The present invention relates to supports of the clamping type for mounting fire detecting cable elements in vehicles or craft operated at high speed and subject to vibrations.

Herefore, it has been proposed to mount fire detecting cable elements by devices generally comprising a base secured to a wall, a clamp hinged to the base, the base and the clamp having complementary portions adapted to enclose the cable and means for securing the clamp to the base. In order to protect the cable against fire due to vibrations, the cable was passed through a cylindrical cushioning element formed of silicone rubber or similar material adapted to withstand high temperature and the element was clamped between the base and clamp portions. While a fire sought to be detected by the cable usually exists only for a short duration before its extinction, it has been found that the heat thereof is sufficiently intense to destroy the cushioning element. Consequently, after every fire, it was necessary to inspect all the cushioning elements and to replace those which had been damaged or destroyed by the fire. The cost of the labor for such maintenance was an objectionable expense.

Accordingly, an object of the present invention is to overcome the prior difficulties by providing cable cushioning elements which will not be damaged by an intense fire enduring for a short time.

Another object is to provide such elements which are easy to manufacture and are readily assembled on the cable mounting structure.

A further object is to accomplish the foregoing in a simple, practical and economical manner.

Other and further objects of the invention will be obvious upon an understanding of the illustrative embodiment to be described, or will be indicated in the appended claims, and various advantages not referred to herein will occur to one skilled in the art upon employment of the invention in practice.

In the drawing:

FIG. 1 is an enlarged plan view of a cable mounting clamp in accordance with the present invention.

FIG. 2 is a side view of the clamp shown in FIG. 1.

FIG. 3 is a further enlarged fragmental sectional view taken along the line 3-3 on FIG. 1 illustrating a cable mounted between the cushioning elements.

Referring to the drawing in detail, there is shown a cable mounting clamp which essentially comprises a base member 10, a clamping member 11, hinge structure 12 at one end of the base and clamping members for foldably connecting the same, cooperating means 13 adjacent the other end of the base and clamping members for releasably securing the same to each other, and cushioning means 14 mounted on the base and clamping members for clamping a cable C (FIG. 3) therebetween.

In order to provide for the reception and attachment of the cushioning means, the base and clamping members each are formed with a concave portion 15 facing the other and located between the hinge structure 12 and the securing means 13, preferably near the hinge structure.

As shown in FIGS. 2 and 3, the cushioning means 14 are tubular, resilient, metallic elements which have a generally semi-circular outer face 16 adapted to fit into a concave portion 15 and have a longitudinally extending recess 17 at the inner face thereof for receiving and retaining the cable C, whereby the elements are generally kidney-shaped in cross-section. These elements may be formed from flat, relatively thin, spring-like stainless steel strips in a manner to provide an open seam or split 18 (FIG. 3) at about the middle of the outer face 16, whereby the elements act like a stiff spring adapted to yield sufficiently to damp vibration between the cable and the clamp.

The elements 14 further are provided with means for attaching them to the base and clamping members. Such means may be small tabs 19 at each end thereof adjacent each side of the split 18 which are folded on the side edges of the base and clamping members, as shown in FIGS. 1 and 2, which may be formed with recesses 20 for receiving the tabs. These tabs do not interfere with the vibration damping action of the cushioning elements 14.

From the foregoing description, it will be seen that the present invention provides a simple, practical and economical cushioning element for cable clamps which can resist flame and high temperature and hence need not be replaced after each fire.

As various changes may be made in the form, construction and arrangement of the parts herein, without departing from the spirit and scope of the invention and without sacrificing any of its advantages, it is to be understood that all matter herein is to be interpreted as illustrative and not in any limiting sense.

We claim:

1. A cable mounting clamp comprising a base member adapted for securement to supporting structure, a clamping member hinged to said base, said members each having a concave portion facing the other, a hollow tubular, resilient, metallic cushioning element in each of said portions having an outer convex surface conforming substantially to said portions and seated therein and each having an inner concave surface facing the outer providing a recess for receiving a cable and having an arcuate side connecting the inner and outer surfaces and means for securing said members to each other to cause said elements to clamp the cable therebetween.

2. A cable clamp according to claim 1, wherein said elements include means for securing the same to said members.

3. A cable clamp according to claim 2, wherein said elements securing means are tabs.

4. A cable clamp according to claim 3, wherein said elements are split longitudinally at their outer surface and are formed with a tab adjacent each side of the split at each end thereof folded over the side edges of said concave portions of said members near the middle thereof.

5. A clamp for detachably supporting a wire or the like and formed in two sections including a base which can be secured to a fixed structure and which is provided with a raised platform, a cover section hinged at one end there-
of to the base, and a quick acting rotatable stud fastener carried at the opposite end of the hinged cover and whose lower end passes into the area below the platform but above the lower face of the base when in fastened condition for retaining the cover section in closed position, and fastening means on said raised platform cooperating with the stud to retain the stud in said fastened condition, each section having complementary curved portions adjacent the hinge line to receive the wire, and resilient wire-supporting inserts positioned on the inner faces of said curved portions, said inserts being formed as curved beam-like elements in transverse section and engaging the wire throughout their lengths with a compressive action.

References Cited in the file of this patent

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Inventor</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>773,710</td>
<td>Bronson</td>
<td>Nov. 1, 1904</td>
</tr>
<tr>
<td>821,833</td>
<td>Shaffner</td>
<td>May 29, 1906</td>
</tr>
<tr>
<td>936,771</td>
<td>Gandil</td>
<td>Oct. 12, 1909</td>
</tr>
<tr>
<td>1,671,241</td>
<td>Hagger</td>
<td>May 29, 1928</td>
</tr>
<tr>
<td>2,397,680</td>
<td>Morehouse</td>
<td>Apr. 2, 1946</td>
</tr>
<tr>
<td>2,550,001</td>
<td>Button</td>
<td>Apr. 24, 1951</td>
</tr>
</tbody>
</table>

FOREIGN PATENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Country</th>
<th>Date</th>
</tr>
</thead>
</table>