wo 2014/193458 A1 | NF 1 0O 000 A

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2014/193458 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Filing Date:
21 September 2013 (21.09.2013)

Filing Language: English
Publication Language: English
Priority Data:

13/904,979 29 May 2013 (29.05.2013) US

Applicant: MICROSOFT CORPORATION [US/US];
One Microsoft Way, Redmond, Washington 98052-6399
(US).

Inventors: WAUTIER, Marc; ¢/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). FIORDALIS,
Daniel; c¢/o Microsoft Corporation, LCA - International
Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US). BOSE, Miko Arnab S.; ¢/o Microsoft
Corporation, LCA - International Patents, One Microsott

4 December 2014 (04.12.2014) WIPO | PCT
International Patent Classification:
GO6F 17/30 (2006.01)
International Application Number:
PCT/US2013/061073

(8D

Way, Redmond, Washington 98052-6399 (US). HOO-
GERWERF, Scott; c¢/o Microsoft Corporation, LCA - In-
ternational Patents, One Microsoft Way, Redmond, Wash-
ington 98052-6399 (US). SHEKEL, Oded; c/o Microsott
Corporation, LCA - International Patents, One Microsoft
Way, Redmond, Washington 98052-6399 (US).
CLARKE, Simon; c¢/o Microsoft Corporation, LCA - In-
ternational Patents, One Microsoft Way, Redmond, Wash-
ington 98052-6399 (US). GUZAK, Chris; c/o Microsott
Corporation, LCA - International Patents, One Microsoft
Way, Redmond, Washington 98052-6399 (US). BALAS-
UBRAMANYAN, Balaji; c/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). NOVAK, Michael,
c/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, Washington 98052-6399

(US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,

[Continued on next page]

(54) Title: SYNC FRAMEWORK EXTENSIBILITY

130
118

app?2 requests file1, sync |
engine gets content from

N

app1

merge data
handler provider

sync engine/OS [—— 132 ——p

[\ g1 |10

sync engine syncing sync lock

138/‘)
app

” sync/control

Lok

app1, provides 1
placeholder file

140
invoke
— merge 3

handler

Y

I

FIG. 3

(57) Abstract: Embodiments described herein may involve
enabling applications to cooperate with a system-level sync
framework. The sync framework may provide system syn-
chronization of files between user devices and a cloud stor-
age service. Arbitrary applications on a user computing
device can communicate with the sync framework to tem-
porarily suspend synchronization of a specified file by the
sync framework. The application can register functions with
the sync framework that the sync framework can invoke in
relation to suspending synchronization, continuing to
provide system-level access to the file for arbitrary applica-
tions, and resuming synchronization.

WO 2014/193458 A1 WK 00T 000 O A

84)

KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

10

15

20

25

30

WO 2014/193458 PCT/US2013/061073

SYNC FRAMEWORK EXTENSIBILITY

BACKGROUND
[001] In the field of network or cloud computing, services have been developed to
provide cloud storage for use by client computers connecting to the cloud. While cloud
storage has been implemented in many ways, recently, cloud storage has become closely
integrated with the file systems (and operating systems) of client computers. From a
user’s perspective, it has been desirable to provide a cloud file that appears to have
universal or floating presence in the cloud as well as on a user’s client computing devices
that connect to the cloud. A goal has been to allow a file that is stored in the cloud to be
read and written by a user’s devices connecting to the cloud as well as perhaps software
within the cloud. A single file entity (from the user’s perspective) might in fact have
multiple copies or versions on the cloud and the client computers that are being updated in
parallel. To maintain coherency for the file, i.¢., to keep the file content consistent across
the cloud and across the user devices that connect to the cloud, a file synchronization
system, or sync engine, may be employed.
[002] To provide a smooth user experience and transparent coherency, this
synchronization of a cloud-based file is preferably performed at the file system and/or
operating system level. This hides the housekeeping work that is usually required to
maintain synchronization between instances of what are supposed to be the same logical
file. This system-managed synchronization also relieves programmers of the burden of
having to code their own custom synchronization software.
[003] Nonetheless, there may be times when an application or other software outside
the sync engine and client operating system needs to perform custom synchronization or
otherwise manage and coordinate the cloud and client based instances of a file. For
example, collaborative concurrent editing for a word processor might involve
synchronization issues that a system-provided sync engine cannot address. In addition,
operating system level or file system level sync engines have not been able to share sync-
related responsibilities with arbitrary applications. If an application has needed to use a
cloud-shared file in a way that might conflict with or interfere with the sync engine, the
only choice would be for the application to assume total responsibility for the file from the

sync engine.

10

15

20

25

30

WO 2014/193458 PCT/US2013/061073

[004] Discussed below are techniques for, among other things, allowing a sync engine
to temporarily relinquish synchronization of a file and to make use of sync-related
functionality provided by applications.
SUMMARY
[005] The following summary is included only to introduce some concepts discussed in
the Detailed Description below. This summary is not comprehensive and is not intended
to delineate the scope of the claimed subject matter, which is set forth by the claims
presented at the end.
[006] Embodiments described herein may involve enabling applications to cooperate
with a system-level sync framework. The sync framework may provide system
synchronization of files between user devices and a cloud storage service. Arbitrary
applications on a user computing device can communicate with the sync framework to
temporarily suspend synchronization of a specified file by the sync framework. The
application can register functions with the sync framework that the sync framework can
invoke in relation to suspending synchronization, continuing to provide system-level
access to the file for arbitrary applications, and resuming synchronization.
[007] Many of the attendant features will be explained below with reference to the
following detailed description considered in connection with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[008] The present description will be better understood from the following detailed
description read in light of the accompanying drawings, wherein like reference numerals
are used to designate like parts in the accompanying description.
[009] Figure 1 shows a user’s computing devices sharing a file that is stored across at a
cloud.
[010] Figure 2 shows an example scenario where file syncing can be problematic.
[011] Figure 3 shows a sync engine with an extension application programming
interface (API) for coordinating file-handling activities with any suitably coded software.
[012] Figure 4 shows a process.
[013] Figure 5 shows another process.
[014] Figure 6 shows an example computing device on which embodiments may be
implemented.
DETAILED DESCRIPTION
[015] Embodiments discussed below relate to providing extensibility to a sync engine

to allow applications to temporarily lock-out the sync engine from a file, i.e., to exclude

10

15

20

25

30

WO 2014/193458 PCT/US2013/061073

the file from the synchronization oversight of the sync engine. Embodiments also relate to
allowing applications to register functionality with the sync engine that the sync engine
can invoke to, for example, help resolve sync problems or provide data from a file that is
not being synchronized.

[016] The description below will begin with an overview of cloud-based file storage
shared by multiple devices. A sync framework and potential conflicts between sync
engines and applications will be described next, followed by explanation of extensibilities
that can be built into sync engines to allow synchronization locking and sync engine use of
application functionality that might help the sync engine perform synchronization and
provide access to files that are temporarily not being synchronized.

[017] Figure 1 shows a user’s computing devices 100, 102 sharing a file 104 that is
stored across at least a cloud 106 and user computing device 102. The cloud 106 may
have a variety of services not all shown in Figure 1. The cloud 106 may have an account
service that manages user accounts or user credentials. The account service may provide a
credential for each user. A user might use his or her credential to access the cloud 106 and
various services therein such as a search engine, an email service, a virtual machine or
application hosting service, a storage or file service 108, or others. Such cloud services
might be accessed using a web browser or other client software on a user’s computing
device such as computing device 100. A given user might link multiple of their
computing devices at the cloud 106 using the same account or credential. In the example
of Figure 1, a user has linked both computing device 100 (devicel) and computing device
102 (device2) with the cloud file service 108, thus enabling seamless sharing of the file
104.

[018] In some cases, client software might access a cloud service transparently,
provided authorization has been obtained from the cloud 106 per the user’s credential. For
example, the user computing device 100 might have a file explorer, system browser, or
other user interface for exploring a local file system 110, which is controlled by an
operating system 112. Such client-side software might also connect with the file service
108 and allow exploring of files on the file service 108 as though they were part of the
local file system 110. Client-side software can also be arbitrary applications executing on
the user computing devices 100, 102, or elsewhere.

[019] Some cloud services allow a file or a file store to be simultaneously stored and
accessed on multiple user devices and the cloud 106. For example, referring to Figure 1, a

file such as the file 104 ("file1") may be locally stored in the file system 110 of the user

10

15

20

25

30

WO 2014/193458 PCT/US2013/061073

computing device 100. The file 104 might also be stored in the cloud's file service 108.
The copy of the file 104 at the file service 108 might also be provided by the file service
108 to other applications on other of the user's devices such as user computing device 102.
Because multiple entities are accessing and potentially writing to the file 104, a sync
framework is employed to synchronize the instances or copies of the file 104.

[020] The sync framework may include cooperating sync engines, such as a sync
engine 114 on the user computing device 100 and a sync engine 116 on the cloud 106
(which might lie behind the file service 108). Each sync engine performs local steps to
keep a corresponding local copy of the file 104 in sync with the other copies of the file
104 (note that the file 104 represents any arbitrary file). In general, this involves a sync
engine receiving or detecting local updates to its local version of the file 104 and
propagating those updates to another of the sync engines, which in turn updates its local
copy of the file 104 so that the copies of the file 104 are in sync.

[021] In one embodiment, the file service 108 may act as a central storage and
coordinator so that the user's devices might not synchronize directly with each other. For
example, the user computing device 102 might exchange sync updates with the cloud 106,
and the user computing device 100 might similarly exchange updates with the cloud 106.
However, the computing device 100 and the computing device 102 synchronize with each
other indirectly through the intermediating sync engine 116 at the file service 108, which
in effect propagates one user device's updates through to the other. The specific
algorithms of a sync engine may vary according to whether it is at the cloud 106 or at a
user device.

[022] In addition to the basic synchronization logic mentioned above, the sync engines
114, 116 might also have logic to deal with intermittent losses of network connectivity
between the cloud 106 and the user device 100. For example, when connectivity is not
available between the user device 100 and the cloud 106, app1 118 on the user device 100
might write edits or updates to its local file 104. Updates during a disconnect must
accumulate at both locations until connectivity is reestablished. When connectivity is
reestablished, the sync engines 114, 116 may cooperate to attempt to reconcile their
accumulated updates (the copy of the file 104 in the cloud 106 might also have been
receiving updates, perhaps from user device 102 that is still connected to the cloud 106).
When the instances of the file 104 cannot be reconciled, local versions 120 and even
subversions might be created and saved. Divergent versions 120 not reconcilable by the

sync framework might eventually require the user's intervention.

10

15

20

25

30

WO 2014/193458 PCT/US2013/061073

[023] Figure 2 shows an example scenario where file syncing can be problematic. In
this example, appl 118 (representing any arbitrary application) is assumed to have access
to both the local instance of the file 104 on the user computing device 100 as well as
access to the copy or instance at the cloud 106, possibly after obtaining from the operating
system 112 a Uniform Resource Locator (URL) or other network file handle for the cloud
based file 104. Initially, the sync engine 114 is syncing the file 104 with the cloud 106, as
discussed above. During that time, appl 118 begins accessing and writing both the local
copy of the file 104 as well as the copy at the cloud file service 108. Such parallel use of
the file 104 may eventually cause conflicts or interference, potentially corrupting the file
104 or disrupting operation of the sync framework or app1 118.

[024] Figure 3 shows the sync engine 114 with an extension application programming
interface (API) 130 for coordinating file-handling activities with any suitably coded
software (represented by appl 118) running on the user device 100. An API is only one
example of how the sync engine 114 can communicate or exchange calls/replies 132 or
messages with applications. Other programming techniques such as software interfaces
and contracts may be used. In addition, while communication with the sync engine 114 is
discussed, the API 130 may be surfaced as part of the overall sync framework.

[025] The API 130 may include a variety of calls, methods, etc., invocable by arbitrary
applications such as appl 118. One such call may be a sync-lock call, which can also
specify or be directed to a file, such as file 104. When the call is invoked, say for file 104
by appl 118, the sync-engine 114 proceeds to stop syncing the file 104 with the cloud 106.
This may involve various preparatory measures such as applying any outstanding updates
to the file 104, communicating with the sync engine 116 at the cloud 106 to indicate that
the sync framework is perhaps temporarily relinquishing sync responsibility for the file
104. The sync engine 116 may in turn apply updates or perform other tasks such as
instructing the cloud file service 108 to flush bits to disk. The sync engine 114 may reply
to the sync-lock call according to its state. For instance, if the local file 104 is unable to be
reconciled, perhaps due to loss of network connectivity with the cloud 106, the sync
engine 114 might reply to appl 118 accordingly. If a fork (new subrevision) of the local
file 104 is performed, app1l 118 might also be informed. In one embodiment, appl 118
first opens the local file 104 and/or the cloud-based instance of the file 104 in a read-only
mode, and when the sync-lock call returns successfully the app1 118 then opens the file

104 in a write mode. Note that a sync-lock is carried out at least at the local user device,

10

15

20

25

30

WO 2014/193458 PCT/US2013/061073

but can optionally be extended to other user devices, for example to improve handling of
file rename and move operations.

[026] In one embodiment, the appl 118 may be coded to operate as a rudimentary file
streaming server, possibly having a data provider 136 (both the merge handler 134 and the
data provider 136 can be registered via the API 130 by the app1 118). The operating
system 112 can provide a file placeholder system that allows a placeholder to be used in
place of an actual file; to applications, a placeholder file looks like an ordinary file with
file properties, openable/closeable, and so forth, but the data (content) for the file comes
from a source other than the file system 110. In other words, a placeholder file is an
operating system object that is presented as a file, but internally the data that appears to be
within the file comes from a source other than the unit of file storage, ¢.g., from an
application with a function or client that can stream data to the operating system. In this
example, the data provider 136 of appl 118 118 streams its content (i.c., whatever it has
done to the file 104 after the sync-lock was invoked) for the file 104 to the operating
system and the streamed content is provided, via the file/operating system to anything
reading the file 104 through the file system. Note that the placeholder/streaming function
is not required for sync-locking.

[027] While the sync-lock is held by the appl 118, the sync framework does not
synchronize the file 104 at user devices or at the cloud 106. Thus, the appl 118 is free to
implement its own synchronization logic or otherwise write to both the local instance
and/or the cloud instance without concern for interference with the sync framework. For
example, the appl 118 might inquire from the system whether the cloud copy and the local
copy of the file 104 are identical, possibly using its own merge handler 134 or
reconciliation logic. As discussed further below, the merge handler 134 of the appl 118
may be presented via an interface or contract to the sync engine 114 and can be called by
the sync engine 114 to perform an application-provided merge; i.¢., the sync framework
can be extended with external sync functionality.

[028] Eventually, appl 118 releases the sync-lock. This may be triggered explicitly by
the application per its internal logic (e.g., a user of appl explicitly closes the file 104). Or,
a sync-lock release can be triggered automatically responsive to an event such as the appl
118 being closed or the appl 118 losing focus, being switched away by the user (user
switches to another application), a system suspend occurring, etc.

[029] When the sync-lock is released, the sync engine 114 resumes sync management

of the file 104. If a placeholder mode is in use as described above, this might involve

10

15

20

25

30

WO 2014/193458 PCT/US2013/061073

executing logic to resolve any outstanding placeholders. In addition, the sync engine 114
may attempt to sync the file 104, which in turn might trigger hydration of the file 104.
The sync engine 114 may contact the data provider 136 or the merge handler 134, and
appl 118 is activated to hydrate the file using the data provider 136. Subsequently, the
sync engine 114 might check to see if an upload to the cloud 106 of the file 104 is
pending. If not, then the sync framework is in a steady state with respect to the file 104.
Even if there is no local update pending, the sync framework may have reason to
download some more recent updates from the cloud if the cloud version changed. In that
case (no pending local change but more recent cloud version) the cloud version replaces
the local file (no conflict). However, if an upload is pending the cloud version may be
downloaded (the sync engine does not have to download the cloud version to detect cloud
changes, which can be reflected in other available information). If cloud changes are not
detected then again the sync engine 114 is in a steady synchronizing state. Otherwise, the
registered merge handler 134 of the app1 118 is invoked by the sync engine 114. If that
fails, then some fail-handling procedure is triggered, such as forking (versioning) the file
104 or displaying a user interface to allow the user to choose how to resolve the
inconsistency.

[030] Sequentially, referring to Figures 4, 5, and the time sequence shown in Figure 3,
initially, at step 160, the sync engine 114 is managing synchronization for the file 104.
Writes to local and cloud instances by arbitrary applications via the file system and the
cloud, respectively, are synchronized transparently to the applications. At step 162, an
arbitrary application such as app1 118 may require execution of its own sync management
for the file 104. At step 164 (first time 138) the application issues a sync-lock request to
the sync engine 114 and optionally registers its merge handler 134 and/or its data provider
136 (per exchanges with the sync engine 114). At step 166 the sync engine grants the
sync-lock request by relinquishing synchronization of the file with the cloud.

[031] Atstep 168 the appl 118 has control of the file, writes to local and/or cloud
instances of the file 104, updates, perhaps for custom synchronization, etc. Before a
second time 140, a second application (app2) might request the file 104 via the file system,
in which case the operating system supplies a placeholder file with content from the data
provider 136. At second time 140, step 170 occurs, the app1 118 finishes with the file,
and at step 172 issues a sync-unlock call to the sync engine 114. At step 174 the sync

engine 114 resumes syncing the file with the cloud, which might involve a step 176 of

10

15

20

25

30

WO 2014/193458 PCT/US2013/061073

attempting to sync the file, and possibly invoking the merge handler 134 at step 178. The
particular order of steps in Figures 4 and 5 is not required and some steps may be omitted.
[032] To summarize, an arbitrary application can provide sync related services or
extensions to a sync framework, for example, that might otherwise not be available for the
system or built-in sync framework. File coherency can be assured while the application is
working with the file, behavior conflicts between the application and the sync framework
can be avoided, and during a sync-lock other applications can access the file transparently
via placeholders (the sync framework brokers access to the file contents). An all-or-
nothing approach can be avoided by allowing the application to take full ownership of the
files and apply custom synchronization logic. The application can negotiate with the sync
framework to identify and acquire (sync-lock) these files. A contract, API, application-
implementable software interface, or similar mechanism can be added to the built-in sync
framework. The sync framework can act as the main agent of synchronization yet can be
temporarily relieved of this duty by the application when the application is manipulating
file. The application can indicate that it is able to perform smart merges over a given file.
When the sync framework detects a sync conflict, it can then know that it can delegate the
conflict resolution to the application.

[033] Figure 6 shows an example of computing device 100 on which embodiments
described above may be implemented. The computing device 100 may have one or more
displays 266, as well as a storage device 262 and a processor 264. These elements may
cooperate in ways well understood in the art of computing. In addition, input devices 268
may be integrated with or in communication with the computing device 100. The display
266 may be any variety of devices used to display a signal outputted by computing
devices, including, for example, solid-surface displays, projectors, touch-sensitive
surfaces, and others. The computing device 100 may have any form factor or may be
incorporated in another device. For example, touch-sensitive control panels are often used
to control appliances, robots, and other machines. The computing device 100 may be in
the form of a handheld device such as a smartphone, a tablet computer, a gaming box, a
headless server, or others.

[034] Embodiments and features discussed above can be realized in the form of
information stored in volatile or non-volatile computer-readable or device-readable
devices. This is deemed to include at least devices such as optical storage (e.g., compact-
disk read-only memory (CD-ROM)), magnetic media, flash read-only memory (ROM), or

any other devices for storing digital information in physical matter. The stored

10

WO 2014/193458 PCT/US2013/061073

information can be in the form of machine executable instructions (e.g., compiled
executable binary code), source code, bytecode, or any other information that can be used
to enable or configure computing devices to perform the various embodiments discussed
above. This is also deemed to include at least volatile memory such as random-access
memory (RAM) and/or virtual memory storing information such as central processing unit
(CPU) instructions during execution of a program carrying out an embodiment, as well as
non-volatile media storing information that allows a program or executable to be loaded
and executed. The embodiments and features can be performed on any type of computing
device, including portable devices, workstations, servers, mobile wireless devices, and so

on.

WO 2014/193458 PCT/US2013/061073

CLAIMS

1. A method of providing application integration for a sync framework
executing on a computing device storing a first instance of a file, the computing device in
communication via a network with a cloud, the cloud storing a second instance of the file,
the method comprising:

responsive to updates to the first instance and the second instance of the file,
maintaining synchronization, by the sync framework, between the first instance of the file
and the second instance of the file, the sync framework comprising an interface or API
(application programming interface) to allow arbitrary applications executing on the
computing device to communicate with the sync framework;

receiving a sync-lock request via the interface or API from a first application
executing on the computing device, the sync-lock request being associated with the file;
and

responsive to the sync-lock request, providing a sync-lock comprising temporarily
relinquishing synchronization between the first and second instance of the file by the sync

framework.

2. A method according to claim 1, further comprising synchronizing the first

and second instance of the file by the first application.

3. A method according to claim 2, further comprising issuing a sync-lock

release by the first application.

4. A method according to claim 3, further comprising responding to the sync-
lock release by resuming the maintaining of the synchronization between the first and

second instances of the file by the sync framework.

5. A method according to claim 4, wherein the resuming the maintaining of
the synchronization comprises invoking, by the sync framework, a merge handler

registered with the sync framework by the first application.

6. A method according to claim 5, further comprising saving a version of the
file when then merge handler is unable to merge the first instance and the second instance

of the file.

10

WO 2014/193458 PCT/US2013/061073

7. A computing device comprising:

a storage device storing a sync engine, a plurality of applications, and an operating
system, the operating system comprising a file system storing a plurality of files;

a processor to execute the sync engine, the operating system, and the file system;

the sync engine, when executing, automatically synchronizing the plurality of files
with corresponding cloud versions of the plurality of files such that changes to the cloud
versions synchronize to the plurality of files and changes to the plurality of files
synchronize to the cloud versions; and

the sync engine, when executing, receiving requests from an application to sync-
lock a first file of the plurality of files, and responding by stopping the synchronizing for
the first file for each of the requests, and resuming synchronizing for the file when the

application initiates corresponding releases of the sync-locks.

8. A computing device according to claim 7, wherein the applications modify

the plurality of files through the file system.

9. A computing device according to claim 8, wherein the cloud versions of the
file are stored in a cloud storage service linked to the computing device with a user

credential associated with the computing device.

10. A computing device according to claim 7, wherein another computing
device also linked to the user credential updates the first file and a cloud storing the cloud
version of the first file synchronizes to the first file at the computing device updates made

by the other computing device to the cloud version of the first file.

11

WO 2014/193458 PCT/US2013/061073

1/6

120

netwoxk/cloud file service

sync engine

B\

deyice1 device2
operating system
sync file system 11 app2
engine fileo] [file2] | | ls™
et <—>lilet][... |

71 X

b
=

FIG. 1

WO 2014/193458

—

sync engine/
0S

\SE

syncing

potential
conflict

PCT/US2013/061073
2/6
time
I 118
104 file1 app1

app
(~ B syncing

FIG. 2

WO 2014/193458 PCT/US2013/061073

3/6

130
118

sync engine/OS |APl¢———132—>»| | merge data

fle1 124 /

sync engine syncing sync lock 134 136
-
138/‘/.
app2 requests file1, sync
engine gets content from L app
app1, provides sync/control
placeholder file
140
invoke
— merge —
handler
N
time

FIG. 3

WO 2014/193458 PCT/US2013/061073

4/6

sync lock
process

—
o

sync engine managing sync for file

|

application requires sync
management of file

—
N

Y

application issues sync-lock call to
sync engine, possibly registers
merge handler and/or file streamer

;

sync engine grants sync-lock,
relinquishes syncing of file

;

app begins custom syncing or other
use of file, as app updates file, the
app talks to the cloud storage
service to updates the file in the
cloud

—_
A~

—
[ep}

—
Co

FIG. 4

WO 2014/193458 PCT/US2013/061073

5/6

app-assisted
merge process

—
N
o

app finishes with file, if online may
send final updates to cloud

|

app issues sync-unlock call to sync
engine

'

sync engine resumes syncing file
with cloud

'

sync engine attempts to sync file
with cloud

'

sync engine detects inconsistency,
issues call to app's merge function

—
N
N

—
-~
~

—
N
[ep}

—
N
Co

FIG. 5

WO 2014/193458 PCT/US2013/061073

6/6

N
(0]

—
o

N
[e¢]
|
N
N
|
N
-~

FIG. 6

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/061073

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F17/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

AL) 9 June 2011 (2011-06-09)
page 1 - page 10

14 May 2009 (2009-05-14)
page 1 - page 6

X US 2011/137879 Al (DUBEY SAURABH [IN] ET 1-10

A US 2009/125566 Al (KUO ERIC E [US]) 1-10

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

25 October 2013

Date of mailing of the international search report

07/11/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Korkuzas, Valdas

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2013/061073
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2011137879 Al 09-06-2011 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - claims
	Page 13 - claims
	Page 14 - drawings
	Page 15 - drawings
	Page 16 - drawings
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - wo-search-report
	Page 21 - wo-search-report

