»UK Patent .,GB

(m2580276

(13)B

(45)Date of B Publication 09.12.2020

(54) Title of the Invention: lmproved performance of diSpersed location-based

deduplication

(51) INT CL: GO6F 3/06 (2006.01) GO6F 16/174 (2019.01)

(21) Application No: 2007041.3

(22) Date of Filing: 12.10.2018
Date Lodged: 13.05.2020

(30) Priority Data:

(31) 15793109 (32) 25.10.2017 (33) US
(86) International Application Data:

PCT/IB2018/057924 En 12.10.2018

(87) International Publication Data:
W02019/082016 En 02.05.2019

(43) Date of Reproduction by UK Office 15.07.2020

(56) Documents Cited:

CN 101710323 A
US 20150134672 A1

CN 101706825 A
US 20110218967 A1

(58) Field of Search:

As for published application 2580276 A viz:
INT CL GO6F
Other: CNABS, CNTXT, SIPOABS, CNKI, IEEE

updated as appropriate

Additional Fields
Other: WPI, EPODOC

(72) Inventor(s):

Jonathan Fischer-Toubol
Yosef Shatsky

Afief Halumi

Asaf Porat-Stoler

Sergey Marenkov

Tom Sivan

Reut Cohen

Danny Harnik

Ety Khaitzin

(73) Proprietor(s):
International Business Machines Corporation
(Incorporated in USA - New York)
New Orchard Road, Armonk, New York 10504,
United States of America

(74) Agent and/or Address for Service:

IBM United Kingdom Limited
Intellectual Property Law, Hursley Park,
WINCHESTER, Hampshire, S0O21 2JN,

United Kingdom

d 9.¢08%¢ 99

HOST
SYSTEM

102

104
OWNER OWNER
MEMORY MEMORY
REGION REGION

106

HOST READ FROM REGION 108

RESPONSE TO HOST

READ FROM REGION 104)

READ FROM REGION 106
[

I I

RESPONSE WITH | H1 | |

I I

RESPONSE WITH | H2 ‘ |
I

H1 | H2 | H3 | H4 | H5

1/5

108 110
OWNER OWNER
MEMORY MEMORY
REGION REGION

112

OWNER OWNER
MEMORY MEMORY
REGION REGION

READ METADATA FOR FILE FROM REFERRER

: REGION TO FIND OWNER REGIONS

114

REGION | REGION | REGION
106

104

REGION | REGION

110 112

|
READ FROM REGION 110
|

l
RESPONSE WITH | H3 \

I
I RESPONSE WITH
|

FIG. 1

READ FROM REGION 112

READ FROM REGION 114

RESPONSE WITH

H4

.

2/3

o]
04~ E 202
.
SERVER
=
SERVER —] 214
208 STORAGE =ENT
FIG. 2
306 PROCESSING 300
UNIT(S)
310 302 308 316 136
GRAPHICS MAIN AUDIO
PROCESSOR | NBMCH = MEMORY ADAPTER S0
304
340 138
BU
25K SB/ICH N— R .,

USB AND KEYBOARD

Disk | | cD-ROM i%m%f OTHER gg\';ECE'g AND MOUSE | | MODEM | | RoM
PORTS ADAPTER

106 330 312 332 334 10 192 324

FIG. 3

3/5

NOIDdY
AJONdN

XeWy0v

| | | | | I | I | |
- NOIRS . NoI93d | . NoI93d | NOI93d | . NOID3Y
 AJOWIN | .we 1 AHOWIN ! | AHOWaAW | . AHOWaW | . AdOW3N |
 4dNMO- | ¥3INMO | ¥Iwmo | dINmo Rl
IV A o R I N
YOI | ' O0LY | 1 90LY | | B0LY | | 807 |
I s I Ve o= NOI9 T NOI9TY NOIOTY
AHONAN AHOWIN AHOWIN AHOWIN
U0y POy 70 q707

NSINVHOJN

JOVHOLS

WJLSAS
1SOH

\ 207

00%

< BEGIN >
'

4/5

RECEIVE A REQUEST TO WRITE A

DATAFILE TO A SET OF OWNER
MEMORY REGIONS

\ 4

GENERATE A HASH VALUE FOR THE
DATA CHUNK

506

COMPARE ~

HASHED VALUE TO HASHED
VALUES FOR OTHER STORED
DATA CHUNKS?

DOES NOT EXIS

A 4

FIG. 5

EXISTS
>

STORE A POINTER TO THAT DATA
CHUNK

T

STORE THE DATA CHUNK IN
REFERRER MEMORY REGION

510

< BEGIN >
602

S/5

FIG. 6

STORE THE DATA CHUNK IN ONE |_—604
OF THE REFERRER MEMORY IN THE

THE DATA EXIST IN ANOTHE
MEMORY REGION?

606
YES

PRE-
DETERMINED

PREDETERMINED NUMBER N OF
OWNER MEMORY REGIONS

STORE THE DATA CHUNK IN ONE
OF THE REFERRER MEMORY IN THE

NUMBER N OF OWNER
MEMORY REGIONS
MET?

NO

A 4

STORE A REFERENCE TO THE DATA 01
CHUNK IN THE REFERRER MEMORY
REGION

A 4
ADD THE MEMORY REGION TO THE |_— 512

PREDETERMINED NUMBER N OF
OWNER MEMORY REGIONS

<

PREDETERMINED NUMBER N OF
OWNER MEMORY REGIONS

A 4

< END >

IN

AN

tellectual

Property
Office

Application No. GB2007041.3 RTM Date :4 June 2020

The following terms are registered trade marks and should be read as such wherever
they occur in this document:

Java

IBM

Intellectual Property Office is an operating name of the Patent Office

www.gov.uk /ipo

IMPROVED PERFORMANCE OF DISPERSED LOCATION-BASED DEDUPLICATION

BACKGROUND

[0001] The present application relates generally to an improved data processing apparatus and method and

more specifically to mechanisms for improving the performance of dispersed location-based deduplication.

[0002] In storage systems, deduplication is a process of replacing duplicate data across the system with
pointers, references, or the like, to a single instance of the data, and hence reducing the overall storage
requirement. Typically, a deduplication reference is a metadata entry pointing to an owner which is either the data
tself or metadata representing the data. There are two primary schemes for storing the data: content-based
deduplication and location-based deduplication. In content-based deduplication, data placed within the storage Is
determined by the data’s fingerprint, hash value, or the like. In location-based deduplication, data placed within the

storage Is determined by the data’s user-space location (volume-offset).

[0003] One key advantage of location-based deduplication is locality of the data when performing large reads
or sequential reads. Location-based deduplication requires fewer disk inputs/outputs (I/Os). On the other hand,
content-based deduplication has better balancing of resources when there are few [/Os in the system. Since
deduplication requires a substantial amount of random access memory (RAM), some implementations divide the
metadata into regions (division of space) for simplification of management and/or swapping, such as an owner

region and a referrer region.

SUMMARY

[0004] This Summary Is provided to introduce a selection of concepts in a simplified form that are further
described herein in the Detailed Description. This Summary is not intended to identify key factors or essential

features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.

[0005] In one Illustrative embodiment, a method, in a data processing system, is provided for dispersed
location-based data storage. The illustrative embodiment receives a request, from a host system, to write a data
file to a referrer memory region in a set of memory regions. For each data chunk of the data file: the illustrative

embodiment determines whether the data exists is in another memory region in the set of memory regions In

response to a comparison of a hash value for the data chunk to other hash values for other stored data chunks
referenced in the referrer memory region indicating that the data chunk fails to exist in the referrer memory region.
The illustrative embodiment determines whether the memory region is one of a predetermined number N of owner

memory regions associated with the referrer memory region in response to the data chunk existing in another

memory region In the set of memory regions. The illustrative embodiment determines whether the number of owner
memory regions in the predetermined number N of owner memory regions has been met in response to the
memory region failing to be one of the predetermined number N of owner memory regions associated with the

referrer memory region. The illustrative embodiment stores a reference to the data chunk in the referrer memory

region in response to the predetermined number N of owner memory regions failing to have been met.

[0006] In other illustrative embodiments, a computer program product comprising a computer useable or
readable medium having a computer readable program is provided. The computer readable program, when
executed on a computing device, causes the computing device to perform various ones of, and combinations of, the

operations outlined above with regard to the method illustrative embodiment.

[0007] In yet another illustrative embodiment, a system/apparatus is provided. The system/apparatus may
comprise one or more processors and a memory coupled to the one or more processors. The memory may

comprise instructions which, when executed by the one or more processors, cause the one or more processors to
perform various ones of, and combinations of, the operations outlined above with regard to the method illustrative

embodiment.

[0008] These and other features and advantages of the present invention will be described in, or will become
apparent to those of ordinary skill in the art in view of, the following detailed description of the example

embodiments of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The Iinvention, as well as a preferred mode of use and further objectives and advantages thereof, will
best be understood by reference to the following detailed description of illustrative embodiments when read In
conjunction with the accompanying drawings, wherein:

Figure 1 depicts writing a 40 KB file as five 8KB chunks in eight different owner regions leading to many types of
overhead in accordance with an illustrative embodiment:

Figure 2 is an example diagram of a distributed data processing system in which aspects of the illustrative
embodiments may be implemented;

Figure 3 is an example block diagram of a computing device in which aspects of the illustrative embodiments may

be Implemented:;

-igure 4 depicts a functional block diagram of storage mechanisms that improve the performance of dispersed

location-based deduplication with minimal impact on deduplication efficiency in accordance with an illustrative

embodiment;

Figure S depicts a flow diagram of the operations performed by a storage mechanism that improves the
performance of dispersed location-based deduplication with minimal impact on deduplication efficiency in
accordance with an illustrative embodiment: and

Figure 6 depicts a flow diagram of the operations performed by a storage mechanism if deduplication is to be
enforced amongst a subset of memory regions, 1.e. the referrer memory regions and the associated one or more

owner memory regions in accordance with an illustrative embodiment. .

DETAILED DESCRIPTION

[0010] As mentioned previously, there are two primary schemes for storing the data: content-based
deduplication and location-based deduplication. In content-based deduplication, data placed within the storage is
determined by the data’s fingerprint, hash value, or the like. In location-based deduplication, data placed within the
storage Is determined by the data’s user-space location (volume-offset). Ultilizing location-based deduplication in a
system based on metadata region as one example, any advantage of locality may suffer when there Is a numerous
deduplication for which the data (or owning metadata) is dispersed over the entire storage. For example, when a 64
KB file Is stored as eight 8KB chunks, a read of the 64KB file may require accessing eight different owner regions,
which may lead to many types of overhead as is illustrated in Figure 1 in accordance with an illustrative

embodiment.

[0011] That s, as I1s shown In Figure 1, host system 102 performs a read for a file from memory region 108.
At memory region 108, metadata associated with the file is read and five different owner memory regions are
identified as comprising at least a portion of the file, memory regions 104, 106, 110, 112, and 114. Thus, memory
region 108 performs a read for the portion of the file resident on memory region 104, memory region 108 performs a
read for the portion of the file resident on memory region 106, memory region 108 performs aread for the portion of
the file resident on memory region 110, memory region 108 performs a read for the portion of the file resident on
memory region 112, and memory region 108 performs a read for the portion of the file resident on memory region
114. Based on those reads, memory region 108 receives a response H1 for the portion of the file resident on
memory region 104 from memory region 104, memory region 108 receives a response HZ for the portion of the file
resident on memory region 106 from memory region 106, memory region 108 receives a response Ha3 for the
portion of the file resident on memory region 110 from memory region 110, memory region 108 receives a response
H4 for the portion of the file resident on memory region 112 from memory region 112, and memory region 108
recelves a response Ho for the portion of the file resident on memory region 114 from memory region 114. Upon
recelving the responses, H1, H2, H3, H4, and HS, memory region 108 responds to host system 102 with a response
that includes H1, H2, H3, H4, and H5. Therefore, due to the storage of the chunks of the file across five different
owner memory regions, one read to one memory region (memory region 108) included more reads from other

owner memory regions, more communication between cluster memory regions, and swapping in of metadata

between memory regions when not all metadata is contained in the originally read memory region. This overhead

with reach of these additional reads leads to a severe performance degradation of the system.

[0012] Accordingly, the illustrative embodiments provide mechanisms for improving performance of
dispersed location-based deduplication with minimal impact on deduplication efficiency. The illustrative
embodiments intelligently create duplication links between different referrer and owner memory regions by applying
dynamic management logic on owner memory region selection within referrer memory region. This is accomplished
by two fundamental mechanisms. The first mechanism limits a number of owner memory regions that may be

linked to a given referrer (up to a predetermined number N owner memory regions) in one of the following ways:

o Ulilizing a "first come, first served” policy that allows data to be stored on the predetermined

number N owner memory regions.

o Ulilizing a "popularity” policy that allows data to be stored based on a popularity of owner memory
region In the referrer memory region.
o The popularity of an owner memory region may be determined within a single write.

o The popularity of an owner memory region may be determined across multiple writes.

e Ultilizing a hybrid policy that allows data to initially be stored in a *first come, first served” to be
stored on a second predetermined number M owner memory regions with M<N, then allow data to be stored based
on a popularity of owner memory region in the referrer memory region only up to the predetermined number N
oOwner memory regions.

The second mechanism replaces a less popular owner memory region by a more popular owner
memory region, such that a less popular owner memory region is decommissioned as a preferred owner memory

region when a more beneficial owner memory region is identified.

[0013] Before beginning the discussion of the various aspects of the illustrative embodiments, it should first
be appreciated that throughout this description the term "mechanism” will be used to refer to elements of the
present invention that perform various operations, functions, and the like. A "mechanism," as the term is used
herein, may be an implementation of the functions or aspects of the illustrative embodiments in the form of an
apparatus, a procedure, or a computer program product. In the case of a procedure, the procedure Is implemented
by one or more devices, apparatus, computers, data processing systems, or the like. In the case of a computer
program product, the logic represented by computer code or instructions embodied in or on the computer program
product Is executed by one or more hardware devices in order to implement the functionality or perform the
operations associated with the specific “mechanism.” Thus, the mechanisms described herein may be
implemented as specialized hardware, software executing on general purpose hardware, software instructions
stored on a medium such that the instructions are readily executable by specialized or general purpose hardware, a

procedure or method for executing the functions, or a combination of any of the above.

[0014] The present description and claims may make use of the terms “a,” “at least one of,” and “one or more
of” with regard to particular features and elements of the illustrative embodiments. [t should be appreciated that
these terms and phrases are intended to state that there is at least one of the particular feature or element present
In the particular illustrative embodiment, but that more than one can also be present. That is, these terms/phrases
are not intended to limit the description or claims to a single feature/element being present or require that a plurality
of such features/elements be present. To the contrary, these terms/phrases only require at least a single
featurefelement with the possibility of a plurality of such features/elements being within the scope of the description

and claims.

[0013] Moreover, it should be appreciated that the use of the term “engine,” if used herein with regard to
describing embodiments and features of the invention, is not intended to be limiting of any particular implementation
for accomplishing and/or performing the actions, steps, processes, etc., attributable to and/or performed by the
engine. An engine may be, but is not limited to, software, hardware and/or firmware or any combination thereof that
performs the specified functions including, but not limited to, any use of a general and/or specialized processor In
combination with appropriate software [oaded or stored in a machine readable memory and executed by the
processor. Further, any name associated with a particular engine Is, unless otherwise specified, for purposes of
convenience of reference and not intended to be limiting to a specific implementation. Additionally, any functionality
attributed to an engine may be equally performed by multiple engines, incorporated into and/or combined with the
functionality of another engine of the same or different type, or distributed across one or more engines of various

configurations.

[0016] In addition, it should be appreciated that the following description uses a plurality of various examples
for various elements of the illustrative embodiments to further illustrate example implementations of the illustrative
embodiments and to aid in the understanding of the mechanisms of the illustrative embodiments. These examples
intended to be non-limiting and are not exhaustive of the various possibilities for implementing the mechanisms of
the Illustrative embodiments. It will be apparent to those of ordinary skill in the art in view of the present description
that there are many other alternative implementations for these various elements that may be utilized in addition to,
or in replacement of, the examples provided herein without departing from the spirit and scope of the present

iInvention.

[0017] Thus, the illustrative embodiments may be utilized in many different types of data processing
environments. [n order to provide a context for the description of the specific elements and functionality of the
llustrative embodiments, Figures 2 and 3 are provided hereafter as example environments in which aspects of the
llustrative embodiments may be implemented. It should be appreciated that Figures 2 and 3 are only examples

and are not intended to assert or imply any limitation with regard to the environments in which aspects or

embodiments of the present invention may be implemented. Many modifications to the depicted environments may

be made without departing from the spirit and scope of the present invention.

[0018] Figure 2 depicts a pictorial representation of an example distributed data processing system in which
aspects of the illustrative embodiments may be implemented. Distributed data processing system 200 may include
a network of computers in which aspects of the illustrative embodiments may be implemented. The distributed data
processing system 200 contains at [east one network 202, which Is the medium used to provide communication
links between various devices and computers connected together within distributed data processing system 200.

The network 202 may include connections, such as wire, wireless communication links, or fiber optic cables.

[0019] In the depicted example, server 204 and server 206 are connected to network 202 along with storage
unit 208. In addition, clients 210, 212, and 214 are also connected to network 202. These clients 210, 212, and

214 may be, for example, personal computers, network computers, or the like. In the depicted example, server 204

provides data, such as boot files, operating system images, and applications to the clients 210, 212, and 214.
Clients 210, 212, and 214 are clients to server 204 in the depicted example. Distributed data processing system

200 may Include additional servers, clients, and other devices not shown.

[0020] In the depicted example, distributed data processing system 200 is the Internet with network 202

representing a worldwide collection of networks and gateways that use the Transmission Control Protocol/Internet

Protocol (TCP/IP) suite of protocols to communicate with one another. At the heart of the Internet is a backbone of
high-speed data communication lines between major nodes or host computers, consisting of thousands of
commercial, governmental, educational and other computer systems that route data and messages. Of course, the
distributed data processing system 200 may also be implemented to include a number of different types of
networks, such as for example, an intranet, a local area network (LAN), a wide area network (WAN), or the like. As
stated above, Figure 2 is intended as an example, not as an architectural limitation for different embodiments of the
present invention, and therefore, the particular elements shown in Figure 2 should not be considered limiting with

regard to the environments in which the illustrative embodiments of the present invention may be implemented.

[0021] As shown in Figure 2, one or more of the computing devices, e.g., server 204, may be specifically
configured to implement a mechanism for improving performance of dispersed location-based deduplication with
minimal impact on deduplication efficiency. The configuring of the computing device may comprise the providing of
application specific hardware, firmware, or the like to facilitate the performance of the operations and generation of
the outputs described herein with regard to the illustrative embodiments. The configuring of the computing device
may also, or alternatively, comprise the providing of software applications stored in one or more storage devices
and loaded into memory of a computing device, such as server 204, for causing one or more hardware processors

of the computing device to execute the software applications that configure the processors to perform the

operations and generate the outputs described herein with regard to the illustrative embodiments. Moreover, any
combination of application specific hardware, firmware, software applications executed on hardware, or the like,

may be used without departing from the spirit and scope of the illustrative embodiments.

[0022] It should be appreciated that once the computing device Is configured in one of these ways, the
computing device becomes a specialized computing device specifically configured to implement the mechanisms of
the illustrative embodiments and is not a general purpose computing device. Moreover, as described hereafter, the
implementation of the mechanisms of the illustrative embodiments improves the functionality of the computing
device and provides a useful and concrete result that facilitates improving performance of dispersed location-based

deduplication with minimal impact on deduplication efficiency.

[0023] As noted above, the mechanisms of the illustrative embodiments utilize specifically configured
computing devices, or data processing systems, to perform the operations for improving performance of dispersed
location-based deduplication with minimal impact on deduplication efficiency. These computing devices, or data
processing systems, may comprise various hardware elements which are specifically configured, either through
hardware configuration, software configuration, or a combination of hardware and software configuration, to
implement one or more of the systems/subsystems described herein. Figure 3 is a block diagram of just one

example data processing system in which aspects of the illustrative embodiments may be implemented. Data

processing system 300 is an example of a computer, such as server 204 in Figure 2, in which computer usable
code or instructions implementing the processes and aspects of the illustrative embodiments of the present
Invention may be located and/or executed so as to achieve the operation, output, and external effects of the

llustrative embodiments as described herein.

[0024] In the depicted example, data processing system 300 employs a hub architecture including north

bridge and memory controller hub (NB/MCH) 302 and south bridge and input/output (I/O) controller hub (SB/ICH)
304. Processing unit 306, main memory 308, and graphics processor 310 are connected to NB/MCH 302. Graphics

processor 310 may be connected to NB/MCH 302 through an accelerated graphics port (AGP).

[0025] In the depicted example, local area network (LAN) adapter 312 connects to SB/ICH 304. Audio
adapter 316, keyboard and mouse adapter 320, modem 322, read only memory (ROM) 324, hard disk drive (HDD)
326, CD-ROM drive 330, universal serial bus (USB) ports and other communication ports 332, and PCI/PCle
devices 334 connect to SB/ICH 304 through bus 338 and bus 340. PCI/PCle devices may Include, for example,

—thernet adapters, add-in cards, and PC cards for notebook computers. PCl uses a card bus controller, while PCle

does not. ROM 324 may be, for example, a flash basic input/output system (BIOS).

[0026] HDD 326 and CD-ROM drive 330 connect to SB/ICH 304 through bus 340. HDD 326 and CD-ROM
drive 330 may use, for example, an integrated drive electronics (IDE) or serial advanced technology attachment
(SATA) interface. Super /O (SIO) device 336 may be connected to SB/ICH 304.

[0027] An operating system runs on processing unit 306. The operating system coordinates and provides
control of various components within the data processing system 300 in Figure 3. As a client, the operating system
may be a commercially available operating system such as Microsoft® Windows 7®. An object-oriented
programming system, such as the Java™ programming system, may run in conjunction with the operating system
and provides calls to the operating system from Java™ programs or applications executing on data processing

system 300.

[0028] As a server, data processing system 300 may be, for example, an IBM eServer™ System p® computer

system, Power™ processor based computer system, or the like, running the Advanced Interactive Executive (AlX®)
operating system or the LINUX® operating system. Data processing system 300 may be a symmetric multiprocessor
(SMP) system including a plurality of processors in processing unit 306. Alternatively, a single processor system may

be employed.

[0029] Instructions for the operating system, the object-oriented programming system, and applications or
programs are located on storage devices, such as HDD 326, and may be loaded into main memory 308 for
execution by processing unit 306. The processes for illustrative embodiments of the present invention may be
performed by processing unit 306 using computer usable program code, which may be located in a memory such

as, for example, main memory 308, ROM 324, or in one or more peripheral devices 326 and 330, for example.

[0030] A bus system, such as bus 338 or bus 340 as shown In Figure 3, may be comprised of one or more

buses. Of course, the bus system may be implemented using any type of communication fabric or architecture that

provides for a transfer of data between different components or devices attached to the fabric or architecture. A
communication unit, such as modem 322 or network adapter 312 of Figure 3, may include one or more devices
used to transmit and receive data. A memory may be, for example, main memory 308, ROM 324, or a cache such
as found in NB/MCH 302 in Figure 3.

[0031] As mentioned above, in some illustrative embodiments the mechanisms of the illustrative
embodiments may be implemented as application specific hardware, firmware, or the like, application software
stored in a storage device, such as HDD 326 and loaded into memory, such as main memory 308, for executed by
one or more hardware processors, such as processing unit 306, or the like. As such, the computing device shown
In Figure 3 becomes specifically configured to implement the mechanisms of the illustrative embodiments and

specifically configured to perform the operations and generate the outputs described hereafter with regard to the

mechanism for improving performance of dispersed location-based deduplication with minimal impact on

deduplication efficiency.

[0032] Those of ordinary skill in the art will appreciate that the hardware in Figures 2 and 3 may vary

depending on the implementation. Other internal hardware or peripheral devices, such as flash memory, equivalent
non-volatile memory, or optical disk drives and the like, may be used in addition to or Iin place of the hardware

depicted in Figures 2 and 3. Also, the processes of the illustrative embodiments may be applied to a multiprocessor

data processing system, other than the SMP system mentioned previously, without departing from the spirit and

scope of the present invention.

[0033] Moreover, the data processing system 300 may take the form of any of a number of different data
processing systems including client computing devices, server computing devices, a tablet computer, [aptop
computer, telephone or other communication device, a personal digital assistant (PDA), or the like. In some
llustrative examples, data processing system 300 may be a portable computing device that is configured with flash

memory to provide non-volatile memory for storing operating system files and/or user-generated data, for example.

—ssentially, data processing system 300 may be any known or later developed data processing system without

architectural limitation.

[0034] Figure 4 depicts a functional block diagram of storage mechanisms that improve the performance of
dispersed |location-based deduplication with minimal impact on deduplication efficiency in accordance with an
llustrative embodiment. As discussed previously, the storage mechanisms intelligently create duplication links
between different referrer and owner memory regions by applying dynamic management logic on owner memory
region selection within the referrer memory region. In accordance with the illustrative embodiments, a referrer
region a memory regions to which the data is initially being written and has references to other memory regions that
store data (i.e. owner regions) or to the referrer region itself as the referrer memory regions may also store data. In
a first embodiment, storage mechanism 406 limits a number of owner memory regions that may be linked to a given
referrer memory region (up to a predetermined number N owner memory regions) utilizing a "first come, first

served’ policy that allows data to be stored on the predetermined number N owner memory regions.

[0033] In this first embodiment, when host system 402 in data processing system 400 writes data to a
memory region, storage mechanism 406 writes/stores the data, for example, in 8 KB data chunks. Thus, when host
system 402 writes a 16 KB data file to a memory region, for example memory region 404a in memory regions 404a-
404max, the written-to memory becomes a referrer memory region 408 as Is indicated by the dashed box. Storage
mechanism 406 generates a hash value for each of the two 8 KB data chunks of the 16 KB data file and compares
the hashed value for each 8 KB data chunk to hashed values for other stored data chunks referenced memory

regions 404a-404max. Storage mechanism 406 is a device that may reside in host 402, in one or more of memory

10

regions 404a-404max, or as a standalone mechanism. If referrer memory region 408 indicates that one or both
matching data chunks already exist in referrer memory region 408 or one or more of owner memory regions 410a-
410n, then rather than storing the 8 KB data chunks, storage mechanism 406 recognizes that |ater references to
those data chunks will be identified by the hash value comparisons to referrer memory region 408 or one or more of
owner memory regions 410a-410n. However, if the comparison to memory regions 404a-404max indicates that
one or neither of the data chunks fails to already exist in referrer memory region 408 and the associated owner
memory regions 410a-410n, then storage mechanism 406 stores the non-existing data chunk in referrer memory

region 408.

[0036] In the “first come, first served” policy, data chunks not previously stored are written to referrer memory
region 408. However, each time data is accessed on referrer memory region 408 and/or the associated one or
more of owner memory regions 410a-410n associated with referrer memory region 408, storage mechanism 406
loads those memory regions where the data exists. Thus, if a 64 KB data file has eight 8 KB data chunks stored on
eight different owner memory regions, then storage mechanism 406 |oads all eight different memory regions
comprising the 8 KB chunks of the 64 KB data file. The problem would be more significant with a 256 KB data file
were the 8 KB data chunks were stored across 32 different owner memory regions. Thus, in accordance with the
llustrative embodiments, storage mechanism 406 stores the 8 KB data chunks on only a predetermined number N
of owner memory regions. Thus, as data Is stored In the dispersed manner, storage mechanism 406 keeps track of
where data chunks are stored using a tracking mechanism such as data structure, list, table, or the like. Therefore,
as data Is stored on a particular owner memory region in the group of referrer memory region 408 and the
assoclated owner memory regions 410a-410n, that particular memory region is added to the predetermined number
N of owner memory regions. Once the number N of owner memory regions is reached, storage mechanism 406
utilizes only those owner memory regions in the predetermined number N of owner memory regions for future

storage of data blocks.

[0037] In the event storage mechanism 406 writes or reads an 8 KB data chunk that exists on an owner
memory region different from referrer memory region 408 and/or owner memory regions 410a-410n in the
predetermined number N of owner memory regions, storage mechanism 406 recognizes that the owner memory
regions is not one of the owner memory regions in the predetermined number N of owner memory regions. In this
event, storage mechanism 406 writes the 8KB data chunk to referrer memory region 408. While this may generate
the duplicate 8 KB chunk within referrer memory region 408 and the associated owner memory regions 410a-410n,
generating the duplicate 8 KB chunk reduces the overhead experienced by storage mechanism 406 by not loading
more than the predetermined number N of owner memory regions. Thus, using the “first come, first served” policy,
storage mechanism 406 reduces any overhead in memory or processing and does not depend of the user

Input/output size.

11

[0038] In a second embodiment, storage mechanism 406 utilizing a "popularity” policy that allows
deduplication to be created based on a popularity of referrer memory region 408 and the associated owner memory
regions 410a-410n identified by referrer memory region 408. Again, when host system 402 in data processing
system 400 stores data in one or more of referrer memory region 408 and the associated owner memory regions
410a-410n, the data is stored, for example, in 8 KB data chunks. Thus, where host system 402 writes a 16 KB data
file to referrer memory region 408, storage mechanism 406 generates a hash value for each of the two 8 KB data
chunks of the 16 KB data file and compares the hashed value for each 8 KB data chunk to the hashed values for
other stored data chunks referenced in memory regions 404a-404max. If referrer memory region 408 indicates that
one or both matching data chunks already exist in referrer memory region 408 or one or more of owner memory
regions 410a-410n, then rather than storing the 8KB data chunks, storage mechanism 406 recognizes that later
references to those data chunks will be identified by the hash value comparisons to referrer memory region 408 or
one or more of owner memory regions 410a-410n. However, if the comparison to memory regions 404a-404max
Indicates that one or neither of the data chunks already exist in referrer memory region 408 or the associated owner
memory regions 410a-410n, then storage mechanism 406 stores the non-existing data chunk in referrer memory

region 408.

[0039] In the "popularity” policy, as data chunks are written as well as read from memory regions 404a-
404max, storage mechanism 406 tracks via a counter, data structure, or the like, the popularity of each owner
memory region. When the value of the tracking indicates that a particular owner memory region Is above a
threshold, then the particular owner memory region is added to the predetermined number N of owner memory
regions. Thus, the frequency of reads and writes to the owner memory regions in the predetermined number N of
owner memory regions indicates that these owner regions should be the ones where new writes are directed.
Again, each time data is accessed on referrer memory region 408 and/or on the associated owner memory regions
410a-410n, storage mechanism 406 has to load those owner memory regions where the data exists. Thus, In
accordance with the illustrative embodiments, storage mechanism 406 identifies the most popular owner memory
regions, adds those owner memory regions to the predetermined number N of owner memory regions, and utilizes
those owner memory regions in the predetermined number N of owner memory regions for future storage of data

blocks.

[0040] In the event storage mechanism 406 writes or reads an 8 KB data chunk that exists on an owner
memory region different from referrer memory region 408 and/or owner memory regions 410a-410n in the
predetermined number N of owner memory regions, storage mechanism 406 recognizes that the owner memory
regions IS not one of the owner memory regions in the predetermined number N of owner memory regions. In this
event, storage mechanism 406 writes the 8KB data chunk to referrer memory region 408. While this may generate
the duplicate 8 KB chunk within referrer memory region 408 and the associated owner memory regions 410a-

4104n, generating the duplicate 8 KB chunk reduces the overhead experienced by storage mechanism 406 by not

12

loading more than the predetermined number N of owner memory regions. Thus, using the “popularity” policy,
storage mechanism 406 reduces any overhead in memory or processing and does not depend of the user

Input/output size.

[0041] In yet a third embodiment, storage mechanism 406 utilizes a combination of both the *first come, first
served” policy and the “popularity” policy. For example, storage mechanism 406 allows an owner memory region to
be added to the predetermined number N of owner memory regions under the “first come, first served” policy.

Then, using the threshold associated with the “popularity” policy other owner memory regions M may be added
based on the owner region’ popularity until a predetermined number N-+M owner memory regions exists. However,
if storage mechanism 406 is configured only to use the predetermined number N of owner memory regions, then,
once the predetermined number N of owner memory regions under the “first come, first served” policy is reached,
storage mechanism 406 may use the threshold associated with “popularity” policy to determine whether a (new)
potential owner memory region is lucrative enough to be added as a replacement to an existing owner memory

regions already In the predetermined number N of owner memory regions.

[0042] That s, to allow less popular owners to be replaced by more popular ones, storage mechanism 406
provides for unlinking less popular owner memory regions to clear out space for more popular or beneficial owner
memory regions. This Is particularly valuable when the number of owners Is nearing or has already reached the
predetermined number N of owner memory regions. Again, storage mechanism 406 maintains a tracking value, via
a counter, data structure, or the like, of the popularity of each owner memory region regardless of whether the

owner memory regions Is part of the predetermined number N of owner memory regions or not.

[0043] Based on this information, and in case an owner memory regain that is not part of the predetermined
number N of owner memory regions but is found to have a popularity value that is greater than an owner memory
regions that is part of the predetermined number N of owner memory regions. |f a more popular owner memory
regions Is Identified, the least popular owner region in the predetermined number N of owner memory regions Is
removed and the more popular owner regions not currently in the predetermined number N of owner memory
regions is added. It should be noted that the data blocks on the owner memory region that has been removed may
have to be written to one of the owner memory regions in the predetermined number N of owner memory regions.
That Is, storage mechanism 406 may end up writing duplicate copies of the 8 KB data chunks that were on the
removed owner memory region to one of the owner memory regions currently in the predetermined number N of
owner memory regions. While this may generate the duplicate 8 KB chunk within referrer memory region 408 and
the associated owner memory regions 410a-4104n, generating the duplicate 8 KB chunk reduces the overhead

experienced by storage mechanism 406 by not loading more than the predetermined number N of owner memory

regions. Thus, using a combination of a *first come, first served” policy and a “popularity” policy, storage

13

mechanism 4006 further reduces any overhead in memory or processing and does not depend of the user

Input/output size.

[0044] The present invention may be a system, a method, and/or a computer program product. The computer

program product may include a computer readable storage medium (or media) having computer readable program

Instructions thereon for causing a processor to carry out aspects of the present invention.

[0045] The computer readable storage medium can be a tangible device that can retain and store
instructions for use by an instruction execution device. The computer readable storage medium may be, for
example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an
electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A
non-exnhaustive list of more specific examples of the computer readable storage medium includes the following: a
portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable
compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded
thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, IS
not to be construed as being transitory signals per se, such as radio waves or other freely propagating
electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g.,

light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.

[0046] Computer readable program instructions described herein can be downloaded to respective
computing/processing devices from a computer readable storage medium or to an external computer or external
storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless
network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission,
routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface In
each computing/processing device recelves computer readable program instructions from the network and forwards
the computer readable program instructions for storage in a computer readable storage medium within the

respective computing/processing device.

[0047] Computer readable program instructions for carrying out operations of the present invention may be
assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent
Instructions, microcode, firmware instructions, state-setting data, or either source code or object code written in any
combination of one or more programming languages, including an object oriented programming language such as
Java, Smalltalk, C++or the like, and conventional procedural programming languages, such as the "C"

programming language or similar programming languages. The computer readable program instructions may

14

execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly

on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter
scenario, the remote computer may be connected to the user's computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer

(for example, through the Internet using an Internet Service Provider). In some embodiments, electronic circuitry

Including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable
logic arrays (PLA) may execute the computer readable program instructions by utilizing state information of the
computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the

present invention.

[0048] Aspects of the present invention are described herein with reference to flowchart illustrations and/or
block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the
invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and
combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer

readable program instructions.

[0049] These computer readable program instructions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of the computer or other programmable data processing
apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block
or blocks. These computer readable program instructions may also be stored in a computer readable storage
medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in
a particular manner, such that the computer readable storage medium having instructions stored therein comprises
an article of manufacture including instructions which implement aspects of the function/act specified in the

flowchart and/or block diagram block or blocks.

[0050] The computer readable program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other device to cause a series of operational steps to be performed
on the computer, other programmable apparatus or other device to produce a computer implemented process, such
that the instructions which execute on the computer, other programmable apparatus, or other device implement the

functions/acts specified In the flowchart and/or block diagram block or blocks.

[0051] Figure 5 depicts a flow diagram of the operations performed by a storage mechanism that improves
the performance of dispersed location-based deduplication with minimal impact on deduplication efficiency in
accordance with an illustrative embodiment. As the operation begins, the storage mechanism receives a request to

write a data file to a memory region within a set of memory regions (step 502). For each data chunk of the data file,

15

the storage mechanism generates a hash value for the data chunk (step 504) and compares the hashed value to
hashed values for other stored data chunks referenced in a the set of memory regions (step 206). If at step 506 the
comparison indicates that the data chunk already exists in the referrer memory regions or one of the owner memory
regions associated with the referrer memory region, the storage mechanism stores a pointer to that data chunk
(step 508) with the operation terminating thereafter. If at step 506 the comparison indicates that the data chunk fails
to exist in the written-to memory regions, 1.e. the referrer memory regions or the associated one or more owner
memory regions, the storage mechanism stores the data chunk in referrer memory region (step 510), with the

operation terminating thereafter.

[0052] Figure 6 depicts a flow diagram of the operations performed by a storage mechanism if deduplication
s to be enforced amongst a subset of memory regions, I.e. the referrer memory regions and the associated one or
more owner memory regions, in accordance with an illustrative embodiment. Before storing the data chunk of a
data file In one a referrer region to which the data is written by the host system, the storage mechanism determines
whether the data exists is in another memory region in the set of memory regions (step 602). If at step 602 the data
fails to exist in another memory region in the set of memory regions, the storage mechanism stores the data in the

referrer memory regions (step 604), with the operation terminating thereafter.

[0053] If at step 602 the data exists in another memory region in the set of memory regions, the storage
controller determines whether a predetermined number N of owner memory regions has been met (step 606). If at
step 606 the predetermined number N of owner memory regions has been met, then the storage mechanism stores
the data chunk in the referrer memory region in the predetermined number N of owner memory regions (step 608),
with the operation terminating thereafter. |If at step 606 the predetermined number N of owner memory regions has
not been met, the storage mechanism stores a reference to the data chunk in the referrer memory region (step
610). The storage mechanism may then add the memory region to the predetermined number N of owner memory
regions depending on which policy the storage mechanism is currently operating under (step 612), with the

operation terminating thereafter.

[0054] The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation
of possible Implementations of systems, methods, and computer program products according to various
embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a
module, segment, or portion of instructions, which comprises one or more executable instructions for implementing
the specified logical function(s). In some alternative implementations, the functions noted in the block may occur out
of the order noted In the figures. For example, two blocks shown In succession may, In fact, be executed
substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the
functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and

combinations of blocks In the block diagrams and/or flowchart illustration, can be implemented by special purpose

16

hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose

hardware and computer instructions.

[0053] Thus, the illustrative embodiments provide mechanisms for improving performance of dispersed
location-based deduplication with minimal impact on deduplication efficiency. By intelligently creating duplication
links between different referrer and owner memory regions memory requirements are minimized for reading all the
referred data with minimal impact on dedupe ratio, the amount of metadata regions for swapping are minimized with
minimal impact on dedupe ratio, the amount of communication between the storage mechanism and the owner
memory regions I1s minimized with minimal impact on dedupe ratio; and/or fine-grained control is provided over the

dispersion of deduplication links over the metadata regions of the system.

[0056] As noted above, it should be appreciated that the illustrative embodiments may take the form of an
entirely hardware embodiment, an entirely software embodiment or an embodiment containing both hardware and
software elements. In one example embodiment, the mechanisms of the illustrative embodiments are implemented

In software or program code, which includes but is not limited to firmware, resident software, microcode, etc.

[0057] A data processing system suitable for storing and/or executing program code will include at least one

processor coupled directly or indirectly to memory elements through a communication bus, such as a system bus,

for example. The memory elements can include local memory employed during actual execution of the program
code, bulk storage, and cache memories which provide temporary storage of at least some program code In order
to reduce the number of times code must be retrieved from bulk storage during execution. The memory may be of

various types including, but not limited to, ROM, PROM, EPROM, EEPROM, DRAM, SRAM, Flash memory, solid

state memory, and the like.

[0058] Input/output or /O devices (including but not limited to keyboards, displays, pointing devices, etc.) can
be coupled to the system either directly or through intervening wired or wireless 1/O interfaces and/or controllers, or
the like. |/O devices may take many different forms other than conventional keyboards, displays, pointing devices,
and the like, such as for example communication devices coupled through wired or wireless connections including,
but not limited to, smart phones, tablet computers, touch screen devices, voice recognition devices, and the like.

Any known or later developed |/O device Is intended to be within the scope of the illustrative embodiments.

[0059] Network adapters may also be coupled to the system to enable the data processing system to

become coupled to other data processing systems or remote printers or storage devices through intervening private

or public networks. Modems, cable modems and Ethernet cards are just a few of the currently available types of
network adapters for wired communications. Wireless communication based network adapters may also be utilized

including, but not limited to, 802.11 a/b/g/n wireless communication adapters, Bluetooth wireless adapters, and the

17

like. Any known or |ater developed network adapters are intended to be within the spirit and scope of the present

invention.

[0060] The description of the present invention has been presented for purposes of illustration and

description, and is not intended to be exhaustive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope
and spirit of the described embodiments. The embodiment was chosen and described in order to best explain the
principles of the invention, the practical application, and to enable others of ordinary skill Iin the art to understand the
invention for various embodiments with various modifications as are suited to the particular use contemplated. The
terminology used herein was chosen to best explain the principles of the embodiments, the practical application or

technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to

understand the embodiments disclosed herein.

18

1V

CLAIMS

1. A method, in a data processing system, for dispersed location-based data storage, the method comprising:
recelving, by a storage mechanism, a request, from a host system, to write a data file to a referrer memory region in
a set of memory regions; and

for each data chunk of the data file:

responsive to a comparison of a hash value for the data chunk to other hash values for other stored data
chunks referenced In the referrer memory region indicating that the data chunk fails to exist in the referrer memory
region, determining, by the storage mechanism, whether the data exists is in another memory region in the set of
memory regions;

responsive to the data chunk existing in another memory region in the set of memory regions, determining,
by the storage mechanism, whether the memory region is one of a predetermined number N of owner memory
regions associated with the referrer memory region;

responsive to the memory region failing to be one of the predetermined number N of owner memory
regions associated with the referrer memory region, determining, by the storage mechanism, whether the number of
owner memory regions in the predetermined number N of owner memory regions has been met; and

responsive to the predetermined number N of owner memory regions failing to have been met, storing, by

the storage mechanism, a reference to the data chunk in the referrer memory region.

2. The method of claim 1, further comprising:
responsive to the predetermined number N of owner memory regions being met, storing, by the storage

mechanism, the data chunk in the referrer memory region.

3. The method of claim 1, further comprising:

responsive to the predetermined number N of owner memory regions failing to have been met,
determining, by the storage mechanism, whether the memory region in which the data chunk is stored has met a
popularity threshold; and

responsive to the memory region in which the adata chunk has been stored meeting the popularity
threshold, adding, by the storage mechanism, the memory region to the predetermined number N of owner memory

regions.

4 The method of claim 1, further comprising:
responsive to the predetermined number N of owner memory regions failing to have been met, adding, by

the storage mechanism, the memory region to the predetermined number N of owner memory regions.

19

| v

5. The method of claim 1, wherein the owner memory regions within the predetermined number N of owner

memory regions Is determined based on one of a first come, first served policy or a popularity policy.

o. The method of claim 5, wherein, under the first come, first served policy, the memory region is added to

the predetermined number N of owner memory regions as data Is stored in the memory region.

/. The method of claim o, wherein, under the popularity policy, the memory region Is added to the
predetermined number N of owner memory regions when the popularity of the memory regions meets a
predetermined threshold, wherein meeting the predetermined threshold is when a number of reads and/or writes to

the memory region reaches or exceeds the threshold.

8. The method of claim 7, wherein, under the popularity policy, an owner memory region is removed from the
predetermined number N of owner memory regions when a popularity of another memory region exceeds the
popularity of a lowest popular owner memory regions already in the predetermined number N of owner memory

regions when the predetermined number N of owner memory regions is full.

9. A computer program product comprising a computer readable storage medium having a computer
readable program stored therein, wherein the computer readable program, when executed on a computing device,
causes the computing device to:

receive arequest, from a host system, to write a data file to a referrer memory region in a set of memory
regions; and

for each data chunk of the data file:

responsive to a comparison of a hash value for the data chunk to other hash values for other stored data
chunks referenced in the referrer memory region indicating that the data chunk fails to exist in the referrer memory
region, determine whether the data exists is in another memory region in the set of memory regions;

responsive to the data chunk existing in another memory region in the set of memory regions, determine
whether the memory region is one of a predetermined number N of owner memory regions associated with the
referrer memory region;

responsive to the memory region failing to be one of the predetermined number N of owner memory
regions associated with the referrer memory region, determine whether the number of owner memory regions in the
predetermined number N of owner memory regions has been met; and

responsive to the predetermined number N of owner memory regions failing to have been met, store a

reference to the data chunk in the referrer memory region.

10. The computer program product of claim 9, wherein the computer readable program further causes the

computing device to:

20

L\J

responsive to the predetermined number N of owner memory regions being met, store the data chunk in the referrer

memory region.

11. The computer program product of claim 9, wherein the computer readable program further causes the
computing device to:

responsive to the predetermined number N of owner memory regions failing to have been met, determine
whether the memory region in which the data chunk is stored has met a popularity threshold; and

responsive to the memory region in which the data chunk has been stored meeting the popularity

threshold, add the owner memory region to the predetermined number N of owner memory regions.

12. The computer program product of claim 9, wherein the computer readable program further causes the
computing device to:
responsive to the predetermined number N of owner memory regions failing to have been met, aad the

memory region to the predetermined number N of owner memory regions.

13. The computer program product of claim 9, wherein the owner memory regions within the predetermined

number N of owner memory regions is determined based on one of a first come, first served policy or a popularity

policy.

14, The computer program product of claim 13, wherelin:

under the first come, first served policy, the memory region is added to the predetermined number N of
owner memory regions as data Is stored in the memory region,

under the popularity policy, the memory region is added to the predetermined number N of owner memory
regions when the popularity of the memory regions meets a predetermined threshold, wherein meeting the
predetermined threshold is when a number of reads and/or writes to the memory region reaches or exceeds the
threshold, or

under the popularity policy, an owner memory region is removed from the predetermined number N of
owner memory regions when a popularity of another memory region exceeds the popularity of a lowest popular
owner memory regions already In the predetermined number N of owner memory regions when the predetermined

number N of owner memory regions is full.

15. An apparatus comprising:
a processor; and

a memory coupled to the processor, wherein the memory comprises instructions which, when executed by

the processor, cause the processor to:

21

L |

receive a request, from a host system, to write a data file to a referrer memory region in a set of memory regions;
and

for each data chunk of the data file;
responsive to a comparison of a hash value for the data chunk to other hash values for other stored data chunks
referenced in the referrer memory region indicating that the data chunk fails to exist in the referrer memory region,
determine whether the data exists Is in another memory region in the set of memory regions;

responsive to the data chunk existing in another memory region in the set of memory regions, determine
whether the memory region is one of a predetermined number N of owner memory regions associated with the
referrer memory region;

responsive to the memory region failing to be one of the predetermined number N of owner memory
regions associated with the referrer memory region, determine whether the number of owner memory regions in the
predetermined number N of owner memory regions has been met; and

responsive to the predetermined number N of owner memory regions failing to have been met, store a

reference to the data chunk in the referrer memory region.

16. The apparatus of claim 15, wherein the instructions further cause the processor to:
responsive to the predetermined number N of owner memory regions being met, store the data chunk in the referrer

memory region.

17, The apparatus of claim 15, wherein the instructions further cause the processor to:

responsive to the predetermined number N of owner memory regions failing to have been met, determine
whether the memory region in which the data chunk is stored has met a popularity threshold; and

responsive to the memory region in which the data chunk has been stored meeting the popularity

threshold, add the owner memory region to the predetermined number N of owner memory regions.

18. The apparatus of claim 15, wherein the instructions further cause the processor to:
responsive to the predetermined number N of owner memory regions failing to have been met, add the

memory region to the predetermined number N of owner memory regions k.

19. The apparatus of claim 15, wherein the owner memory regions within the predetermined number N of

owner memory regions is determined based on one of a first come, first served policy or a popularity policy.

20. The apparatus of claim 19, wherein:

under the first come, first served policy, the memory region is added to the predetermined number N of

owner memory regions as data Is stored in the memory region,

22

L L

under the popularity policy, the memory region is added to the predetermined number N of owner memory regions
when the popularity of the memory regions meets a predetermined threshold, wherein meeting the predetermined
threshold is when a number of reads and/or writes to the memory region reaches or exceeds the threshold, or
under the popularity policy, an owner memory region is removed from the predetermined number N of owner
memory regions when a popularity of another memory region exceeds the popularity of a lowest popular owner
memory regions already in the predetermined number N of owner memory regions when the predetermined number

N of owner memory regions is full.

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - CLAIMS
	Page 26 - CLAIMS
	Page 27 - CLAIMS
	Page 28 - CLAIMS
	Page 29 - CLAIMS

