter co! is set
to zero in Step 913. It is then determined in Step 914 whether “int +col + 17 is
lower than zero. “int + col +1” equal to or larger than zero suggests that only the
reference pixels stored in refH can still be relied upon to derive prediction pixels
in the prediction block, and the flow proceeds to Step 915. The process performed
in Step 915 is similar to that of Step 907, and description thereof will not be
repeated here. col is then incremented by 1 in Step 916 and compared to size in
Step 917. As long as col is smaller than size, Steps 914, 915 and 916 are repeated.
When col becomes equal to size, the flow proceeds to Step 920.

[0058]  If “int + col + 17 is determined smaller than zero in Step 914, reference
pixels stored in refV are needed to derive prediction pixels in the prediction block.
In Step 918, the position of an intersection between the vertical boundary and a
prediction direction is first determined. In Step 918, the position is represented by
pos2. Please note that in Step 902, pos, i.c., the position of an intersection
between the horizontal boundary and a prediction direction, is determined by
“angle % (row + 1)”. Given that angle represents a ratio of horizontal and vertical
differences, “angle” x (col + 1)”, instead of “angle x (row + 1)”, is calculated to
determine the position of an intersection between the vertical boundary and a
prediction direction. As assumed above, angle is within the range of -size to size
(-size < angle < size). Therefore, a ratio a between angle and size is defined by:

o= angle

-— (-1<a <)
size
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Then, angle™ is defined by:

., size  size’
angle” =——or .
o angle

As such, posZ is determined in Step 918 with the square of size multiplied by col +
1 and then divided by the absolute value of angle as follows:

05D = size” x(col +1)

langle|
[0059]  Like pos, pos2 has a fractional number in a fixed-point representation
being formed of an integer part and a fraction part. The fraction part consists of
the number of binary digits determined by log2_size. The integer part of pos2 is
stored in a parameter int2, and the fraction part of pos 2 is stored in a parameter
Jrac2. In Step 919, two reference pixels identified by “int2 + row + 1” and “int2 +
row + 27 are retrieved from refV. These two reference pixels are weight-averaged
or interpolated with frac2 to derive a prediction pixel v. Specifically, a reference
pixel from refV (int2 + row + 1) is multiplied by “size - frac2” and stored. ina
parameter a. A reference pixel from refV (int2 + row + 2) is multiplied by “frac2”
and stored in a parameter b. The parameters a and & are then added and divided
by size or right shifted by log2 size. The derived prediction pixel v is stored in the
corresponding memory area of pred. Steps 914, 918, 919 and 916 are repeated
until col becomes equal to size in Step 917. v
[0060] In Step 920, row is incremented by 1. It is then determined in Step 921
whether row is smaller than size. As long as row is smaller than size, the Steps
from Step 902 are repeated to derive a prediction pixel in the prediction block.
The flow ends when row becomes equal to size in Step 921.
[0061] As mentioned above, an increase in the number of prediction block
candidates contributes to improving the coding efficiency, whereas an increase in
the number of prediction block candidates leads to an increase in the
computational workload. Therefore, in order to increase the number of prediction
block candidates to thereby improve the coding efficiency, the process of
generating a prediction block candidate needs to be reviewed to further achieve the
efficiency of the process. In reviewing the process shown in FIG. 9, two

computational bottlenecks may be identified. The first computational bottleneck
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is the comparison and branching operation of Step 914, which is repeated within
the loop. The second computational bottleneck is the divisional operation of Step
918, which is also repeated within the loop.

[0062]  Inthese days, Single-Instruction Multiple Data (SIMD) is available for
efficient computing. SIMD enables computers with multiple processing elements
to perform the same operation on multiple data simultaneously. However, typical
SIMD architectures do not support implementation of division and
computation/branching in a loop and, thus, cannot be used to implement the
process shown in FIG. 9 because of inclusion of Steps 914 and 918 in the loop,
although the loops starting from Steps 907 and 910 are robust enough to be
implemented with SIMD. It is therefore an object of the present invention to
remove the computational bottlenecks from the process shown in FIG. 9 and
provide low complexity intra prediction, which enables typical SIMD architectures
to implement paralle] processing along all of the prediction directions shown in
FIG. 8.

[0063]  FIG. 10 is a flowchart showing the process of low complexity intra
prediction according to an embodiment of the present invention, which is designed
to replace the process of FIG. 9 in implementation of the process in Step 504 of
FIG. 5. InFIG. 10, the same process steps as performed in FIG. 9 are identified
by the same step numbers as used in FIG. 9, such as Steps 900, 901, 902, 904, 905,
906, 907, 908, 909, 910, 911, 912, 920 and 921. Description of these common
steps is not repeated here. Steps 1000 and 1001 are steps peculiar to the process of
FIG. 10. As is apparent from comparison to the process shown in FIG. 9, the
process of FIG. 10 elimjnates the comparison step of Step 903 and all of the steps
branched to the left from Step 903, which are performed when angle is smaller
than zero, thereby eliminating the computational bottlenecks of Steps 914 and 918.
[0064]  In added Steps 1000 and 1001, it is determined whether angle is equal
to or larger than -1. When angle is equal to or larger than -1, reference pixels
located in the horizontal boundary are sufficient to generate a prediction pixel in
the prediction block, and reference pixels in the vertical boundary are not needed.
On the other hand, angle is smaller than -1, reference pixels in the vertical

boundary are needed to generate a prediction pixel in the prediction block. In Step
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1001, reference pixels stored in refH are extended in the negative direction, using
at least some of the pixels stored in refV. FIGS. 11A and 11B are schematic
representations showing extension of refH performed in Step 1001. InFIG. 11A,
reference pixels 1102 stored in refH are from the horizontal boundary located
above the target block 1101. Reference pixels 1103 stored in refV are from the
vertical boundary located left of the target block 1101. As shown in FIG. 11B,
after Step 1001 of FIG. 10, some of the reference pixels in refV are copied into
refH, and refH has an extended part 1104 extending in the negative direction.
[0065]  FIG. 12 is a flowchart showing details of the process performed in Step
1001. In Step 1201, a counter col is set to -1. col is used to identify an address of
the extended part of refH. In Step 1202, a reference pixel in refV to be copied into
the extended part of refH is identified by:

sizexcol
angle

The division in the above equation is an integer division, and the equation yields
an integer number. The equation functions similarly to the process of Step 918
shown in FIG. 9. In Step 918, an integer value of pos? is calculated by:

M >>log2 size.

angle
Please note that right shift by log2 size is equivalent to division by size.
[0066]  In Step 1203, col is decremented by 1. It is then determined in Step
1204 whether col is equal to angle. If col is not equal to angle, the flow returns to
Step 1202. Steps 1202 and 1203 are repeated until col becomes equal to angle.
Thus, reference pixels are read from refV in the ascending order, or from the top to
the bottom of the vertical boundary, and copied into the refH also in the
descending order, or from the right to the left of the horizontal boundary. Also,
not all of the reference pixels in refV are copied into refH. Only the reference
pixels located within the range from the top to the intersection of a prediction
direction are copied from refV into refH.
[0067]  Retuning to FIG. 10, the process steps starting from Step 902 are copied

from FIG. 9, and includes the steps for generating prediction pixels branched to

the right from the comparison step of Step 903 in FIG. 9. Please note, however,
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that the steps in FIG. 10 for generating prediction pixels use extended refH (a sum
of parts 1102 + 1104 in FIG. 11B), whereas the corresponding steps in FIG. 9 use
original refH (part 1102 in FIG. 10A). Since refH is extended in the negative
direction, a separate intra prediction operation designed specifically to use
reference pixels stored in refV, such as branched to the left from Step 903 in
FIG. 9, is not needed regardless of the sign of angle.
[0068]  FIG. 13 is a flowchart showing another embodiment of the process for
extending refH, using reference pixels in refV. The process shown in FIGS. 11
and 12 eliminates the bottleneck steps of Steps 914 and 918 shown in FIG. 9 and,
thus, is expected to improve the efficiency of the intra prediction process. The
process shown in FIG. 13 eliminates the divisional operation performed in Step
1202 of FIG. 12 from the loop for copying reference pixels from refV into refH.
By eliminating the divisional operation from the loop, the process shown in
FIG. 13 is expected to further improve the efficiency of the intra prediction
process.
[0069]  The process shown in FIG. 13 replaces Step 1202 of FIG. 12 with Steps
1301 and 1302. Step 1302 is within the loop for copying reference pixels from
refV into refH, whereas Step 1301 is outside the loop. Step 1301 introduces a new
parameter called “InvAngle”. InvAngle is defined by:

Size

256x .

angle

Multiplication by 256 is equivalent to left shift by 8 and makes sure that every bit
resulting from the operation of “size/angle” accounts for the calculation of
identifying a reference pixel in refV. In Step 1302, the address of a reference pixel
in refV to be copied into the extended part of refH is identified by:

col x InvAngle >>8 .
The result of “col x InvAngle” is right-shifted by 8 to undo the left shift operation
performed in Step 1301. Please note that the right shift operation in Step 1302
functions to round down the result of “col x InvAngle”. To round towards a
nearest integer, a rounding offset of 128 may be added to the result of “col x
InvAngle” before the right shift operation is performed. It should be noted that the

number “256” is just an example, and Step 1301 can adopt another offset number,
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preferably an integer power of 2, as long as the number is large enough to preserve all the bits
resulting from the operation of “size/angle”. For instance, the number may be 64 in Step 1301,
instead of 256, and the number of right shifts is 6 in Step 1302, instead of 8. If 64 is adopted, the
rounding offset should be 32.

[0070] The calculation performed in Step 1301 may be replaced with a look-up operation to
further reduce the computational workload. In other words, a look-up table is prepared which
stores values of InvAngle in relation to the values of angle. Table 1 provided below is an

exemplary table for look up in Step 1301:

Table 1

angle 4 5 6 7 8
InvAngle | 512 410 341 293 256

It is assumed that in the above table, size is 8, and angle takes integer values from 4 through 8. It
should however be noted that size is not limited to 8 and may take another value, such as 4 and 16.

Also, angle may be a fractional number in a fixed-point representation as defined above.

[0071] When a reference pixel is copied from refV to refH in Step 1202 of FIG. 12 or

Step 1302 of FI1G. 13, the reference pixel may go through a low-pass filter to reduce possible
aliasing in the prediction block. The strength of the low-pass filter may vary according to the
value of angle. For example, when angle is equal to -size, weak low-pass filtering may be applied,

and when angle is equal to -2, strong low-pass filtering may be applied.

[0072] As explained above, not all of the reference pixels in refV are copied into refH.
Since not all of the reference pixels in 7ef} are copied, some information is lost when pixels are
copied. To mitigate the loss of information, the resolution of reference pixels in refH and

refV may be doubled so that refH and refV contain not only pixels from previously encoded and
reconstructed blocks but also one pixel between two adjacent reconstructed pixels, which is
generated by interpolating two adjacent pixels. Two adjacent pixels may simply be averaged to
generate an interpolation pixel. The interpolation process may be performed when reference
pixels are read in Step 900 of FIG. 9. When the resolution of pixels is doubled in refH and refV,

identifications of the addresses of reference pixels
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stored in refH and refV, such as performed in Steps 907, 910, 915 and 919 in

FIG. 9, and Step 1001 in FIG. 10, need to be scaled. For instance, “inf + col + 17
performed in Steps 907, 910 and 915 needs to be changed to “int + 2xcol + 27,
“int + col + 27 performed in Steps 907, 910, 915 needs to be changed to “int +
2xcol + 3", “int2 + row + 17 and “int2 + row + 2” performed in Step 919 need to
be changed to “int2 + 2xrow + 2” and “inf2 + 2xrow + 37, respectively.

[0073]  In another embodiment, the process of Step 1202 in FIG. 12 may be
changed simply to “refH [coll«<—refV [-col]” to further simply the copying process.
Although degrading the accuracy of prediction, this embodiment provides the
lowest complexity to the intra prediction operation.

[0074]  FIG. 11B shows the extended part 1104 added to refH. The extended
part 1104 does not need to be formed with reference pixels from refV. The
extended part 1104 may be formed with pixels from an area of previously
reconstructed block, which spatially corresponds to the location of the extended
part 1104. In FIG. 11B, since extended in the negative direction, extended refH
(parts 1102 and 1104) ranges from -size + 1 to 2xsize. The range of extended refH
may be rescaled to range from 0 to 3X§ize - 1 by adding an appropriate offset when
addressing reference pixels in extended refH. The same holds true for rescaling
the range of refV.

[0075]  In another embodiment, the range limit of angle may be freely chosen.
In the above embodiments, it is assumed that angle takes a value within a range
from -size to size (-size < angle < size). In other words, in the above embodiments,
the range limits of angle are defined with the size of the target block. Please note
that the range limits of angle may be defined independently from the size of the
target block, although it is still preferable that the range limit be defined with an
integer power of 2, so that log2_rangelimit is é positive integer, and the equation
“rangelimit = 1 <<l[og2_rangelimit” holds true. By choosing a suitable large
number for rangelimit, a large number of prediction directions can be established
and represented by values of angle at sufficiently wide angular intervals.

[0076]  If the range limit of angle is defined independently from the size of the
target block, size appearing in FIGS. 9 and 10 needs to be replaced with rangelimit

b4

and log2_size needs to be replaced with log2 _rangelimit, except for Steps 909,
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912, 917 and 921. The comparison of “angle > -1” performed in Step 1000 of FIG. 10 also needs
to be replaced with “angle xsize/rangelimit > -1” or “angle xsize > - rangelimit”. Further,

size appearing in Steps 1202 and 1301 in FIGS. 12 and 13 needs to be replaced with rangelimit,
and the comparison of “col = angle?” performed in Step 1204 needs to be replaced with

“col = angle x size/rangelimit?”.

[0077] If rangelimit is introduced as a range limit of angle, Table 1 (provided above) may be

changed as follows:

Table 2

angle* 13 17 21 26 32
InvAngle | 630 482 390 315 256

In Table 2, rangelimit is set to 32. angle* is equal to an integer approximation of

“rangelimit x tan (n/4 X angle/8)”, where angle =4, 5, 6, 7 and 8. Inv4ngle is equal to

256 x rangelimit/angle*. The values in Table 2 are all integers which are derived by rounding up.
Instead of being rounded up, the numbers may be rounded down. In Table 3 provided below,
InvAngle is equal to 32 x rangelimit/angle*. Since “32” is used, instead of “256”, the accuracy of

prediction is necessarily lower than that of Table 2.

Table 3
angle* 13 17 21 26 32
InvAngle 78 60 48 39 32

[0078] FIG. 14 is a flowchart showing another embodiment which further simplifies the
process shown in FIG. 10. The process shown in FIG. 10 of copying reference pixels from refV
into refH is performed before the flow enters the main prediction loop, whereas the copying
process shown in FIG. 14 is performed within the main prediction loop. Also, the process shown
in FIG. 14 eliminates the variable InvAngle. Steps 900, 902 and 921 shown in FIG. 14 are from
the corresponding steps in FIG. 10.

[0079] In Step 1401, a counter /astInt is initialized to - 1. lastInt represents the index of the
last pixel which was added to refH. In Step 902, pos is calculated by angle x (row + 1). As

explained above, pos identifies the position of an
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intersection between the bounderies and the prediction direction represented by
angle. In the context of FIG. 9, Step 902 yields pos, which identifies the position
of an intersection between the horizontal boundary and the prediction direction
represented by angle. Further in Step 902, an integer part in pos is stored in iz,

5 anda fraction part in pos is stared in 2 parameter “fac”. In Step 1402, it is
determined whether in is smaller than Jastint, If int is smaller than lastint, a
reference pixel in refV identified by row is copied into refH at an address
identified by “inf + 1”. Step 1404 consists of Steps 504, 905, 906, 907, 908, 909,
910, 911 ard 912 shown in FIGS. 9 and 10, whose description is not repeated here.

10 In Step 1405, int is copied to lasthz. The operation of copying int 10 lastlnt may
be performed in Step 1403, instead of Step 1405,

[0080] ’I‘hé copying operation in Step 1403 resuits in copying the same pixel as
copied in Steps 1202 and 1302, where rounding down is used in these steps. Step
1403 can be modified to round to a nearest integer by conditionally using “row +

15 17, instead of “row”, in Step 1403 when the fractional position frac computed in
Step 902 is larger then offset, which is defined by rangelimit + (angle >> 1),
Please note that angle is -ve, and frac is +ve. The use of “row + 1” results in
rounding up. To effect the conditional increment of row by 1, the process
performed in Step 1403 is changed to refH[int + 1] « refProw - ((offset - Jfrac)

20 >>31)], assuming that in 32 bit arithmetic, right shift of “offser - frac” results in-1
when frac is larger than off$ef and results in 0 otherwise. Thus, the address
identifier “row - ((offset - frac) >> 31)” becomes “row + 1” when Jrac is larger
than offset and becomes “row” otherwise. If offset is set to rangelimit, “offset -
frac” will always be positive and thus no ro’tmdir-zg will occur.

25 .[0081]  The source code developed in the C++ programming language, which
implements the process showﬁ in FIG. 14, is listed below. The source code is
modified from the TComPrediction:~PredintraAng fanction found in the
TComPrediction.cpp file which is part of the TMuC 0.7 software developed by
ICT-VC, '

30

// Function for deriving the simplified angular intra predictions
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40

45

50

55

60

65

Void TComPrediction: :xPredIntraAng( Int* pSrc, Int iSrcStride, Pel*s rpDst,

Int iDstStride, UInt iWwidth, UInt iHeight, UInt uiDirMode, Bool bAbove,

bLeft ){
Int k,1;

Int deltalInt, deltaFract, refMainIndex;

Int intraPredAngle = 0;

Int absang = 0;

Int signAng = 0;

Int blkSize = iWidth;
Bool modeDC = false;
Bool modeVer = false;
Bool modeHor = false;
Pel* pDst = rpDst;

// Map the mode index to main prediction direction and angle
if (uibirMode == 0)
modeDC = true;
else if (uiDirMode < 18)

modeVer = true;

else
modeHor = true;
intraPredAngle = modeVer ? uiDirMode — 9 : modeHor ? uiDirMode - 25
absaAng = abs(intrapredAngle);
signAng = intraPredAngle < 0 ? -1 : 1;

// Set bitshifts and scale the angle parameter to size2
Int iAngTable(9] = { O, 2, 5, 8, 13, 17, 21, 26, 32};
absAng = iAngTable [absAng];

intraPredAngle = signAng * absAng;

// Do the DC prediction

if (modeDC) {

Pel dcval = predIntraGetPredvValDC(pSrc, iSrcStride, iWidth, iHeight,

babove, bLeft):
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for (k=0;k<blkSize;k++){

for (1=0;1l<blkSize;1l++) {

5 pDst {k*iDstStride+l] = deval;

10

// Do angular predictions

15
else {
Pel tmp;
20 Int *pSrcTL = pSrc - iSrcStride - 1:
Int iStepMain = (modeVer) ? 1 : iSrcStride;
if {intraPredAngle == 0){
25
for (k=0;k<blkSize;k++){
for (1=0;1<blkSize;1l++) {
30 pDst [k*iDstStride+1) = pSrcTL[(1+1) * iStepMain];
}
}
35
}
else {
40 Int iStepSide = {modeVer) 7? iSrc¢Stride 1;
int lastDeltalnt = -1;
Int iOffset = 32 + (intraPredAngle >> 1); // enables rounding to
45 nearest side reference
// Int iOffset = 32; // no rounding.
Pel ref [2*MAX_CU_SIZE];
50
Pel* refMain = ref + ((intraPredAngle < 0) ? blkSize : 0);
if (intraPredAngle > 0){
55 for (k = 0; k < 2+*blkSize; k++)
refMain[k] = pSrcTL{(k+1l) * iStepMain];
}
60
else {
for (k = -1; k < blkSize; k++) // the rest are copied later in step
65 1403, as and when required

25
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refMain(k] = pSrcTL{(k+1) * iStepMain];

5
for (k = 0; k < blkSize; k++){
Int deltaPos = (k+1) * intraPredAngle;
10 deltalnt = deltaPos >> 5;
deltaFract = deltaPos & (32 - 1);
5 if {deltaInt < lastDeltalnt) { // step 1402
lastDeltaInt = deltalnt;
refMain(deltalnt] = pSrcTL[ (k-({iOffset-deltaFract)>>31))*iStepSide];
// step 1403
20
}
25 // step 1404
if ({(deltaFract) {
// Do linear filtering
30
for (1=0;1l<blkSize;l1++){
refMainIndex = l+deltalnt;
35 pDst [(k*iDstStride+1] = (Pel) ( ((32-deltaFract) *
refMain(refMainIndex] + deltaFract * refMain|[refMainlndex+1] + 16) >> 5 );
}
40 }
else {
// Just copy the integer samples
45
for (1=0;1<<blkSize;1l++) {
pDst (k*iDstStride+l] = refMain[l+deltalnt];
50 }
}
}
55
}
// Flip the block if this is the horizontal mode
60 if (modeHor) {
for (k=0;k<blkSize-1;k++){
65 for (l1=k+1;1l<blkSize;1++){

26
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tmp = pDst[k*iDstStride+l];
pDst (k*iDstStride+l]) = pDst(1*iDstStride+k];

pDst[1*iDstStride+k] = tmp;

[0082]  Whereas many alterations and modifications of the present invention
will no doubt become apparent to a person of ordinary skill in the art after having
read the foregoing description, it is to be understood that any particular
embodiment shown and described by way of illustration is in no way intended to
be considered limiting. Therefore, references to details of various embodiments
are not intended to limit the scope of the claims, which in themselves recite only

those features regarded as essential to the invention.
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CLAIMS:

l. A video encoding method comprising computer executable steps executed by a
processor of a video encoder to implement an intra-prediction operation that derives a
prediction block of a target block with boundary pixels of the target block interpolated along
an intra prediction angle, wherein the boundary pixels comprise a horizontal array of
horizontal boundary pixels and a vertical array of vertical boundary pixels, the intra-prediction

operation comprising:

obtaining a value of an inverse angle parameter, corresponding to the intra
prediction angle, from a look-up table which lists values of inverse angle parameters in

relation, respectively, to a plurality of different intra prediction angles;

identifying at least some of the vertical boundary pixels located in the vertical
array at positions which are a function of multiplication between the obtained value of the
inverse angle parameter and a value of a horizontal location identifier which is a variable

representing positions in an extension of an extended horizontal array;

adding the identified at least some of the vertical boundary pixels as horizontal

boundary pixels to the extension of the extended horizontal array; and

using only the horizontal boundary pixels in the extended horizontal array,
without using the vertical boundary pixels, to derive the prediction block of the target block,

and

wherein the horizontal location identifier takes values of -1 ... (size x the intra

prediction angle)/rangelimit,

where size represents a size of a target block to be predicted and rangelimit represents a range

limit of the plurality of intra prediction angles, which is fixed to a constant of 32.
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2. The method according to claim 1, wherein identifying the at least some of the
vertical boundary pixels comprises an arithmetic right shift by 8 binary digits to undo

multiplication by N, which takes a value of 256.

3. The method according to claim 1, wherein the look-up table comprises at least

the following inverse angle parameters in relation to the following intra prediction angles

Intra 13 17 21 26 32
prediction
angle

Inverse 630 482 390 315 256
angle
parameters

4. The method according to claim 1, wherein the values of the inverse angle

parameters listed in the look-up table are calculated from (N x rangelimit)/angle,

where rangelimit represents a range limit of the plurality of intra prediction angles, which is
fixed to a constant of 32, angle represents one of the plurality of different intra prediction

angles and N takes a value of 256.

5. A video decoding method comprising computer executable steps executed by a
processor of a video decoder to implement an intra-prediction operation that derives a
prediction block of a target block with boundary pixels of the target block interpolated along
an intra prediction angle, wherein the boundary pixels comprise a horizontal array of
horizontal boundary pixels and a vertical array of vertical boundary pixels, the intra-prediction

operation comprises:

obtaining a value of an inverse angle parameter, corresponding to the intra
prediction angle, from a look-up table which lists values of inverse angle parameters in

relation, respectively, to a plurality of different intra prediction angles;

identifying at least some of the vertical boundary pixels located in the vertical

array at positions which are a function of multiplication between the obtained value of the
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inverse angle parameter and a value of a horizontal location identifier which is a variable

representing positions in an extension of an extended horizontal array;

adding the identified at least some of the vertical boundary pixels as horizontal

boundary pixels to the extension of the extended horizontal array; and

using only the horizontal boundary pixels in the extended horizontal array,
without using the vertical boundary pixels, to derive the prediction block of the target block,

and

wherein the horizontal location identifier takes values of -1 ... (size x the intra

prediction angle)/rangelimit,

where size represents a size of a target block to be predicted and rangelimit represents a range

limit of the plurality of intra prediction angles, which is fixed to a constant of 32.

6. The method according to claim 5, wherein identifying the at least some of the
vertical boundary pixels comprises an arithmetic right shift by 8 binary digits to undo

multiplication by N, which takes a value of 256.

7. The method according to claim 5, wherein the look-up table comprises at least

the following inverse angle parameters in relation to the following intra prediction angles

Intra 13 17 21 26 32
prediction
angle

Inverse 630 482 390 315 256
angle
paramelers

8. The method according to claim 5, wherein the values of the inverse angle

parameters listed in the look-up table are calculated from (N x rangelimit)/angle,

30
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where rangelimit represents a range limit of the plurality of intra prediction angles, which is
fixed to a constant of 32, angle represents one of the plurality of different intra prediction

angles and VN takes a value of 256.

9. A video encoder comprising a processor of a computer system and a memory
that stores programs executable by the processor to implement an intra-prediction operation
that derives a prediction block of a target block with boundary pixels of the target block
interpolated along an intra prediction angle, wherein the boundary pixels comprise a
horizontal array of horizontal boundary pixels and a vertical array of vertical boundary pixels

b

the intra-prediction operation implemented by the processor to:

obtain a value of an inverse angle parameter, corresponding to the intra
predicition angle, from a look-up table which lists values of inverse angle parameters in

relation, respectively, to a plurality of different intra prediction angles;

identify at least some of one of the vertical boundary pixels located in the
vertical array at positions which are a function of multiplication between the obtained value of
the inverse angle parameter and a value of a horizontal location identifier which is a variable

representing positions in an extension of an extended horizontal array;

add the identified at least some of the vertical boundary pixels as horizontal

boundary pixels to the extension of the extended horizontal array; and

use only the horizontal boundary pixels in the extended horizontal array,
without using the vertical boundary pixels, to derive the prediction block of the target block,

and

wherein the horizontal location identifier takes values of -1 ... (size x the intra

prediction angle)/rangelimit,

where size represents a size of a target block to be predicted and rangelimit represents a range

limit of the plurality of intra prediction angles, which is fixed to a constant of 32.
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10. The video encoder according to claim 9, wherein the processor is further
programmed to perform an arithmetic right shift by 8 binary digits to undo multiplication

by N, which takes a value of 256.

11. The video encoder according to claim 9, wherein the look-up table comprises
at least the following inverse angle parameters in relation to the following intra prediction

angles

Intra 13 17 21 26 32
prediction
angle

Inverse 630 482 390 315 256
angle
paramelers

12. The video encoder according to claim 9, wherein the values of the inverse

angle parameters listed in the look-up table are calculated from (N x rangelimit)/angle,

where rangelimit represents a range limit of the plurality of intra prediction angles, which is
fixed to a constant of 32, angle represents one of the plurality of different intra prediction

angles and N takes a value of 256.

13. A video decoder comprising a processor of a computer system and a memory
that stores programs executable by the processor to implement an intra-prediction operation
that derives a prediction block of a target block with boundary pixels of the target block
interpolated along an intra prediction angle, wherein the boundary pixels comprise a
horizontal array of horizontal boundary pixels and a vertical array of vertical boundary pixels

the intra-prediction operation implemented by the processor to:

obtain a value of an inverse angle parameter, corresponding to the intra
predicition angle, from a look-up table which lists values of inverse angle parameters in

relation, respectively, to a plurality of different intra prediction angles;
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identify at least some of the vertical boundary pixels located in the vertical
array at positions which are a function of multiplication between the obtained value of the
inverse angle parameter and a value of a horizontal location identifier which is a variable

representing positions in an extension of an extended horizontal array;

add the identified at least some of the vertical pixels as horizontal boundary

pixels to the extension of the extended horizontal array; and

using only the horizontal boundary pixels in the extended horizontal array,
without using the vertical boundary pixels, to derive the prediction block of the target block,

and

wherein the horizontal location identifier takes values of -1 ... (size x the intra

prediction angle)/rangelimit,

where size represents a size of a target block to be predicted and rangelimit represents a range

limit of the plurality of intra prediction angles, which is fixed to a constant of 32.

14. The video decoder according to claim 13, wherein the processor is further
programmed to perform an arithmetic right shift by 8 binary digits to undo multiplication

by N, which takes a value of 256.

15. The video decoder according to claim 13, wherein the look-up table comprises
at least the following inverse angle parameters in relation to the following intra prediction

angles

Intra 13 17 21 26 32
prediction
angle

Inverse 630 482 390 315 256
angle
parameters

16. The video decoder according to claim 13, wherein the values of the inverse
angle parameters listed in the look-up table are calculated from (N x rangelimit)/angle,
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where rangelimit represents a range limit of the plurality of intra prediction angles, which is
fixed to a constant of 32, angle represents one of the plurality of different intra prediction

angles and N takes a value of 256.
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