© 2008/030876 A1 I 0 10 00 000) 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
13 March 2008 (13.03.2008)

lﬂ[ﬁ A0 OO

(10) International Publication Number

WO 2008/030876 Al

(51) International Patent Classification:
GOGF 15/00 (2006.01) HO4L 9/32 (2006.01)

(21) International Application Number:
PCT/US2007/077641

(22) International Filing Date:
5 September 2007 (05.09.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/530,438 8 September 2006 (08.09.2006) US

(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, WA 98052-6399 (US).

(72) Inventors: DILI.AWAY, Blair, B.; One Microsoft Way,
Redmond, WA 98052-6399 (US). BECKER, Moritz, Y.;

One Microsoft Way, Redmond, WA 98052-6399 (US).
GORDON, Andrew, D.; One Microsoft Way, Redmond,
WA 98052-6399 (US). FOURNET, Cedric; One Mi-
crosoft Way, Redmond, WA 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

[Continued on next page]

(54) Title: SECURITY AUTHORIZATION QUERIES

Auth. Context 212
Token Assertion Policy
Assertions > Context P Assertions
606T 702 606P
{ Assertion
Context }
702
Resource Guard
214
Security Policy 220
Request Request Operation
Authorization
704 Query Table
< I 224
Authrzin.
Query
708
{ Assertion Authorization Engine
Context } 218
702 Assertion Context
Authrztn.Query
Authrztn. Evaluation
Query Algorithm
706 Authrzin,
e Decision 08
710
-
700 b Example Authorization Query

Ascertainment and Evaluation

(57) Abstract: In an example implementation, a bifurcated secu-
rity scheme has a first level that does not allow usage of negations
and a second level that does permit usage of negations. In another
example implementation, an authorization query table maps re-
spective resource-specific operations to respective associated au-
thorization queries. In yet another example implementation, au-
thorization queries are permitted to have negations, but individual
assertions are not.

WO 2008/030876 A1 |00 00000010000 0 O 0

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT,NL, P, — asto the applicant’s entitlement to claim the priority of the
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, earlier application (Rule 4.17(iii))
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). Published:
— with international search report
Declarations under Rule 4.17: — before the expiration of the time limit for amending the
— as to applicant’s entitlement to apply for and be granted a claims and to be republished in the event of receipt of

patent (Rule 4.17(ii)) amendments

WO 2008/030876 PCT/US2007/077641

Security Authorization Queries

BACKGROUND

[0001] Computers and other electronic devices are pervasive in the
professional and personal lives of people. In professional settings, people
exchange and share confidential information during project collaborations. In
personal settings, people engage in electronic commerce and the transmission
of private information. In these and many other instances, electronic security is
deemed to be important.

[0002] Electronic security paradigms can keep professional information
confidential and personal information private. Electronic security paradigms
may involve some level of encryption and/or protection against malware, such
as viruses, worms, and spyware. Both encryption of information and protection
from malware have historically received significant attention, especially in the
last few years.

[0003] However, controlling access to information is an equally
important aspect of securing the safety of electronic information. This is
particularly true for scenarios in which benefits are derived from the sharing
and/or transferring of electronic information. In such scenarios, certain people
are to be granted access while others are to be excluded.

[0004] Access control has been a common feature of shared computers
and application servers since the early time of shared systems. There are a
number of different approaches that have been used to control access to

information. They share a common foundation in combining authentication of

WO 2008/030876 PCT/US2007/077641

the entity requesting access to some resource with a mechanism of authorizing
the allowed access. Authentication mechanisms include passwords, Kerberos,
and x.509 certificates. Their purpose is to allow a resource-controlling entity to
positively identify the requesting entity or information about the entity that it
requires.

[0005] Authorization examples include access control lists (ACLs) and
policy-based mechanisms such as the eXtensible Access Control Markup
Language (XACML) or the PrivilEge and Role Management Infrastructure
(PERMIS). These mechanisms define what entities may access a given
resource, such as files in a file system, hardware devices, database information,
and so forth. They perform this authorization by providing a mapping between
authenticated information about a requestor and the allowed access to a
resource.

[0006] As computer systems have become more universally connected
over large networks such as the Internet, these mechanisms have proven to be
somewhat limited and inflexible in dealing with evolving access control
requirements. Systems of geographically dispersed users and computer
resources, including those that span multiple administrative domains, in
particular present a number of challenges that are poorly addressed by

currently-deployed technology.

SUMMARY
[0007] In an example implementation, a bifurcated security scheme has a
first level that does not allow usage of negations and a second level that does

permit usage of negations. In another example implementation, an

WO 2008/030876 PCT/US2007/077641

authorization query table maps respective resource-specific operations to
respective associated authorization queries. In yet another example
implementation, authorization queries are permitted to have negations, but
individual assertions are not.

[0008] This Summary is provided to introduce a selection of concepts in
a simplified form that are further described below in the Detailed Description.
This Summary is not intended to identify key features or essential features of
the claimed subject matter, nor is it intended to be used as an aid in determining
the scope of the claimed subject matter. Moreover, other method, system,
scheme, apparatus, device, media, procedure, API, arrangement, protocol, etc.

implementations are described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The same numbers are used throughout the drawings to reference
like and/or corresponding aspects, features, and components.

[0010] FIG. 1 is a block diagram illustrating an example general
environment in which an example security scheme may be implemented.

[0011] FIG. 2 i1s a block diagram illustrating an example security
environment having two devices and a number of example security-related
components.

[0012] FIG. 3 i1s a block diagram illustrating the example security
environment of FIG. 2 in which example security-related data is exchanged
among the security-related components.

[0013] FIG. 4 is a block diagram of an example device that may be used

for security-related implementations as described herein.

WO 2008/030876 PCT/US2007/077641

[0014] FIG. 5 is a block diagram illustrating an example assertion format
for a general security scheme.

[0015] FIG. 6 is a block diagram illustrating an example bifurcated
security scheme having a first level and a second level.

[0016] FIG. 7 is a general block diagram illustrating an example
authorization query ascertainment and an example authorization query
evaluation.

[0017] FIG. 8 is a more-specific block diagram illustrating an example
authorization query ascertainment that is responsive to a resource access
request.

[0018] FIG. 9 is a more-specific block diagram illustrating an example
authorization query evaluation given an assertion context.

[0019] FIG. 10 is a flow diagram that illustrates an example of a method

for ascertaining and evaluating an authorization query.

DETAILED DESCRIPTION

EXAMPLE SECURITY ENVIRONMENTS
[0020] FIG. 1 is a block diagram illustrating an example general
environment in which an example security scheme 100 may be implemented.
Security scheme 100 represents an integrated approach to security. As
illustrated, security scheme 100 includes a number of security concepts:
security tokens 100(A), security policies 100(B), and an evaluation engine
100(C). Generally, security tokens 100(A) and security policies 100(B) jointly

provide inputs to evaluation engine 100(C). Evaluation engine 100(C) accepts

WO 2008/030876 PCT/US2007/077641

the inputs and produces an authorization output that indicates if access to some
resource should be permitted or denied.

[0021] In a described implementation, security scheme 100 can be
overlaid and/or integrated with one or more devices 102, which can be
comprised of hardware, software, firmware, some combination thereof, and so
forth. As illustrated, “d” devices, with “d” being some integer, are
interconnected over one or more networks 104. More specifically, device
102(1), device 102(2), device 102(3) ... device 102(d) are capable of
communicating over network 104.

[0022] Each device 102 may be any device that is capable of
implementing at least a part of security scheme 100. Examples of such devices
include, but are not limited to, computers (e.g., a client computer, a server
computer, a personal computer, a workstation, a desktop, a laptop, a palm-top,
etc.), game machines (e.g., a console, a portable game device, etc.), set-top
boxes, televisions, consumer electronics (e.g., DVD player/recorders,
camcorders, digital video recorders (DVRs), etc.), personal digital assistants
(PDAs), mobile phones, portable media players, some combination thereof, and
so forth. An example electronic device is described herein below with
particular reference to FIG. 4.

[0023] Network 104 may be formed from any one or more networks that
are linked together and/or overlaid on top of each other. Examples of networks
104 include, but are not limited to, an internet, a telephone network, an
Ethernet, a local area network (LAN), a wide area network (WAN), a cable
network, a fibre network, a digital subscriber line (DSL) network, a cellular

network, a Wi-Fi® network, a WiMAX® network, a virtual private network
p

WO 2008/030876 PCT/US2007/077641

(VPN), some combination thereof, and so forth. Network 104 may include
multiple domains, one or more grid networks, and so forth. Each of these
networks or combination of networks may be operating in accordance with any
networking standard.

[0024] As 1illustrated, device 102(1) corresponds to a user 106 that is
interacting with it. Device 102(2) corresponds to a service 108 that is
executing on it. Device 102(3) is associated with a resource 110. Resource
110 may be part of device 102(3) or separate from device 102(3).

[0025] User 106, service 108, and a machine such as any given device
102 form a non-exhaustive list of example entities. Entities, from time to time,
may wish to access resource 110. Security scheme 100 ensures that entities
that are properly authenticated and authorized are permitted to access resource
110 while other entities are prevented from accessing resource 110.

[0026] FIG. 2 i1s a block diagram illustrating an example security
environment 200 having two devices 102(A) and 102(B) and a number of
example security-related components. Security environment 200 also includes
an authority 202, such as a security token service (STS) authority. Device
102(A) corresponds to an entity 208. Device 102(B) is associated with
resource 110. Although a security scheme 100 may be implemented in more
complex environments, this relatively-simple two-device security environment
200 1s used to describe example security-related components.

[0027] As illustrated, device 102(A) includes two security-related
components: a security token 204 and an application 210. Security token 204
includes one or more assertions 206. Device 102(B) includes five security-

related components: an authorization context 212, a resource guard 214, an

WO 2008/030876 PCT/US2007/077641

audit log 216, an authorization engine 218, and a security policy 220. Security
policy 220 includes a trust and authorization policy 222, an authorization query
table 224, and an audit policy 226.

[0028] Each device 102 may be configured differently and still be
capable of implementing all or a part of security scheme 100. For example,
device 102(A) may have multiple security tokens 204 and/or applications 210.
As another example, device 102(B) may not include an audit log 216 or an
audit policy 226. Other configurations are also possible.

[0029] In a described implementation, authority 202 issues security
token 204 having assertions 206 to entity 208. Assertions 206 are described
herein below, including in the section entitled “Security Policy Assertion
Language Example Characteristics”. Entity 208 is therefore associated with
security token 204. In operation, entity 208 wishes to use application 210 to
access resource 110 by virtue of security token 204.

[0030] Resource guard 214 receives requests to access resource 110 and
effectively manages the authentication and authorization process with the other
security-related components of device 102(B). Trust and authorization policy
222, as its name implies, includes policies directed to trusting entities and
authorizing actions within security environment 200. Trust and authorization
policy 222 may include, for example, security policy assertions (not explicitly
shown in FIG. 2). Authorization query table 224 maps requested actions, such
as access requests, to an appropriate authorization query. Audit policy 226
delineates audit responsibilities and audit tasks related to implementing

security scheme 100 in security environment 200.

WO 2008/030876 PCT/US2007/077641

[0031] Authorization context 212 collects assertions 206 from security
token 204, which is/are used to authenticate the requesting entity, and security
policy assertions from trust and authorization policy 222. These collected
assertions in authorization context 212 form an assertion context. Hence,
authorization context 212 may include other information in addition to the
various assertions.

[0032] The assertion context from authorization context 212 and an
authorization query from authorization query table 224 are provided to
authorization engine 218. Using the assertion context and the authorization
query, authorization engine 218 makes an authorization decision. Resource
guard 214 responds to the access request based on the authorization decision.
Audit log 216 contains audit information such as, for example, identification of
the requested resource 110 and/or the algorithmic evaluation logic performed
by authorization engine 218.

[0033] FIG. 3 1s a block diagram illustrating example security
environment 200 in which example security-related data is exchanged among
the security-related components. The security-related data is exchanged in
support of an example access request operation. In this example access request
operation, entity 208 wishes to access resource 110 using application 210 and
indicates its authorization to do so with security token 204. Hence, application
210 sends an access request™ to resource guard 214. In this description of FIG.

X3

3, an asterisk (ie.,) indicates that the stated security-related data is
explicitly indicated in FIG. 3.
[0034] In a described implementation, entity 208 authenticates™ itself to

resource guard 214 with a token*, security token 204. Resource guard 214

WO 2008/030876 PCT/US2007/077641

forwards the token assertions* to authorization context 212. These token
assertions are assertions 206 (of FIG. 2) of security token 204. Security policy
220 provides the authorization query table* to resource guard 214. The
authorization query table derives from authorization query table module 224.
The authorization query table sent to resource guard 214 may be confined to
the portion or portions directly related to the current access request.

[0035] Policy assertions are extracted from trust and authorization policy
222 by security policy 220. The policy assertions may include both trust-
related assertions and authorization-related assertions. Security policy 220
forwards the policy assertions® to authorization context 212. Authorization
context 212 combines the token assertions and the policy assertions into an
assertion context. The assertion context* is provided from authorization
context 212 to authorization engine 218 as indicated by the encircled “A”.
[0036] An authorization query is ascertained from the authorization
query table. Resource guard 214 provides the authorization query (auth.
query*) to authorization engine 218. Authorization engine 218 uses the
authorization query and the assertion context in an evaluation algorithm to
produce an authorization decision. The authorization decision (auth. den.*) is
returned to resource guard 214. Whether entity 208 is granted access* to
resource 110 by resource guard 214 is dependent on the authorization decision.
If the authorization decision is affirmative, then access is granted. If, on the
other hand, the authorization decision issued by authorization engine 218 is
negative, then resource guard 214 does not grant entity 208 access to resource

110.

WO 2008/030876 PCT/US2007/077641

[0037] The authorization process can also be audited using semantics
that are complementary to the authorization process. The auditing may entail
monitoring of the authorization process and/or the storage of any intermediate
and/or final products of, e.g., the evaluation algorithm logically performed by
authorization engine 218. To that end, security policy 220 provides to
authorization engine 218 an audit policy* from audit policy 226. At least when
auditing 1s requested, an audit record* having audit information may be
forwarded from authorization engine 218 to audit log 216. Alternatively, audit
information may be routed to audit log 216 via resource guard 214, for
example, as part of the authorization decision or separately.

[0038] FIG. 4 is a block diagram of an example device 102 that may be
used for security-related implementations as described herein. Multiple
devices 102 are capable of communicating across one or more networks 104.
As illustrated, two devices 102(A/B) and 102(d) are capable of engaging in
communication exchanges via network 104. Although two devices 102 are
specifically shown, one or more than two devices 102 may be employed,
depending on the implementation.

[0039] Generally, a device 102 may represent any computer or
processing-capable device, such as a client or server device; a workstation or
other general computer device; a PDA; a mobile phone; a gaming platform; an
entertainment device; one of the devices listed above with reference to FIG. 1;
some combination thereof; and so forth. As illustrated, device 102 includes
one or more input/output (I/O) interfaces 404, at least one processor 406, and

one or more media 408. Media 408 include processor-executable instructions

410.

10

WO 2008/030876 PCT/US2007/077641

[0040] In a described implementation of device 102, I/O interfaces 404
may include (1) a network interface for communicating across network 104, (i1)
a display device interface for displaying information on a display screen, (ii1)
one or more man-machine interfaces, and so forth. Examples of (i) network
interfaces include a network card, a modem, one or more ports, and so forth.
Examples of (ii) display device interfaces include a graphics driver, a graphics
card, a hardware or software driver for a screen or monitor, and so forth.
Printing device interfaces may similarly be included as part of I/O interfaces
404. Examples of (ii1) man-machine interfaces include those that communicate
by wire or wirelessly to man-machine interface devices 402 (e.g., a keyboard, a
remote, a mouse or other graphical pointing device, etc.).

[0041] Generally, processor 406 is capable of executing, performing,
and/or otherwise effectuating processor-executable instructions, such as
processor-executable instructions 410. Media 408 is comprised of one or more
processor-accessible media. In other words, media 408 may include processor-
executable instructions 410 that are executable by processor 406 to effectuate
the performance of functions by device 102.

[0042] Thus, realizations for security-related implementations may be
described in the general context of processor-executable instructions.
Generally, processor-executable instructions include routines, programs,
applications, coding, modules, protocols, objects, components, metadata and
definitions thereof, data structures, application programming interfaces (APIs),
schema, etc. that perform and/or enable particular tasks and/or implement

particular abstract data types. Processor-executable instructions may be located

11

WO 2008/030876 PCT/US2007/077641

in separate storage media, executed by different processors, and/or propagated
over or extant on various transmission media.

[0043] Processor(s) 406 may be implemented using any applicable
processing-capable technology. Media 408 may be any available media that is
included as part of and/or accessible by device 102. It includes volatile and
non-volatile media, removable and non-removable media, and storage and
transmission media (e.g., wireless or wired communication channels). For
example, media 408 may include an array of disks/tflash memory/optical media
for longer-term mass storage of processor-executable instructions 410, random
access memory (RAM) for shorter-term storing of instructions that are
currently being executed, link(s) on network 104 for transmitting
communications (e.g., security-related data), and so forth.

[0044] As specifically illustrated, media 408 comprises at least
processor-executable instructions 410. Generally, processor-executable
instructions 410, when executed by processor 406, enable device 102 to
perform the various functions described herein, including those actions that are
illustrated in the various flow diagrams. By way of example only, processor-
executable instructions 410 may include a security token 204, at least one of its
assertions 206, an authorization context module 212, a resource guard 214, an
audit log 216, an authorization engine 218, a security policy 220 (e.g., a trust
and authorization policy 222, an authorization query table 224, and/or an audit
policy 226, etc.), some combination thereof, and so forth. Although not
explicitly shown in FIG. 4, processor-executable instructions 410 may also

include an application 210 and/or a resource 110.

12

WO 2008/030876 PCT/US2007/077641

SECURITY POLICY ASSERTION LANGUAGE
EXAMPLE CHARACTERISTICS

[0045] This section describes example characteristics of an
implementation of a security policy assertion language (SecPAL). The
SecPAL implementation of this section is described in a relatively informal
manner and by way of example only. It has an ability to address a wide
spectrum of security policy and security token obligations involved in creating
an end-to-end solution. These security policy and security token obligations
include, by way of example but not limitation: describing explicit trust
relationships; expressing security token issuance policies; providing security
tokens containing identities, attributes, capabilities, and/or delegation policies;
expressing resource authorization and delegation policies; and so forth.

[0046] In a described implementation, SecPAL is a declarative, logic-
based language for expressing security in a flexible and tractable manner. It
can be comprehensive, and it can provide a uniform mechanism for expressing
trust relationships, authorization policies, delegation policies, identity and
attribute assertions, capability assertions, revocations, audit requirements, and
so forth. This uniformity provides tangible benefits in terms of making the
security scheme understandable and analyzable. The uniform mechanism also
improves security assurance by allowing one to avoid, or at least significantly
curtail, the need for semantic translation and reconciliation between disparate
security technologies.

[0047] A SecPAL implementation may include any of the following
example features: [1] SecPAL can be relatively easy to understand. It may use

a definitional syntax that allows its assertions to be read as English-language

13

WO 2008/030876 PCT/US2007/077641

sentences. Also, its grammar may be restrictive such that it requires users to
understand only a few subject-verb-object (e.g., subject-verb phrase) constructs
with cleanly defined semantics. Finally, the algorithm for evaluating the
deducible facts based on a collection of assertions may rely on a small number
of relatively simple rules.

[0048] [2] SecPAL can leverage industry standard infrastructure in its
implementation to ease its adoption and integration into existing systems. For
example, an extensible markup language (XML) syntax may be used that 1s a
straightforward mapping from the formal model. This enables use of standard
parsers and syntactic correctness validation tools. It also allows use of the
W3C XML Digital Signature and Encryption standards for integrity, proof of
origin, and confidentiality.

[0049] [3] SecPAL may enable distributed policy management by
supporting distributed policy authoring and composition. This allows flexible
adaptation to different operational models governing where policies, or
portions of policies, are authored based on assigned administrative duties. Use
of standard approaches to digitally signing and encrypting policy objects allow
for their secure distribution. [4] SecPAL enables an efficient and safe
evaluation. Simple syntactic checks on the inputs are sufficient to ensure
evaluations will terminate and produce correct answers.

[0050] [5] SecPAL can provide a complete solution for access control
requirements supporting required policies, authorization decisions, auditing,
and a public-key infrastructure (PKI) for identity management. In contrast,
most other approaches only manage to focus on and address one subset of the

spectrum of security issues. [6] SecPAL may be sufficiently expressive for a

14

WO 2008/030876 PCT/US2007/077641

number of purposes, including, but not limited to, handling the security issues
tor Grid environments and other types of distributed systems. Extensibility is
enabled in ways that maintain the language semantics and evaluation properties
while allowing adaptation to the needs of specific systems.

[0051] FIG. 5 is a block diagram illustrating an example assertion format
500 for a general security scheme. Security scheme assertions that are used in
the implementations described otherwise herein may differ from example
assertion format 500. However, assertion format 500 is a basic illustration of
one example format for security scheme assertions, and it provides a basis for
understanding example described implementation of various aspects of a
general security scheme.

[0052] As illustrated at the top row of assertion format 500, an example
assertion at a broad level includes: a principal portion 502, a says portion 504,
and a claim portion 506. Textually, the broad level of assertion format 500
may be represented by: principal says claim.

[0053] At the next row of assertion format 500, claim portion 506 is
separated into example constituent parts. Hence, an example claim portion 506
includes: a fact portion 508, an if portion 510, “n” conditional fact; _, portions
508(1...n), and a c portion 512. The subscript “n” represents some integer
value. As indicated by legend 524, ¢ portion 512 represents a constraint
portion. Although only a single constraint is illustrated, ¢ portion 512 may
actually represent multiple constraints (e.g., ¢y, ..., ¢,,). The set of conditional
fact portions 508(1...n) and constraints 512(1...m) on the right-hand side of if

portion 510 may be termed the antecedent.

15

WO 2008/030876 PCT/US2007/077641

[0054] Textually, claim portion 506 may be represented by: fact if fact,,
... , fact,, c. Hence, the overall assertion format 500 may be represented
textually as follows: principal says fact if fact,, ... , fact,, c. However, an
assertion may be as simple as: principal says fact. In this abbreviated, three-
part version of an assertion, the conditional portion that starts with if portion
510 and extends to ¢ portion 512 1s omitted.

[0055] Each fact portion 508 may also be further subdivided into its
constituent parts. Example constituent parts are: an e portion 514 and a verb
phrase portion 516. As indicated by legend 524, e portion 514 represents an
expression portion. Textually, a fact portion 508 may be represented by: e
verbphrase.

[0056] Each e or expression portion 514 may take on one of two
example options. These two example expression options are: a constant 514(c)
and a variable 514(v). Principals may fall under constants 514(c) and/or
variables 514(v).

[0057] Each verb phrase portion 516 may also take on one of three
example options. These three example verb phrase options are: a predicate
portion 518 followed by one or more e, _, portions 514(1...n), a can assert
portion 520 followed by a fact portion 508, and an alias portion 522 followed
by an expression portion 514. Textually, these three verb phrase options may
be represented by: predicate e, ... e,, can assert fact, and alias e, respectively.
The integer “n” may take different values for facts S08(1...n) and expressions
514(1...n).

[0058] Generally, SecPAL statements are in the form of assertions made

by a security principal. Security principals are typically identified by

16

WO 2008/030876 PCT/US2007/077641

cryptographic keys so that they can be authenticated across system boundaries.
In their simplest form, an assertion states that the principal believes a fact is
valid (e.g., as represented by a claim 506 that includes a fact portion 508).
They may also state a fact is valid if one or more other facts are valid and some
set of conditions are satisfied (e.g., as represented by a claim 506 that extends
from a fact portion 508 to an if portion 510 to conditional fact portions
508(1...n) to a ¢ portion 512). There may also be conditional facts 508(1...n)
without any constraints 512 and/or constraints 512 without any conditional
facts 508(1...n).

[0059] In a described implementation, facts are statements about a
principal. Four example types of fact statements are described here in this
section. First, a fact can state that a principal has the right to exercise an

bE

action(s) on a resource with an “action ver Example action verbs include,
but are not limited to, call, send, read, list, execute, write, modify, append,
delete, install, own, and so forth. Resources may be identified by universal
resource indicators (URIs) or any other approach.

[0060] Second, a fact can express the binding between a principal
identifier and one or more attribute(s) using the “possess” verb. Example
attributes include, but are not limited to, email name, common name, group
name, role title, account name, domain name server/service (DNS) name,
internet protocol (IP) address, device name, application name, organization
name, service name, account identification/identifier (ID), and so forth. An

example third type of fact is that two principal identifiers can be defined to

represent the same principal using the “alias” verb.

17

WO 2008/030876 PCT/US2007/077641

[0061] “Qualifiers” or fact qualifiers may be included as part of any of
the above three fact types. Qualifiers enable an assertor to indicate
environmental parameters (e.g., time, principal location, etc.) that it believes
should hold if the fact is to be considered valid. Such statements may be
cleanly separated between the assertor and a relying party’s validity checks
based on these qualifier values.

[0062] An example fourth type of fact is defined by the “can assert”
verb. This “can assert” verb provides a flexible and powerful mechanism for
expressing trust relationships and delegations. For example, it allows one
principal (A) to state its willingness to believe certain types of facts asserted by
a second principal (B). For instance, given the assertions “A4 says B can assert
fact0” and “B says fact()”, it can be concluded that A believes factO to be valid
and therefore it can be deduced that “A4 says fact0”.

[0063] Such trust and delegation assertions may be (i) unbounded and
transitive to permit downstream delegation or (ii) bounded to preclude
downstream delegation. Although qualifiers can be applied to “can assert” type
facts, omitting support for qualifiers to these ‘“can assert” type facts can
significantly simplify the semantics and evaluation safety properties of a given
security scheme.

[0064] In a described implementation, concrete facts can be stated, or
policy expressions may be written using variables. The variables are typed and
may either be unrestricted (e.g., allowed to match any concrete value of the
correct type) or restricted (e.g., required to match a subset of concrete values

based on a specified pattern).

18

WO 2008/030876 PCT/US2007/077641

[0065] Security authorization decisions are based on an evaluation
algorithm (e.g., that may be conducted at authorization engine 218) of an
authorization query against a collection of assertions (e.g., an assertion context)
from applicable security policies (e.g., a security policy 220) and security
tokens (e.g., one or more security tokens 204). Authorization queries are
logical expressions, which may become quite complex, that combine facts
and/or conditions. These logical expressions may include, for example, AND,
OR, and/or NOT logical operations on facts, either with or without attendant
conditions and/or constraints.

[0066] This approach to authorization queries provides a flexible
mechanism for defining what must be known and valid before a given action is
authorized. Query templates (e.g., from authorization query table 224) form a
part of the overall security scheme and allow the appropriate authorization
query to be declaratively stated for different types of access requests and other

operations/actions.

EXAMPLE IMPLEMENTATIONS FOR
SECURITY AUTHORIZATION QUERIES
[0067] Existing security policy languages follow one of two approaches.
Some prevent the use of negations in all ways and at all times. This approach
does reduce the attendant inconsistencies and uncertainties that can arise from
negations. However, it is also limiting inasmuch as many security scenarios
are rendered far more difficult to handle and some security scenarios simply
cannot be handled at all. The other approach places no limitations on the use of
negations. Although this approach is more flexible, it presents the possibility

of establishing security policies that are convoluted or even nondeterministic.

19

WO 2008/030876 PCT/US2007/077641

[0068] In contrast, a described implementation creates a security scheme
with multiple levels. In a bifurcated security scheme implementation, for
example, there are two levels. A first level forbids the use of negations. This
can be enforced using, for example, validations on syntax. A second level
permits the use of negations. This bifurcated security scheme combines the
safety and certainty of ensuring that security assertions are tractable and
determinable with the flexibility of handling exclusionary security rules.

[0069] FIG. 6 is a block diagram illustrating an example bifurcated
security scheme 600 having a first level and a second level. As illustrated, the
first level comprises an assertion level 602, and the second level comprises a
query level 604. Assertion level 602 includes multiple assertions 606 and a
syntactic validator 614. Query level 604 includes an example authorization
query 616 having multiple parts. Examples for these multiple parts include, but
are not limited to, asserted facts 608 and logical operators 610 and 612.

[0070] In a described implementation, assertion level 602 is populated
with assertions 606. Assertions 606 may be any type of declarative security
statement at the assertion level. Examples of assertions 606 include, but are
not limited to, token assertions and policy assertions. (These two assertion
types are illustrated separately and explicitly in FIG. 7.) Negations are not
allowed within security assertions 606. Syntactic validator 614 analyzes each
assertion 606 to check if a negation is present. If a negation is present within a
given assertion 606, then the given assertion 606 is rejected or disallowed.
[0071] Query level 604 is populated with authorization queries such as
example authorization query 616. Authorization queries of query level 606 are

permitted to include negations, such as NOT operator 612. Authorization

20

WO 2008/030876 PCT/US2007/077641

queries may be structured in any manner. Although not specifically shown in
FIG. 6, authorization queries may in general include one or more logical
constraints.

[0072] In example authorization query 616, the query is structured as a
Boolean logical operation. Such Boolean logical operations may include any
number of asserted facts 608, any number of logical operators, and so forth.
The asserted facts, logical operators, etc. may be combined in any manner.
Example logical operators include, but are not limited to, AND, OR, NOT, and
so forth. As illustrated, example authorization query 616 includes: three
asserted facts 608, two AND operators 610, and one NOT operator 612.

[0073] Whether or not an asserted fact 608 is true depends on whether or
not a valid matching assertion 606 can be deduced. After this matching
determination procedure is completed, the resulting logical Boolean operation
is evaluated. In the case of example authorization query 616, NOT operator
612 is applied to the TRUE/FALSE determination of the far right asserted fact
608 prior to applying AND operators 610. If the overall Boolean operation is
evaluated to TRUE, then the authorization decision is affirmative. If the
overall evaluation of the Boolean operation is FALSE, then the authorization
decision is negative.

[0074] An example interrelationship between assertions 606 and
authorization queries (e.g., example authorization query 616) is presented
below in the description of FIGS. 7-10. An authorization query is ascertained
responsive to a request, which may include or otherwise be associated with one

or more assertions 606. The authorization query is then evaluated in

21

WO 2008/030876 PCT/US2007/077641

conjunction with an overall assertion context, which includes assertions 606.
The assertion context typically includes token assertions and policy assertions.
[0075] FIG. 7 is a general block diagram 700 illustrating an example
authorization query ascertainment and an example authorization query
evaluation. Block diagram 700 includes a number of the security-related
components from FIGS. 2 and 3. As illustrated, it includes an authorization
context 212, a resource guard 214, an authorization engine 218, and a security
policy 220. Security policy 220 contains an authorization query table 224.
Authorization engine 218 includes an evaluation algorithm 708.

[0076] In a described implementation, authorization context 212
includes an assertion context 702. Assertion context 702 is a collection of
assertions 606. Specifically, assertion context 702 includes token assertions
606T and policy assertions 606P. Token assertions 606T derive from a
security token (e.g., security token 204 of FIGS 2 and 3). The security token
may be passed as part of and/or along with a resource access request. Policy
assertions 606P derive from a trust and authorization policy (e.g., a trust and
authorization policy 222 module (of FIG. 2) of security policy 220).

[0077] Assertion context 702 is forwarded to resource guard 214. A
request 704 is presented to resource guard 214. Request 704 is a request to
access some resource. Resource guard 214 translates the request into an
operation. The operation is provided to authorization query table 224.
Authorization query table 224 maps resource-specific operations to
authorization queries. In an example implementation, each operation is
associated with a single authorization query. In response to the provided

operation, security policy 220 ascertains the associated authorization query 706

22

WO 2008/030876 PCT/US2007/077641

and returns authorization query 706 to resource guard 214. Ascertaining
authorization query 706 using an authorization query table 224 is described
further herein below with particular reference to FIG. 8.

[0078] Hence, resource guard 214 includes both assertion context 702
and authorization query 706. Resource guard 214 forwards assertion context
702 and authorization query 706 to evaluation algorithm 708 of authorization
engine 218. Evaluation algorithm 708 comprises logic that is capable of
evaluating authorization query 706 in conjunction with assertion context 702.
The logic may be implemented with hardware, software, firmware, some
combination thereof, and so forth.

[0079] Thus, assertion context 702 is applied to authorization query 706
in evaluation algorithm 708. After a logical analysis, evaluation algorithm 708
produces an authorization decision 710. Evaluating an authorization query 706
in conjunction with an assertion context 702 is described further herein below
with particular reference to FIG. 9.

[0080] Generally, a security language having the characteristics as
described herein makes complex access control criteria relatively simple to
write in a declarative manner and relatively simple to understand. It is
compatible with any authorization algorithm that exposes a set of valid facts
deduced based on an input policy and authenticated requestor data. As
described further herein, it is based on the concept of an authorization query
that 1s combined with an authorization decision algorithm in conjunction with
an assertion context.

[0081] In a described implementation generally, an authorization query

includes a set of asserted facts along with a constraint. The asserted facts are of

23

WO 2008/030876 PCT/US2007/077641

the form “A says fact”. They express a requirement that a matching valid
assertion can be deduced (e.g., from the assertion context). If such a matching
valid assertion is known, then the asserted fact is satisfied and evaluates to the
Boolean value True; otherwise, it evaluates to False. (In some
implementations, the assertor of the fact may be known implicitly based on the
evaluation context. In these cases, it may be omitted.) A constraint is an
expression that returns a Boolean value. This may include variables used in the
asserted facts as well as references to environmental values (e.g., time,
location, etc.). The constraint is typically used to express variable equalities
and inequalities.

[0082] There is at least one asserted fact in each query. If multiple
asserted facts are present, they may be combined using logical operators such
as AND, OR, and NOT. The optional constraint is logically ANDed with the
asserted facts.

[0083] A consequence of this approach is that the basic access control
policy may be written in terms of positive statements about the access each
principal 1s authorized without concern for the higher level structural
requirements. Thus, in multiple principal policies, one can write each policy
stating what rights to a resource each principal should potentially have. Such
security policies are monotonic in the sense that the addition of new policy
statements does not remove any existing access right. Moreover, one can write
positive access policies indicating what rights a principal has to a set of
resources without worrying about potential conflicts or inconsistencies. The
authorization query provides the higher level semantics for combining these

access control rules.

24

WO 2008/030876 PCT/US2007/077641

[0084] For example, if one required (i) a user with a “fabrikam.com”
email address and (i1) the application with code digest value “ABC” to grant
read access to “Foo”, the access control rules may be written as follows:
A says p read Foo if p possess r{(emailName,
*@fabrikam.com)}
A says p read Foo if p possess r{digest, ABC}
To ensure both a user and an application are authenticated requestors, an
example authorization query is:
A says vl read Foo AND A says vI possess
r{(emailName,*)} AND 4 says v2 read Foo AND A4
says v2 possess {(digest,*)}
[0085] Similarly, to require two authorized principals with
“fabrikam.com” email addresses to have requested access to “Foo”, the
following security policy may be written:
A says p read Foo if p possess r{(emailName,
*@fabrikam.com)} ,
and it may be combined with the following authorization query:
A say pl read Foo AND A4 says p2 read Foo AND (pl =
p2).
In the above authorization query, the portion indicating that the “p1” variable
cannot equal the “p2” variable is a constraint.
[0086] Denies or exclusions may be appropriately handled using this
approach. For example, it is given that members of group A have read access

to Foo and members of group B have read access to Bar, but simultaneous

25

WO 2008/030876 PCT/US2007/077641

access 1s not allowed. One can enable the desired access with a security policy
having two policy assertions written as follows:

A says p read Foo if p possess r{(group, A)}

A says p read Bar if p possess r{(group, B)} .
The exclusion can then be enforced using the following authorization query:

(4 says v read Foo OR 4 says v read BAR) AND NOT (4

says v read Foo AND A says v read BAR) .

In a similar manner, one can exclude being in two roles at the same time,
having multiple access rights (e.g., both read and delete) to a given resource at
the same time, and so forth.
[0087] FIG. 8 is a more-specific block diagram illustrating an example
authorization query ascertainment 800 that is responsive to a resource access
request 704. As illustrated, authorization query ascertainment 800 includes a
request 704 having an identified resource 802, a translation function 804, an
operation 806, an authorization query table 224, and an authorization query
706. Authorization query ascertainment 800 involves receiving a request 704
as input and producing an associated authorization query 706 as output.
[0088] In a described implementation, request 704 is a request to access
some identified resource 802. Request 704 is translated via a translation
function 804 into a resource-specific operation 806. This translation function
804 may be performed by, for example, resource guard 214 (of FIG. 7).
Examples of resource-specific operations include, by way of example but not
limitation, (i) reading and/or writing a file, (i1) sending data through a
communications port, (ii1) utilizing a processor, (iv) executing an application,

and so forth.

26

WO 2008/030876 PCT/US2007/077641

[0089] Generally, operation 806 is provided to authorization query table
224. Security policy 220, for example, may be responsible for applying
operation 806 to authorization query table 224 and retrieving the associated
authorization query 706. Authorization query 706 is produced as a result and
returned to resource guard 214.

[0090] More specifically, authorization query table 224 includes
multiple fields 808. Each field 808 maps a resource-specific operation to an
associated authorization query template. As illustrated, there are “t”, with “f”
being some integer, fields 808(1), 808(2) ... 808(f) in authorization query table
224. A retrieved authorization query template is returned to resource guard
214. Resource guard 214 then performs a substitution procedure to produce
authorization query 706. In other words, to create authorization query 706,
resource guard 214 substitutes the actual requesting principal, the actual
requested resource, etc. into predetermined corresponding slots of the
associated authorization query template.

[0091] FIG. 9 is a more-specific block diagram illustrating an example
authorization query evaluation 708* given an assertion context 702*. As
described generally above with reference to FIG. 7, evaluation algorithm 708
receives an authorization query 706 and an assertion context 702. In the
specific example authorization evaluation 708* of FIG. 9, a specific example
authorization query 706* is evaluated in conjunction with a specific example
assertion context 702*. Actual assertion contexts 702, authorization queries
706, and evaluation algorithms 708 may differ from these examples.

[0092] As illustrated, example authorization query evaluation 708*

includes an example assertion context 702*, an example authorization query

27

WO 2008/030876 PCT/US2007/077641

706*, a resulting Boolean operation 910, and an answer 912. Assertion context
702* includes (i) three token assertions 606T-1, 606T-2, and 606T-3 and (i1)
two policy assertions 606P-1 and 606P-2. Example authorization query 706*
includes three asserted facts 608-1, 608-2, and 608-3; two AND operators 610;
one NOT operator 612; and one constraint 902.

[0093] During an evaluation, authorization engine 218 (of FIG. 7)
attempts to determine if a valid matching assertion 606 can be deduced for each
asserted fact 608 of authorization query 706*. This matching determination
process may be iterative, recursive, and/or branching as one valid assertion
leads to another possibly-valid assertion. After some definite period of time,
the matching determination process converges.

[0094] Example authorization query evaluation 708* of FIG. 9 illustrates
a simplified evaluation algorithm to facilitate a general understanding of the
conceptual underpinnings of evaluating an authorization query. A more
specific and technically accurate explanation is presented below after the
description of FIG. 9. Moreover, a relatively-rigorous, logical description of an
example implementation is presented herein below after the description of FIG.
10.

[0095] In example authorization query evaluation 708%*, it is determined
by authorization engine 218 that token assertion 606T-2 is valid and matches
904 asserted fact 608-1. It is also determined that policy assertion 606P-2 is
valid and matches 906 asserted fact 608-2 and that token assertion 606T-3 is
valid and matches 908 asserted fact 608-3. Although token assertion 606T-1
and policy assertion 606P-1 do not explicitly match a particular asserted fact

608, they may have been used in the matching determination process.

28

WO 2008/030876 PCT/US2007/077641

Additionally, a TRUE/FALSE determination is made with respect to constraint
902.

[0096] After and/or during the matching determination process, a
TRUE/FALSE replacement process is carried out to create a Boolean operation
910. If a particular asserted fact 608 has a matching valid assertion 606, the
particular asserted fact 608 is replaced with “TRUE”. If not, the particular
asserted fact 608 is replaced with “FALSE”. Any constraints 902 are likewise
replaced with their determined “TRUE” or “FALSE” status. Although not
specifically shown with authorization query 706*, constraints 902 are logically
ANDed to the remainder of the authorization query.

[0097] For example authorization query evaluation 708*, authorization
query 706* may be textually indicated as follows: asserted fact 608-1, AND
operator 610, asserted fact 608-2, AND operator 610, NOT operator 612,
asserted fact 608-3, and constraint 902. After the replacement process, the
resulting Boolean operation may be textually indicated as follows: TRUE AND
TRUE AND NOT TRUE AND TRUE. This reduces to: TRUE AND TRUE
AND FALSE AND TRUE, which is logically FALSE.

[0098] Consequently, answer 912 for Boolean operation 910 1is
“FALSE”. Hence, authorization decision 710 is to deny the request. If, on the
other hand, there had not been, for example, a matching 908 assertion 606 for
asserted fact 608-3, Boolean operation 910 would have reduced to: TRUE
AND TRUE AND TRUE AND TRUE, which is logically TRUE. In this case,
answer 912 would be “TRUE”, and authorization decision 710 would be to
permit the request. Although not explicitly shown or described, there are other

permutations in which Boolean operation 910 would evaluate to being logically

29

WO 2008/030876 PCT/US2007/077641

FALSE (e.g., if it were determined that there is no valid and matching 906
assertion 606 for asserted fact 608-2).

[0099] A more technically accurate example implementation for
evaluating an authorization query is described here. Firstly, the asserted facts
inside an authorization query are evaluated one at a time, and not necessarily
all at once prior to a complete replacement process. Secondly, the evaluation
of a single asserted fact inside an authorization query returns a set of variable
substitutions that make the asserted fact true. Thus, in general, the returned
value is not immediately a TRUE/FALSE status because facts are actually
denoted as having a TRUE/FALSE status with respect to a given variable
substitution.

[0100] If the connective between two asserted facts inside an
authorization query is AND (as is the case in the example of FIG. 9), the
returned value (i.e., the set of substitutions) of the fact on the left hand side is
applied to the fact on the right hand side. Afterwards, the fact on the right hand
side is evaluated as necessary. The resulting sets of substitutions are then
combined by substitution composition. A result of evaluating the entire
authorization query is a set of substitutions, each substitution of the set of
substitutions capable of making the authorization query true.

[0101] FIG. 10 is a flow diagram 1000 that illustrates an example of a
method for ascertaining and evaluating an authorization query. Flow diagram
1000 includes eleven (11) blocks 1002-1022. Although the actions of flow
diagram 1000 may be performed in other environments and with a variety of
hardware/software/firmware combinations, some of the features, components,

and aspects of FIGS. 1-9 are used to illustrate an example of the method. For

30

WO 2008/030876 PCT/US2007/077641

example, a resource guard 214, an authorization query table 224, and/or an
authorization engine 218 may separately or jointly implement the actions of
tlow diagram 1000.

[0102] In a described implementation, at block 1002, a request to access
a resource is received. For example, a request 704 that identifies a resource
802 may be received. At block 1004, the request is translated to an operation
on resource. For example, a resource guard 214 may translate 804 request 704
into a resource-specific operation 806.

[0103] At block 1006, the operation is provided to an authorization
query table. For example, resource-specific operation 806 may be provided to
authorization query table 224. At block 1008, an authorization query that is
associated with the operation is ascertained. For example, a field 808 that
includes resource-specific operation 806 may be located. The associated
authorization query may then be retrieved from the located field 806.

[0104] More specifically, the retrieved authorization query may
comprise an authorization query template. The associated authorization query
template is converted into the authorization query by substituting actual
principals, resources, etc. into predetermined corresponding slots of the
authorization query template based on the security tokens provided by the
requestor. In an example implementation, resource guard 214, which knows
the actual variable information from request 704, performs this conversion by
substitution.

[0105] At block 1010, an assertion context and the authorization query

are combined in an evaluation algorithm. For example, an assertion context

31

WO 2008/030876 PCT/US2007/077641

702 and authorization query 706 may be jointly submitted to evaluation
algorithm 708.

[0106] At block 1012, the valid assertions of the assertion context are
matched to asserted facts of the authorization query in a matching
determination process. For example, one or more token assertions 606T and/or
policy assertions 606P, which are deducible from assertion context 702 (i.e.,
originally present therein and/or otherwise derivable there from), that are found
to be valid may be attempted to be matched 904/906/908 to asserted facts 608
in a matching determination process. Any constraint portions 902 of
authorization query 706 are also analyzed to determine whether they are TRUE
or FALSE. As noted above in the technical description, each assertion may be
analyzed separately and/or sequentially.

[0107] At block 1014, a TRUE/FALSE replacement into the
authorization query is performed responsive to the matching determination
process. For example, asserted facts 608 that are determined to have a valid
matching assertion 606 may be replaced with TRUE, and asserted facts 608
that are not determined to have a valid matching assertion 606 may be replaced
with FALSE in a Boolean operation 910. It should be understood that the
action(s) of block 1014 may be performed in a manner that is fully or partially
overlapping with the performance of the action(s) of block 1012.

[0108] At block 1016, the authorization query is logically evaluated. For
example, Boolean operation 910 may be logically evaluated as part of
evaluation algorithm 708 to determine if its answer is TRUE or FALSE. It

should be understood that a result of Boolean operation 910 may be

32

WO 2008/030876 PCT/US2007/077641

determinable, and indeed may be determined, without replacing each asserted
fact 608 and/or constraint 902 with a TRUE or FALSE status.
[0109] At block 1018, it is determined if the authorization query
logically evaluates to “TRUE”. If so, the authorization decision at block 1020
is that the request is granted. If, on the other hand, it is determined that the
authorization query logically evaluates to “FALSE”, the authorization decision
at block 1022 is that the request is denied. It should be understood that an
algorithmic evaluation of an authorization query that may have a “TRUE”
status may return a set of variables that renders the authorization query
“TRUE”.
[0110] Security authorization queries may also be described from a
relatively-rigorous, logical perspective. In a described logical implementation
of security authorization queries, authorization requests are decided by
querying an assertion context, which contains local as well as imported
assertions. In an example implementation, an authorization query may
comprise a collection of atomic queries of the form A says fact and constraints
c. These atomic queries and constraints are combined by logical connectives,
including negation. Example logical connectives include the following:
q = e says fact

e

| qrorq:

| not(q)

| ¢
[0111] The resulting query language is more expressive than in other

logic-based languages where only atomic queries are considered. For example,

33

WO 2008/030876 PCT/US2007/077641

separation of duties, threshold, and denying policies can be expressed by
composing atomic queries with negation and constraints. Negation is not
allowed at the assertion level of the language because coupling negation with a
recursive language results in semantic ambiguities, and often to higher
computational complexity or even undecidability. By restricting the use of
negation to the level of authorization queries (rather than adding these features
to the assertion language proper), the negation is effectively separated from
recursion, thereby circumventing the problems usually associated with
negation.

[0112] The semantics of queries are defined by the relation AC.6 |— g. In
the following, let AC be an assertion context. Also, let # be a substitution, and
let ¢ be the empty substitution. Let Dom(6) be the domain of the substitution 6.
If X is a phrase of syntax, let Vars(X) be the set of variables occurring in X. An

example formal semantics for authorization queries is as follows:

ACH |— e says fact if ed says factf 1s deducible from AC,
and Dom(6) < Vars(e says fact)
ACH,0, Fq1, ¢ if ACH) } ¢y and AC.0, | g26;
ACO Fqior ¢ if AC,0 } gy 0or AC,H } g5
ACe |— not(q) 1fAC,e |— g does not hold and Vars(g) = 0
ACe |—c if Vars(c)= 0 and c is valid .
[0113] Given a query ¢ and an authorization context AC, an

authorization algorithm returns the set of substitutions € such that AC.6 |- q. 1If
the query is ground, the answer set is either empty (meaning “no” the request is

denied) or a singleton set containing the empty substitution ¢ (meaning “yes”

34

WO 2008/030876 PCT/US2007/077641

the request is granted). If the query contains variables, then the substitutions in
the answer set are the variable assignments that make the query true.
[0114] With regard to authorization query tables, they may be part of the
local security policy and may be kept separate from imperative code. The table
provides an interface to authorization queries by mapping parameterized
method names to queries. Upon a request, the resource guard calls a method
(e.g., instead of issuing a query directly) that gets mapped by the table to an
authorization query, which 1s then used to query the assertion context.
[0115] For example, an authorization query table may contain the
following example mapping:

canAuthorizePayment(requester, payment) :

Admin says requester possesses BankManagerID id,
not(Admin says requester has initiated payment) .

If Alice attempts to authorize the payment Payment47, for instance, the
resource guard calls canAuthorizePayment(A4lice, Payment47), which triggers
the following query:

Admin says Alice possesses BankManagerID id,

not(Admin says Alice has initiated Payment47).
The resulting answer set (e.g., either an empty set if the request should be
denied or a variable assignment for id) is returned to the resource guard, which
can then enforce the policy.
[0116] The formal evaluation of security authorization queries may also
be described from a relatively-rigorous, logical perspective. The following
description assumes the existence of another algorithm that returns the set of

substitutions for which a given statement of the form “e says fact” is deducible

35

WO 2008/030876 PCT/US2007/077641

from an authorization context AC. Such an algorithm may, for example, rely
on translating AC into another logical language such as Datalog. The function

AuthAns ¢ 1s defined on authorization queries as follows:

AuthAns c(e says fact) = {0 | e says factf is deducible from AC
and Dom(6) < Vars(e says fact),!

AuthAnsAc(qj, Q2) = {9192 | 9] € AuthAnsAc(qj) and 92 € AuthAnsAc(qg 9])}
AuthAns,c(q;or q;) = AuthAnsac(q2) o AuthAnsc(q2)
AuthAnsc(not(q)) = {e} if Vars(q)= 0 and AuthAns,c(q)= 0
= 0 if Vars(q)= 0 and AuthAns,c(q)= 0

= undefined otherwise

AuthAnsyc(¢c) = {e} if Vars(c)= 0 and c is valid
= 0 if Vars(c)= 0 and c is not valid
= undefined otherwise
[0117] The following theorem shows that AuthAns,c is an algorithm for
evaluating safe authorization queries. This theorem represents the finiteness,
soundness, and completeness of authorization query evaluations: For all safe

assertion contexts 4 C and safe authorization queries ¢,

1. AuthAns,c(q) 1s defined and finite, and

2. AC, 0 } qiff Oc AuthAnsc (q).

[0118] The devices, actions, aspects, features, functions, procedures,

modules, data structures, protocols, components, etc. of FIGS. 1-10 are

36

WO 2008/030876 PCT/US2007/077641

illustrated in diagrams that are divided into multiple blocks. However, the
order, interconnections, interrelationships, layout, etc. in which FIGS. 1-10 are
described and/or shown are not intended to be construed as a limitation, and
any number of the blocks can be modified, combined, rearranged, augmented,
omitted, etc. in any manner to implement one or more systems, methods,
devices, procedures, media, apparatuses, APIs, protocols, arrangements, etc. for
security authorization queries.

[0119] Although systems, media, devices, methods, procedures,
apparatuses, mechanisms, schemes, approaches, processes, arrangements, and
other implementations have been described in language specific to structural,
logical, algorithmic, and functional features and/or diagrams, it is to be
understood that the invention defined in the appended claims is not necessarily
limited to the specific features or acts described above. Rather, the specific
features and acts described above are disclosed as example forms of

implementing the claims.

37

WO 2008/030876 PCT/US2007/077641

CLAIMS

What is claimed is:

1. A system comprising a security scheme that includes an
authorization query table, wherein the authorization query table includes
multiple fields with each field mapping a resource-specific operation to an

associated authorization query.

2. The system as recited in claim 1, wherein the associated
authorization query comprises an associated authorization query template

having one or more predetermined empty slots.

3. The system as recited in claim 2, wherein the security scheme
converts the authorization query template into the authorization query by
substituting at least one of an actual principal or an actual resource that relates
to the resource-specific operation into the one or more predetermined empty

slots.

38

WO 2008/030876 PCT/US2007/077641

4. The system as recited in claim 1, wherein the security scheme
evaluates the associated authorization query in conjunction with an assertion
context having multiple assertions, at least one assertion of the multiple
assertions relating to the resource-specific operation; and wherein the security
scheme further includes a syntactic validator that disallows any assertions

having a negation element.

5. The system as recited in claim 4, wherein the authorization query
table includes at least one field having an authorization query that includes a

negation operator.

6. The system as recited in claim 1, wherein the security scheme
provides the associated authorization query and an assertion context having
multiple assertions to an authorization engine, the assertion context including
multiple assertions with at least one assertion relating to the resource-specific
operation; and wherein the authorization engine evaluates the associated
authorization query in conjunction with the assertion context to make an

authorization decision.

7. The system as recited in claim 6, wherein the associated
authorization query includes multiple asserted facts; and wherein the
authorization engine attempts to match valid assertions deduced from the

assertion context to the asserted facts of the associated authorization query.

39

WO 2008/030876 PCT/US2007/077641

8. The system as recited in claim 7, wherein individual asserted
facts of the associated authorization query can be effectively replaced by a
“TRUE” Boolean status if a valid matching assertion can be deduced from the
assertion context and can be effectively replaced by a “FALSE” Boolean status

if a valid matching assertion cannot be deduced from the assertion context.

9. The system as recited in claim 8, wherein if an individual
asserted fact can be effectively replaced by a “TRUE” Boolean status, the
authorization engine produces a set of variable substitutions that are capable of

rendering the individual asserted fact TRUE.

10. A method with an authorization query table in a security scheme,
the method comprising:

providing a resource-specific operation to the authorization query table;
and

ascertaining an authorization query that is associated with the resource-

specific operation using the authorization query table.

40

WO 2008/030876 PCT/US2007/077641

11. The method as recited in claim 10, further comprising:

receiving at a resource guard module a request to access an identified
resource on behalf of a principal; and

translating at the resource guard module the request into the resource-
specific operation;

wherein the providing and the ascertaining are effected by a security

policy module.

12. The method as recited in claim 11, wherein the ascertained
authorization query comprises an authorization query template having one or
more predetermined empty slots; and wherein the method further comprises:

converting at the resource guard module the authorization query
template into the ascertained authorization query by substituting the identified

resource and the principal into the one or more predetermined empty slots.

41

WO 2008/030876 PCT/US2007/077641

13. The method as recited in claim 10, further comprising:

applying (1) an assertion context derived from the resource-specific
operation and (ii) the ascertained authorization query to an evaluation
algorithm;

matching valid assertions of the assertion context to asserted facts of the
ascertained authorization query;

performing a TRUE/FALSE replacement process on the ascertained
authorization query responsive to the matching;

logically evaluating the ascertained authorization query after the
performing;

if the ascertained authorization query logically evaluates to TRUE,
deciding to authorize the resource-specific operation; and

if the ascertained authorization query logically evaluates to FALSE,

deciding to deny the resource-specific operation.
14. A device implementing a bifurcated security scheme having a
first level and a second level; wherein the first level does not allow usage of

negations, and the second level does permit usage of negations.

15. The device as recited in claim 14, wherein the first level

comprises an assertion level.

16. The device as recited in claim 15, wherein the assertion level is

populated by token assertions and policy assertions.

42

WO 2008/030876 PCT/US2007/077641

17. The device as recited in claim 15, wherein the bifurcated security
scheme comprises a syntactic validator that disallows any assertion containing

a negation.

18. The device as recited in claim 14, wherein the second level

comprises a query level.

19. The device as recited in claim 18, wherein the query level is
populated by authorization queries that are formed at least from asserted facts
and logical operators; wherein the logical operators comprise AND, OR, and
NOT; and wherein each authorization query is associated with a resource-

specific operation.

20. The device as recited in claim 14, wherein the first level
comprises an assertion level that is populated by assertions; wherein the second
level comprises a query level that is populated by authorization queries that are
formed at least from asserted facts; and wherein the bifurcated security scheme
evaluates a particular authorization query by attempting to match valid
assertions from the assertion level to one or more asserted facts of the

particular authorization query.

43

WO 2008/030876 PCT/US2007/077641

1/10
5
|
|
|
| Device
: Device 102(d)
| 102(1
|
|
|
|
|
: Network
| 104
|
|
|
|
: Service Device
| 108 102(2) Device Resource
: 102(3) 110
|
|
|
|
| rF- - T T T N r- - T T T N r- - - T = N
I | Security | | Security | | Evaluation |
I | Tokens | | Policies | | Engine |

| | |
: : 100(A) | : 100(B) | : 100(C) |
I D ——— 4 [——— — e —— —— ——
|
I]
| Security Scheme 100
l /

——— — —— —— —— SE—— S S S S S S S S S S S S I S S S S S S S S S S S S S e —— e—— e— —

WO 2008/030876 PCT/US2007/077641

210
. Authority
Device 102(A) (Security Token
Service (STS))
Security Token 202
204
Ll < Issues
Assertion(s)
206
Application
210
Device 102(B
Authorization Context Security Policy
212 220
Trust &
Authorization
Policy
Resource Resource Guard -
— LLL
110 214
Authorization
Audit Log Query Table
216 224
Audit
Authorization Engine Policy
218 226

ZOOJ FIG- 2

WO 2008/030876 PCT/US2007/077641
3/10
Device 102(A)
, Authority
|l Security Token ’ Issuance (STS)
204 202
Application
pp Y
Access Authenticate
Request {/w/ Token
v Token
! | Assertions
| 4 ,(:>
Resource RG > AC
110 — 1 214 212 <
— e «—
Policy
Assertions
Access | Auth. Query
Granted glit: éllj;h' Table |
? : > SP
AE (Audit Policy 220
218
: Assertion
Audit
Context
Record
AL
216
Device 102(B)

FIG. 3

WO 2008/030876 PCT/US2007/077641

4/10
Network
Man-Machine 104
Interface i
Devices
Device 102(A/B
202 % / M
(E.g., Keyboard, \
Remote, Etc.) N Input/Output 404 Device
Interfaces —
e
102(d)
Processor(s) 406
Media 408
Processor-
Executable 410
Instructions
(=~)
Security Token 204 Assertion(s) 206
Authorization Context Resource Guard
212 214
Audit Log Authorization Engine
216 218
Security Policy 220
Trust & Authorization Audit
Authorization | 1’y o Taple Polic
Policy y y
202 224 226

FIG. 4

500 J

FIG

. D

WO 2008/030876 PCT/US2007/077641
5/10
principal says claim
502 504 506
principal says fact if fact, fact, c
(Y X)
502 504 508 510 | | 208(1) 508(n) 912
(\ Legend 24
e — expression
e verbphrase ¢ — constraint
514 516
constant predicate €1.n
514(c) 518 514(1-n)
variable can assert fact
914(v) 520 508
alias e
522 514

Example
Assertion

Format

WO 2008/030876 PCT/US2007/077641

2

Assertion Level

Assertion Assertion Assertion Assertion
606 606 606 606

Syntactic Validator

614

Negations Not Allowed
in Security Assertions

04

Query Level

Asserted |[[aANDI|| Asserted Asserted
Fact Fact Fact
608 610 608 610 |] 612 608

Example

Authorization Queries

{ Negations Permitted in

Bifurcated Security Scheme

Authorization Query

616

——— — —— —— —— SE—— S S S S S S S S S S S S I S S S S S S S S S S S S S e —— e—— e— —

WO 2008/030876 PCT/US2007/077641

710
Auth. Context 212
Assertions > Context € Assertions
606T 606P
{ Assertion
¢ Context}
l 702
Resource Guard
214
Security Policy 220
Request Request Operation
> » Authorization
704 Query Table
< I 224
Authrztn.
Query
706
{ Assertion Authorization Engine
Context } 218
702 Assertion Context
- >
Authrztn.Query
>
Authrztn. Evaluation
Query Algorithm
706 Authrztn.
- Decision 108
710
]

Ascertainment and Evaluation

700_] F I G 7 Example Authorization Query

WO 2008/030876

Request 704

8/10

Identified
Resource

802

Operation 806

Identified
Resource

802

Translation
804

(E.g., by
Resource Guard)

PCT/US2007/077641

800 —j

Authorization Query Table
. Authorization Query
Operation < —) Template 808(1
. Authorization Query
Operation < —) Template 808(2
°
®
°
. Authorization Query
Operation < —) Template 808(f
Authorization
Query Example
706 Ascertainment
of
Authorization
FIG. 8 Query

Authorization Query

Evaluation

FIG. 9

WO 2008/030876 PCT/US2007/077641
— 9/10
Policy
Tokeln Assertion
Assertion
606P-1
Token 606T-3 -
Assertion
Assertion
Context < 606T-1
* POllcy
oz Assertion
606P-2 908
Token
Assertion
606T-2
~— 906
904
—
Author-
ization Asserted |[[aNDI|| Asserted |[[aNDI| NOT || Asserted c
Query < Fact Fact Fact
608-1 ||€10|[eos-2 |[|810]| 812 [e08-3 || 202
706*
N
—
Boolean TRUE ||AND|| TRUE ||anD||NOT|| TRUE ||AND||TRUE
Operatlon<
910 608-1 610 || 608-2 || 610 || 612 608-3 || 610 || 202
N
Authorization
Answer: Decision:
FALSE :> Deny
912 Request
708*J 710
Example

WO 2008/030876

10/10
—1002

'

Receive request to access resource

!

_—1004

PCT/US2007/077641

—1010

Translate request to operation on
resource

Combine assertion context (AC) and
authorization query in evaluation
algorithm

!

_—1006

!

—1012

Provide operation to authorization
query table

Match valid assertions of AC to
asserted facts of authorization query

!

—1008

¢ —1014

Ascertain authorization query
associated with operation

Perform TRUE/FALSE replacement
into authorization query responsive to
matching determination process

!

—1016

B

Logically evaluate authorization query

—1022

Authorization Decision:
Deny Request

Authorization
Query
Ascertainment
and
Evaluation

FIG.

1018

Authorization query
logically evaluate
to TRUE ?

Yes
S~ 1020

Authorization Decision:
Grant Request

1 O L’IOOO

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2007/077641

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 15/00(2006.01)i, HO4L 9/32(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 8 GO6F, HO4L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models since 1975
Japanese Utility models and applications for Utility models since 1975

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKIPASS(KIPO internal), IEEE(http://iecexplore.ieee.org/) & Keyword: security, language and assertion

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2005 0132220 A1 (DAVID YU CHANG et al.) 16 June 2005 1-20
See abstract, Paragraph [0044]-[0050] & Fig. 4

A JP 11-15663 A (FUJI XEROX CO. L.TD.) 22 January 1999 1-20
See the whole document

A MORITZ Y. BECKER et al. 'Cassandra:Distributed Access Control Policies with Tunable 1-20
Expressiveness' In:Proceedings of the Fifth IEEE International Workshop on Policies for
Distributed System and Networks(POLICY'04), 7-9 June 2004, pp 159-168, ISBN 0-7695-2141-X
See the whole document

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
22 JANUARY 2008 (22.01.2008) 22 JANUARY 2008 (22.01.2008)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701, YEO, Won Hyeon
. Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-5696

Form PCT/ISA/210 (second sheet) (April 2007)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2007/077641
Patent document Publication Patent family Publication
cited in search report date member(s) date
US2005132220A 1 16.06. 2005 None None
JP11-15663A 22.01.1999 None None

Form PCT/ISA/210 (patent family annex) (April 2007)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - wo-search-report
	Page 57 - wo-search-report

