A shoulder rest for attachment to a stringed instrument such as a violin adapted to be held between the shoulder and chin of the musician and which may be clipped to the under or bottom face of the instrument, and which includes a resilient portion at the side directed toward the shoulder. Moreover, the resilient portion is fixedly secured at one end and adjustably secured at the other end to frames operably related to the instrument.

BACKGROUND OF INVENTION

The invention relates to a shoulder rest for a stringed instrument, more particularly to a violin, which is to be clamped between the shoulder and the chin of a musician, and which can be clipped to the underside of the instrument and is resilient at the side directed to the shoulder or the shoulders.

Shoulder rests for stringed instruments, adapted for being clamped between the shoulder and the chin of the musician, are already known and are intended first for facilitating the holding of the instrument by the musician, because by the shoulder rest the movability of the arm projecting from the shoulder on which the instrument rests, usually the left arm, is considerably improved and second for improving the sound, that is to say the resonance ability of the instrument, in that the bottom of the instrument no longer lies against the whole shoulder of the musician, but only at two or three small contact places, on which further than shoulder acts.

With the known rests of this kind both of the above advantages are doubtlessly obtained. However, with the known shoulder rests the shoulderside of the rest consisted of a rigid underlayer on which, for cushioning, a resilient pad or the like was arranged, so that a certain amount of resiliency of the shoulderside was obtained. Notwithstanding this certain amount of resiliency, however, the construction as a whole provided a relatively large, stiff shoulderside having a rigid position. Besides the known constructions were too high and were not readily adaptable to the form of the shoulder of the musician.

SUMMARY OF INVENTION

The object of this invention is to improve the movability of the arm against the shoulder on which the instrument rests and to provide an automatic adaptation of the shoulder rest to the individual shapes of the shoulders of the musicians using the instrument.

According to the invention the desired results are obtained by providing a shoulderside consisting of a stretchable elastic band and more particularly a rest including a support which can be clipped to the underside of the instrument in the usual manner, but which is provided at the shoulderside with a more or less stretchable elastic band, for instance of rubber, the width of which amounts to for instance 4-5 cm. and the thickness about 2 mm. The thickness of the band is of course dependent upon the materials used and can vary within wide limits.

DESCRIPTION OF THE DRAWINGS

The invention will now be further elucidated with reference to the drawings in which:

FIG. 1 is a side view of a shoulder rest according to the invention.

FIG. 2 is a fragmentary view on a larger scale of the arrestance of the band of the shoulder rest.

FIG. 3 is a view in side elevation on a larger scale of another embodiment of the shoulder rest according to the invention.

FIG. 3a is an end view from the right of FIG. 3.

FIG. 4 is a bottom view of the shoulder rest of FIG. 3, without the elastic band.

FIG. 5 is a perspective view of a part of the shoulder rest of FIG. 3.

FIG. 6 is an end view from the left of the shoulder rest of FIG. 3.

FIG. 7 is an elevational view of another embodiment of a support of the shoulder rest.

FIG. 7a is a view in cross-section on larger scale of a part according to FIG. 7.

FIG. 8 is a view of the elastic band for use with the shoulder rest according to the invention, and

FIG. 9 is an elevational view of a variant of FIG. 7.

DETAILED DESCRIPTION OF INVENTION

In the embodiment according to FIG. 1 the body of the stringed instrument is indicated by reference numeral 1 and a bracket 2 of the proper shoulder rest is secured to the body. This bracket carries a broad band 3 and the configuration thereof is clearly illustrated in FIG. 8.

The band 3 is attached at one end 4 to the bracket 2 and at the other end is detachably attached to a connecting plate 5. This detachable connection (FIG. 2) is obtained in that the bracket 2 is substantially U-shaped at the end and the band 3 is inserted into the inner space of this U-shaped portion and is further filled with the press plate 5. Besides, a second press plate 6 is provided, which can be pressed against the press plate 5 by means of an adjusting screw 7 thereby holding the band 3 in its clamped position. At 8 in FIG. 1 pinching members known per se are provided, and are defined by resilient jaws provided with a protecting cover layer at their ends, and by means of which the proper bracket 2 and the body 1 are interconnected and held.

In FIG. 3 another bracket construction is shown on an enlarged scale, with such construction also being held against the body 1 by the pinching members 8. This construction mainly includes two rods 9 and 10, which are arranged approximately parallel to one another as appears in FIG. 4. The two rods 9 and 10 are each fixed to substantially U-shaped connecting members 11 and 12 respectively, and the members 11 and 12 also carry the pinching members 8.

The construction of each of the connecting members 11 and 12, respectively appears clearly in FIG. 5, in which for the sake of clarity the joint of the rods 9 and 10 is not shown. In addition, the pinching members 8 and the rods 9 and 10, the connecting members 11 and 12 carry frames
3,479,916

13 and 14 which are journalled in apertures 15 and 16 in the legs of the connecting members 11 and 12. The inward movements of the frames 13 and 14 are delimited by stop hooks 17 and 18 formed in the bent out legs of the U-shaped connecting members 11 and 12 as shown in FIG. 5.

The frames 13 and 14, can for instance, be of the type according to the embodiment shown in FIG. 6, that is to say that consist of the two U-shaped bows 19 and 22 which are interconnected by sleeve-shaped members 20 and 27, in each of which one end of the U-shaped bows 19 and 22 is fixedly inserted, so that a generally rectangular closed frame is obtained. However, it is also possible to form the end frame 13 as a U-shaped frame, open at one lateral side, so that a looped end of the elastic band can be easily slid on the outer frame side.

At the outer end of the frames 13 and 14, that is to say the end remote from the connecting members 11 and 12, the band 3 is attached in a manner shown clearly in FIG. 3. The band 3 is in this case fixedly held at the end of the frame 14 in that the end portion 25 of the band is passed around the frame 14 and through the frame in such a manner that portions 26 and 27 are formed, which are pinched against the frame 14 by the stress of the band 3 per se and the friction between the band portions lying against one another. The attachment to the frame 13 can, for instance, be defined by a loop formed by folding back of the band 3, for instance as shown at 28 in FIG. 8, and the loop end is welded or vulcanized to the inner side of the band 3.

In the embodiment according to FIG. 7, the rods 9 and 10 are no longer formed as massive members, as shown in FIG. 4, but are slid telescopically into one another. More specifically, the rods 9a and 10a are provided with extensions 23 and 24 respectively of smaller diameter which can be introduced into tubular end portions of the rods 9a and 10a. In this manner, an adaptation of the frames to the several widths of the bodies or stringed instruments can be effected without any difficulty and, moreover, a good pinching and gripping of the shoulder rest around the instrument body is always automatically assured.

In the above it was assumed that the rods 9 and 10 can have an arbitrary cross-sectional shape, but in addition to a round cross-section, a further particularly suitable cross-section is shown in FIG. 7a. In this figure the rod 9 is not tubular, but is mainly of a C-shaped cross-section with turned rims with the rod 9b having a corresponding C-shaped cross-section so that the two rods fit telescopically in one another.

In FIGS. 3, 4 and 7 the rods 9 and 10 have been shown as straight rods, but in the embodiment of FIG. 9, it is also possible to bend the rods 29 slightly according to the convex shape of the bottom of a stringed instrument so that the rods lie fully free from the bottom. Furthermore, in FIG. 9 it can be seen that the grip of the proper shoulder rest around the bottom of the body of the instrument can be effected with the intermediary of adequate felt pads 30 or like connect elements which possibly less hinder the resonance.

In FIG. 1 the position and shape of the band 3 during use of the instrument is shown in dotted lines, that is to say that the musician can so far load the band, dependent of the stress adjusted for the band, and thereby it adapts itself to the several movements of the arm and also of the shoulder joint without influencing the holding and the position of the stringed instrument. Several stress marks are provided on the narrow end portion of the band shown in FIG. 8.

What I claim is:

1. A shoulder rest for attachment to the body of a stringed instrument held between the chin and the shoulder of the person playing the instrument, comprising a stressable elastic band having opposite ends, bracket means affixed to the bottom of the instrument body, and means for securing the opposite ends of the elastic band to the bracket means with the elastic band automatically adapting to the shape of the shoulder of the person.

2. The shoulder rest as claimed in claim 1, in which said securing means includes a frame for each end of the elastic band, means operably related to the frame for fixedly securing one end of the band to one of the frames and means adjusting the other end of the band to the other frame.

3. The shoulder rest as claimed in claim 2, in which said frames are foldable.

4. The shoulder rest as claimed in claim 3, in which each frame includes two U-shaped elements and sleeves interconnecting the legs of said two U-shaped elements.

5. The shoulder rest as claimed in claim 3, in which one of said frames is open laterally at one side thereof for enabling a looped end of said band to be slid thereon.

6. The shoulder rest as claimed in claim 3, in which said frames have an outer side which is somewhat wider with respect to the opposite side and the lateral sides between the ends thereof being unequal.

7. The shoulder rest as claimed in claim 6, in which the lateral sides of said frames diverge from the inner side to the outer side.

8. The shoulder rest as claimed in claim 3, in which said frames are connected to connecting members so that in the operative position said frames are hindered from movement toward one another by stop means while in the removed position said frames can be folded so that the entire rest is substantially flat.

9. The shoulder rest as claimed in claim 8, in which said frames are arranged at the extreme ends of a supporting frame defined by two rods carrying said connecting members at the ends thereof.

10. The shoulder rest as claimed in claim 9, in which said rods fit telescopically into one another.

11. The shoulder rest as claimed in claim 10, in which said rods taper slightly.

12. The shoulder rest as claimed in claim 10, in which said rods are curved slightly to correspond to the bottom of the body of the stringed instrument.

References Cited

UNITED STATES PATENTS
2,575,569 11/1951 Unghi 84—280
2,747,452 5/1956 Goldberger 84—280

RICHARD B. WILKINSON, Primary Examiner
L. R. FRANKLIN, Assistant Examiner