发明名称
手持式磨削工具机
摘要
超精磨削机(10)，具有一壳体(12)和一个带有用于安装配片(16)的夹紧装置(20，23；200，230；334)的砂片承载件(14)，碳片端部(17，19)可牢固地紧在砂片承载件(14)上，其中，夹紧装置(20，23；200，230；334；1334)是夹紧装置(20，23；200，230；334；1334)是具有安装在砂片承载件侧的回转轴线(24；224；40；440；1440)的杠杆，并且在每一端部上是将砂片(16)夹紧的夹爪(22；220；1222；336，338)，最好在在另一端部上可用手操作，其中一个砂片端部(19)可借助单手操作只通过插人第一夹紧装置(20，23；200，230)之间就被夹紧，另一个砂片端部(17)可同样借助单手操作在插入第二夹紧装置(34；334；1334)中并且对第二夹紧装置进行操作之后被夹紧，其中，砂片(16)可连同被夹紧的砂片端部(17)一起通过第二夹紧装
置(34；334；1334)随后的运动、尤其是摆动离开第一夹紧装置(20，23；200，230)绷紧地被张紧，由此可快速、方便并可靠地安装砂片(16)。
1. 手持式磨削工具机（10），具有一个容纳一个电动机的壳体（12）并具有一个砂片承载件（14），该砂片承载件具有用于安装一个砂片（16）的夹紧装置（20，23；200，230；334），该砂片的砂片端部（17，19）可被牢固夹紧在砂片承载件（14，114）上。其中，夹紧装置（20，23；200，230；334；1334）是具有装置在砂片承载件侧的回转轴线（24；224；40；440；1440）的杠杆并且在一端部上是将砂片（16）夹紧的夹爪（22；220；1222；336，338），其特征在于：

其中的一个砂片端部（19）可借助单手操作只通过插入第一夹紧装置（20，23；200，230）之间就被夹紧，另一个砂片端部（17）可同样借助单手操作在插入第二夹紧装置（34；334；1334）中并且对第二夹紧装置进行操作之后被夹紧，其中，砂片（16）连同被夹紧的砂片端部（17）一起可通过第二夹紧装置（34；334；1334）随后的运动离开第一夹紧装置（20，23；200，230）绷紧地被张紧。

2. 根据权利要求1的手持式磨削工具机，其特征在于：第二夹紧装置（1334）由一个夹爪（1222）和一个锁止面（1223）构成（图6），它们可共同绕它们的一个回转轴线（1440）摆动，使得夹紧在其中的砂片端部（17）可远离相对的另一砂片端部（19）地运动，由此使砂片（16）可被绷紧地张紧到其断裂极限。

3. 根据权利要求1的手持式磨削工具机，其特征在于：第二夹紧装置作为可转动的转（34；334；1334）构成，它的夹爪和锁止面通过一个主动爪（36；334；1336）和一个被动爪（38；38；1338）构成，该转可通过主动爪（36；334；1336）的运动闭合，其中，在主动爪（36；334；1336）到达夹紧的止挡位后，在主动爪继续运动时被动爪（38；38；1338）可被主动爪带动。
4. 根据权利要求 3 的手持式磨削工具机，其特征在于：该钳（34；334；1334）可通过主动爪（36；334；1336）复位到其初始位置中而重新打开，在该位置中达到用于更换砂片（16）的释放位置，其中，被动爪（38；38；1338）先前到达其终点位置中，并且，在主动爪（36；334；1336）处于终点位置中时在主动爪与被动爪（38；38；1338）之间产生一个确定的距离。

5. 根据权利要求 4 的手持式磨削工具机，其特征在于：主动爪（36；334；1336）在回转轴线（40；440；1440）的另一侧上具有一个延长部，该延长部用作张紧杆（35；335；1335），它在第二夹紧装置（34；334；1334）处于一个被定义为张紧位置的位置中时能够可松开地相对于壳体（12）锁止。

6. 根据权利要求 1 的手持式磨削工具机，其特征在于：砂片可插入夹爪（22；220；1220）与砂片承载件（14）之间，其中，夹爪（22；220；1220）只可通过与砂片（16）接触来打开，该砂片在逆着插入方向运动时可由于该运动而自动锁止。

7. 根据权利要求 1 的手持式磨削工具机，其特征在于：该手持式磨削工具机为超精磨削机。

8. 根据权利要求 1 或 7 的手持式磨削工具机，其特征在于：所述夹紧装置（20，23；200，230；334；1334）在另一端部上可用手操作。

9. 根据权利要求 1 或 7 的手持式磨削工具机，其特征在于：所述随后的运动为摆动。
手持式磨削工具机

技术领域
本发明涉及一种手持式磨削工具机，尤其是超精磨削机，具有一一个容纳一个电动机的壳体并具有一个砂片承载件，该砂片承载件具有用于安装一个砂片的夹紧装置，该砂片的砂片端部可被牢固夹紧在砂片承载件上，其中，夹紧装置是具有安置在砂片承载件侧的回转轴线的杠杆并且在一端部上是将砂片夹紧的夹爪，最好在另一端部上可用手操作。

背景技术
由英国专利文献 GB 23 22 582 公知一种设有用于接收砂片的磨削盘的超精磨削机，砂片用其背面支承在磨削盘下侧面上并且被固定地夹紧在其上侧面上。
砂片的具有磨料的下侧面向下/外指向并且当砂片承载件放置在工件上时可用于磨削。

为了固定地夹紧砂片，操作者必需使用双手，这时使手持式工具机尽可能固定地保持在一个固定的衬垫上。其中用一只手将一个砂片端部插入到打开的夹爪与砂片承载件上侧面之间的槽中，用另一只手将该夹爪打开地保持在释放位置中，直到该砂片端部插入。然后，在松开夹爪后，它通过弹簧力闭合。这是夹紧位置，在该位置中砂片端部被固定住。在此，砂片被自动地在一定程度上再张紧，方式是，可转动地悬挂的夹爪力图摆离砂片端部并且带动该端部，这是由于砂片承载件上侧的倾斜按压面造成的。

对于另一砂片端部以与第一端部相同的方法处置，其中夹紧装置
的夹紧力及后压紧力受到限制。

发明内容

根据本发明，提出了一种手持式磨削工具机，尤其是超精磨削机，具有一个容纳一个电动机的壳体并具有一个砂片承载件，该砂片承载件具有用于安装一个砂片的夹紧装置，该砂片的砂片端部可被牢固夹紧在砂片承载件上，其中，夹紧装置是具有安置在砂片承载件侧的回转轴线的杠杆并且在第一部分上是将砂片夹紧的夹爪，最好在另一端部上可用手操作，其中，一个砂片端部可借助单手操作只通过插入第一夹紧装置之间而被夹紧，另一个砂片端部可同样借助单手操作在插入第二夹紧装置中并且对第二夹紧装置进行操作之后被夹紧，其中，砂片连同被夹紧的砂片端部一起可通过第二夹紧装置随后的运动，尤其是摆动离开第一夹紧装置绷紧地被张紧。

具有上述特征的本发明手持式磨削工具机的优点是，能够特别舒适、快速地仅用一只手将砂片绷紧地张紧并且夹紧。

它是这样地实现的：可用一只手将第一砂片端部导入一个自动打开的缝隙中并且在这里可自动夹紧，接着，可同样仅用一只手将第二砂片端部插入夹紧张紧装置中，然后可绷紧到抗断裂极限地张紧。因此，砂片可被牢固地固定在两个夹紧位置之间和砂片承载件的工作面上，由此在磨削时砂片承载件与砂片之间的相对运动减至最小。其结果是，手持式磨削工具机的切除能力更高并且总效率更高。

夹紧装置中的一个作为钳构成，一个砂片端部可夹紧在该钳中间，并且，该钳可连同被夹紧的砂片端部一起绕一个回转轴线转动并可锁止在一个终点位置中，通过此，能够以简单的装置实现将砂片舒适可靠地夹紧并且随后绷紧地张紧。

该钳的优点是，每个厚度的砂片都可用最大夹紧力夹紧，因为通
过长的闭合路径可敏感地补偿所有的尺寸差别，在此可实现迄今不能达到的高的夹紧力。此外，该手持式工具机可装入（极限内）不同长度的砂片，因为超出部分可方便地保留在环形构型的主动钳爪中。

弹簧装置力图使被动钳爪保持打开，其中，主动钳爪带动被动钳爪逆着弹簧装置到达夹紧位置中并且继续到达张紧位置中，其中，该弹簧装置确定砂片端部上的夹紧力，通过此，该钳可节省时间、方便、可靠地装上砂片。

主动钳爪是一个双臂张紧杆的一部分，它的一个杆臂用作手把，该手把能够可松开地越位卡锁式锁止在张紧位置中，并且，该钳为此可绕一回转轴线在两个终点位置之间摆动，该终点位置是张紧位置和释放位置，通过此，可以特别简单地安装砂片。

在钳处于张紧位置中时主动钳爪以一个可通过弹簧装置确定的最小夹紧力相对于被动钳爪支承，通过此，待夹紧砂片上的夹紧力可通过相应选择弹簧装置来调节。

主动钳爪及被动钳爪的表面在具有高变形稳定性的同时具有高的摩擦系数，因为它们用金属制成，通过此，在砂片端部上可保证特别可靠的夹紧功能。

主动钳爪弯曲成圆钩形状并且这样包围被动钳爪，使得它支承在被动钳爪外侧面上以夹紧砂片并且在转动时带动被动钳爪进入到张紧位置中，通过此，得到一种有利于操作并且在更换砂片及用手持式磨削工具机工作时伤害危险显著降低的夹压机构，因为免除了突出边缘。

弹性装置使钳打开地保持在释放位置中，尤其是主动钳爪相对于被动钳爪张开，通过此，几乎可闭着眼更换砂片。

被动钳爪具有一个连续的纵向槽口，通过此可改善被动钳爪与砂片端部之间的附着力并增强夹紧力。

设置在钳对面的夹紧装置可使相应的砂片端部沿前拉方向进入但
在相反方向上不经专门操作不能释放，通过此，仅用一只手即可作到使砂片无间隙地牢固夹紧在砂片承栽件上。

在这里，一只手操作意味着，为了放入及固定砂片实际上仅需用一只手便奏效。另一只手在此期间可以静止或固定手持式工具机，如压在一个衬底上。

通过砂片的有力夹紧可使它与砂片承栽件之间的间隙持久地保持最小。由此也使砂片承栽件的往复磨削运动几乎无滑动地传递到砂片上，从而砂片可以有效地对工件施加磨削作用。

夹爪具有一个外轮廓，该外轮廓到回转轴线的最大距离小于回转轴线与砂片承栽件上侧面之间的距离，并且，夹爪向着砂片承栽件的边缘被弹性转动预紧地支承在砂片承栽件的一侧上，通过此，在夹紧装置简单构型的情况下可达到夹爪与砂片承栽件上侧面之间的高的夹紧力，其中，随着砂纸上逆着插入方向的拉力增大产生伺服夹紧效应。由此，砂片实际上可被牢固夹紧直至达到断裂极限，而不会事先自动松脱。

为了释放被夹入的砂片，夹爪可借助按键逆着夹紧方向运动，通过此，可特别简单地将砂片端部从手持式磨削工具机上卸下。

夹爪用弹性的橡胶类材料制成，通过此可增强用于使砂片夹紧增强的伺服效应。该伺服效应此外这样来增强：使夹爪外轮廓以小的斜率变化逐渐地弯曲。

砂纸端部在外侧终端点上在主动爪/被动爪之间被夹压张紧，其中，张紧杆仅设置在夹爪/张紧爪的一侧并且在那里可被弹性锁止，通过此，砂片更换方便可靠。

有利的是，第二夹紧装置由一个夹爪和一个锁止面构成，它们可共同绕一个轴线摆动，使得夹紧在其中的砂片端部可远离开相对的另一砂片端部地运动，由此使砂片可被绷紧地张紧到其断裂极限。
有利的是，第二夹紧装置作为可转动的钳构成，它的夹爪和锁止面通过一个主动爪和一个被动爪构成，该钳可通过主动爪的运动闭合，其中，在主动爪到达夹紧的止挡位后，在主动爪继续运动时被动爪可被主动爪带动。

有利的是，该钳可通过主动爪复位到其初始位置中而重新打开，在该位置中达到用于更换砂片的释放位置，其中，被动爪先前到达其终点位置中，并且，在主动爪处于终点位置中时在主动爪与被动爪之间产生一个确定的距离。

有利的是，主动爪在回转轴线的另一侧上具有一个延长部，该延长部用作张紧杆，它在第二夹紧装置处于一个被定义为张紧位置的位置中时能够松开地相对于壳体锁止。

有利的是，砂片可插入夹爪与砂片承载件之间，其中，夹爪只可通过与砂片接触来打开，该砂片在逆着插入方向运动时可由于该运动而自动锁止。

附图说明
在下面的说明中借助附图详细解释本发明的实施例。图中示出：
图 1 本发明手持式磨削工具机的一个侧视图，
图 2 从斜上方看到的手持式磨削工具机另一实施形式的砂片承载件俯视图，
图 3 按照图 2 的一个底视图，
图 4 从斜前方看到的本发明手持式磨削工具机另一实施形式，
图 5 安置在手持式磨削工具机前部的夹紧装置的示意图，及
图 6 本发明手持式磨削工具机的另一实施形式的示意侧视图。

具体实施方式
图1中的手持式磨削工具机10是一个超精磨削机，它具有一个壳体12，该壳体带有一个未示出的手柄以及装置在其内的电动机。壳体12的下部具有一个砂片装载件14。该砂片装载件可被电动机驱动相对于壳体12进行振动运动并且由此能够通过一个在下面固定在其工作面15上的砂片16在未示出的工件上实现磨削去除量。在磨削时产生的磨屑可通过吸吸接管120从手持式磨削工具机10的前侧121向后侧122吹出或吸走。

砂片16以其背面支承在砂片装载件14上或它的磨削垫块18上。

在砂片装载件14的上侧13，在前部装置了一个作为带有回转轴线24的双臂夹紧杆20构成的夹紧装置。夹紧杆20在回转轴线24上方构成一个摆臂21并且在回转轴线下方构成一个夹爪22。该夹爪以其弯曲成马刀状的外轮廓27支承在砂片装载件14的上侧13的锁止面23上。夹紧杆20的回转轴线24设置在砂片装载件14上侧的一个轴承座28上。

一个拉力弹簧26支承在摆臂21上侧与壳体12中一个未示出的支座之间，该拉力弹簧试图使夹紧杆20沿顺时针方向转动，使夹爪22压向锁止面23并从而将砂片端部19牢固夹紧。

摆臂21在其上部区域中具一个用作按键211的突出的肘形件。借助它，摆臂21可通过手指压力向下运动，这时，拉力弹簧26被张紧。在此，夹爪22从锁止面23上抬起，外轮廓27与锁止面23之间的缝隙张开得这样大，使得砂片端部19被释放并且可以被毫无困难地取出。

夹紧杆20的回转轴线24与锁止面23之间的距离小于该回转轴线24与外轮廓27的径向的最外侧点之间的距离，由此，在被弹簧26预紧的状态中，夹爪22顶着锁止面23支承在砂片装载件14的上侧13。因此，砂片16上的夹紧力与试图将砂片16逆着插入方向松开的力成正
比地增强。

拉力弹簧 26 被这样小地预紧，使得砂片 16 从外部仅通地压按在夹爪 22 的外轮廓 27 上就能将夹爪逆着夹紧方向推移，自动产生为插入所必需的缝隙并且可以容易地用一只手插入和再移动。

夹爪 22 至少部分地用具有高摩擦系数的弹性橡胶类材料制成，它限制砂片 16 与夹爪 22 之间的相对运动。

按观察方向在右侧，在砂片支撑件 14 的后侧 122 安置了一个作为钳 34 构成的夹紧张紧装置。该夹紧张紧装置由一个带有拱曲型主动爪 36 的张紧杆 35 及一个手把 39 组成，该张紧杆构成一个可绕回转轴线 40 转动的双臂杠杆。一个在夹紧和张紧砂片 16 时支撑在主动爪 36 内轮廓上的夹紧杆 37 同样可绕该回转轴线 40 转动，该夹紧杆构成被动爪 38。与砂片端部 19 相对的另一砂纸端部 17 被插入并固定在被动爪 38 与主动爪 36 之间。

当将钳 34 带着被固定保持住的砂纸端部 17 绕回转轴线 40 沿逆时针方向转动时，该砂纸端部相对于另一砂纸端部 19 的距离增大。在此，砂片 16 被绷紧并且牢固地压在垫块 18 的工作面 15 上。这里，特别是可以从前垫块 18 的被压圆的后侧下边缘 118 上看出砂片 16 绷紧的程度。

在钳 34 处于张紧位置中时，张紧杆 35 占据一个最终位置。在该位置中，手把 39 卡锁在后部或侧面的卡锁突缘 48 的卡锁槽 49 中。通过用拇指向后压卡锁突缘 48 或者通过将手把 39 逆着弹簧 50 从卡锁槽 49 中转出，张紧杆 35 被释放并且可以在通过弹簧 42 被弹簧预紧的情况下摆回到其打开位置中。在此，被另外一个压力弹簧 44 加载的被动爪 38 跟随它到达自己的最终位置中。张紧杆 35 在弹簧预紧力下越过该最终位置继续转动，直到其止挡面 51 贴靠到被动爪 38 的上侧面 47 上。在这个位置中，钳 34 被大大张开，主动爪与被动爪 36，38 之间的距离这样大，使得能够可以说闭着眼睛将用虚线示出的砂纸端部 17
插入。

将被动爪 38 预紧的压力弹簧 44 确定或者限制主动爪 36 与被动爪 38 之间的夹紧力。

如果为了更换砂片而通过卡锁突缘 48 的解锁将张紧杆 35 从其张紧位置中脱开并且绕回转轴线 40 沿顺时针方向转动，则砂纸端部 17, 19 的夹紧点之间的距离又变短，使得砂片 16 被卸去张紧力并从而能够被容易地取出。

图 2 以从前方斜看到的俯视图示出图 1 所示手持工具机 10 或砂片承载件 114 的另一实施例的一个立体图。按观察方向在右侧，在前侧 121 安置了一个夹紧杆 200，它基本与图 1 所示夹紧杆相当，但具有一个特别的操作键 2110，该操作键可绕一个支座 600 中的回转轴线 610 转动地支承并且通过一个未示出的压力弹簧弹性地支承在未示出的壳体上。

在沿移动箭头 333 方向操作键 2110 时，键 2110 的位于轴线 610 上方的部分朝向壳体移动。此时，位于轴线 610 下方的部分向外摆动，该部分支承在夹紧杆 200 的上部分上。该夹紧杆在操作键 2110 时向外沿顺时针方向摆动，由此，夹爪 220 从锁止面 230 上抬起，夹紧在它们之间的砂片端部可以被取出，因为不再有夹紧力作用。

为了理解图 2，可以参考与图 1 中作用相同和构型相同的件。图 2 中作用相同的件的标号与图 1 中的标号不同地一致地分别在前面被加上第一数。

按观察方向看在左侧，砂片承载件 114 在其后侧 122 上带有一个钳 334，它基本上与图 1 中所描述的钳 34 相当，但其结构在细节上有所改变。一个用于使钳 334 摆动的张紧杆 335 只安置在砂片承载件 114 的一侧上并且可弹性锁定在一个止挡件 445 上地支承在该侧。

示出的钳 334 处于被张紧的状态中，在该状态中，它的夹紧位置
或者说一个未示出砂片端部摆动到离开砂片承载件 114 的相对另一侧上的夹紧杆 200 尽可能远的地方。

图 3 示出从后下方斜看到的图 2 所示砂片承载件 114 的细节，其中可以清楚地看出主动爪 336 与被动爪 338 配合作用的构型。它们在图示的张紧位置中相互支承在对方上并且可以将一个夹紧在它们之间的、未示出的砂片端部远离开夹紧杆 200 地保持住，这样，可以将一个附属的被绷紧地张紧的砂片保持住，使得砂片相对于砂片承载件 114 的工作面的相对运动被减到最小。还可清楚地看到前面对图 1 和 2 解释的夹紧杆 200 的部件，在此不再进行解释。

图 4 示出从前方斜看到的手持式工具机 10 连同插入夹紧杆 20 与锁止面 23 之间的砂片端部 19。这里可看出键 211 在前部区域中嵌入壳体 12 的轮廓中的形状。通过这种结构能够实现以前侧面受控制地平齐磨削，直到接近一个带有角度地从待加工面突起的表面。

图 5 详细地结合键 211 示出夹紧杆 20 的另一实施例的示意图以及这两个件的连接。按观察方向看在右侧，在前部安置了一个与图 1 所示一致的夹紧杆 200，它的轴线 224 设置在一个轴承座 228 上。该夹紧杆 200 具有一个夹爪 220，该夹爪可支承在砂片承载件 114 的锁止面 230 上，其中，一个作用在摆臂 210 最外侧端部上的拉力弹簧 226 试图将夹爪 220 拉向锁止面 230。在该位置中，夹爪 220 的外轮廓 227 在下部支承在锁止面 230 上。

摆臂 210 在最外侧端部上带有一个铰链窝 222，摆动键 221 的铰接头 322 嵌入该铰链窝中。

键 221 可借助手指压力相应于方向箭头 333 绕一个保持在轴承座 228 上的轴线 224 摆动，由此能够使夹紧杆 200 运动到其打开位置中，以便取出被夹住的砂片。

为了使键 221 复位到其初始位置中，在键 221 的背面与手持式磨
削工具机 10 的壳体 12 之间安置了一个压力弹簧 2227。该压力弹簧将
附加的复位力作用在夹爪 220 上并且力图将该夹爪保持在“闭合”位
置中。

图 6 示出本发明手持式工具机 10 的另一实施例的示意图，其中，
按观察方向看位于左侧的夹紧杆 20 与图 1 至 4 所示的相应夹紧装置一
致，因此不再对该装置进行详细描述。

按观察方向看在右侧，该砂片承栽件 14 具有一个带有夹紧杆 1220
的夹紧张紧装置 1334，该夹紧杆 1220 与按观察方向看位于左侧的夹紧
杆 20 的结构和作用方式相当，并且可绕一个轴承座 1228 围绕一回转
轴线 1224 以与夹紧杆 20 相同的方式运动。夹紧杆 1220 可与轴承座
1228 和锁止面 1223 一起绕一个轴线 1440 转动。夹紧杆 1220 借助一个
压力弹簧 1226 被预紧，使得它的夹爪 1222 试图逆时针方向绕轴线
1224 转动并且在此到达一个夹紧位置中，以便被止挡在锁止面 1223
上，在该位置中，每个被插入的砂片端部被特别牢固地保持。

图中示出夹紧杆 1220 的两个运动阶段。在向下摆动到其按观察方
向看位于右侧的位置中时，先前按观察方向看在左侧被夹紧的砂片 16
的砂片端部要插入到夹爪 1222 与锁止面 1223 之间，然后，随着轴承
座 1228 借助作用在手把 1339 上的指压压力绕轴线 1440 的摆动，摆动
到按观察方向看在右上方示出的位置中，其中，随同摆动的砂片端部
远离离开在相对另一侧上被夹紧的砂片端部。由此，砂片 16 被明显地绷
紧并且贴靠在砂片承栽件 14 的工作面 15 上。轴承座 1228 在其最终位
置中通过它的越位卡锁凸块 1700 越位卡锁在一个越位卡锁弹簧上 449
上而被固定。

越位卡锁弹簧 449 固定在壳体上。轴承座 1228 可以借助作用在手
把 1339 上的相应指压力摆回而越过该越位卡锁弹簧。在轴承座 1228
绕轴线 1440 摆回后，砂片 16 被卸去张力，在将夹紧杆 1220 沿顺时针
方向转动后，相应的砂片端部可被取出。通过按观察方向看在手持式工具机 10 左侧沿逆时针方向移动夹紧杆 20 可对另一个砂片端部重复相同的过程。以此方式可容易地取下砂片 16。新砂片的安装按照与取下时相反的顺序进行。

下面将解释在图 1 所示手持式工具机 10 上安装砂片 16。可用一只手将该手持式工具机 10 固定。用另一只手在夹紧杆 20 上引导第一砂片端部 19。方式是，将它压向夹爪 22 的外轮廓 27。由此，在夹爪 22 与锁止面 23 之间形成一个缝隙，第一砂片端部 19 进入该缝隙，在此不必再特别地操作夹紧杆 20。即使砂片端部插入最小的量也能够被以大的力立即“自动”夹紧并只能通过向松开方向移动夹紧杆 20 来松开。

通过沿砂片 16 用手抚摸可以将其绷紧并且将砂片端部 19 继续插入到夹爪 22 与锁止面 23 之间，它不会再脱出来并且砂片 16 的张力不会消减。由此能够相当省事地实现将砂片 16 绷紧并牢固地夹紧在垫块 18 上或砂片承载件 14 上。在随后的夹紧-张紧步骤中，将第二砂片端部 17 导入放置在砂片承载件 14 相对另一侧上的钳 1334 中，固定并绷紧。然后，将砂片 16 绷紧并压紧。

两个砂片端部 17, 19 分别在靠近外侧角部的至少两个彼此相对的点上被夹爪 22 及钳 1334 固定保持住。

为了取下砂片 16，通过压按作为摆臂 21 的水平延长部的键 211，将夹紧杆 20 连同摆臂 21 绕回转轴线 24 转动。在此，夹爪 22 以外轮廓 27 从砂片 16 或从锁止面 23 上抬起，使得可以毫无困难地将砂片端部 17, 19 从增大的缝隙中拉出并且能够容易地将砂片 16 卸下。