wo 2016/191639 A1 |11 N0F V0 0O O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/191639 Al

1 December 2016 (01.12.2016) WIPO | PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 11/34 (2006.01) GO6F 11/07 (2006.01) kind of national protection available). AE, AG, AL, AM,
GO6F 11/30 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
21) International Apolication Number- BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(21) International Application Number: DO, DZ, EC, FE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
PCT/US2016/034536 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
27 May 2016 (27.05.2016) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
. PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
(25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
(26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: (84) Designated States (unless otherwise indicated, for every
62/167,851 28 May 2015 (28.05.2015) Us kind Of regional protection available): ARIPO (BW, GH,
62/199,895 31 July 2015 (31.07.2015) Us GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
62/245,706 23 October 2015 (23.10.2015) Us TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
15/165,298 26 May 2016 (26.05.2016) us TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, FE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
(71) Applicant: ORACLE INTERNATIONAL CORPORA- LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
TION [US/US]; 500 Oracle Parkway, M/S 50P7, Red- SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ,
wood Shores, California 94065 (US). GW, KM, ML, MR, NE, SN, TD, TG).
(72) Inventor: AHAD, Rafiul; Fremont, California (US). Published:

74

Agents: SHAH, Mehul et al; Kilpatrick Townsend &
Stockton LLP, Two Emcarcader Center, Eighth Floor, San
Francisco, California 94111 (US).

with international search report (Art. 21(3))

(54) Title: AUTOMATIC ANOMALY DETECTION AND RESOLUTION SYSTEM

OWPONENT {ASC) 318
! AND RESOLUTION SYSTEM

5)

L06 RESERVOIR AND ANALVTICS SVETEM
(LRAS) 326

COWPONENT
«»| RESOURCE
LisER

Resource Foal 372

480 CONTAINER NAMESPACE f

F ConTangr Nauespace 310
¥ v

Resoures PooL 362

FIG. 3

(57) Abstract: An anomaly detection and resolution system (ADRS) is disclosed for detecting and resolving anomalies in computing
environments. The ADRS may be implemented using an anomaly classification system defining different types of anomalies (e.g., a
defined anomaly and an undefined anomaly). A defined anomaly may be based on bounds (fixed or seasonal) on any metric to be
monitored. An anomaly detection and resolution component (ADRC) may be implemented in each component defining a service in a
computing system. An ADRC may be configured to detect and attempt to resolve an anomaly locally. If the anomaly event for an an -
omaly can be resolved in the component, the ADRC may communicate the anomaly event to an ADRC of a parent component, if one
exists. Each ADRC in a component may be configured to locally handle specific types of anomalies to reduce communication time
and resource usage for resolving anomalies.

10

15

20

25

WO 2016/191639 PCT/US2016/034536

AUTOMATIC ANOMALY DETECTION AND RESOLUTION SYSTEM

CROSS-REFERENCES TO RELATED APPLICATIONS

[0001] The present application claims the benefit and priority of U.S. Non-Provisional
Patent Application No. 15/165,298, filed on May 26, 2016, entitled “AUTOMATIC
ANOMALY DETECTION AND RESOLUTION SYSTEM,” which claims the benefit and

priority of the following applications:

1) U.S. Provisional Application No. 62/167,851, filed May 28, 2015, entitled

“Automatic Anomaly Detection and Resolution”;

2) U.S. Provisional Application No. 62/199,895, filed July 31, 2015, entitled “Automatic

Anomaly Detection and Resolution”; and

3) U.S. Provisional Application No. 62/245,706, filed October 23, 2015, entitled

“Automatic Anomaly Detection and Resolution.”

[0002] The entire contents of each of the above-identified patent applications are

incorporated herein by reference for all purposes.
BACKGROUND

[0003] Cloud computing is a model for enabling convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services). The services provided or accessed through cloud computing,
such as via a network, can be referred to as cloud services. There is a lot of processing that
needs to be performed by a cloud service provider to make cloud services available to a
subscribing customer. Due to its complexity, much of this processing is still done manually.
For example, provisioning resources for providing such cloud services can be a very labor

intensive process.

[0004] Data centers supporting cloud computing systems tend to be very large in size,
comprising thousands of compute and storage servers and hundreds of network and other
devices. For example, recent statistics suggest that there are 80,000 or more virtual machines
with 540 PB or more storage utilized for cloud computing systems provided globally by
Oracle Corporation. There are at least 19 Tier 4 data centers 62 million or more active users

resulting 30 billion or more transaction daily. Manual administration of the cloud data

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

centers, even using command tools such as MCollective or Chef and monitoring tools such
Graphite, can increase the cost of cloud services and can reduce the quality of services. Such
tools may not react to and correct potential anomalies in system behavior, such as those

affecting service level agreement (SLAs) and security breaches in a timely manner.

[0005] Some cloud computing system providers have implemented system to diagnose and
correct problems detected in their cloud computing systems; however, the details as to how
such systems are configured to detect problems have not been defined for the entire cloud
computing system. Some have implemented machine learning algorithms to assess log files
and/or developed training data to establish what is normal systems behavior. The log files
and/or the data may be compared to normal patterns and any significant deviation is reported
as anomaly. Multi-variate analysis techniques (e.g., MSET) can compare multiple log files at
the same time. Inferring normal behavior from the log files alone via unsupervised machine
learning techniques can be prone to errors. Computing issues identified solely on log files
without regard to the system topology, processing flows, or log relationships can introduce a
lot of noise as irrelevant combinations of log files may be analyzed that may adversely affect
the diagnosis of issues. The possible errors detected and reported by such systems are so
broad that it is not amenable to programmatic corrective action. Human beings may need to

be involved to address the problems.

[0006] Anomalies in a cloud computing system or an enterprise computing system can be
caused by many factors including load spikes, component failures, and/or malicious use of
the system and they are manifested in increased resource usage, deteriorating key
performance indicators (KPI), and spikes in errors in one or more containers. As a result of
the challenges described above, quality of service (QoS) guarantees for service-level
agreements (SLA) may often not be met. Any given time, millions of hardware and software
components can fail at any given time in a cloud computing system and enterprise computing
systems. User and operators alike can contribute to human errors and unexpected loads that
cause anomalies. Malicious users can lead to outages affecting millions of users. These
circumstances can lead to unsatisfactory QoS, resulting in violation of SLAs for cloud

computing environments.

[0007] To deal with anomalies, some have attempted to monitor anomalies in near real time.
These approaches involve collecting the state (metrics, logs, etc.) of the environment in a

centralized storage and programmatically analyzing the state for anomalies. Collection of the

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

state of the environment may incur latency due to communication and aggregation of such
data. The analysis involves additional time and the result has to be communicated to the
operations staff for manual correction of the anomaly following guidelines and scripts. Such
corrective action may result in long latencies between the time the anomaly occurred and the
time corrective action is taken. Collection and analysis of all log entries and metrics may be
an inefficient use of resources, as most data in the log files correspond to normal conditions.
The data may provide low signal-to-noise ratio since anomalies is the signal to be identified.
Further, because anomalies relate to infrequently occurring cases, such as crashes, deadlocks,
long response times, etc., analysis of data for normal conditions may provide minimal value.
Fine-grain detection of anomalies are sought to identify precursor events to avoid conditions

resulting in violation of SLAs in the first place.
BRIEF SUMMARY OF THE INVENTION

[0008] In certain embodiments, techniques are disclosed for an anomaly detection and
resolution system (ADRS) to automatically detect and resolve anomalies in computing
environments (e.g., cloud computing systems and enterprise computing systems). These
techniques enable automatic detection and resolution of anomalies to minimize, if not avoid,
service level agreement (SLA) violations for services provided in a computing system.
Anomaly detection and resolution is concerned with maximizing the SLA compliant period at
the lowest cost possible cost. Techniques disclosed herein can reduce, if not eliminate,
human involvement in addressing the size and complexity of large computing systems (e.g.,

cloud systems), and thus, lead to autonomic computing systems.

[0009] The ADRS can automatically detect and correct anomalies, such as response time
anomalies, load anomalies, resource usage anomalies, component failures, and outages, all of
which can affect quality of service (QoS) for operation in a computing system. The ADRS
may be implemented using an anomaly classification system defined by different categories
(subtypes) of anomalies such as a defined anomaly and an undefined anomaly. A defined
anomaly may be defined by two sub categories, such as user-defined anomaly and system-
inferred anomaly. Defined anomaly may be based on bounds on any metric that needs to be
monitored, the bounds being either fixed or seasonal. Fixed bounds are invariants for
monitoring and enforcing QoS guarantees associated with SLAs. Typically, application
administrators or system administrators will define fixed bounds for user-defined anomalies.

System administrators may also define additional metrics to monitor resource usage, load

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

spikes, malicious use, and component failures to avert SLA violations, but their bounds are
seasonal, to be computed from historical data combined with the trends of the metrics

associated with the user-defined anomalies. This type of anomaly is called system-inferred
anomaly and its bounds are usually seasonal. Undefined anomalies are anomalies (usually

outliers) that are discovered via machine learning and other statistical methods.

[0010] The ADRS can take corrective actions based on one or more rules defined in a policy
for anomalies. ADRS may be implemented with one or more anomaly detection and
resolution components (ADRCs). Each ADRC may be a module or a subsystem. An ADRC
may be implemented in each component of the components defining a service or operations
performed by a computing system. Each ADRC may be configured to detect and attempt to
resolve an anomaly locally in the component. For example, upon detecting an anomaly (e.g.,
a defined anomaly) in a component, such as a container where a service is running, the
ADRC can determine whether it can resolve the anomaly. Each ADRC may be implemented
with component-specific resolution policies for managing anomalies detected in the
component. If the anomaly event for an anomaly can be resolved by an anomaly resolution
policy defined in the component, the ADRC can attempt to resolve the anomaly event based
on the policy. Upon determining that the ADRC cannot resolve the anomaly event, either
because no policy is defined or the anomaly event could not be resolved based on the policy,
the component may communicate the anomaly event to a parent component of the
component, if one exists. The anomaly event may be communicated up to each successive
parent component of the current component if one exists, until a parent component can
resolve the anomaly event. Upon determining that a component has no parent component
(e.g., a physical machine has no parent) then the anomaly event is published to a messaging
system for an ADRC at an environment level of the computing system to handle the anomaly
event. In some embodiments, the anomaly event may be communicated as an alert to users.
This hierarchical approach to anomaly resolution is more nimble and is efficient in terms of
resource usage compared to centralized anomaly management. Specifically, each ADRC in a
component may be configured to locally handle specific types of anomalies, such that
communication time and resource usage can be reduced by utilizing resources in the

component where an anomaly can be resolved.

[0011] In some embodiments, a computer system may be implemented for anomaly detection
and resolution. The computer system may be part of an anomaly detection and resolution

system. The computer system may be implemented in a cloud computer system (e.g., a cloud

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

infrastructure system) or an enterprise computer system. The computer system may be
configured to implement methods and operations described herein. The computer system
may include one or more processors and a memory accessible to the one or more processors,
the memory storing instructions which, upon execution by the one or more processors, cause
the one or more processors to perform one or more methods or operations described herein.
Yet other embodiments relate to systems and machine-readable tangible storage media, which

employ or store instructions for methods and operations described herein.

[0012] In at least one embodiment, a method includes determining a set of values defining an
anomaly bound for a metric related to a service provided by a cloud computer system. The
service may be established by components in the cloud computer system. The components
may include a first container and a second container executing in the cloud computer
environment. The first container may be a child container in the second container. The
method may include configuring the first container to include an anomaly detection and
resolution component (ADRC). The method may include detecting, by the ADRC, in the
first container, an anomaly event of an anomaly related to operation of the service in the
cloud computer system. The anomaly event may be detected based on a value of the metric
not satistying the anomaly bound for the metric. The method may include identifying a
policy for resolving the anomaly in the first container. The method may include determining
that a rule in the policy is satisfied by the anomaly. The method may include initiating a
corrective action to resolve the anomaly. The corrective action may be identified in the

policy based on the rule being satisfied.

[0013] In some embodiments, the anomaly bound is a fixed bound defined for a user-defined
anomaly. The set of values may include a polling interval value, a minimum measure of the
metric, a soft limit for the metric, a maximum for the metric, and a minimum consecutive
readings value defining a minimum number of occurrences of the anomaly. Detecting the
anomaly event may include determining whether the value of the metric satisfies the anomaly
bound. The value of the metric may not satisfy the anomaly bound when the value is less
than the minimum measure and equal to or greater than the soft limit. The anomaly event

may be detected based on the minimum consecutive readings being satisfied.

[0014] In some embodiments, the anomaly bound is a seasonal bound defined for a user-
defined anomaly. The set of values may include a polling interval value, a minimum measure

of the metric, a soft limit for the metric, a maximum for the metric, a duration of consecutive

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

occurrences of the anomaly, a start time when the seasonal bound is valid, and an end time
when the seasonal bound is valid. Detecting the anomaly event may include determining
whether the value of the metric satisfies the anomaly bound. The value of the metric may not
satisfy the anomaly bound when the value is less than the minimum measure and equal to or
greater than the soft limit, when the anomaly event is detected for the duration and is detected

after the start time and before the end time.

[0015] In at least one embodiment, determining the set of values includes analyzing time

series data of log files to compute the set of values for the anomaly bound.

[0016] In some embodiments, the method may include upon determining that a policy for
resolving the anomaly in the first container cannot be identified, notifying, the second
container, that the anomaly cannot be resolved in the first container. The method may
include identifying a policy for resolving the anomaly in the second container. The method
may include determining that a rule, in the policy for resolving the anomaly in the second
container, is satisfied by the anomaly. The method may include, based on the rule being
satisfied, initiating a corrective action identified in the policy for resolving the anomaly in the

second container.

[0017] In at least one embodiment, the metric related to the service is one of a plurality of

metrics monitored for quality of service (QoS) for providing the service.

[0018] In at least one embodiment, a method may include determining a set of values
defining an anomaly bound for a metric related to a service provided by a cloud computer
system. The service may be established by components in the cloud computer system. The
components may include a first container and a second container executing in the cloud
computer environment. The first container may be a child container in the second container.
The method may include configuring the first container to include a first anomaly detection
and resolution component (ADRC). The method may include configuring the second
container to include a second ADRC. The method may include detecting, by the first ADRC,
in the first container, an anomaly event of an anomaly related to operation of the service in
the cloud computer system. The anomaly event is detected based on a value of the metric not
satisfying the anomaly bound for the metric. The method may include determining whether
the first ADRC has a policy for resolving the anomaly in the first container. The method may
include, based on determining that the first ADRC does not have a policy for resolving the

anomaly in the first container, notifying, the second container, that the anomaly cannot be

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

resolved in the first container. The method may include identifying, by the second ADRC, a
policy for the ADRC to resolve the anomaly in the second container. The method may
include determining that a rule, in the policy for resolving the anomaly in the second
container, is satisfied by the anomaly. The method may include, based on the rule being
satisfied, initiating a corrective action identified in the policy for resolving the anomaly in the

second container.

[0019] In some embodiments, the method may include, based on determining, by the second
ADRUC, that the second ADRC does not have a policy to resolve the anomaly in the second
container, sending, using a communication system, an alert that the anomaly could not be

resolved.

[0020] In some embodiments, the method may include, based on determining, by the second
ADRUC, that the second ADRC does not have a policy to resolve the anomaly in the second
container, notifying, a third container, that the anomaly cannot be resolved, wherein the third
container is one of the components. The third container may include the second container.
The method may include identifying, by a third ADRC configured in the third container, a
policy to resolve the anomaly in the third container. The method may include initiating

corrective action identified in the policy for resolving the anomaly in the third container.

[0021] The techniques described above and below may be implemented in a number of ways
and in a number of contexts. Several example implementations and contexts are provided
with reference to the following figures, as described below in more detail. One particular
example implementation is an autonomic system, which is described, is substantial detail.

However, the following implementations and contexts are but a few of many.
BRIEF DESCRIPTION OF THE DRAWINGS
[0022] FIG. 1 is a logical view of a cloud infrastructure system according to an embodiment.

[0023] FIG. 2 is a simplified block diagram of a cloud infrastructure system according to an

embodiment.

[0024] FIG. 3 illustrates a high-level overview of an autonomic system for managing

anomalies in a computing system according to some embodiments.

[0025] FIG. 4 illustrates a component model of a computing system according to some

embodiments.

10

15

20

25

WO 2016/191639 PCT/US2016/034536

[0026] FIG. 5 illustrates a relationships between elements of a component model according to

some embodiments.

[0027] FIGs. 6 and 7 illustrate block diagrams of an anomaly detection and resolution
component (ADRC) of an anomaly detection and resolution system (ADRS) according to

some embodiments.

[0028] FIG. 8 illustrates an example of an autonomic cloud computing system implemented

with a hierarchical ADRS according to some embodiments.

[0029] FIG. 9 illustrates a hierarchical anomaly classification structure according to some

embodiments.

[0030] FIG. 10 is a block diagram illustrating a bound for a defined anomaly according to

some embodiments.

[0031] FIG. 11 illustrates a block diagram of operations performed in an autonomic cloud

infrastructure system according to some embodiments.

[0032] FIG. 12 illustrates a high-level diagram of a log file flow according to some

embodiments.

[0033] FIGs. 13 and 14 illustrate flowcharts of processes for anomaly detection and

resolution according to some embodiments.

[0034] FIG. 15 depicts a simplified diagram of a distributed system for implementing an

embodiment.

[0035] FIG. 16 illustrates a simplified block diagram of one or more components of a system
environment in which services may be offered as cloud services, in accordance with an

embodiment of the present disclosure.

[0036] FIG. 17 illustrates an exemplary computer system that may be used to implement an

embodiment of the present invention.

[0037] FIG. 18 illustrates an ADRS that may be used to implement an embodiment of the

present invention.
DETAILED DESCRIPTION OF THE INVENTION

[0038] In the following description, for the purposes of explanation, specific details are set

forth in order to provide a thorough understanding of embodiments of the invention.

8

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

However, it will be apparent that various embodiments may be practiced without these

specific details. The figures and description are not intended to be restrictive.

[0039] In certain embodiments, techniques are provided (e.g., a method, a system, non-
transitory computer-readable medium storing code or instructions executable by one or more
processors) to automatically detect and resolve anomalies in a computing system such as a

cloud infrastructure system.

I. Cloud Infrastructure System

[0040] FIG. 1 is a logical view of a cloud infrastructure system according to one
embodiment. A cloud infrastructure system may provide access to a suite of applications,
middleware and database service offerings that are delivered to a customer in a self-service,
subscription-based, elastically scalable, reliable, highly available, and secure manner. A
cloud infrastructure system may be implemented for a public cloud, such as Oracle Public

Cloud provided by Oracle® Corporation.

[0041] A cloud infrastructure system may provide many capabilities including, but not
limited to, provisioning, managing and tracking a customer’s subscription for services and
resources in the cloud infrastructure system, providing predictable operating expenses to
customers utilizing the services in the cloud infrastructure system, providing robust identity
domain separation and protection of a customer’s data in the cloud infrastructure system,
providing customers with a transparent architecture and control of the design of the cloud
infrastructure system, providing customers assured data protection and compliance with data
privacy standards and regulations, providing customers with an integrated development
experience for building and deploying services in the cloud infrastructure system and
providing customers with a seamless integration between business software, middleware,

database and infrastructure services in the cloud infrastructure system.

[0042] In certain embodiments, services provided by the cloud infrastructure system may
include a host of services that are made available to users of the cloud infrastructure system
on demand such as online data storage and backup solutions, Web-based e-mail services,
hosted office suites and document collaboration services, database processing, managed
technical support services and the like. Services provided by the cloud infrastructure system
can dynamically scale to meet the needs of its users. A specific instantiation of a service
provided by cloud infrastructure system is referred to herein as a service instance. In general,

any service made available to a user via a communication network such as the Internet from a

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

cloud service provider’s system is referred to as a cloud service. Typically, in a public cloud
environment, servers and systems that make up the cloud service provider’s system are
different from the customer’s own on-premises servers and systems. For example, a cloud
service provider’s system may host an application and a user may, via a communication

network such as the Internet, on demand, order and use the application.

[0043] A service in a computer network cloud infrastructure includes protected computer
network access to storage, a hosted database, a hosted web server, a software application, or
other service provided by a cloud vendor to a user, or as otherwise known in the art. For
example, a service can include password-protected access to remote storage on the cloud
through the Internet. As another example, a service can include a web service-based hosted
relational database and script-language middleware engine for private use by a networked
developer. As another example, a service can include access to an email software application

hosted on a cloud vendor’s web site.

[0044] In FIG. 1, cloud infrastructure system 100 may provide a variety of services via a
cloud or networked environment. These services may include one or more services provided
under one or more categories, such as Software as a Service (SaaS) category, Platform as a
Service (PaaS) category, Infrastructure as a Service (IaaS) category, or other categories of
services including hybrid services. A customer, via a subscription order, may order one or
more services provided by cloud infrastructure system 100. Cloud infrastructure system 100

then performs processing to provide the services in the customer’s subscription order.

[0045] Cloud infrastructure system 100 may provide the cloud services via different
deployment models. For example, services may be provided under a public cloud model
where cloud infrastructure system 100 is owned by an organization selling cloud services
(e.g., owned by Oracle® Corporation) and the services are made available to the general
public or different industry enterprises. As another example, services may be provided under
a private cloud model where cloud infrastructure system 100 is operated solely for a single
organization and may provide services for one or more entities within the organization. The
cloud services may also be provided under a community cloud model where cloud
infrastructure system 100 and the services provided by system 100 are shared by several
organizations in a related community. The cloud services may also be provided under a

hybrid cloud model, which is a combination of two or more different models.

10

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

[0046] As shown in FIG. 1, cloud infrastructure system 100 may comprise multiple
components, which working in conjunction, enable provision of services provided by cloud
infrastructure system 100. In the embodiment illustrated in FIG. 1, cloud infrastructure
system 100 includes a SaaS platform 102, a PaaS platform 104, an IaaS platform 110,
infrastructure resources 106, and cloud management functionality 108. These components

may be implemented in hardware, or software, or combinations thereof.

[0047] SaaS platform 102 is configured to provide cloud services that fall under the SaaS
category. For example, SaaS platform 102 may provide capabilities to build and deliver a
suite of on-demand applications on an integrated development and deployment platform.
SaaS platform 102 may manage and control the underlying software and infrastructure for
providing the SaaS services. By utilizing the services provided by SaaS platform 102,
customers can utilize applications executing on cloud infrastructure system 100. Customers
can acquire the application services without the need for customers to purchase separate

licenses and support.

[0048] Various different SaaS services may be provided. Examples include without
limitation services that provide solutions for sales performance management, enterprise
integration and business flexibility for large organizations, and the like. In one embodiment,
the SaaS services may include Customer Relationship Management (CRM) services 110
(e.g., Fusion CRM services provided by the Oracle cloud), Human Capital Management
(HCM)/Talent Management services 112, and the like. CRM services 110 may include
services directed to reporting and management of a sales activity cycle to a customer, and
others. HCM/Talent services 112 may include services directed to providing global

workforce lifecycle management and talent management services to a customer.

[0049] Various different PaaS services may be provided by PaaS platform 104 in a
standardized, shared and elastically scalable application development and deployment
platform. Examples of PaaS services may include without limitation services that enable
organizations (such as Oracle) to consolidate existing applications on a shared, common
architecture, as well as the ability to build new applications that leverage the shared services
provided by the platform. PaaS platform 104 may manage and control the underlying
software and infrastructure for providing the PaaS services. Customers can acquire the PaaS

services provided by cloud infrastructure system 100 without the need for customers to

11

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

purchase separate licenses and support. Examples of PaaS services include without limitation

Oracle Java Cloud Service (JCS), Oracle Database Cloud Service (DBCS), and others.

[0050] By utilizing the services provided by PaaS platform 104, customers can utilize
programming languages and tools supported by cloud infrastructure system 100 and also
control the deployed services. In some embodiments, PaaS services provided by the cloud
infrastructure system 100 may include database cloud services 114, middleware cloud
services (e.g., Oracle Fusion Middleware services) 116 and Java cloud services 117. In one
embodiment, database cloud services 114 may support shared service deployment models
that enable organizations to pool database resources and offer customers a database-as-a-
service in the form of a database cloud, middleware cloud services 116 provides a platform
for customers to develop and deploy various business applications and Java cloud services
117 provides a platform for customers to deploy Java applications, in the cloud infrastructure
system 100. The components in SaaS platform 102 and PaaS platform 104 illustrated in FIG.
1 are meant for illustrative purposes only and are not intended to limit the scope of
embodiments of the present invention. In alternate embodiments, SaaS platform 102 and
PaaS platform 104 may include additional components for providing additional services to

the customers of cloud infrastructure system 100.

[0051] Various different TaaS services may be provided by IaaS platform 110. The IaaS
services facilitate the management and control of the underlying computing resources such as
storage, networks, and other fundamental computing resources for customers utilizing

services provided by the SaaS platform and the PaaS platform.

[0052] In certain embodiments, cloud infrastructure system 100 includes infrastructure
resources 106 for providing the resources used to provide various services to customers of the
cloud infrastructure system 100. In one embodiment, infrastructure resources 106 includes
pre-integrated and optimized combinations of hardware such as servers, storage and
networking resources to execute the services provided by the PaaS platform and the SaaS

platform.

[0053] In certain embodiments, cloud management functionality 108 provides comprehensive
management of cloud services (e.g., SaaS, PaaS, TaaS services) in the cloud infrastructure
system 100. In one embodiment, cloud management functionality 108 includes capabilities
for provisioning, managing and tracking a customer’s subscription received by the cloud

infrastructure system 100, and the like.

12

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

[0054] FIG. 2 is a simplified block diagram of cloud infrastructure system 100 according to
an embodiment. It should be appreciated that implementation depicted in FIG. 2 may have
other components than those depicted in FIG. 2. Further, the embodiment shown in FIG. 2 is
only one example of a cloud infrastructure system that may incorporate an embodiment of the
invention. In some other embodiments, cloud infrastructure system 100 may have more or
fewer components than shown in FIG. 2, may combine two or more components, or may
have a different configuration or arrangement of components. In certain embodiments, the
hardware and software components are stacked so as to provide vertical integration that

provides optimal performance.

[0055] Various types of users may interact with cloud infrastructure system 100. These users
may include, for example, end users 150 that can interact with cloud infrastructure system
100 using various client devices such as desktops, mobile devices, tablets, and the like. The
users may also include developers/programmers 152 who may interact with cloud
infrastructure system 100 using command line interfaces (CLIs), application programming
interfaces (APIs), through various integrated development environments (IDEs), and via
other applications. User may also include operations personnel 154. These may include

personnel of the cloud service provider or personnel of other users.

[0056] Application services layer 156 identifies various cloud services that may be offered by
cloud infrastructure system 100. These services may be mapped to or associated with
respective software components 160 (e.g., Oracle WebLogic server for providing Java
services, oracle database for providing database services, and the like) via a service

integration and linkages layer 158.

[0057] In certain embodiments, a number of internal services 162 may be provided that are
shared by different components or modules of cloud infrastructure system 100 and by the
services provided by cloud infrastructure system 100. These internal shared services may
include, without limitation, a security and identity service, an integration service, an
enterprise repository service, an enterprise manager service, a virus scanning and white list
service, a high availability, backup and recovery service, service for enabling cloud support

in IDEs, an email service, a notification service, a file transfer service, and the like.

[0058] Runtime infrastructure layer 164 represents the hardware layer on which the various
other layers and components are built. In certain embodiments, runtime infrastructure layer

164 may comprise one Oracle’s Exadata machines for providing storage, processing, and

13

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

networking resources. An Exadata machine may be composed of various database servers,
storage Servers, networking resources, and other components for hosting cloud-services
related software layers. In certain embodiments, the Exadata machines may be designed to
work with Oracle Exalogic, which is an engineered system providing an assemblage of
storage, compute, network, and software resources. The combination of Exadata and
Exalogic provides a complete hardware and software engineered solution that delivers high-
performance, highly available, scalable, secure, and a managed platform for providing cloud

services.

II. High-Level Overview of Anomaly Detection and Resolution System

[0059] FIG. 3 illustrates a high-level overview of an autonomic system 300 for managing
anomalies in a computing system, such as cloud infrastructure system 300. One or more of
the below-described techniques may be implemented in or involve one or more computer

systems.

[0060] System 300 may include client system 302, client system 304, ... client system 308
(collectively “client systems” or “clients” 310), an autonomic system component (ASC) 318,
and cloud infrastructure system 100 of FIGs. 1 and 2, and anomaly detection and resolution
system (ADRS) 320. ASC 318 may be included in cloud management functionality 108 of
cloud infrastructure system 100. Client systems 310 may be operated by one or more users to
access services provided by cloud infrastructure system 100. Client systems 310 and cloud
infrastructure system 100 may be communicatively connected via one or more
communication networks 330. Examples of communication networks include, without
restriction, the Internet, a wide area network (WAN), a local area network (LAN), an
Ethernet network, a public or private network, a wired network, a wireless network, and the
like, and combinations thereof. Different communication protocols may be used to facilitate
the communications including both wired and wireless protocols such as IEEE 802.XX suite

of protocols, TCP/IP, IPX, SAN, AppleTalk, Bluetooth®, and other protocols.

[0061] In some embodiments, a computing system, such as cloud infrastructure system 100
may be implemented with one or more components, often times many components, for
operating the system. All or some of the components may be related. Components may be
defined based on a component model, such as a component model described with reference to
FIGs. 4 and 5. As described further below, components can include physical components

(e.g., physical machines, network switches, and storage devices), virtual components (e.g.,

14

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

compute virtual machines, Java Virtual Machines (JVM), and virtual network interface

controllers (NICs)); and software components (e.g., operating systems and applications).

[0062] In the example of FIG. 3, cloud infrastructure system 100 includes one or more
components. For example, cloud infrastructure system 100 includes one or more containers.
A container (e.g., service container) is a special type of component. A container can provide
resources to components running in it or a container can be included in a component. A
container can provide a namespace and a resource pool (RP) for components to run. A
container can be a component that has a resource pool and provides an environment for other
components to run in the container. Cloud infrastructure system 100 includes a component
such as a container 350 that provides a container namespace. Container 350 may include
multiple components embedded inside container 350, such as container 360 (“container
namespace”), container 370 (“container namespace”), and one or more anomaly detection
and resolution components (ADRCs) (e.g., ADRC 354). ADRC 354 may be an environment
level ADRC. ADRC:s are described further below. For example, a JVM can be an embedded
container that is running inside a VM that is a container. Components may be implemented
in a hierarchical manner such that a component may have embedded components, which may
further have components. Components may be defined in a hierarchy of multiple levels, each

level corresponding to a component that has components in another level of the hierarchy.

[0063] Container 350 may include a resource pool (RP) 352 to provide resources for
containers embedded in container 350. Generally within this disclosure, resources may
include hardware resources, software resources, firmware resources, or a combination
thereof. For example, a RP may include a set of resources such as CPU, memory, storage, 1O
bandwidth, network bandwidth. A RP may allow RUs to get and return resources from/to it.
In some embodiments, a RP may be a dynamic resource pool (DRP) such that resources can
be increased or decreased at runtime. A DRP may be dynamic to provide resources
individually or shared to containers during run-time. A RP may include or be supported by
one or more resource providers. In some embodiments, a container may include a resource

provider that provides a resource.

[0064] A component such as a container 350 may include at least one resource user (RU).
An RU may include a thread or a process running the container. A component within another
component (e.g., a container) may be considered a RU. In the example in system 300,

container 350 may include one or more components, such as containers 360 and 370, each of

15

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

which is a RU. For example, container 360 and container 370 may be virtual machines for
container 350 which is a physical machine. RP 352 may provide resources to containers 360,
370 in container 350. A component can be a resource provider insider another component.
For example, a Java Virtual Machine (JVM) is a user of operating systems resources and
provider of resources to Java applications running in it. Therefore, a JVM can be a container
embedded inside another container. Resources available to a container can be constrained
(caged) so that the container is guaranteed certain amount of resources but does not end up
using excessive resources. Each embedded container 360 and container 370 may include a

resource pool 362 and a resource pool 372, respectively.

[0065] ADRS 320 may monitor and take action to resolve anomalies in processing performed
in cloud infrastructure system 100. In particular, ADRS may detect and resolve anomalies in
services provided to client systems 310. ADRS 320 can be a component of ASC 318.
Although ASC 318 is shown separate from cloud infrastructure system 100, ADRS 320 may
be included in or integrated with cloud infrastructure system 100, such as in cloud
management functionality 108 of FIG. 1. ASC 318 may be external to cloud infrastructure
system 100 and may be communicatively coupled to cloud infrastructure system 100 via
network 330. ASC 318 may perform operations disclosed herein as being performed for

anomaly management, detection, and resolution.

[0066] ADRS 320 may be implemented using a computer system, which may comprise one
or more computers and/or servers which may be general purpose computers, specialized
server computers (including, by way of example, PC servers, UNIX servers, mid-range
servers, mainframe computers, rack-mounted servers, etc.), server farms, server clusters,
distributed servers, or any other appropriate arrangement and/or combination thereof. For
example, ADRS 320 may correspond to a computer system for performing processing as
described herein according to an embodiment of the present disclosure. The computing
system that makes up ADRS 320 may run any number of operating systems or a variety of
additional server applications and/or mid-tier applications, including HTTP servers, FTP
servers, CGI servers, Java servers, database servers, and the like. Exemplary database servers
include without limitation those commercially available from Microsoft, and the like. In one
example, ADRS 320 may be included in or implemented as a service provided by cloud
infrastructure system 100, such as Oracle Public Cloud provided by Oracle® Corporation. In
various embodiments, ADRS 320 may be configured to run one or more services or software

applications described in the foregoing disclosure.

16

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

[0067] In some embodiments, ASC 318 may be implemented as an enterprise computing
system or a cloud computing system comprising one or more computers and/or servers that
may include those described above. ASC 318 may include several subsystems and/or
modules, including some, which may not be shown. For example, ASC 318 may include,
ADRS 320, a service creation and deployment management system (SCDMS) 322, a
composition and configuration management system (CCMS) 324, and a log reservoir and
analytics system (LRAS) 328. ADRS 320 may be used with SCDMS 320, CCMS 324, and
LRAS 326. ASC 318 may be implemented with or operate using one or more ADRCs. As
will be described further below, ASC 318 may include or be implemented with one or more
subsystems and/or modules in (e.g., embedded in) cloud infrastructure system 100. An
ADRC may be a subsystem and/or a module in cloud infrastructure system 100. An ADRC
may be a computing system having one or more subsystems and/or modules. ASC 318 may
have more or fewer subsystems and/or modules than shown in the figure, may combine two
or more subsystems and/or modules, or may have a different configuration or arrangement of
subsystems and/or modules. Subsystems and modules of ASC 318 may be implemented in
software (e.g., program code, instructions executable by a processor), firmware, hardware, or
a combination thereof. In some embodiments, the software may be stored in a memory (e.g.,
a non-transitory computer-readable medium), on a memory device, or some other physical
memory and may be executed by one or more processing units (€.g., one or more processors,

one or more processor cores, one or more GPUs, etc.).

[0068] In certain embodiments, ASC 318 may also provide other services or software
applications can include non-virtual and virtual environments. In some embodiments, these
services may be offered as web-based or cloud services or under Software as a Service (SaaS)
model to the users of client systems 310. For example, ADRS 320 of ASC 318 may detect
and resolve anomalies in a cloud infrastructure system 100. The services offered by ASC 318
may include application services. Application services may be provided by ASC 318 via a
SaaS platform. The SaaS platform may be configured to provide services that fall under the
SaaS category. The SaaS platform may manage and control the underlying software and
infrastructure for providing the SaaS services. By utilizing the services provided by the SaaS
platform, customers can utilize applications executing in ASC 318, which may be
implemented as a cloud infrastructure system. Users can acquire the application services
without the need for customers to purchase separate licenses and support. Various different

SaaS services may be provided. Users operating client systems 310 may in turn utilize one or

17

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

more applications to interact with ASC 318 to utilize the services provided by subsystems

and/or modules of ASC 318.

[0069] ASC 318 may include at least one memory, one or more processing units (or
processor(s)), and storage. The processing unit(s) may be implemented as appropriate in
hardware, computer-executable instructions, firmware, or combinations thereof. Computer-
executable instructions or firmware implementations of the processing unit(s) may include
computer-executable or machine-executable instructions written in any suitable programming
language to perform the various operations, functions, methods, and/or processes described
herein. The memory in ASC 318 may store program instructions that are loadable and
executable on the processing unit(s), as well as data generated during the execution of these
programs. The memory may be volatile (such as random access memory (RAM)) and/or
non-volatile (such as read-only memory (ROM), flash memory, etc.). The memory may be
implemented using any type of persistent storage device, such as computer-readable storage
media. In some embodiments, computer-readable storage media may be configured to
protect a computer from an electronic communication containing malicious code. The
computer-readable storage media may include instructions stored thereon, that when executed

on a processor, perform the operations described herein.

[0070] ASC 318 may also include or be coupled to storage, which may be implemented using
any type of persistent storage device, such as a memory storage device or other non-transitory
computer-readable storage medium. In some embodiments, local storage may include or
implement one or more databases (e.g., a document database, a relational database, or other
type of database), one or more file stores, one or more file systems, or combinations thereof.
For example, ASC 318 may be coupled to or may include one or more data stores. The
memory and the additional storage are all examples of computer-readable storage media. For
example, computer-readable storage media may include volatile or non-volatile, removable or
non-removable media implemented in any method or technology for storage of information
such as computer-readable instructions, data structures, program modules, or other data. The
data stores may be accessible via a network 330. More or fewer data stores may be

implemented to store data according to the techniques disclosed herein.

[0071] ASC 318 may be implemented for a computing system, such as an enterprise
computing system or a cloud system (e.g., cloud infrastructure system 100), to enable the

computing system to operate autonomously. For purposed of illustration, ASC 318 is

18

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

illustrated in an example of an implementation with cloud infrastructure system 100. Such an
implementation is illustrated to show the benefits and improvements to operation of a
computing system. However, the embodiments illustrated in the figures with respect to a
cloud system are not intended to be limited to a cloud system and may be implemented in
many different types of computing systems. ASC 318 can automatically detect and take
action to resolve if not mitigate anomalies in performance of the computing system.
Examples of anomalies can include response time anomalies, load anomalies, resource usage
anomalies, component failures anomalies, and outages anomalies. Different types of

anomalies are further described with reference to FIGs. 9 and 10.

[0072] Many anomalies occurring in cloud infrastructure system 100 may be caused by
factors including load spikes, component failures, and/or malicious use of the system and
they are manifested in increased resource usage, deteriorating key performance indicators
(KPI), and spikes in errors in one or more containers. Development teams, product
managers, business development managers, and systems administrators who deploy services
in cloud infrastructure system 100 can come up with a set of Event-Condition-Action (ECA)
rules, and refine them over time, to deal with these temporary anomalies for each service so
that the anomalies can be resolved programmatically. If the anomalies persist for a long
period, then it may have to be considered a new normal and the resource allocation policy for
services may have to be reevaluated. Corrective actions for anomalies include spinning up
more servers, throttling service request arrival rate, killing some threads or processes, and
dynamically reallocating resources from services that are not using the resources to the

services that need them on a temporary basis, just to name a few.

[0073] ADRS 320 can detect and resolve anomalies based on a classification system of
anomalies (“an anomaly classification system”), and a hierarchical rule-based anomaly
detection and resolution technology. The ADRS anomaly classification is further described
with reference to FIGs. 9 and 10. Anomalies may be classified into one or more categories
such as a defined anomaly and an undefined anomaly. Anomalies may be monitored and
resolved by ADRS 320 to maintain performance standards for cloud infrastructure system
100. Performance standards can be defined based on one or more system metrics. For
example, performance standards may be defined based on one or more quality of service
(QoY) attributes for a service provided by cloud infrastructure system 100. QoS attributes
may be defined by or for an agreement for a service, such as a service level agreement (SLA).

Anomalies may be defined by administrators of the system being monitored, such as cloud

19

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

infrastructure system 100. Anomalies may be defined based on one or more user-defined
system metrics, which may be defined by an administrator. User-defined system metrics may

include resource usage, load spikes, malicious use, and component failures.

[0074] One or more ADRCs may be implemented external to cloud infrastructure system
100, inside cloud infrastructure system 100, or a combination thereof. The ADRCs may be
implemented for ADRS 320. To detect an anomaly and take action immediately to mitigate a
problem, one or more ADRCs may be inserted in one or more components in cloud
infrastructure system 100. For example, an ADRC may be implemented in each component
of cloud infrastructure system 100, such as in each of containers 350, 360, 370, including
each embedded container. Each component in containers 360, 370 may include a dedicated
ADRC. An ADRC can be implemented at a cloud environment level in cloud infrastructure
system 100. For example, an ADRC may be implemented for cloud infrastructure system
100 as a whole (e.g., cloud environment level) in addition to each component in cloud
infrastructure system 100. ASC 318 may include an ADRC or may operate as the ADRC at
the cloud environment level for cloud infrastructure system 100. Any of the ADRCs in cloud
infrastructure system 100 may be implemented to execute on its own, by control from ADRS
320, or a combination thereof. As will be described further in FIGS. 5-7, an ADRC may
include multiple components to assist in component level detecting and resolution of

anomalies.

[0075] An ADRC in a component can detect an anomaly for an event occurring during a
process that is being performed. The process may be part of a service that is being provided
to a client system. ADRC may utilize anomaly detectors to detect an anomaly defined for
ADRS 320. ADRC (e.g., ADRC 354) may determine whether an anomaly resolution policy
is defined for the component including the ADRC. If a policy is defined, then ADRC will
utilize a policy engine to attempt to resolve the anomaly based on the polic(ies). If the
anomaly cannot be resolved or if there is no policy defined for the anomaly, the ADRC may
communicate the information about anomaly for the event to a parent component (e.g.,
container 350) to resolve. The parent component may include an ADRC (e.g., ADRC 354),
which can determine how to resolve the anomaly and if any such policy is defined in the

parent component.

[0076] If a parent component cannot resolve an anomaly, information about the anomaly for

the event may be communicated to a higher level parent component of the parent component

20

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

defined in a hierarchy of components in cloud infrastructure system. Information about the
anomaly for the event may be communicated to each subsequent parent component related in
a hierarchy of components defined for cloud infrastructure system 100. Upon determining
that a component has no parent component, information about the anomaly for the event is
published to a messaging system for the ADRS to handle the anomaly at the cloud

environment level or to issue an alert.

[0077] This hierarchical approach to anomaly resolution is more nimble and is efficient in
terms of resource usage compared to centralized anomaly management. By isolating
anomaly detection and resolution to the component level, less computing resources may be
consumed for resolution of an anomaly as the anomaly is handled in a component or a parent
component localized to the occurrence of the anomaly. By reducing the communication of an
anomaly to a centralized system, cloud infrastructure system 100 can reduce response time
for resolution of an anomaly and in some instances prevent further issues or anomalies from
occurring because the anomaly is resolved in a local component. The localized approach to
anomaly detection and management can reduce human involvement in addressing thousands
of anomalies in large computing systems, such as cloud systems. By localizing anomaly
detection and resolution at the component level, a cloud infrastructure system may operate

more autonomously with little human involvement.

[0078] ADRS 320 may coordinate and manage detection and resolution of anomalies handled
at the component level by ADRCs. An ADRC consists of two subsystems, an Anomaly
Detection and Notification System (ADNS) and Anomaly Resolution Subsystem (ARS). The
ADNS subsystem allows the system administrators to specify which metrics it needs to
monitor for anomalies, what conditions to test when an anomaly is detected before publishing
an event, and what to include in the event data. The ADNS monitors the relevant metrics for
anomalies and when an anomaly is detected, evaluates the condition, and when the condition
is true stores the event corresponding to the anomaly along with the event data to a data store
local to the component in which the ADRC is implemented. An example of the condition to
detect an anomaly is the number of consecutive readings of a metric that are anomalous
before an event is raised. The metrics and bounds for anomaly detection are obtained from
the SCDMS 322 of the ASC 318 when a service is created. Metrics such as load and
resource consumption may be defined by the system administrators and provided by the

LRAS 326 of the ASC 318.

21

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

[0079] In some embodiments, the ADNS may implement a communication system to
publishing events. The communication system may implement a notification service. The
notification service may facilitate communication with components in cloud infrastructure
system 300 and/or ASC 318. Communication may be facilitated through network 330.
Information about events and anomalies may be communicated via the communication
system using pull and/or push mechanisms, e.g., a push or pull notification service, for
communication. Push and/or pull mechanisms may be configured on a subscription basis for

the ADRS and the ADRCs.

[0080] CCMS 324 utilizes the component model of FIG. 4 to describe the hardware and
service (software) components of a system (e.g., cloud infrastructure system 100) and the
relationships amongst them and to the log and metric streams they produce. CCMS 324 may
manage data stores such as a configuration repository, which is a temporal database that
represents the dynamic nature of the configuration due to self-service deployment of services,
live migration of virtual machines (VM), capacity scale out, and failover, among others. The
configuration repository may be defined based on the component model of FIG. 4. CCMS
324 may leverage information in other configuration repositories such as Oracle Enterprise
Manager Repository by Oracle® Corporation and the configuration repository maintained by
the underlying cloud operating system (IaaS) such as Nimbula or OpenStack configuration

databases.

[0081] In some embodiments, SCDMS 322 may use or implement a subsystem called a
orchestrator, which provides an abstraction layer on top of different infrastructure-as-a-
service (IaaS) to create and configure containers. All of the subsystems created generate
identities for the newly deployed components, enforce quotas, and updates the configuration
repository with the data about components being deployed, and their dependencies on other
services. Individual components update the configuration repository with the home directory
and the log and metric streams associated with them. These subsystems created can be
accessed via a representation state transfer (REST) application programing interface (API)

and command line interface (CLI) for programmatic deployment of assemblies.

[0082] SCDMS 322 can enable users (e.g., application developers and administrators) to
define components to implement a service. As described in FIGs. 4 and 5, components

defining a service may be defined in one or more assemblies. An assembly may be used to

22

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

provide a highly-automated process that provisions virtual environments in the cloud to

deploy the service.

[0083] In at least one embodiment, SCDMS 322 may generate and provide one or more
interfaces to client systems to enable a user to define attributes for an anomaly. The
interface(s) may include a physical interface, a graphical interface (e.g., a graphical user
interface), or a combination thereof. A graphical interface may be generated by SCDMS 322
and provided to a client system 310. An interface may be provided as part of SCDMS 322
via network 330 as part of a service (e.g., a cloud service) or application. The attributes for
an anomaly may be defined in a declarative manner. For example, a user can defined an
anomaly by specifying bounds on key metrics that define the normal system behavior
including response times for services, availability of services, resources to be allocated for
the service, system load, tolerable error rates, and values expected for other metrics. A user
can specify the bounds on metrics to enforce the QoS associated with the SLA for the service
for a customer. The bounds for metrics may be defined according to the anomaly data
structure described with reference to FIGs. 9 and 10. SCDMS 322 also generates identity of
newly deployed components and updates the configuration repository with the component

information and their relationships to log and metric streams and to other components.

[0084] Orchestrator can be a service application for the creation and deployment of
assemblies into cloud infrastructure system 100, where an assembly is a description of a
system consisting of one or more VMs, storage, software, and network connectivity allowing
the system to operate as per the assembly definition. Orchestrator provides, via an interface,
a self-service layer from which a catalog of components and assemblies which are readily
available for users for quick deployment of entire software systems, additionally offering
features like DNS setup, software bootstrapping, and post deployment resizing

functions: VM sizing (vertical scaling), and assembly scaling (horizontal scaling). The
orchestrator catalog provides simple versioning, publishing and declarative configuration
features as well. Developers can use orchestrator’s component framework to implement any
number of Assemblies defining systems of all sorts (e.g. Org or function standardized OS
images, new and former versions of software applications for testing, released labels, etc).
The interface provided by orchestrator may enabling provisioning as follows: (1)
Authenticate via SSO to a user interface provided by orchestrator, (2) pick an assembly from
orchestrator’s catalog, (3) provide a name & sizing information for the assembly instance, (4)

provide project name against which quota and metering will operate, (5) se the assembly

23

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

Instance deployed into the cloud environment, and (6) optionally, stop/start/undeploy the
assembly instance, resize the assembly instance’s VMs or scale the assembly instance.
orchestrator includes an admin interface to allow orchestrator admins to monitor
deployments, logs and perform “super user” actions for all users, deployments and catalog for

that instance of orchestrator.

[0085] LRAS 328 can collect log and metric streams from all the components in the cloud
infrastructure system 100, computes the statistics, and applies time-series analytics to
determine seasonal bounds for metrics. It computes the trends and seasonal variation in
metrics and resource usage of each component for each metric for each interval (e.g. hourly)
for each period (e.g. weekly) for normal system operations where user-defined bounds are
met more than a certain percentage of the time. These seasonal bounds are pushed to the
appropriate component so that it can monitor the metrics, including resource usage, for
anomalies. This system also predicts future failures using unsupervised machine learning

techniques.

II1. Component Model

[0086] FIGs. 4 and 5 illustrate a component model for implementing cloud infrastructure
system 100. The elements in FIGs. 4 and 5 may be implemented using one or more data
structures. The data structure(s) can be managed in storage (e.g., a data store) accessible to
ASC 318 or the ADRC utilizing the component model. Each of the illustrated elements may
be implemented using one or more data structures organized in a variety of ways depending
on how, what, and/or where data is stored. Although each of the data structures are shown
including particular data, more or fewer data structures may be implemented to store the data.
A data structure can include a reference to other data structures. An instance of each of the
data structures may be created for managing storage of different security artifacts. The data
structures may be implemented using one or more types of data structures including, without
restriction, a linked list, an array, a queue, a hashtable, a map, a record, a graph, or other type
of data structure. Each of the data structures may be defined in a declarative manner based

on input to ASC 318.

[0087] FIG. 4 illustrates a component model 400 of a computing system, such as cloud
infrastructure system 100. The components (e.g., containers 350, 360, 370) in FIG. 3 are
based on a component model 400. Component model 400 may be used to correlate different

metric and log streams. Any service deployment system may include one or more

24

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

components 402, some or all of which may be related. Each component created by
deployment 410 as an instance of one of one or more different component types 406.
Components can be related via different kinds of relationships including parent-child, e.g., a
physical NIC is a child of bare-metal server in which it is installed, and peer relationships,
such as a compensation application using an identity provider to authenticate its users. Some
components are containers, which provide resources for other components. A component

may generate one or more log streams and one or more metric streams.

[0088] A component 402 may be created as an instance of component type 406 and created
for deployment 410 based on an assembly 408. Assembly 408 may be a template that
describes one or more component types among other information such as component-
container relationships, the interconnections needed to create an instance of the service type,
and the code for configuring the service. The component types specified in an assembly are
to identify the components to be deployed in a component. Deployment 410 may be based
on the component types indicated by assembly 408. In some embodiments, an assembly
defines the components for providing a service, the resources needed for each of the
components, the network and storage configuration, the software to be configured in each of
the components, and the bounds for the metrics and response times for monitoring the
service. For example, an assembly may consist of one or more VMs with number of CPUs
and amount of memory, with software components deployed in them, storage and other
services they use, and network connectivity allowing the system to operate as per the
Assembly developer’s design. An assembly can be used to construct a single or multi-VM
based systems of any complexity, such as an [aaS service, a PaaS service, or a SaaS

service. An assembly may include VM sizing information (vCPU count, amount of
memory), disk storage to be allocated, list of components to be installed, network
communication information (source, destination, port), and variables required by the

components whose values may be provided during Assembly deployment.

[0089] Each component may have an identifier, such as an intrinsic identifier (IID), which is
a universally unique identifier (UUID). The IID may be immutable, globally and temporally
unique, and always refers to the same component. That is, no two components may have the
same IID value even considering the components that existed in the past or will come into
existence in the future. A component may have multiple extrinsic identifiers (EIDs). These
are like primary keys or other identifiers given to the component. For example, the IP

address given to a physical machine is an EID. EIDs may not be permanent and might

25

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

change during the lifetime of the component. If two components are related via parent-child
relationship, i.e., a component embedded inside another, then the child component does not
have to have its own [ID. Note that a child (or embedded) component may have just one

parent.

[0090] A component 402 may be defined as one of many different component types
including, without restriction, a network device 414, service instance 416, a container 418,
storage instance 420, or a database instance 422. For example, a component may include an
operating system, a database, a middleware system, an application, a program, or a script. In
the example of FIG. 4, a container may include, without restriction, a physical machine 424,
virtual machine 426, an operating system (OS) container 428, a Java virtual machine 430, and
a cluster 432. For examAn OS container may include, without restriction, a linux (LXC)
container 434, a docker container 436, or a solaris zone 438. In another example, a
component may include a plugin module for orchestrator to execute. Orchestrator may
include data and bootstrapping logic as a program recipes to be invoked during bootstrapping
of a virtual machine. A component may include a declaration of a set of variables which is

used by components of an assembly.

[0091] Component type 406 can define, among other properties, one or more log streams 412
and one or more metric streams 404. Component 402 created as an instance of component
type 406 may generate metric streams 404 and log streams 412 defined by component type
406. Both metric stream 404 and log stream 412 can be streams of time series data. Both
metric stream 404 and log stream 412 may be written to one or more files, databases, or
published directly to one or more topics or queues of a messaging system. The streams are
associated in a parent-child relationship with the component that produces them. The entries
may contain some context identifiers (such ECID and RID in ODL logs) to relate entries in

different components that form the same control flow of a service.

[0092] FIG. 5 show service model 500 that illustrates the relationships between the elements
of component model 400 in FIG. 4. Specifically, service model 500 is utilized by cloud
infrastructure system 100 to provide services (e.g., service instances), such as service 510, to
client systems 310. A service 510, or service instance, may be created as an instance of a
service template 502. A service may be created via a request/response communication to

cloud infrastructure system 100. Such communication may be facilitated using HTTP(S) or

26

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

direct TCP/IP (e.g., IMAP) protocols. A service template may be defined based on one or

more assembly templates (e.g., assembly template 504) associated with it.

[0093] An assembly template defines an assembly (e.g., assembly 512). An assembly may be
created as an instance of assembly template. An assembly template can define the
environment level resources such as shared files system, network, storage available for the
container(s) defined in the assembly, and workflow to be executed to deploy the assembly in
a cloud environment. For example, if a cloud environment provides HTTP listening service
such as Oracle HTTP Service (OHS), and each service creates a virtual host in OHS, then a
workflow can be included in the assembly template for the service to create a virtual host in
existing system containers running the OHS services. Each assembly template can define
QoS characteristics and pricing. For example, a service template may be defined by two
assembly templates: one for testing functionality and the other for scalable production

deployment.

[0094] A service may have several entry URIs associated with it. The listeners for a service
are deployed in a dedicated or shared container, which could be a cluster. Services are
provided by a sequence of request-response interactions to these URIs. The author of the
assembly can include a quality of service monitoring component, which specifies the set of
variables representing the entry URIs supported by the assembly and the set of services
supported; where each service is a list of entry URIs. The variables for error characteristic

define the tolerable rate of errors of certain type.

[0095] During a deployment of an assembly, a user may provide input to ADRS to enable
SCDMS to determine the desired quality of service by defining fixed bounds or seasonal
bounds on the response time and availability for each of the services and the load to be
handled by the service instance created to establish the service. Many services can be created
from a single service template each using a different assembly template with possibly
different QoS characteristics. A service may be created such that all the metrics defined for
all the components of the service are within the bounds specified for the service and the
container it is running in. Any observed metric values outside the range is considered
anomaly and if the anomaly persists for a specified period of time, it will be dealt with on a

real-time basis by ADRS 320.

[0096] An assembly template can reference one or more container templates, such as

container template 506. A container template can define a container type, resources to be

27

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

allocated, components to be deployed, container-specific metrics, and container-specific
anomaly detection and resolution policies. For example, one or more containers (e.g.,
container 514) can be deployed in its own dedicated containers or in shared containers. A
dedicated container does not allow additional components to be deployed in it, although
updates to the existing components can still be performed. A container can be in one of two

states, open or closed. A component may not be deployable in a closed container.

[0097] A non-container component template, such as component template 508, can define
configuration specifications, service-specific metrics (including instrumentation) and
anomaly detection and resolution policy specific to a component (e.g., component 516). A
component may run inside a container. A container may use a component. A container
template may refer to a component template for a component to run inside a container created
based on the container template. A component may be created as an instance of a component
template. Component template may depend on a component template. A component
template may declare metrics, such as response times for key URIs. When an assembly is
deployed, bounds must be provided for each metric (e.g., response times for application
components, number of CPU, RAM, etc. for Containers) defined in the assembly, to create a

service which is deployed in a given software/hardware environment.

IV. Detailed Overview of An Anomaly Detection and Resolution Component

ADRC

[0098] FIGs. 6 and 7 illustrate block diagrams of an ADRC 600 of an ADRS according to
some embodiments. An ADRC may be implemented as part of ADRS 320 of FIG. 3.
ADRCs may be created for each component in cloud infrastructure system 100. For example,
each of ADRCs 354, 364, 374 may be an instance of ADRC 600. As mentioned before, an
ADRC can be deployed in components, such as containers, of cloud infrastructure system
100. ADRC may be implemented to detect and resolve anomalies. An ADRC may be

implemented using a variety of programming languages, such as Java®.

[0099] In some embodiments, ADRC 600 may include one or more subsystems and/or
modules. ADRC 600 may include an anomaly detection and notification system (ADNS) 630
and an anomaly resolution subsystem (ARS) 620, which each include one or more
subsystems and/or modules. ADNS 630 may include one or more anomaly detectors (AD)

608 and a data store 612. ARS 620 may include a police engine (PE) 602, a communication

28

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

agent (CA) 604, an action library (AL) 606, an event dispatcher (ED) 610, log harvester (LH)
614, and a policy store 616.

[0100] ADRC 600 also include or be coupled to storage, which may be implemented using
any type of persistent storage device, such as a memory storage device or other non-transitory
computer-readable storage medium. In some embodiments, local storage may include or
implement one or more databases (e.g., a document database, a relational database, or other
type of database), one or more file stores, one or more file systems, or combinations thereof.
For example, ADRC 600 may be coupled to or may include one or more data stores. The
memory and the additional storage are all examples of computer-readable storage media. For
example, computer-readable storage media may include volatile or non-volatile, removable or
non-removable media implemented in any method or technology for storage of information
such as computer-readable instructions, data structures, program modules, or other data.
More or fewer data stores may be implemented to store data according to the techniques

disclosed herein.

[0101] In at least one embodiment, ADRC 600 may include data store 612, policy store 616,
and AL 606. Data store 612 may be implemented as a round-robin database (RRD) or a
circular queue. A RRD may be implemented using a circular queue (e.g., a first-in-first-out
circular queue). For example, in FIG. 7, ADRC 600 includes multiple RRDs, such as RRD
704, RRD 706, RRD 708, RRD 710, and RRD 712, each specific to a different event data
corresponding to a different type of anomaly detected by an anomaly detector. Event data
may include information as to the source of the anomaly event in the component in which
ADRC 600 is implemented, the cause of the anomaly event, when the anomaly event was
detected, and any other information about the anomaly event. RRD 704 may store event data
for anomalies detected in RAM. RRD 706 may store event data for anomalies detected in
CPU. RRD 708 may store event data for anomalies detected in storage. RRD 710 may store
event data for network-based anomalies. RRD 712 may store event data for component

specific anomalies.

[0102] ADNS 630 may monitor one or more metrics in cloud infrastructure system 100.
ADNS 630 is designed to minimize the use of network resources to monitor for anomalies.
In particular ADNS 630 may monitor metrics in a component in which ADRC 600 is
implemented. One or more anomaly detectors 608 may be employed to monitor a metric,

either directly available in some metric stream or computed from some log stream, either by

29

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

polling or by listening to events. In some embodiments, a component may have multiple
ADs, one for each resource in the component. An AD may be implemented for each distinct

metric to be monitored. An AD may be implemented for each log type.

[0103] Metrics may be monitored using an anomaly classification system described with
reference to FIG 9. An anomaly may be monitored for a metric based on the definition(s) for
an anomaly. An AD may be defined for a metric corresponding to a resource usage. The
resource may be monitored with respect to an error rate target. An anomaly may be defined
by a fixed or seasonal bound. A threshold may be defined for the metric such that the AD is
configured to publish an event when the threshold is met. To monitor a metric, the AD may
monitor one or more key performance indicators (KPIs), resource usage and errors by a
variety of techniques. A metric may be monitored by subscription to events or polling
metrics in the system of the component in which the ADRC is implemented. For example, an
AD may monitor resource usage by polling operating system metrics or an MBean (managed
Java object) attribute in the operating system. An AD may periodically scan relevant log files

and listen for operating system logs such as syslogs.

[0104] An AD may be component-specific, such that the AD monitors a metric using features
specific to the type of component in which the ADRC including the AD is implemented. For
example, in a component that is a JVM-type of container, the AD may listen for Java
management extensions (JMX) notifications from a MXBean deployed in the JVM to detect
an anomaly. In another example, an AD for a LXC container may use stream processing
software such as Heka, to detect an anomaly. A stream processing software may enable the
ADNS to monitor log and metric streams and apply filters to their values. The filters are
designed to detect values out of bounds. An AD may be implemented using a language
specific to the type of component in which the AD is implemented. For example, an AD for
a JVM container type may be implemented using a Java expression language (JEXL). In
some embodiments, the ADNS may be implemented using a sand box style filter that is
initialized based on the anomaly classification system for the metric to be monitored. The
filter tests the values and remembers the number of consecutive readings that are out of

bounds. An anomaly may be detected upon reaching the threshold for an anomaly.

[0105] In FIG. 7, ADRC 600 is shown with multiple anomaly detectors such as a RAM AD
720, CPU AD 722, storage AD 724, network AD 726, and component AD 728. Each of
RAM AD 720, CPU AD 722, storage AD 724, network AD 726, and component AD 728

30

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

may be implemented to detect a distinct type of anomaly in a component in which ADRC 600
is implemented. RAM AD 720 may detect anomalies related to RAM usage. CPU AD 722
may detect anomalies related to CPU usage. Storage AD 724 may detect anomalies related to
storage usage. Network AD 726 may detect anomalies related to network activity.
Component AD 728 may detect anomalies specific to the component. Each of RAM AD

720, CPU AD 722, storage AD 724, network AD 726, and component AD 728 may have a
distinct data store, such as RRD 704, RRD 706, RRD 708, RRD 710, and RRD 712,
respectively. A distinct data store for an AD may be utilized to store event data for anomalies
detected for the AD. Each of the Ads 720-728 may defined to detect a distinct anomaly. As
discussed above, and further described below, an anomaly may be defined by a specific
bound of a metric. For example, each of ADs 720-726 may be defined for an anomaly
according to a seasonal bound and AD 728 may be defined for an anomaly according to a

fixed bounds.

[0106] An AD may detect an event (“anomaly event”) when a value for a metric satisfies a
threshold defined for the anomaly using the anomaly classification system. The AD may
define event data for the event and store the event data in the data store 612. For example,
event data for an anomaly event may be inserted into data store 612 using Unix datagram.
The event data may include additional metrics collected in real time that are then stored with
the data about the anomaly event. AD may monitor a bound (e.g., a fixed bound or a
seasonal bound) for a defined anomaly. Upon detecting that a value of a metric is not within
the bound of a defined anomaly, such that the value is below the minimum measure or above
the soft limit, the AD may detect that an anomaly is occurring such that information about an
event causing the anomaly may be logged. The AD may write a log entry in a data store 612
to indicate the anomaly and whether the value of the metric is below the min (e.g., low) or

above the soft limit (e.g., high).

[0107] ARS 620 operates based on events detected by ADNS 630. Event dispatcher 610 may
be running in a component in which ADRC 600 is implemented. Event dispatcher 610 may
listen for events identified by ADNS 630. In some embodiments, event dispatcher 610 may
be notified of an event detected by an AD. Event dispatcher 610 may inspect data store 612
for anomaly events identified by event data inserted by an AD in ADNS 630. For example,
each of ADs 720-728 may notify event dispatcher 610 about an anomaly event that is
detected. Event dispatcher 610 periodically check each of ADs 720-728 to determine

whether information about an anomaly event has been recorded. In some embodiments,

31

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

event dispatcher 610 may detect anomaly events based on message queue 702. Each of ADs
720-728 may notify event dispatcher 610 of an anomaly event by placing a message on
message queue 702. Event dispatcher 610 may process anomaly events based on notification

and inspection of RRDs.

[0108] Event dispatcher 610 may search policy store 616 to identify each policy (e.g.,
dispatch policy) that is defined for the anomaly event. Policy store 616 may store dispatch
policies to determine how to handle an anomaly event. For example, policies may be
anomaly specific such that they are defined for types of anomaly events. Policies may be
implemented (e.g., defined) in a language specific to the type of component in which the
ADRC 600 is implemented. For example, in a JVM, policies may be defined using JEXL.

ADRC 600 can update the policy store 616 for a change in one or more rules of a policy.

[0109] A policy may define actions to perform for handling an anomaly event. The action(s)
defined in a policy may be pre-defined actions identified in AL 606. A policy may include
one or more criteria (e.g., rules or conditions) for one or more types of anomaly events. Each
rule may be associated with at least one corrective action as a corrective action pair. Each of
the policies may be registered for anomaly events. A rule in a policy may be defined as an
event-condition-action (ECA) rule to resolve an anomaly to avoid a QoS violation. Each
policy can be associated with one or more events. Relationships amongst components, in
particular anomalies occurring in immediate predecessors and successors of the component in
a control flow, are considered in the user-defined and system-defined rules. If programmatic
action can be taken, it is coded as the action part of a rule. A rule may be define with one or
more parameters. In some embodiments, a rule may be defined having five parameters (e.g.,
a 5-tuple rule). The five parameters may include (1) a list of anomalies (/), (2) a minimum
number of anomalies in / (m), (3) a time period or interval during which m anomalies
occurred, (4) an action to take for resolving the m anomalies (a), and (5) a time period (g)
after which the action is initiated in which the rule will not be considered again (e.g., a quiet
period). Actions may be coded using a variety of technologies including operating system or

shell commands, and tools like Puppet, Chef, and WebLogic Scripting Tool.

[0110] The rule(s) may be declarative or procedural. A declarative rule may be stored in
policy store 616. A declarative rule may be executed by a rule engine, such as Oracle
Business rule engine provided by Oracle Corporation. A declarative rule system may be

supported by a container-specific rule system such as a WebLogic Diagnostic Framework

32

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

Watch rule system provided by Oracle Corporation. A procedural rule may be defined as a
vector of parameters (e.g., a tuple of parameters) used by a procedure and policy engine 602.
An example of a procedural rule is a Two-Tier Adaptive Heap Management system of Oracle
WebLogic Server provided by the Oracle Corporation. A policy with a procedural rule may
be implemented using a managed bean and its behavior may be controlled by a set of

parameters using the procedural rule.

[0111] Event dispatcher 610 may search policy store 616 to identify one or more policies for
resolving an anomaly event. Event dispatcher 610 may determine how to process an anomaly
event based on whether a policy is defined for the anomaly. Upon determining that at least
one policy is defined for an anomaly event, event dispatcher 610 may retrieve 730 the
policies defined for the anomaly event from policy store 616. Event dispatcher 610 may call
policy engine 602 to handle the anomaly based on the policy determined for the anomaly
event. In some embodiments, event dispatcher 610 may identify multiple policies for
resolving an anomaly event. Event dispatcher 610 may choose a policy having a rule with a
maximum match of anomalies in a list of anomalies defined by the rule in the policy. Policy
engine 602 may be requested to handle an anomaly event upon satisfaction of the rule in a
policy for managing the anomaly event. In at least one embodiment, for a policy defining a
S5-tuple rule, event dispatcher 610 may request policy engine 602 to handle an anomaly upon
determining that the parameters of a 5-tuple rule of a policy are satisfied, such as the
minimum number of anomalies during a time period being satisfied. Event dispatcher 610
may choose a rule of a policy with a maximum match of anomalies in the list of anomalies
defined for the rule. Upon identifying a policy for which a rule is satisfied for an anomaly
event, event dispatcher 610 may send a request 740 to policy engine 602 to resolve the
anomaly for the anomaly event. The request may include the identified policies and the event
data about the anomaly event. In some embodiments, policy engine 602 may be called to
resolve a set of anomalies, where a rule for a policy is satisfied based on an occurrence of
multiple anomaly events that occur which satisfy the rule. Event dispatcher 610 may request

policy engine 602 may sending the event data corresponding to the anomaly events.

[0112] In some embodiments, upon determining that a policy is not defined for an anomaly
event, event dispatcher 610 may inform 750 a parent component (e.g., a parent container)
about the anomaly event. Communication agent 604 may be configured to communicate
within the component including ADRC 600 and parent and child components for the
component including ADRC 600. In this manner, ADRC 600 the ADRS 320 can be

33

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

considered as a rule-based hierarchical anomaly detection and resolution system. The parent
component may be a component that is a parent of the component in which ADRC 600 is
implemented. For example, should ADRC 364 of FIG. 3 not find a policy defined for an
anomaly event in container 360, an event dispatcher in ADRC 364 may communicate 750 the
anomaly event to ADRC 354 of container 350 that is a parent of container 360. Upon
determining that the parent component cannot resolve the anomaly event (e.g., no policy is
identified for the anomaly event), the parent component may communicate the event data for
the anomaly event to its parent component, if one exists, for resolution of the anomaly event.
When a highest level parent component (e.g., a top level container) has been reached that
cannot resolve an anomaly event, the highest level parent component may broadcast
information about the anomaly event. In some embodiments, the component including
ADRC 600 may be the highest level component. The highest level component may publish
information about the anomaly event to a topic which is subscribed to by one or more users
or the cloud infrastructure system 100. In some embodiments, the ADRC in the highest level
component or the ADRS 320 may attempt to resolve the anomaly event based on the
resolution rules and/or informs the operator with detailed description of the anomaly event
and including the components (e.g., containers) affected. The policy engine 602 of the
ADRC of the highest level component may attempt to resolve an anomaly event acting like a
dynamic resource manager. For example, policy engine 602 can adjust resources allocated
for a service (e.g., spinning up/down more containers of a cluster) to resolve the anomaly

event.

[0113] Event dispatcher 610 may communicate the anomaly event to the parent component in
a variety of ways. Event dispatcher 610 may send a notification to an ADRC of the parent
component about the anomaly event. The ADRC of the parent component may subscribe to
receive notifications from ADRC 600. Thus, when event dispatcher 610 sends (e.g., pushes)
a notification about the anomaly, the ADRC of the parent component may receive the
notification as part of a subscription. In some embodiments, event dispatcher 610 may place
the event data about the anomaly event in a data store, such as a queue or an RRD of the
parent component. The ADRC of the parent component may include an event dispatcher that
checks the data store for event data, which is identified when event dispatchers 610 places the
event data in the data store. In some embodiments, event dispatcher 610 may send an alert
760 to one or more recipients (e.g., operators or administrators) to notify them of the anomaly

event. The alert 760 may be sent as an alternative to or in addition to sending a notification

34

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

to a parent component or resolving the anomaly event based on a policy. For example, the
alert 760 can be sent as a Kafta topics using a distributed stream processing framework such

as Samza.

[0114] At step 714, policy engine 602 may perform one or more operations with respect to an
anomaly event identified by event dispatcher 610. The operation(s) may include performing
a corrective action to mitigate if not resolve a source or cause of the anomaly event. The
policy engine 602 may evaluate the condition(s) for each rule in the policies identified by
event dispatcher 610. Each rule may be evaluated to determine whether it is satisfied, and if
so the corrective action associated with the rule may be initiated by policy engine 602.
Corrective actions defined for the rule(s) of a policy may be relevant to providing resources
for enabling a service. Examples of corrective actions may include returning unused
resources to the current component, requesting for more resource from the component,
throttle/stop service requests, kill threads or processes, informing ADRS 320 of the
component about a resource usage spike related to the anomaly event, increase resource
allocation to VM processes, increase resource allocation to VMs, increase number of servers
in clusters, power up physicals, reduce servers in clusters, reduce VMs in physicals, throttle

load, and power down physicals.

[0115] In FIG. 6, LH 614 may be implemented to harvest log files for analysis of anomaly
events. LH 614 can collect data from log streams and metric streams for the component that
includes ADRC 600. LH 614 can associate each stream with the identity of the component
that produced the stream. LH 614 can be implemented as a script to regularly harvest the log
files that are rotated out or at a regular interval for live logs (e.g., hourly), attach relevant
meta data to them, and send them to the Log Archive. The log files can be analyzed by ADs
to detect an anomaly event. Log harvesting is further described with reference to FIGs. 13-

15. LH 614 may send the log files to LRAS 326 of ADRS 320 for central management.

V. Example of A Hierarchical Implementation of an ADRS

[0116] FIG. 8 illustrates an example of an autonomic cloud computing system 800
implemented with a hierarchical ADRS according to some embodiments. ASC 318 of FIG. 3
and one or more ADRCs may be implemented in cloud computing system 800 to provide a
hierarchical ADRS. The example in FIG. 8 expands upon the features of the ADRS
illustrated in FIGs. 3-7.

35

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

[0117] Cloud computing system 800 may include an ADRC 802 at the cloud environment
level of cloud computing system 800. ADRC 802 may operate as an environment controller
for multiple components, such as physical host computing system 820 and physical host
computing system 840, in cloud computing system 800. Each of host system 820 and host
system 840 includes its own ADRC 822 and ADRC 842, respectively.

[0118] Host system 820 includes a sub-container 824, which is a VM. Container 824
includes a sub-container 828, which is a Java VM (JVM). Each of container 824 and
container 828 include their own respective ADRC 826 and ADRC 830. Similarly, host
system 840 includes a sub-container 844, which is a VM. Container 844 includes a sub-
container 848, which is a Java VM (JVM). Each of container 844 and container 848 include
their own respective ADRC 846 and ADRC 850. Each of the ADRC depicted in cloud
computing system 800 may be part of an hierarchical ADRS. In the hierarchical ADRS, each
ADRC in a component monitors activity to identity anomaly events. As described with
references to ADRC 600, an ADRC may determine whether a policy is defined for an
anomaly event detected in the ADRC. Upon determining that no policy is defined for
handling an anomaly event, an ADRC may communicate the anomaly event to a parent
component if one exists. The anomaly event may be propagated up to an ADRC of a parent
component and further along to parent components until an ADRC of a parent component can
identify a policy for handling an anomaly event. Event data for an anomaly event may be
propagated to an ADRC 802 of a highest level component in cloud computing system 800.
The highest level component may be at the cloud environment level for cloud computing
system 800. For example, if no policy is determined at ADRC 830, an anomaly event
detected at ADRC 830 may be communicated to ADRC 826 of component 824 which is a
parent of component 828. If not policy is determined at ADRC 826, ADRC 826 may
communicate the anomaly event to ADRC 822 of component 820, which is a parent
component of component 824. If not policy is determined for the anomaly event at ADRC
822, component 820 may communicate the anomaly event to ADRC 802 of the cloud

computing environment level of cloud computing system 800.

[0119] Each of the ADRCs in cloud computing system 800 may monitor activity of anomaly
events in each of the respective components. Using a LRAS of the ADRS, each ADRC may
capture or log information about activity, including anomaly events, which are reported to a
data store, e.g., seasonal trend DB 804. As described below, a seasonal trend DB 804 may be

utilized to assess anomaly events based on seasonal defined anomalies.

36

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

[0120] The data store 804 may be implemented using any type of persistent storage device,
such as a memory storage device or other non-transitory computer-readable storage medium.
In some embodiments, local storage may include or implement one or more databases (e.g., a
document database, a relational database, or other type of database), one or more file stores,
one or more file systems, or combinations thereof. The memory and the additional storage
are all examples of computer-readable storage media. For example, computer-readable
storage media may include volatile or non-volatile, removable or non-removable media
implemented in any method or technology for storage of information such as computer-
readable instructions, data structures, program modules, or other data. More or fewer data

stores may be implemented to store data according to the techniques disclosed herein.

VI. Anomaly Classification

[0121] FIG. 9 illustrates a hierarchical anomaly classification structure 900 according to
some embodiments. Anomaly classification structure 900 may be implemented using one or
more data structures organized in a variety of ways depending on how, what, and/or where
data is stored. Although each of the data structures are shown including particular data, more
or fewer data structures may be implemented to store the data. A data structure can include a
reference to other data structures. An instance of each of the data structures may be created
for managing storage of different security artifacts. The data structures may be implemented
using one or more types of data structures including, without restriction, a linked list, an
array, a queue, a hashtable, a map, a record, a graph, or other type of data structure. Each of

the data structures may be defined in a declarative manner based on input to ADRS 320.

[0122] Many service instances can be created from a service type each with possibly different
performance, scalability, availability, resource consumption, and error characteristics. The
values of each metric (or variable) defining a service can be defined using measures including
a minimum (min) measure, a maximum (max) measure, and a max soft limit (SL) measure.
An administrator can specify the min, the max, and the max SL for each key metric that
defines the normal system behavior including response times for services, availability of
services, resources to be allocated for the service, system load, and values expected for other
metrics. The administrators can specify the bounds on these metrics to enforce the service
level agreements (SLA) for the service. The service instance is considered to be normal if all
the metrics are within the min and the max SL specified for the service instance and the

container the service instance is running in. If any of the metrics is below the min or above

37

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

the max SL, the service may be deemed to be in anomalous state and real time anomaly
resolution will be initiated. The variables for error characteristic define the tolerable rate of

errors of certain type.

[0123] Anomalies may be defined as a variety of types using structure 900. An anomaly 902
can be defined as either one of a defined anomaly 904 or an undefined anomaly 906. Each
anomaly may be defined by a bound (“anomaly bound”), based on which an anomaly event is
detected. An undefined anomaly 906 is an anomaly that is not defined and may be
discovered by techniques such as machine learning or statistical methods. LRAS 326 may be
configured to analyze metric and log streams oftline to discover undefined anomalies.
Undefined anomalies may include those anomalies that are not defined by bounds on key

performance indicators or log statistics.

[0124] A defined anomaly 904 can divided into two categories, a user-defined anomaly 908
or a system-defined, or system inferred anomaly 910. A defined anomaly 904 is defined
based on bounds on any metric to be monitored and may be defined by bounds, which are
either fixed bound or seasonal bound. Application administrators using SCDMS 322 can
define fixed bounds or seasonal bounds for user-defined anomalies to monitor and enforce
quality of service of service-level agreements (SLA), resource usage, and other constraints.
System administrators may also define additional metrics, for example, to monitor resource

usage, load spikes, malicious use, and component failures among others.

[0125] A defined anomaly 904 may be defined by users (e.g., administrators) to enforce QoS
(e.g., response time for a service). A fixed bound may be used for configuring a user-defined
anomaly. A fixed bound can be specified by five parameters as a 5-tuple including (1) a
polling interval (pi1) for the metric value that is used only if notification is not available for
the metric value change, (2) a minimum measure that is the minimum expected of the metric
value, (3) a maximum SL that is the soft limit on the maximum, (4) a maximum measure that
is the hard maximum limit, and (5) a minimum consecutive readings (mcr) that is the
minimum number of consecutive readings of the anomalous readings before an event is
raised. A system can be considered normal, without an anomaly, if all the values of the
metrics defined for anomaly detection are within the min and max SL values. If any of these
metrics goes outside this range, the system is considered to be in anomalous state. If a metric

value is anomalous mcr consecutive readings then an anomaly event may be raised.

38

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

[0126] A user, such as a system administrator may monitor indicator metrics whose bounds
will be inferred by the system to keep QoS metrics in bound (e.g., CPU load). System
administrators may also define a set of metrics for containers (a subtype of component) and
let the system automatically compute the seasonal bounds for their values to avoid anomalies.
This kind of anomaly is referred to as a system-defined anomaly 910. The seasonal bounds
for a system-defined anomaly 910 can be computed for each container for each metric for
each hour for each day of the week by the LRAS 326. For example, the number of processes
or threads running in a container, or a CPU load of the container may need to be monitored to
detect certain impending anomalies but the system administrators are unable to determine the
appropriate bounds for them. In these examples, these metrics are used in system-inferred
anomaly 910 and the system will compute the seasonal bounds for them based on trends of

historical data.

[0127] A seasonal bound can be defined as a fixed bound for a time period. A seasonal
bound anomaly can be specified by five parameters as a 7-tuple including a polling interval
(pi), a minimum measure that is the minimum expected of the metric value, a maximum SL
that is the soft limit on the maximum, a maximum measure that is the hard maximum limit, a
duration (d) specified as the number of consecutive readings, a start time (st) and an end time
(et) during which the bound is valid. St and et can be specified as relative to start of the day
of a week. This kind of bounds is typically used for the system-inferred anomaly where the
bounds are computed from historical data on the metrics and the trends of the metric values
for user-defined anomalies. For system-inferred anomalies, trends and seasonal variations on
indicator metrics, such as key performance indicators, and statistics on log entries are
computed (e.g., average number of exceptions of a certain kind should not exceed a certain
number in a certain time frame) using the normal system behavior defined by user-defined
anomalies. When analyzing the time series data of log files to compute seasonal bounds for
system-inferred anomalies, the time intervals in which user-defined anomalies for a service
go from normal to abnormal or vice versa, and focus on the metric values and log entries in
that interval in related log files in immediate predecessor and successor components of the

service to compute the seasonal bounds.

VII. Bounds for Detection of Defined Anomalies

[0128] Now turning to FIG. 10 is a block diagram 1000 illustrating a bound for a defined

anomaly. A metric value for a service or operation in a cloud computing system can be

39

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

defined as a fixed bound by a 5-tuple of parameters or a seasonal bound by a 7-tuple of
parameters. The parameters of either bound can include a min measure 1002, a max measure
1006, and a SL 1004 (e.g., max SL). The metric may be identified as representing an
anomalous state when the measure of the metric is a value 1014 that satisfies the SL threshold
1004, such that the value of the metric is within the SL and the max. An anomaly detector
may identify an anomaly event as occurring when the value of the metric is a low value 1010
below the minimum 1002 or above the SL or when the value of the metric is a high value
1014 at or above the SL 1004 but no higher than max 1006. In other words, when the metric
value is a normal value (e.g., no anomaly) within a normal range 1012 when it is at or above
the minimum 1002 and less than the SL 1004. A value for a metric may indicate a
problematic state, beyond an anomaly when the value 1016 for a metric is above max 1006.
When a problematic state is detected, action may be taken by a policy defined to resolve the

problem.

VIII. Operations for Anomaly Detection and Resolution

[0129] FIG. 11 illustrates a block diagram 1100 of operations performed in an autonomic
cloud computing system (e.g., cloud infrastructure system 100) by ASC 318 of FIG. 3
according to some embodiments. At step 1132 (Step 1), a user (e.g., deployer 1130) selects
one or more assemblies for creating a service in cloud infrastructure system 100. SCDMS
322 may provide one or more interfaces to a client system operated by the user to configure a
service by defining an assembly. Through the interface, the user may request to deploy the
assemblies to instantiate a service. At step 1132, the user may provide values for the
variables, including fixed or seasonal bounds in the assembly in accordance with the QoS for

SLA agreement for the service to be provided by cloud infrastructure system 100.

[0130] At step 1134 (step 2), SCDMS 322 can create (e.g., create an instance of) one or more
component types to create components to establish the service. SCMDS 322 may request
CCMS 324 to create the components for the service. One or more ADRCs (subsystems) may
be created and deployed. Each component may include an ADRC subsystem. CCMS 324
may deploy the ADRC subsystems and the components of the service in newly created
containers. For example, ADRC 354 may be created and deployed at the cloud environment
level of cloud infrastructure system 100. Each of containers 1102 and 1120 may include an
ADRC 1104 and ADRC 1124, respectively. Container 1106 in container 1104 may include
ADRC 1108. Container 1126 in container 1124 may include ADRC 1128.

40

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

[0131] SCDMS 324 may request each component to configure itself. Each component may
create its home directory, installs the software needed, sets the configuration parameters, and
updates the component repository with the components (instances) deployed, their
relationships to log and metric streams, and the components in the upstream and downstream
control flow of the components in. CCMS 324 may include a data store (e.g., a configuration
repository) of the current and past configurations of the cloud infrastructure system 100. The
configuration repository can use the component model to describe relationships amongst

components of a cloud environment and the log and metric streams they produce.

[0132] At step 1136 (step 3), as services are being used, the log harvester in each of the
ADRCs may collect log and metrics streams from components from live and rotated logs at

the interval configured and send them to LRAS 326.

[0133] In step 1138 (step 4), LARS 326 can use an algorithm (e.g., an attribute association
algorithm) to find metrics that affect the user-defined metrics. LRAS 326 can then perform
time series analytics on the log and metric streams utilizing the configuration data stored in
the configuration repository. Seasonal bounds for s system-inferred anomaly are computed in

this step.

[0134] At step 1140 (step 5), the seasonal bounds and other information are pushed to the
ADRC of the appropriate containers where the bounds of ADs are updated. At step 1142
(step 6), anomalies and attribute associations can be analyzed and rules in a policy can be
modified by a user 1150 (e.g., an administrator). At step 1144 (step 7), unresolved anomaly
events at an ADRC in a container are propagated up to high level ADRCs in parent
containers, until reaching the environment level ADRC 354. An anomaly event may be
unresolved if no policy can be located for handling the anomaly. ADRC 354 can issue an

alert to users to notify them about an unresolved anomaly.

[0135] At step 1146 (step 8), ADRC 354 can be operated to update changes in configurations
in the configuration repository. An operations teams can then monitor the system for
unhandled anomalies. For each of the unhandled anomaly, the team needs to meet and decide
what additional metrics to monitor and/or what rules need to be developed or modified to

address the anomaly.

41

10

15

20

25

WO 2016/191639 PCT/US2016/034536

IX. High-Level Overview of Log File Flow

[0136] FIG. 12 illustrates a high-level diagram of a log file flow 1200 according to some
embodiments. Cloud systems produce a lot of log files, diagnostic data, and metrics. Log
files may be generated by one or more components (e.g., source component 1202) in cloud
infrastructure system 100. Metadata corresponding to the log files along with the log files are

pushed to a data center or security zone-specific data store (e.g., log archive 1204).

[0137] Log files contain a wide variety of data from performance metrics to failed login
attempts. They are also used by diverse groups of users from security experts and lawyers
doing forensic analysis to support engineers troubleshooting hosting environments and
product developers debugging applications. Every cloud service provider has some policies
governing log file retention and access. Typically, log files are moved, content unaltered, to
a log archive 1204 where the access and retention policies are enforced. Authorized
personnel are given privileges to search relevant log files in the archive and such searches are
usually done online, either manually or via a simple OS script, and may involve meta data-

based search as well as key word-based search.

[0138] A new pattern of log file usage has emerged recently. It is generally referred to as Log
Analytics. Its goal is to discover latent information contained in a large number of log files
of a large number of log types over a large number of systems over a long period of time.
More specifically, log analytics strives to: understand the systems behavior that produced the
data in the log files, and develop a model to forecast impending problems, monitor
anomalies, and provide feedback for optimal resource usage based on the long-term behavior
of a large collection of similar systems. This pattern is best applied to a large collection of
log files collected from many Log Archives after sensitive data has been masked by one or
more data markers (1206). The data store used for log analytics is referred to as a Log
Reservoir. The characteristics of the log reservoir are different from those of the log archive

as shown in Table 1.

Data Archive Reservoir
Store
Characteristic
Content Original log files; may contain PII | Processed log files; PII and sensitive
and sensitive data data replaced by one-way hash codes
sometimes referred to as a “7oken”

42

10

15

WO 2016/191639

PCT/US2016/034536

Retention As per cloud operator guidelines; | Long term; may extend beyond 6 years
from 90 days to 6 years depending | or may never be deleted
on the log type

Size Terabytes Petabytes

Usage Legal/Security discovery, Resource usage trends computation,

environment troubleshooting,
product defect detection, and

monitoring by humans

anomaly detection, failure prediction

by programs

Access Mechanism

Manual, OS file system access and

search. Content may be indexed

Programmatic, batch access; may use
non-standard (e.g. non POSIX) file

system. Content usually not indexed.

Access Control

Strict access control based on a
need-to-know basis or one-off
approval based on data type and
planned use (e.g. FED)

Less strict access control allowing
statistical and analytical programs to

access data

Table 1: Characteristics of Log Archive and Log Reservoir

[0139] Services running in a container 1202 write their log entries to log files and the log

files are rotated on a regular basis, say once a day. A log harvesting script running on the

source machine can regularly harvest the log files that are rotated out, or at a regular interval

for live logs (e.g., hourly), attach relevant meta data to them, and send them to the Log

Archive 1204. Data maskers 1206 then read the data from the Log Archive, mask the

sensitive data, and send it to the Log Reservoir 1208. The Data Masker 1206 has log type

specific processing pipelines which replace PII data in the log entries with hash code or mask

them, among other functions it performs, before loading them to the Log Reservoir 1208.

[0140] In some embodiments, a data center may have one or more security zones. All log

files generated in a security zone may be archived in a log archive 1204 (e.g., Regional Data
Hub) via a Data Hoarder. The Data Masker 1206 can masks PII and sensitive data and send

the masked log files to a Log Reservoir 1208 (e.g., a Central Hub). A Data Masker 1206 can
send the masked log files to a Log Reservoir 1204 by reading the log files from the archive

and masking them.

43

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

[0141] Applications running inside a container can generate log and metric streams (into a set
of log files). Some log files, for real-time monitoring, are processed by real-time stream
collectors such as Logstash Forwarders (for ELK stack) or Heka configured to call a local
Anomaly Resolver. The ELK stack uses the Logstash processing and filtering node and then
forwards the data to Elasticsearch clusters for indexing. Kibana can be used for web-based
search Ul and rendering on top of Elasticsearch. There may be one or more real-time
monitoring systems. Each Logstash Forwarder can forward the log to only one such system.

If Kafka is used, Heka will publish anomalies to one topic or queue only.

[0142] In some embodiments, log files are pushed to the Data Hoarder using HTTPS and
stored in the data center or zone specific Archives (ZFS for OCLA for now and Hadoop for
Regional Hub). Map-Reduce Java and R programs are used to analyze these log files
programmatically. Some log files for a particular time interval are loaded into Oracle
Database and the Oracle Data Warehouse and Business Intelligence tools are used to support
manual analysis. The Central Hub (Reservoir 1204) can also be used for trend computation
and predictive analytics. The ELK and Solr+Banana stacks are also supported for the

Archives and Data Hub (Reservoir).

[0143] LRAS 326 can uses the CCMS 324 component model to understand the relationships
amongst logs and metrics streams generated by application and system components with
respect to processing flows for services offered by the system. LRAS 326 can use an
algorithm (e.g., attribute association algorithm) to find the indicator metrics that are likely
affecting the user-defined metrics. Uses the normal system behavior defined by user-defined
anomalies to compute the trends and seasonal variations expected on the indicator metrics
such as key performance indicators (KPI) and statistics on log entries (e.g., average number
of exceptions of a certain kind should not exceed a certain number in a certain time frame)
that are defined for system-inferred anomalies. LRAS 326 can use machine learning
techniques to detect undefined anomalies, those that are not defined by bounds on KPI or log

statistics. LRAS 326 can predicts future anomalies.

[0144] Metric and log streams are analyzed offline to infer seasonal bounds for system-
defined anomalies and discover undefined anomalies. For example, the system administrator
might want to monitor the number of threads running in a container and raise an anomaly
event if it exceeds the normal values. The system administrator does not have to specify the

bounds (min, max, and max SL) for this metric. The seasonal variation of the values can be

44

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

computed by LRAS 326 from the metric and log streams and sent to the container as a 24 x 7
x 3 table that contains the min, max, and max SL for the week broken down by the hour. The
ADNS component running in the container can monitor the number of threads for anomaly

detection using this information.

[0145] The time series data in the log and metric files are first divided into the following four
categories: metrics associated with user-defined anomalies, metrics associated with system-
inferred anomalies, metrics deemed important generally, and errors. The series in each
category are then decomposed into trends and seasonal factors for either regular or irregular
sampling intervals using R programs. These are then compared to time series metrics related
to the user-defined anomalies to understand the causes of anomalies and to infer seasonal
bounds on other metrics and errors to avoid these anomalies. These seasonal bounds are the

fed back to the respective Containers to be used in real time monitoring of the system.

[0146] When analyzing the time series data to compute seasonal bounds for system-inferred
anomalies and other metrics, LRAS 326 can focus on time intervals in which user-defined
anomalies for a service go from normal to abnormal or vice versa, and focus on the metric
values and log entries in that interval in related log files in immediate predecessor and

successor components of the service to compute the seasonal bounds.

[0147] Container specific trends and seasonality computed from the archived data is fed into
the container. This data is used by a Heka filter to test if any metric is outside the bound of
normalcy based on the trend and seasonality. Upon determining that a metric value is an
anomaly does the Heka daemon running in each container calls the event dispatcher of the
ADRC in the container. If the event dispatcher cannot find the appropriate policy to resolve
the anomaly it will inform the parent container to resolve the anomaly. If the parent
container cannot resolve the anomaly it will publish the entire vector of metrics to the Kafka
topic. Samza may be used to retrieves them and stores them in a data store (e.g., RRD) for

further analysis by the anomaly detection code.

X. Processes for Anomaly Detection and Resolution

[0148] FIGs. 13 and 14 provide flowcharts illustrating processes for anomaly detection and
resolution according to some embodiments of the present invention. Individual embodiments
may be described as a process which is depicted as a flowchart, a flow diagram, a data flow
diagram, a structure diagram, or a block diagram. Although a flowchart may describe the

operations as a sequential process, many of the operations may be performed in parallel or

45

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

concurrently. In addition, the order of the operations may be re-arranged. A process is
terminated when its operations are completed, but could have additional steps not included in
a figure. A process may correspond to a method, a function, a procedure, a subroutine, a
subprogram, etc. When a process corresponds to a function, its termination may correspond

to a return of the function to the calling function or the main function.

[0149] The processes depicted in FIGs. 13 and 14 may be implemented in software (e.g.,
code, instructions, program) executed by one or more processing units (e.g., processors
cores), hardware, or combinations thereof. The software may be stored in a memory (e.g., on
a memory device, on a non-transitory computer-readable storage medium). For example, all
or a portion of ASC 318 of FIG. 3 and/or one or more ADRCs can implement the processes
described with reference to any of FIGs. 13 and 14. Any of the processes may be
implemented as a service. The service can be provided to client systems and service

providers that provide access to objects.

[0150] The particular series of processing steps in FIGs. 13 and 14 is not intended to be
limiting. Other sequences of steps may also be performed according to alternative
embodiments. For example, alternative embodiments of the present invention may perform
the steps outlined above in a different order. Moreover, the individual steps illustrated in
FIGs. 13 and 14 may include multiple sub-steps that may be performed in various sequences
as appropriate to the individual step. Furthermore, additional steps may be added or removed
depending on the particular applications. While processing depicted in FIGs. 13 and 14 is
with respect to a single application, such processing may be performed for several
applications. While processing depicted in FIGs. 13 and 14 is with respect to a single
anomaly event, such processing may be performed for several anomaly events, some or all of
which may be related. One of ordinary skill in the art would recognize many variations,

modifications, and alternatives.

[0151] In FIG. 13, flowchart illustrates a process 1300 for resolution of an anomaly related to
operation of a service provided by a computer system. The computer system may be a cloud
computer system (e.g., cloud infrastructure system 100) or an enterprise computer system.
Multiple components may be deployed to provide the service. A component may be
implemented within another component as a child component. Each component may be
executing in the computer system. A component may be configured to include an ADRC for

resolution of anomalies detected on the component.

46

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

[0152] Process 1300 may begin at step 1302 by determining a set of values defining an
anomaly bound for a metric related to a service provided by a computer system. An ADRS
implemented with the computer system may determine the anomaly bound. The set of values
may be user defined. The values may be defined based on input received via an interface or a
declarative file. The anomaly bound may be fixed for a user-defined anomaly or a seasonal
bound for a system-inferred anomaly. The metric may be one of several metrics monitored
for QoS for the service. An anomaly may be defined based on the anomaly classification

system of FIGs. 9 and 10.

[0153] The service can be established by components in the computer system. The
components may include containers executing in the computer system. A container may be
implemented in another container as a child container. Each component may be configured
to include an ADRC at step 1304. The ASC may configure the ADRC in each of the

components.

[0154] At step 1306, an anomaly event related to operation of a service may be detected in a
component established for the service. The anomaly event may be detected by the ADRC
configured in the component. The anomaly event may be detected based on a value of the
metric not satisfying the anomaly bound. For example, in FIG. 10, the value of metric may
not satisfy an anomaly bound if it is a value 1010 that is less than the minimum 1002 or a
value 1014 that is equal to or greater than the soft limit maximum. The anomaly event may
be raised if the anomaly bound is satisfied during the polling interval and the occurrence of
maximum continuous readings. An anomaly event may be detected based on satisfying all of

the parameters of the anomaly defined using the anomaly classification system.

[0155] At step 1308, a policy for resolving the anomaly is identified. The policy may be
identified by the ADRC in the component. A policy store may be searched to identify one or
more policies having one or more rule(s) that are satisfied by the anomaly. At step 1310, a
determination may be made that a rule in the policy is satisfied by the anomaly. The
determination may be made by the ADRC in the component. A policy may indicate one or
more corrective actions for resolving the anomaly in the component in which the anomaly
event is detected. At step 1312, a corrective action identified in the policy may be initiated

based on the rule being satisfied.

[0156] In some embodiments, a policy for resolving the anomaly in the component may not

be identified. In such a case, the ADRC of the component may communicate the anomaly

47

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

event to a parent component (if one exists) that includes the component. In some
embodiments, such as the embodiment described with reference to FIG. 14, a parent

component may resolve the anomaly by identifying a policy for resolving the anomaly.
[0157] Process 1300 ends at step 1314.

[0158] FIG. 14 illustrates a flowchart of a process 1400 for propagating an anomaly to
components in a hierarchy of components established for a service in a computer system.
Process 1400 may begin at step 1402 by determining a set of values defining an anomaly
bound for a metric related to a service provided by a computer system. An ADRS
implemented with the computer system may determine the anomaly bound. The set of values
may be user defined. The values may be defined based on input received via an interface or a
declarative file. The anomaly bound may be fixed for a user-defined anomaly or a seasonal
bound for a system-inferred anomaly. The metric may be one of several metrics monitored
for QoS for the service. An anomaly may be defined based on the anomaly classification

system of FIGs. 9 and 10.

[0159] The service can be established by components in the computer system. The
components may include containers executing in the computer system. A container may be
implemented in another container as a child container. Each component may be configured
to include an ADRC at step 1404. The ASC may configure the ADRC in each of the

components.

[0160] At step 1406, an anomaly event related to operation of a service may be detected in a
component established for the service. The anomaly event may be detected by the ADRC
configured in the component. The anomaly event may be detected based on a value of the
metric not satisfying the anomaly bound. An anomaly event may be detected based on
satistying all of the parameters of the anomaly defined using the anomaly classification

system.

[0161] At step 1408, a determination is made whether an ADRC in the component has a
policy for resolving the anomaly in the component. At step 1410, based on determining that
the ADRC in the component has a policy for resolving the anomaly, the ADRC may initiate a
corrective action to resolve the anomaly based on the policy. At step 1412, based on
determining that the ADRC in the component does not have a policy for resolving the
anomaly, the ADRC may notify the ADRC of a parent component that is a parent of the
component about the anomaly. The ADRC may notify the ADRC of the parent component

48

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

that the anomaly cannot be resolved by the component. Process 1400 may process to end at

step 1418 from step 1412.

[0162] At step 1414, the ADRC of the parent component may identify a policy for it to
resolve the anomaly in the parent component. At step 1416, the ADRC of the parent
component may initiate a corrective action identified in the policy for resolving the anomaly

in the parent component. Process 1400 may proceed to end at step 1418 from step 1416.

[0163] In some embodiments, the ADRC of the parent component may not have a policy for
resolving the anomaly in the parent component. The parent component may propagate data
about the anomaly event to higher level components, such as a parent component of the
parent component. The ADRC of the parent component may notify its parent component
about the anomaly. The ADRC of the higher level parent component may initiate corrective
action to resolve the anomaly provided that the ADRC can identify a policy for resolving the

anomaly in the higher level parent component.

XI. Computing Environments

[0164] FIG. 15 depicts a simplified diagram of a distributed system 1500 for implementing
an embodiment. In the illustrated embodiment, distributed system 1500 includes one or more
client computing devices 1502, 1504, 1506, and 1508, which are configured to execute and
operate a client application such as a web browser, proprietary client (e.g., Oracle Forms), or
the like over one or more network(s) 1510. Server 1512 may be communicatively coupled

with remote client computing devices 1502, 1504, 1506, and 1508 via network 1510.

[0165] In various embodiments, server 1512 may be adapted to run one or more services or
software applications such as services and applications that may manage security artifacts. In
certain embodiments, server 1512 may also provide other services or software applications
can include non-virtual and virtual environments. In some embodiments, these services may
be offered as web-based or cloud services or under a Software as a Service (SaaS) model to
the users of client computing devices 1502, 1504, 1506, and/or 1508. Users operating client
computing devices 1502, 1504, 1506, and/or 1508 may in turn utilize one or more client

applications to interact with server 1512 to utilize the services provided by these components.

[0166] In the configuration depicted in FIG. 15, software components 1518, 1520 and 1522
of system 1500 are shown as being implemented on server 1512. In other embodiments, one

or more of the components of system 1500 and/or the services provided by these components

49

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

may also be implemented by one or more of the client computing devices 1502, 1504, 1506,
and/or 1508. Users operating the client computing devices may then utilize one or more
client applications to use the services provided by these components. These components may
be implemented in hardware, firmware, software, or combinations thereof. It should be
appreciated that various different system configurations are possible, which may be different
from distributed system 1500. The embodiment shown in FIG. 15 is thus one example of a
distributed system for implementing an embodiment system and is not intended to be
limiting.

[0167] Client computing devices 1502, 1504, 1506, and/or 1508 may include various types of
computing systems. For example, a client computing device may include portable handheld
devices (e.g., an iPhone®, cellular telephone, an iPad®, computing tablet, a personal digital
assistant (PDA)) or wearable devices (e.g., a Google Glass® head mounted display), running
software such as Microsoft Windows Mobile®, and/or a variety of mobile operating systems
such as 10S, Windows Phone, Android, BlackBerry 10, Palm OS, and the like. The devices
may support various applications such as various Internet-related apps, e-mail, short message
service (SMS) applications, and may use various other communication protocols. The client
computing devices may also include general purpose personal computers including, by way
of example, personal computers and/or laptop computers running various versions of
Microsoft Windows®, Apple Macintosh®, and/or Linux operating systems. The client
computing devices can be workstation computers running any of a variety of commercially-
available UNIX® or UNIX-like operating systems, including without limitation the variety of
GNU/Linux operating systems, such as for example, Google Chrome OS. Client computing
devices may also include electronic devices such as a thin-client computer, an Internet-
enabled gaming system (e.g., a Microsoft Xbox gaming console with or without a Kinect®
gesture input device), and/or a personal messaging device, capable of communicating over

network(s) 1510.

[0168] Although distributed system 1500 in FIG. 15 is shown with four client computing
devices, any number of client computing devices may be supported. Other devices, such as

devices with sensors, etc., may interact with server 1512,

[0169] Network(s) 1510 in distributed system 1500 may be any type of network familiar to
those skilled in the art that can support data communications using any of a variety of

available protocols, including without limitation TCP/IP (transmission control

50

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

protocol/Internet protocol), SNA (systems network architecture), IPX (Internet packet
exchange), AppleTalk, and the like. Merely by way of example, network(s) 1510 can be a
local area network (LAN), networks based on Ethernet, Token-Ring, a wide-area network,
the Internet, a virtual network, a virtual private network (VPN), an intranet, an extranet, a
public switched telephone network (PSTN), an infra-red network, a wireless network (e.g., a
network operating under any of the Institute of Electrical and Electronics (IEEE) 802.11 suite
of protocols, Bluetooth®, and/or any other wireless protocol), and/or any combination of

these and/or other networks.

[0170] Server 1512 may be composed of one or more general purpose computers, specialized
server computers (including, by way of example, PC (personal computer) servers, UNIX®
servers, mid-range servers, mainframe computers, rack-mounted servers, etc.), server farms,
server clusters, or any other appropriate arrangement and/or combination. Server 1512 can
include one or more virtual machines running virtual operating systems, or other computing
architectures involving virtualization. One or more flexible pools of logical storage devices
can be virtualized to maintain virtual storage devices for the server. Virtual networks can be
controlled by server 1512 using software defined networking. In various embodiments,
server 1512 may be adapted to run one or more services or software applications described in
the foregoing disclosure. For example, server 1512 may correspond to a server for
performing processing as described above according to an embodiment of the present

disclosure.

[0171] Server 1512 may run an operating system including any of those discussed above, as
well as any commercially available server operating system. Server 1512 may also run any
of a variety of additional server applications and/or mid-tier applications, including HTTP
(hypertext transport protocol) servers, FTP (file transfer protocol) servers, CGI (common
gateway interface) servers, JAVA® servers, database servers, and the like. Exemplary
database servers include without limitation those commercially available from Oracle,

Microsoft, Sybase, IBM (International Business Machines), and the like.

[0172] In some implementations, server 1512 may include one or more applications to
analyze and consolidate data feeds and/or event updates received from users of client
computing devices 1502, 1504, 1506, and 1508. As an example, data feeds and/or event
updates may include, but are not limited to, Twitter® feeds, Facebook® updates or real-time

updates received from one or more third party information sources and continuous data

51

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

streams, which may include real-time events related to sensor data applications, financial
tickers, network performance measuring tools (e.g., network monitoring and traftic
management applications), clickstream analysis tools, automobile traffic monitoring, and the
like. Server 1512 may also include one or more applications to display the data feeds and/or
real-time events via one or more display devices of client computing devices 1502, 1504,

1506, and 1508.

[0173] Distributed system 1500 may also include one or more databases 1514 and 1516.
These databases may provide a mechanism for storing information such as user interactions
information, usage patterns information, adaptation rules information, and other information
used by embodiments of the present invention. Databases 1514 and 1516 may reside in a
variety of locations. By way of example, one or more of databases 1514 and 1516 may reside
on a non-transitory storage medium local to (and/or resident in) server 1512. Alternatively,
databases 1514 and 1516 may be remote from server 1512 and in communication with server
1512 via a network-based or dedicated connection. In one set of embodiments, databases
1514 and 1516 may reside in a storage-area network (SAN). Similarly, any necessary files
for performing the functions attributed to server 1512 may be stored locally on server 1512
and/or remotely, as appropriate. In one set of embodiments, databases 1514 and 1516 may
include relational databases, such as databases provided by Oracle that are adapted to store,

update, and retrieve data in response to SQL-formatted commands.

[0174] In some embodiments, a cloud environment may provide one or more services for
managing security artifacts. FIG. 16 is a simplified block diagram of one or more
components of a system environment 1600 in which services may be offered as cloud
services, in accordance with an embodiment of the present disclosure. In the illustrated
embodiment in FIG. 16, system environment 1600 includes one or more client computing
devices 1604, 1606, and 1608 that may be used by users to interact with a cloud infrastructure
system 1602 that provides cloud services, including services for managing security artifacts.
Cloud infrastructure system 1602 may comprise one or more computers and/or servers that

may include those described above for server 1512.

[0175] It should be appreciated that cloud infrastructure system 1602 depicted in FIG. 16
may have other components than those depicted. Further, the embodiment shown in FIG. 16
is only one example of a cloud infrastructure system that may incorporate an embodiment of

the invention. In some other embodiments, cloud infrastructure system 1602 may have more

52

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

or fewer components than shown in the figure, may combine two or more components, or

may have a different configuration or arrangement of components.

[0176] Client computing devices 1604, 1606, and 1608 may be devices similar to those
described above for client computing devices 1502, 1504, 1506, and 1508. Client computing
devices 1604, 1606, and 1608 may be configured to operate a client application such as a web
browser, a proprietary client application (e.g., Oracle Forms), or some other application,
which may be used by a user of the client computing device to interact with cloud
infrastructure system 1602 to use services provided by cloud infrastructure system 1602.
Although exemplary system environment 1600 is shown with three client computing devices,
any number of client computing devices may be supported. Other devices such as devices

with sensors, etc. may interact with cloud infrastructure system 1602.

[0177] Network(s) 1610 may facilitate communications and exchange of data between client
computing devices 1604, 1606, and 1608 and cloud infrastructure system 1602. Each

network may be any type of network familiar to those skilled in the art that can support data
communications using any of a variety of commercially-available protocols, including those

described above for network(s) 1510.

[0178] In certain embodiments, services provided by cloud infrastructure system 1602 may
include a host of services that are made available to users of the cloud infrastructure system
on demand. In addition to services related to managing security artifacts, various other
services may also be offered including without limitation online data storage and backup
solutions, Web-based e-mail services, hosted office suites and document collaboration
services, database processing, managed technical support services, and the like. Services
provided by the cloud infrastructure system can dynamically scale to meet the needs of its

users.

[0179] In certain embodiments, a specific instantiation of a service provided by cloud
infrastructure system 1602 may be referred to herein as a “service instance.” In general, any
service made available to a user via a communication network, such as the Internet, from a
cloud service provider’s system is referred to as a “cloud service.” Typically, in a public
cloud environment, servers and systems that make up the cloud service provider’s system are
different from the customer’s own on-premises servers and systems. For example, a cloud
service provider’s system may host an application, and a user may, via a communication

network such as the Internet, on demand, order and use the application.

53

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

[0180] In some examples, a service in a computer network cloud infrastructure may include
protected computer network access to storage, a hosted database, a hosted web server, a
software application, or other service provided by a cloud vendor to a user, or as otherwise
known in the art. For example, a service can include password-protected access to remote
storage on the cloud through the Internet. As another example, a service can include a web
service-based hosted relational database and a script-language middleware engine for private
use by a networked developer. As another example, a service can include access to an email

software application hosted on a cloud vendor’s web site.

[0181] In certain embodiments, cloud infrastructure system 1602 may include a suite of
applications, middleware, and database service offerings that are delivered to a customer in a
self-service, subscription-based, elastically scalable, reliable, highly available, and secure
manner. An example of such a cloud infrastructure system is the Oracle Public Cloud

provided by the present assignee.

[0182] Cloud infrastructure system 1602 may also provide “big data” elated computation and
analysis services. The term “big data” is generally used to refer to extremely large data sets
that can be stored and manipulated by analysts and researchers to visualize large amounts of
data, detect trends, and/or otherwise interact with the data. This big data and related
applications can be hosted and/or manipulated by an infrastructure system on many levels
and at different scales. Tens, hundreds, or thousands of processors linked in parallel can act
upon such data in order to present it or simulate external forces on the data or what it
represents. These data sets can involve structured data, such as that organized in a database
or otherwise according to a structured model, and/or unstructured data (e.g., emails, images,
data blobs (binary large objects), web pages, complex event processing). By leveraging an
ability of an embodiment to relatively quickly focus more (or fewer) computing resources
upon an objective, the cloud infrastructure system may be better available to carry out tasks
on large data sets based on demand from a business, government agency, research
organization, private individual, group of like-minded individuals or organizations, or other

entity.

[0183] In various embodiments, cloud infrastructure system 1602 may be adapted to
automatically provision, manage and track a customer’s subscription to services offered by
cloud infrastructure system 1602. Cloud infrastructure system 1602 may provide the cloud

services via different deployment models. For example, services may be provided under a

54

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

public cloud model in which cloud infrastructure system 1602 is owned by an organization
selling cloud services (e.g., owned by Oracle Corporation) and the services are made
available to the general public or different industry enterprises. As another example, services
may be provided under a private cloud model in which cloud infrastructure system 1602 is
operated solely for a single organization and may provide services for one or more entities
within the organization. The cloud services may also be provided under a community cloud
model in which cloud infrastructure system 1602 and the services provided by cloud
infrastructure system 1602 are shared by several organizations in a related community. The
cloud services may also be provided under a hybrid cloud model, which is a combination of

two or more different models.

[0184] In some embodiments, the services provided by cloud infrastructure system 1602 may
include one or more services provided under Software as a Service (SaaS) category, Platform
as a Service (PaaS) category, Infrastructure as a Service (IaaS) category, or other categories
of services including hybrid services. A customer, via a subscription order, may order one or
more services provided by cloud infrastructure system 1602. Cloud infrastructure system

1602 then performs processing to provide the services in the customer’s subscription order.

[0185] In some embodiments, the services provided by cloud infrastructure system 1602 may
include, without limitation, application services, platform services and infrastructure services.
In some examples, application services may be provided by the cloud infrastructure system
via a SaaS platform. The SaaS platform may be configured to provide cloud services that fall
under the SaaS category. For example, the SaaS platform may provide capabilities to build
and deliver a suite of on-demand applications on an integrated development and deployment
platform. The SaaS platform may manage and control the underlying software and
infrastructure for providing the SaaS services. By utilizing the services provided by the SaaS
platform, customers can utilize applications executing on the cloud infrastructure system.
Customers can acquire the application services without the need for customers to purchase
separate licenses and support. Various different SaaS services may be provided. Examples
include, without limitation, services that provide solutions for sales performance

management, enterprise integration, and business flexibility for large organizations.

[0186] In some embodiments, platform services may be provided by cloud infrastructure
system 1602 via a PaaS platform. The PaaS platform may be configured to provide cloud

services that fall under the PaaS category. Examples of platform services may include

55

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

without limitation services that enable organizations (such as Oracle) to consolidate existing
applications on a shared, common architecture, as well as the ability to build new applications
that leverage the shared services provided by the platform. The PaaS platform may manage
and control the underlying software and infrastructure for providing the PaaS services.
Customers can acquire the PaaS services provided by cloud infrastructure system 1602
without the need for customers to purchase separate licenses and support. Examples of
platform services include, without limitation, Oracle Java Cloud Service (JCS), Oracle

Database Cloud Service (DBCS), and others.

[0187] By utilizing the services provided by the PaaS platform, customers can employ
programming languages and tools supported by the cloud infrastructure system and also
control the deployed services. In some embodiments, platform services provided by the
cloud infrastructure system may include database cloud services, middleware cloud services
(e.g., Oracle Fusion Middleware services), and Java cloud services. In one embodiment,
database cloud services may support shared service deployment models that enable
organizations to pool database resources and offer customers a Database as a Service in the
form of a database cloud. Middleware cloud services may provide a platform for customers
to develop and deploy various business applications, and Java cloud services may provide a

platform for customers to deploy Java applications, in the cloud infrastructure system.

[0188] Various different infrastructure services may be provided by an IaaS platform in the
cloud infrastructure system. The infrastructure services facilitate the management and
control of the underlying computing resources, such as storage, networks, and other
fundamental computing resources for customers utilizing services provided by the SaaS

platform and the PaaS platform.

[0189] In certain embodiments, cloud infrastructure system 1602 may also include
infrastructure resources 1630 for providing the resources used to provide various services to
customers of the cloud infrastructure system. In one embodiment, infrastructure resources
1630 may include pre-integrated and optimized combinations of hardware, such as servers,
storage, and networking resources to execute the services provided by the PaaS platform and

the SaaS platform, and other resources.

[0190] In some embodiments, resources in cloud infrastructure system 1602 may be shared
by multiple users and dynamically re-allocated per demand. Additionally, resources may be

allocated to users in different time zones. For example, cloud infrastructure system 1602 may

56

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

enable a first set of users in a first time zone to utilize resources of the cloud infrastructure
system for a specified number of hours and then enable the re-allocation of the same
resources to another set of users located in a different time zone, thereby maximizing the

utilization of resources.

[0191] In certain embodiments, a number of internal shared services 1632 may be provided
that are shared by different components or modules of cloud infrastructure system 1602 to
enable provision of services by cloud infrastructure system 1602. These internal shared
services may include, without limitation, a security and identity service, an integration
service, an enterprise repository service, an enterprise manager service, a virus scanning and
white list service, a high availability, backup and recovery service, service for enabling cloud

support, an email service, a notification service, a file transfer service, and the like.

[0192] In certain embodiments, cloud infrastructure system 1602 may provide comprehensive
management of cloud services (e.g., SaaS, PaaS, and IaaS services) in the cloud infrastructure
system. In one embodiment, cloud management functionality may include capabilities for
provisioning, managing and tracking a customer’s subscription received by cloud

infrastructure system 1602, and the like.

[0193] In one embodiment, as depicted in FIG. 16, cloud management functionality may be
provided by one or more modules, such as an order management module 1620, an order
orchestration module 1622, an order provisioning module 1624, an order management and
monitoring module 1626, and an identity management module 1628. These modules may
include or be provided using one or more computers and/or servers, which may be general
purpose computers, specialized server computers, server farms, server clusters, or any other

appropriate arrangement and/or combination.

[0194] In an exemplary operation, at step 1634, a customer using a client device, such as
client computing devices 1604, 1606 or 1608, may interact with cloud infrastructure system
1602 by requesting one or more services provided by cloud infrastructure system 1602 and
placing an order for a subscription for one or more services offered by cloud infrastructure
system 1602. In certain embodiments, the customer may access a cloud User Interface (UI)
such as cloud UI 1612, cloud UI 1614 and/or cloud UI 1616 and place a subscription order
via these Uls. The order information received by cloud infrastructure system 1602 in

response to the customer placing an order may include information identifying the customer

57

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

and one or more services offered by the cloud infrastructure system 1602 that the customer

intends to subscribe to.

[0195] At step 1636, the order information received from the customer may be stored in an
order database 1618. If this is a new order, a new record may be created for the order. In one
embodiment, order database 1618 can be one of several databases operated by cloud

infrastructure system 1618 and operated in conjunction with other system elements.

[0196] At step 1638, the order information may be forwarded to an order management
module 1620 that may be configured to perform billing and accounting functions related to

the order, such as verifying the order, and upon verification, booking the order.

[0197] At step 1640, information regarding the order may be communicated to an order
orchestration module 1622 that is configured to orchestrate the provisioning of services and
resources for the order placed by the customer. In some instances, order orchestration
module 1622 may use the services of order provisioning module 1624 for the provisioning.
In certain embodiments, order orchestration module 1622 enables the management of
business processes associated with each order and applies business logic to determine

whether an order should proceed to provisioning.

[0198] As shown in the embodiment depicted in FIG. 16, at step 1642, upon receiving an
order for a new subscription, order orchestration module 1622 sends a request to order
provisioning module 1624 to allocate resources and configure resources needed to fulfill the
subscription order. Order provisioning module 1624 enables the allocation of resources for
the services ordered by the customer. Order provisioning module 1624 provides a level of
abstraction between the cloud services provided by cloud infrastructure system 1600 and the
physical implementation layer that is used to provision the resources for providing the
requested services. This enables order orchestration module 1622 to be isolated from
implementation details, such as whether or not services and resources are actually

provisioned on the fly or pre-provisioned and only allocated/assigned upon request.

[0199] At step 1644, once the services and resources are provisioned, a notification may be
sent to the subscribing customers indicating that the requested service is now ready for use.
In some instance, information (e.g. a link) may be sent to the customer that enables the

customer to start using the requested services.

58

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

[0200] At step 1646, a customer’s subscription order may be managed and tracked by an
order management and monitoring module 1626. In some instances, order management and
monitoring module 1626 may be configured to collect usage statistics regarding a customer
use of subscribed services. For example, statistics may be collected for the amount of storage
used, the amount data transferred, the number of users, and the amount of system up time and

system down time, and the like.

[0201] In certain embodiments, cloud infrastructure system 1600 may include an identity
management module 1628 that is configured to provide identity services, such as access
management and authorization services in cloud infrastructure system 1600. In some
embodiments, identity management module 1628 may control information about customers
who wish to utilize the services provided by cloud infrastructure system 1602. Such
information can include information that authenticates the identities of such customers and
information that describes which actions those customers are authorized to perform relative to
various system resources (e.g., files, directories, applications, communication ports, memory
segments, etc.). Identity management module 1628 may also include the management of
descriptive information about each customer and about how and by whom that descriptive

information can be accessed and modified.

[0202] FIG. 17 illustrates an exemplary computer system 1700 that may be used to
implement an embodiment of the present invention. In some embodiments, computer system
1700 may be used to implement any of the various servers and computer systems described
above. As shown in FIG. 17, computer system 1700 includes various subsystems including a
processing unit 1704 that communicates with a number of peripheral subsystems via a bus
subsystem 1702. These peripheral subsystems may include a processing acceleration unit
1706, an I/O subsystem 1708, a storage subsystem 1718 and a communications subsystem
1724. Storage subsystem 1718 may include tangible computer-readable storage media 1722

and a system memory 1710.

[0203] Bus subsystem 1702 provides a mechanism for letting the various components and
subsystems of computer system 1700 communicate with each other as intended. Although
bus subsystem 1702 is shown schematically as a single bus, alternative embodiments of the
bus subsystem may utilize multiple buses. Bus subsystem 1702 may be any of several types
of bus structures including a memory bus or memory controller, a peripheral bus, and a local

bus using any of a variety of bus architectures. For example, such architectures may include

59

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

an Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus,
Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus, which can be implemented as a Mezzanine

bus manufactured to the IEEE P1386.1 standard, and the like.

[0204] Processing subsystem 1704 controls the operation of computer system 1700 and may
comprise one or more processing units 1732, 1734, etc. A processing unit may include be
one or more processors, including single core or multicore processors, one or more cores of
processors, or combinations thereof. In some embodiments, processing subsystem 1704 can
include one or more special purpose co-processors such as graphics processors, digital signal
processors (DSPs), or the like. In some embodiments, some or all of the processing units of
processing subsystem 1704 can be implemented using customized circuits, such as

application specific integrated circuits (ASICs), or field programmable gate arrays (FPGAs).

[0205] In some embodiments, the processing units in processing subsystem 1704 can execute
instructions stored in system memory 1710 or on computer readable storage media 1722. In
various embodiments, the processing units can execute a variety of programs or code
instructions and can maintain multiple concurrently executing programs or processes. At any
given time, some or all of the program code to be executed can be resident in system memory
1710 and/or on computer-readable storage media 1722 including potentially on one or more
storage devices. Through suitable programming, processing subsystem 1704 can provide

various functionalities described above for managing security artifacts.

[0206] In certain embodiments, a processing acceleration unit 1706 may be provided for
performing customized processing or for off-loading some of the processing performed by
processing subsystem 1704 so as to accelerate the overall processing performed by computer

system 1700.

[0207] I/O subsystem 1708 may include devices and mechanisms for inputting information to
computer system 1700 and/or for outputting information from or via computer system 1700.
In general, use of the term “input device” is intended to include all possible types of devices
and mechanisms for inputting information to computer system 1700. User interface input
devices may include, for example, a keyboard, pointing devices such as a mouse or trackball,
a touchpad or touch screen incorporated into a display, a scroll wheel, a click wheel, a dial, a
button, a switch, a keypad, audio input devices with voice command recognition systems,

microphones, and other types of input devices. User interface input devices may also include

60

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

motion sensing and/or gesture recognition devices such as the Microsoft Kinect® motion
sensor that enables users to control and interact with an input device, the Microsoft Xbox®
360 game controller, devices that provide an interface for receiving input using gestures and
spoken commands. User interface input devices may also include eye gesture recognition
devices such as the Google Glass® blink detector that detects eye activity (e.g., “blinking”
while taking pictures and/or making a menu selection) from users and transforms the eye
gestures as input into an input device (e.g., Google Glass®). Additionally, user interface
input devices may include voice recognition sensing devices that enable users to interact with

voice recognition systems (e.g., Siri® navigator), through voice commands.

[0208] Other examples of user interface input devices include, without limitation, three
dimensional (3D) mice, joysticks or pointing sticks, gamepads and graphic tablets, and
audio/visual devices such as speakers, digital cameras, digital camcorders, portable media
players, webcams, image scanners, fingerprint scanners, barcode reader 3D scanners, 3D
printers, laser rangefinders, and eye gaze tracking devices. Additionally, user interface input
devices may include, for example, medical imaging input devices such as computed
tomography, magnetic resonance imaging, position emission tomography, medical
ultrasonography devices. User interface input devices may also include, for example, audio

input devices such as MIDI keyboards, digital musical instruments and the like.

[0209] User interface output devices may include a display subsystem, indicator lights, or
non-visual displays such as audio output devices, etc. The display subsystem may be a
cathode ray tube (CRT), a flat-panel device, such as that using a liquid crystal display (LCD)
or plasma display, a projection device, a touch screen, and the like. In general, use of the
term “output device” is intended to include all possible types of devices and mechanisms for
outputting information from computer system 1700 to a user or other computer. For
example, user interface output devices may include, without limitation, a variety of display
devices that visually convey text, graphics and audio/video information such as monitors,
printers, speakers, headphones, automotive navigation systems, plotters, voice output devices,

and modems.

[0210] Storage subsystem 1718 provides a repository or data store for storing information
that is used by computer system 1700. Storage subsystem 1718 provides a tangible non-
transitory computer-readable storage medium for storing the basic programming and data

constructs that provide the functionality of some embodiments. Software (programs, code

61

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

modules, instructions) that when executed by processing subsystem 1704 provide the
functionality described above may be stored in storage subsystem 1718. The software may
be executed by one or more processing units of processing subsystem 1704. Storage
subsystem 1718 may also provide a repository for storing data used in accordance with the

present invention.

[0211] Storage subsystem 1718 may include one or more non-transitory memory devices,
including volatile and non-volatile memory devices. As shown in FIG. 17, storage subsystem
1718 includes a system memory 1710 and a computer-readable storage media 1722. System
memory 1710 may include a number of memories including a volatile main random access
memory (RAM) for storage of instructions and data during program execution and a non-
volatile read only memory (ROM) or flash memory in which fixed instructions are stored. In
some implementations, a basic input/output system (BIOS), containing the basic routines that
help to transfer information between elements within computer system 1700, such as during
start-up, may typically be stored in the ROM. The RAM typically contains data and/or
program modules that are presently being operated and executed by processing subsystem
1704. In some implementations, system memory 1710 may include multiple different types
of memory, such as static random access memory (SRAM) or dynamic random access

memory (DRAM).

[0212] By way of example, and not limitation, as depicted in FIG. 17, system memory 1710
may store application programs 1712, which may include client applications, Web browsers,
mid-tier applications, relational database management systems (RDBMS), etc., program data
1714, and an operating system 1716. By way of example, operating system 1716 may
include various versions of Microsoft Windows®, Apple Macintosh®, and/or Linux
operating systems, a variety of commercially-available UNIX® or UNIX-like operating
systems (including without limitation the variety of GNU/Linux operating systems, the
Google Chrome® OS, and the like) and/or mobile operating systems such as i0S, Windows®
Phone, Android® OS, BlackBerry® 10 OS, and Palm® OS operating systems.

[0213] Computer-readable storage media 1722 may store programming and data constructs
that provide the functionality of some embodiments. Software (programs, code modules,
instructions) that when executed by processing subsystem 1704 a processor provide the
functionality described above may be stored in storage subsystem 1718. By way of example,

computer-readable storage media 1722 may include non-volatile memory such as a hard disk

62

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

drive, a magnetic disk drive, an optical disk drive such as a CD ROM, DVD, a Blu-Ray®
disk, or other optical media. Computer-readable storage media 1722 may include, but is not
limited to, Zip® drives, flash memory cards, universal serial bus (USB) flash drives, secure
digital (SD) cards, DVD disks, digital video tape, and the like. Computer-readable storage
media 1722 may also include, solid-state drives (SSD) based on non-volatile memory such as
flash-memory based SSDs, enterprise flash drives, solid state ROM, and the like, SSDs based
on volatile memory such as solid state RAM, dynamic RAM, static RAM, DRAM-based
SSDs, magnetoresistive RAM (MRAM) SSDs, and hybrid SSDs that use a combination of
DRAM and flash memory based SSDs. Computer-readable media 1722 may provide storage
of computer-readable instructions, data structures, program modules, and other data for

computer system 1700.

[0214] In certain embodiments, storage subsystem 1700 may also include a computer-
readable storage media reader 1720 that can further be connected to computer-readable
storage media 1722. Together and, optionally, in combination with system memory 1710,
computer-readable storage media 1722 may comprehensively represent remote, local, fixed,
and/or removable storage devices plus storage media for storing computer-readable

information.

[0215] In certain embodiments, computer system 1700 may provide support for executing
one or more virtual machines. Computer system 1700 may execute a program such as a
hypervisor for facilitating the configuring and managing of the virtual machines. Each virtual
machine may be allocated memory, compute (e.g., processors, cores), I/O, and networking
resources. Each virtual machine typically runs its own operating system, which may be the
same as or different from the operating systems executed by other virtual machines executed
by computer system 1700. Accordingly, multiple operating systems may potentially be run
concurrently by computer system 1700. Each virtual machine generally runs independently

of the other virtual machines.

[0216] Communications subsystem 1724 provides an interface to other computer systems and
networks. Communications subsystem 1724 serves as an interface for receiving data from
and transmitting data to other systems from computer system 1700. For example,
communications subsystem 1724 may enable computer system 1700 to establish a
communication channel to one or more client computing devices via the Internet for

receiving and sending information from and to the client computing devices.

63

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

[0217] Communication subsystem 1724 may support both wired and/or wireless
communication protocols. For example, in certain embodiments, communications subsystem
1724 may include radio frequency (RF) transceiver components for accessing wireless voice
and/or data networks (e.g., using cellular telephone technology, advanced data network
technology, such as 3G, 4G or EDGE (enhanced data rates for global evolution), WiFi (IEEE
802.11 family standards, or other mobile communication technologies, or any combination
thereof), global positioning system (GPS) receiver components, and/or other components. In
some embodiments communications subsystem 1724 can provide wired network connectivity

(e.g., Ethernet) in addition to or instead of a wireless interface.

[0218] Communication subsystem 1724 can receive and transmit data in various forms. For
example, in some embodiments, communications subsystem 1724 may receive input
communication in the form of structured and/or unstructured data feeds 1726, event streams
1728, event updates 1730, and the like. For example, communications subsystem 1724 may
be configured to receive (or send) data feeds 1726 in real-time from users of social media
networks and/or other communication services such as Twitter® feeds, Facebook® updates,
web feeds such as Rich Site Summary (RSS) feeds, and/or real-time updates from one or

more third party information sources.

[0219] In certain embodiments, communications subsystem 1724 may be configured to
receive data in the form of continuous data streams, which may include event streams 1728 of
real-time events and/or event updates 1730, that may be continuous or unbounded in nature
with no explicit end. Examples of applications that generate continuous data may include, for
example, sensor data applications, financial tickers, network performance measuring tools
(e.g. network monitoring and traffic management applications), clickstream analysis tools,

automobile traffic monitoring, and the like.

[0220] Communications subsystem 1724 may also be configured to output the structured
and/or unstructured data feeds 1726, event streams 1728, event updates 1730, and the like to
one or more databases that may be in communication with one or more streaming data source

computers coupled to computer system 1700.

[0221] Computer system 1700 can be one of various types, including a handheld portable
device (e.g., an iPhone® cellular phone, an iPad® computing tablet, a PDA), a wearable
device (e.g., a Google Glass® head mounted display), a personal computer, a workstation, a

mainframe, a kiosk, a server rack, or any other data processing system.

64

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

[0222] Due to the ever-changing nature of computers and networks, the description of
computer system 1700 depicted in FIG. 17 is intended only as a specific example. Many
other configurations having more or fewer components than the system depicted in FIG. 17
are possible. Based on the disclosure and teachings provided herein, a person of ordinary
skill in the art will appreciate other ways and/or methods to implement the various

embodiments.

[0223] FIG. 18 illustrates an exemplary anomaly detection and resolution system (ADRS)
1800 that may be used to implement an embodiment of the present invention. As shown in
FIG. 18, the ADRS 1800 may include an ASC 1820. ASC 1820 may include an ADRS 1802
module, an SCDMS 1804, a CCMS 1806, and an LRAS 1808. ADRS 1800 may include one
or more ADRCs 1810. The ADRCs 1810 may be implemented as part of the ADRS 1800.
ASC 1820 may be ASC 318 of FIG. 13. SCDMS 1804 may be 322, CCMS 1806 may be
CCMS 324, LRAS 1808 may be LRAS 326, and ADRS 1802 module may be ADRS 320.
ADRCs 1810 may be ADRCs 354, 364, 374 of FIG. 3.

[0224] In at least one embodiment, ADRS module 1802 may be configured to determine a set
of values defining an anomaly bound for a metric related to a service provided by a cloud
computer system. The service may be established by components in the cloud computer
system. The components may include a first container and a second container executing in
the cloud computer environment. The first container may be a child container in the second
container. ADRS module 1802 may be configured to configure the first container to include
an anomaly detection and resolution component (ADRC), such as one of ADRCs 1810. An
ADRC may be configured to detect, in the first container, an anomaly event of an anomaly
related to operation of the service in the cloud computer system. The anomaly event may be
detected based on a value of the metric not satisfying the anomaly bound for the metric. The
ADRC may be configured to identify a policy for resolving the anomaly in the first container.
The ADRC may be configured to determine that a rule in the policy is satisfied by the
anomaly. The ADRC may be configured to initiate a corrective action to resolve the
anomaly. The corrective action may be identified in the policy based on the rule being

satisfied.

[0225] In some embodiments, the anomaly bound is a fixed bound defined for a user-defined
anomaly. The set of values may include a polling interval value, a minimum measure of the

metric, a soft limit for the metric, a maximum for the metric, and a minimum consecutive

65

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

readings value defining a minimum number of occurrences of the anomaly. Detecting the
anomaly event may include determining whether the value of the metric satisfies the anomaly
bound. The value of the metric may not satisfy the anomaly bound when the value is less
than the minimum measure and equal to or greater than the soft limit. The anomaly event

may be detected based on the minimum consecutive readings being satisfied.

[0226] In some embodiments, the anomaly bound is a seasonal bound defined for a user-
defined anomaly. The set of values may include a polling interval value, a minimum measure
of the metric, a soft limit for the metric, a maximum for the metric, a duration of consecutive
occurrences of the anomaly, a start time when the seasonal bound is valid, and an end time
when the seasonal bound is valid. Detecting the anomaly event may include determining
whether the value of the metric satisfies the anomaly bound. The value of the metric may not
satisfy the anomaly bound when the value is less than the minimum measure and equal to or
greater than the soft limit, when the anomaly event is detected for the duration and is detected

after the start time and before the end time.

[0227] In at least one embodiment, determining the set of values includes analyzing time

series data of log files to compute the set of values for the anomaly bound.

[0228] In some embodiments, the ADRC may be configured to, upon determining that a
policy for resolving the anomaly in the first container cannot be identified, notify, the second
container, that the anomaly cannot be resolved in the first container. The ADRC may be
configured to identify a policy for resolving the anomaly in the second container. The
method may include determining that a rule, in the policy for resolving the anomaly in the
second container, is satisfied by the anomaly. The ADRC may be configured to, based on the
rule being satisfied, initiating a corrective action identified in the policy for resolving the

anomaly in the second container.

[0229] In at least one embodiment, the metric related to the service is one of a plurality of

metrics monitored for quality of service (QoS) for providing the service.

[0230] In at least one embodiment, ADRS module 1802 may be configured to determine a set
of values defining an anomaly bound for a metric related to a service provided by a cloud
computer system. The service may be established by components in the cloud computer
system. The components may include a first container and a second container executing in
the cloud computer environment. The first container may be a child container in the second

container. ADRS module 1802 may be configured to configure the first container to include

66

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

a first anomaly detection and resolution component (ADRC), such as one of ADRCs 1810.
ADRS module 1802 may be configured to configure the second container to include a second
ADRC. The first ADRC may be configured to detect, in the first container, an anomaly event
of an anomaly related to operation of the service in the cloud computer system. The anomaly
event is detected based on a value of the metric not satisfying the anomaly bound for the
metric. The first ADRC may be configured to determine whether the first ADRC has a
policy for resolving the anomaly in the first container. The first ADRC may be configured to,
based on determining that the first ADRC does not have a policy for resolving the anomaly in
the first container, notifying, the second container, that the anomaly cannot be resolved in the
first container. The second ADRC may be configured to identify a policy for the ADRC to
resolve the anomaly in the second container. The second ADRC may be configured to
determine that a rule, in the policy for resolving the anomaly in the second container, is
satisfied by the anomaly. The second ADRC may be configured to, based on the rule being
satisfied, initiate a corrective action identified in the policy for resolving the anomaly in the

second container.

[0231] In some embodiments, the second ADRC may be configured to, based on
determining, that the second ADRC does not have a policy to resolve the anomaly in the
second container, sending, using a communication system, an alert that the anomaly could not

be resolved.

[0232] In some embodiments, the second ADRC may be configured to, based on
determining, that the second ADRC does not have a policy to resolve the anomaly in the
second container, notify, a third container, that the anomaly cannot be resolved, wherein the
third container is one of the components. The third container may include the second
container. A third ADRC may be configured in the third container to identify a policy to
resolve the anomaly in the third container. The third ADRC may be configured to initiate

corrective action identified in the policy for resolving the anomaly in the third container.

[0233] Although specific embodiments of the invention have been described, various
modifications, alterations, alternative constructions, and equivalents are also encompassed
within the scope of the invention. The modifications include any relevant combination of the
disclosed features. Embodiments of the present invention are not restricted to operation
within certain specific data processing environments, but are free to operate within a plurality

of data processing environments. Additionally, although embodiments of the present

67

10

15

20

WO 2016/191639 PCT/US2016/034536

invention have been described using a particular series of transactions and steps, it should be
apparent to those skilled in the art that the scope of the present invention is not limited to the
described series of transactions and steps. Various features and aspects of the above-

described embodiments may be used individually or jointly.

[0234] Further, while embodiments of the present invention have been described using a
particular combination of hardware and software, it should be recognized that other
combinations of hardware and software are also within the scope of the present invention.
Embodiments of the present invention may be implemented only in hardware, or only in
software, or using combinations thereof. The various processes described herein can be
implemented on the same processor or different processors in any combination. Accordingly,
where components or modules are described as being configured to perform certain
operations, such configuration can be accomplished, e.g., by designing electronic circuits to
perform the operation, by programming programmable electronic circuits (such as
microprocessors) to perform the operation, or any combination thereof. Processes can
communicate using a variety of techniques including but not limited to conventional
techniques for interprocess communication, and different pairs of processes may use different

techniques, or the same pair of processes may use different techniques at different times.

[0235] The specification and drawings are, accordingly, to be regarded in an illustrative
rather than a restrictive sense. It will, however, be evident that additions, subtractions,
deletions, and other modifications and changes may be made thereunto without departing
from the broader spirit and scope as set forth in the claims. Thus, although specific invention
embodiments have been described, these are not intended to be limiting. Various

modifications and equivalents are within the scope of the following claims.

68

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

WHAT IS CLAIMED IS:

1. A method comprising:

determining, by a computer system, a set of values defining an anomaly bound
for a metric related to a service provided by a cloud computer system, wherein the service is
established by components in the cloud computer system, and wherein the components
include a first container and a second container executing in the cloud computer environment,
and wherein the first container is a child container in the second container;

configuring the first container to include an anomaly detection and resolution
component (ADRC);

detecting, by the ADRC, in the first container, an anomaly event of an
anomaly related to operation of the service in the cloud computer system, wherein the
anomaly event is detected based on a value of the metric not satistfying the anomaly bound for
the metric;

identifying a policy for resolving the anomaly in the first container;

determining that a rule in the policy is satisfied by the anomaly; and

initiating a corrective action to resolve the anomaly, the corrective action

being identified in the policy based on the rule being satisfied.

2. The method of claim 1, wherein the anomaly bound is a fixed bound
defined for a user-defined anomaly, and wherein the set of values includes a polling interval
value, a minimum measure of the metric, a soft limit for the metric, a maximum for the
metric, and a minimum consecutive readings value defining a minimum number of

occurrences of the anomaly.

3. The method of claim 2, wherein detecting the anomaly event includes
determining whether the value of the metric satisfies the anomaly bound, and wherein the
value of the metric does not satisfy the anomaly bound when the value is less than the

minimum measure and equal to or greater than the soft limit.

4. The method of claim 2 or claim 3, wherein the anomaly event is further

detected based on the minimum consecutive readings being satisfied.

5. The method of claim 4, wherein the anomaly bound is a seasonal
bound defined for a user-defined anomaly, and wherein the set of values includes a polling

interval value, a minimum measure of the metric, a soft limit for the metric, a maximum for

69

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

the metric, a duration of consecutive occurrences of the anomaly, a start time when the

seasonal bound is valid, and an end time when the seasonal bound is valid.

6. The method of claim 5, wherein detecting the anomaly event includes
determining whether the value of the metric satisfies the anomaly bound, and wherein the
value of the metric does not satisfy the anomaly bound when the value is less than the
minimum measure and equal to or greater than the soft limit, when the anomaly event is

detected for the duration and is detected after the start time and before the end time.

7. The method of any one of claims 1 to 6, wherein determining the set of
values includes analyzing time series data of log files to compute the set of values for the

anomaly bound.

8. The method of any one of claims 1 to 7, further comprising:

upon determining that a policy for resolving the anomaly in the first container
cannot be identified, notifying, the second container, that the anomaly cannot be resolved in
the first container; and

identifying a policy for resolving the anomaly in the second container;

determining that a rule, in the policy for resolving the anomaly in the second
container, is satisfied by the anomaly; and

based on the rule being satisfied, initiating a corrective action identified in the

policy for resolving the anomaly in the second container.

9. The method of any one of claims 1 to 8, wherein the metric related to
the service is one of a plurality of metrics monitored for quality of service (QoS) for

providing the service.

10. A system comprising:
one or more processors; and
a memory accessible to the one or more processors, the memory storing
instructions which, upon execution by the one or more processors, cause the one or more
processors to:
determine a set of values defining an anomaly bound for a metric
related to a service provided by a cloud computer system, wherein the service is
established by components in the cloud computer system, and wherein the

components include a first container and a second container executing in the cloud

70

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

computer environment, and wherein the first container is a child container in the
second container;

configure the first container to include an anomaly detection and
resolution component (ADRC);,

detect, by the ADRC, in the first container, an anomaly event of an
anomaly related to operation of the service in the cloud computer system, wherein the
anomaly event is detected based on a value of the metric not satistying the anomaly
bound for the metric;

identify a policy for resolving the anomaly in the first container;

determine that a rule in the policy is satisfied by the anomaly; and

initiate a corrective action to resolve the anomaly, the corrective action

being identified in the policy based on the rule being satisfied.

11. The system of claim 10, wherein the one or more processors and the

memory are included in the cloud computer system.

12. The system of claim 10 or claim 11, wherein the anomaly bound is a
fixed bound defined for a user-defined anomaly, and wherein the set of values includes a
polling interval value, a minimum measure of the metric, a soft limit for the metric, a
maximum for the metric, and a minimum consecutive readings value defining a minimum

number of occurrences of the anomaly.

13 . The system of any one of claims 10 to 12, wherein detecting the
anomaly event includes determining whether the value of the metric satisfies the anomaly
bound, and wherein the value of the metric does not satisty the anomaly bound when the

value is less than the minimum measure and equal to or greater than the soft limit.

14. The system of claim 12 or claim 13, wherein the anomaly event is

further detected based on the minimum consecutive readings being satisfied.

15. The system of claim 10 or claim 11, wherein the anomaly bound is a
seasonal bound defined for a user-defined anomaly, and wherein the set of values includes a
polling interval value, a minimum measure of the metric, a soft limit for the metric, a
maximum for the metric, a duration of consecutive occurrences of the anomaly, a start time

when the seasonal bound is valid, and an end time when the seasonal bound is valid.

71

10

15

20

25

30

WO 2016/191639 PCT/US2016/034536

16. The system of any one of claims 10 to 15, wherein detecting the
anomaly event includes determining whether the value of the metric satisfies the anomaly
bound, and wherein the value of the metric does not satisfy the anomaly bound when the
value is less than the minimum measure and equal to or greater than the soft limit, when the
anomaly event is detected for the duration and is detected after the start time and before the

end time.

17. The system of any one of claims 10 to 16, wherein determining the set
of values includes analyzing time series data of log files to compute the set of values for the

anomaly bound.

18. A method comprising:

determining, by a computer system, a set of values defining an anomaly bound
for a metric related to a service provided by a cloud computer system, wherein the service is
established by components in the cloud computer system, and wherein the components
include a first container and a second container executing in the cloud computer environment,
and wherein the first container is a child container in the second container;

configuring the first container to include a first anomaly detection and
resolution component (ADRC);,

configuring the second container to include a second ADRC;

detecting, by the first ADRC, in the first container, an anomaly event of an
anomaly related to operation of the service in the cloud computer system, wherein the
anomaly event is detected based on a value of the metric not satistfying the anomaly bound for
the metric;

determining whether the first ADRC has a policy for resolving the anomaly in
the first container;

based on determining that the first ADRC does not have a policy for resolving
the anomaly in the first container, notifying, the second container, that the anomaly cannot be
resolved in the first container;

identifying, by the second ADRC, a policy for the ADRC to resolve the
anomaly in the second container;

determining that a rule, in the policy for resolving the anomaly in the second

container, is satisfied by the anomaly; and

72

10

15

WO 2016/191639 PCT/US2016/034536

based on the rule being satisfied, initiating a corrective action identified in the

policy for resolving the anomaly in the second container.

19. The method of claim 18, further comprising:
based on determining, by the second ADRC, that the second ADRC does not
have a policy to resolve the anomaly in the second container, sending, using a communication

system, an alert that the anomaly could not be resolved.

20. The method of claim 18 or claim 19, further comprising:

based on determining, by the second ADRC, that the second ADRC does not
have a policy to resolve the anomaly in the second container, notifying, a third container, that
the anomaly cannot be resolved, wherein the third container is one of the components, and
wherein the third container includes the second container; and

identifying, by a third ADRC configured in the third container, a policy to
resolve the anomaly in the third container; and

initiating corrective action identified in the policy for resolving the anomaly in

the third container.

73

WO 2016/191639

+

1/18

PCT/US2016/034536

CLOUD INFRASTRUCTURE 3YSTEM 100

CLOUD
MANAGEMENT
FUNCTIONALITY
108

SOFTWARE AS A SERVICE (SAAS)
PLATFORM 102

CRM
SERVICES 110

HCM/TALENT
SERVICES 142

PLATFORM AS A SERVICE (PAAS)
PLATFORM 104

DATABASE
CLOUD SERVICES
114

MIDDLEWARE
CLOUD SERVICES
118

JAVA CLOUD
SERVICES 118

INFRASTRUCTURE AS A SERVICE (IAAS)
PLATFORM 110

INFRASTRUCTURE RESOQURCES 108

FIG. 1

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/034536

WO 2016/191639

2/18

L@@E

C9) 4

Q@wx {

PEL

nafeugpy 2iN08g 3jURERIS ajgeneny Ajubid
o PG
FUNLONHLS VNI SWLINNY
A S
X3dv 08 33 erep 09t
Jajsuely UBIS SNIA
eIe(] % i ASVEVLIYA ITOVHO HIAUIS DID0TE3M I TOVHO |
A ajoid
R L STOVHNIT B NOLLYHSZ NI 3038 - gcL
Buyng g sbesr |} uonensurupy
HOMIBN [BI90S WOH uoisn O Uosn 4
SIOIANTS
ISRHIINT GUVHS SIDIANIS NOLWYOIddY N 961
A
N
B
PR | Pt | S v || o || aa wiges | | ongow | | dopseg
SNOLLYYNIJO SHIH0TEA3A SIS NI 0gi

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/034536

WO 2016/191639

3/18

{SHINIVINGS) 20 SININOGINOT) INIFTVE)
001 WALSAS INLONYL

SYHIN|

anato

£ Ol

.-..

0%
1SAS INAND

g¢ 0vd

ISFAYN HINIVINGD

7TE 1004 304N0S3Y

A

07T A0VdSIAVN HANIVINOG

2% 1004

B HIORE}

RERTR
I0MN0S3Y
ININOINO

LX]

2

NERTS
304N0STY
LNINOSAON

LINENO

7€ (ouay)
dIROT NOLLITTOS 3y
ONY NGILDFEE0 ANWINONY

L

¥ee

| (OuaY) INaNoanos
| NOILMTOS3
| NOLLOAEI(ATVIONY

dSINYN HINIVINOD (BT

ZOF 1004 30un0s3Y

NERY
IONNOSTY

INFNOJNOT

EX-X

BERTS
A0UN0STY

ININCINOD

$3¢ (oWay)
LNINGHNOT NOILNIOSEY
ANY NOILDIL3(0 ATVINONY

33

¥oE
WILSAS INTITD

{SHivOMLIN

Z0¢
WALSAS INTITO)

OGNV

00¢E

§7¢ (Syu)
W3LSAS SOILATWNY ONV JIOAYES3YH 907

Fet (SW0o)

NOILYHNOIEANGD

WALSAS INZWADYNYIY

OGNV NOILISCANOD

WALSAS IN3WE

Zet (Saos)
YNYIA
INFWAOQTA GNY

NOILYZAD) 30IAE3S

4%
(Suay)

WZESAS NOIENTIOSZY ONY NCILDZLZ(] ATVICONY

gL {O8Y) ININODINGD IWIALSAS SINONOLNY

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/034536

@1y BV oty
"t SLIBIOE | A0
~
o,
PN 2
Jaysn FBUIRIUGT smgﬁmmg SUYIBN
w@ P %«ﬁﬁ gy %0 m@ viBnLAA mmum%x%

4/18

5 Al

S5 ECELE FALIOWS
mmw Ocy

BIASSG
o1y

\mmxmmwgm

il HAOMIBH

\\\\ A

WO 2016/191639

UIBRIL . | ol WIEBIIS
515 By “sojeseush | w&&f@ faie J sejpsauab QUG ¥ =113
foyded 0
e e pe mugﬁmcm_\ B /
wswAnidaciee— AlGuwassy o WradAy | -
07 | B (Tlusuocdwon |
10
DOSOdWIcn)

SUBSTITUTE SHEET (RULE 26)

WO 2016/191639 PCT/US2016/034536
5/18

<<nstance0f>>

N >
o dod
8 RN,
N WYy &Y 3 P
SNy S Rl
R — L2
S X &

Y Pk

S s €50
S Ty T SRR— G 7]
Ah N N ey N =
N S Wl
o § Cof Dl e — |
g 2 b B . - RO
N . N
AN &% % .
o3 - O
<5 LD o= o3
&= L SR
m SRS
[18

[45]

A

d

hosts
Uses

refers to

f

funs

RS- -

ref
ance0f>>

) N %
&Y 3% £33 —Rmr® YD
N S R Y
Sl :\\‘; Sl
v e RUSSEE)
Q &

R

EYRRERRRy

—
Yol

2. XXy SV
ey XY
T e
ST o

<<ins

e T
doeed e A
WA~ © —
N -
RERER AN RS
R %
S Q3 Nwe®
o ¢ o Nl o
LD few & 3
™ § Nws®

refers to
denloved In
FIG. 5

belongs to

B &
VA S \
(3]

~ L ~

e N 1) RN
I e
oy e == ey
JRSR W+ o0 4 RSN+
2~ v o
Moo N
i) IR B .
A R <= R
WIS o wy QS
LG . LN
WY Wy LY
ooy g e
\\‘\\i\‘ S““““‘ &\\\\\\“

v

A

efine
LSes
ents

for
mple

[

anceQOpb
|

<3 S
[Al s
PO

. 2] =y
NN = Q8
W v
A4

T s e N

<3 & s SRR ®

&= . T T e T e

W S JRRCRRER} WL e
L . .
&Y N AN SN
Q8 S Q3

e oy WAL
L) A&

& &N
LN

g

SUBSTITUTE SHEET (RULE 26)

9 9l

PCT/US2016/034536

6/18

] 025 (Suy) WILSASANG NOILATOSTY ATYHONY
(SNQY) WILSAS NCILYOIJILON
ONV NCILDFLI(ATVINONY
OO0 {1y} AMvuan NOILDY L
910 30LS ADNCH
718 3oL vivE

FIT (1) ¥aLs3ndvH 207 {18 ¥3HOLVESI LN3AY

809 (sav) 705 (3d) INONT ATHOd

010130 ATVWONY F03 (w0} LN3OY NOLYIINNWHOD

SUBSTITUTE SHEET (RULE 26)

09 (0HQY) ININOINOD NOLLNTOSTY ANV NOILOTLI(Q ATYWONY

WO 2016/191639

PCT/US2016/034536

L Ol

AAASO0Y WHOMLIN m@% MM% dD A

Bg7 Punog pexid punog [BUasesy punog Ruoseag pUNOY [BUOSEDS pLNOg [RUOSEDS
. ol " V2L qy 39vH0LS 7l Wl avy
/ ueuodwion Qv HHOMLIEN avy Ndo ol 0¥ INYH

WO 2016/191639

7/18

JES!

18a)

609

Jeay

Juoy oK WOl
| T W
ananp afessay
ﬂ\ suibu ;wa Ryedsig
—/E..@ A2110d @ 0L ﬁaﬂ WA ~
054
084

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/034536

WO 2016/191639

8/18

A7 pualy ucseas

008

%
1soH poisAud
.

O
[

| Bygedsiq &

ugag

21018

Giod

wwmmﬁm

Vi

(DME1Y) Wweuodwior UoINI0SaY PUB UCROSIe(] ABLUCUY [BAST JUSWILOAALT

IT

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/034536

WO 2016/191639

9/18

006

6 9l

016
Apuouy
DOLIBIU-LBISAS

08
Aoty

pauyspun

806
Aewgouy
DOUR(-ISSN

708
Apeuiouy
psuiled

/\\\\\

¢06
AppLuoty

SUBSTITUTE SHEET (RULE 26)

WO 2016/191639

1000

10/18

1016

1006

Max

)
1012

RSN COTOVORTOTONON, # URRR

=

1002

1010

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/034536

FIG. 10

PCT/US2016/034536

WO 2016/191639

11/18

L9l

DR ASSLLEN JSURWI0N

1004 90IN058Y

S0RUSHLURYN JBUIRILOY

m
i
= =
yziy 9T s I B s . s s
] 87111 |
fiusuodwon) AN
57T DYaY /

1004 80IN0SEY

yOLL

J

— (4

suoduwon)
SHdY

9e

{SYHT) WILSAS
SOULATYNY ANV HIOAHFSTY 907

001LL

FeE (SINOD) W3LSAS
LNZNIDYNYIA NOI
ONY NOILISOdNCD

IVANOENCS

728 (SWaDsh naiseas

A

¥\

(&) o1

¥

{
NOILNTIOS

pae

HAY) INNCAWOD
A3 ANY NOILOZL3(] ATVWONY
TAATT LNFWNOUIANT

INFWFDYNVIN INGNAOTHA]
ANV NOILYIYD) 30IA3S

281

122%

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/034536

WO 2016/191639

12/18

80c1

JOAIDS3Y
801

9act

J

s

SISHSEA " 21ed

N

(]

sl

¢h 9l

1484

)

v aalyosy 8§07

<0}

)

mm% Boj ysnd

7

00z

DUE BJep
-Blell YoeRY

usuoduwa)
324Nnog

SUBSTITUTE SHEET (RULE 26)

WO 2016/191639 PCT/US2016/034536
13/18

DETERMINE A SET OF VALUES DEFINING AN ANOMALY BOUND FOR A
METRIC RELATED TO A SERVICE PROVIDED BY A COMPUTER SYSTEM
1302

'

CONFIGURE EACH COMPONENT OF COMPONENTS (ESTABLISHING THE
SERVICE} TO INCLUDE AN ANOMALY AND DETECTION RESOLUTION
COMPONENT {ADRC)

1304

.

DETECT, IN A COMPONENT, AN ANOMALY E‘/ENT OF AN ANOMALY RELATED
TC OPERATION OF THE SERVICE IN THE COMPUTER SYSTEM
1306

I

E IDENTIFY A POLICY FOR RESOLVING THE ANCMALY

1308

I

DETERMINE THAT A RULE IN THE POLICY 18 SATISFIED BY THE ANOMALY
1310

'

INFTIATE A CORRECTIVE ACTION IDENTIFIED IN THE POLICY BASED ON THE |
RULE BEING SATISFIED
1312

FIG. 13

SUBSTITUTE SHEET (RULE 26)

WO 2016/191639 PCT/US2016/034536
14/18

1400

DYETERMINE A SET OF VALUES DEFINING AN ANOMALY BOUND FOR A
METRIC RELATED TO A SERVICE PROVIDED BY A COMPUTER SYSTEM
1402

v

CONFIGURE EACH COMPONENT OF COMPONENTS {ESTABLISHING THE
SERVICE} TO INCLUDE AN ANOMALY AND DETECTION RESOLUTION
COMPONENT {ADRC}

1404

v

4 DETECT, IN A COMPONENT, AN ANOMALY EVENT OF AN ANOMALY RELATED
TO CPERATION OF THE SERVICE IN THE COMPUTER SYSTEM
1406

e

" DOESAN
" ADRC OF THE COMPONENT HAVE A
= POLICY FOR RESOLYING THE ANOMALY IN
~ THE COMPONENT?
1408

Yes

No

v

¥

~ NOTIFY AN ADRC OF A PARENT COMPONENT OF THE COMPONENT
ABOUT THE ANOMALY

INITIATE CORRECTIVE 1419

ACTION TO RESQLVE

THE ANOMALY BASED l

ON THE POLICY

COMPONENT

FIG. 14

1410 C IDENTIFY A POLICY TO RESOLVE THE ANCMALY IN THE E

1414

+

INITIATE CORRECTIVE ACTION IN THE IDENTIFIED POLICY TO
RESOLVE THE ANOMALY N THE PARENT COMPONENT
1416

SUBSTITUTE SHEET (RULE 26)

WO 2016/191639
15/18

DATABASE |
1514 |

| DATABASE
| 1516 |

COMPONENT J

COMPONENT
1518 1520

COMPONENT

1522

(]

Server 15172

NETWORK({S)

PCT/US2016/034536

FIG. 15

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/034536

WO 2016/191639

16/18

00

L)

91 Ol

g€yl 53

DIAGES GHAvHS TYNHELN]

TOT S30uN0SIY IHNLONLSVHAN]

ol
JONGIR

Dmam\/Oma.fJ

8051

¢eat

| NOILYHLSIHONO) YO |

0¥a1 gm%

e

<01
INAWIDYNYIN M3TE0

i

4

Zrol

‘J

8e9i

9707 ONOLINOY ONY

INFWIOVYNY HAAA0

@gw\%

pigi
ONINOISIAOY J 3TN0

30IA30

N B0 1S3MDEY
I0IAY3G

0Igt
{Shidomis

7rol
mus.mmw

IN3ND

9091

ﬂ.@.ﬂ
38vavLY(] H3GH0

mmwwa\smw

D

N anoTy

viol

In ano1n

Zig1
in ano1n

30IA3Q

M 0O LSINDIN
J0INIQ
pral
OIS

JICACH

IN3ND

v081

FO0T WILSAS JUNLOMYLSVHANI ANO1o)

I0IA3G

. ﬁg?m
F0IAA3Q

INFID

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/034536

WO 2016/191639

17/18

AR

Y

STIT WELSASENS IOVHOLS
7ell
TR YIQIN OVHOLS
WILSAS ONILLYHILO A18vQv3d
I 5T WIT T %gm%om
SALYAANT (SWYIMISE | Sa33d VYO WYHO0Nd ————
INTAZ INIAT viva STIT 0T
SV VIQIN
\ ! @ém@om%;{og%{ TOVHOLS
£ oA I1avayas
AHOWAN WILSAS A
NTLSASENS SNOLLYOINDWINGD SO0
wv i
2041 w—
e 9021 LINN
s)sng L B0L L INOILYMETE00Y
NILSASENS O ONISSIN0N e s
LINA ONISSID0Nd LINM ONISSIO0Nd

vULL WHLSASENS ONISSI00Hd

041 WALSAS ¥31NdN0D

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/034536

WO 2016/191639

18/18

gl Ol

OT8T (s0uay) (S)Nanodod
NOILLATIOSAY GNV NOLDHL3(Q ATVINONY

g087 (Svy)
WNFLSAS SOULATYNY ONY HIOAMISEH DO

G087 (SKoo) FO8T (Swaos)
WALSAS INFNIDYNVIN | | NTLSAS __.zm_zm@,qzé.g
NCILVANDIHNOGD INFWAOTAE(] OGN
NV NOILISGANOD NOILYZED mo_\&mm

¢081

Fnaciy (SHay)
WILSAS NOILNIOST Y ANV NOILOZ13(Q ATVINONY

FAT (DSY) ININOWOD WILEAS SIHONOLNY

DOT (SHOY) WELSAS NOILNIOSTY NV N

OILOALA AV

ONY

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/034536

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F11/34 GO6F11/30
ADD.

GO6F11/07

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F HOA4L

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2015/081880 Al (EATON PATRICK RANDOLPH 1-20
[US] ET AL) 19 March 2015 (2015-03-19)
abstract
figures 1-3,4a-41,5
paragraphs [0007], [0009], [0010],
[0012], [0013], [0026], [0030],
[0032], [0033]
paragraphs [0039] - [0041]
paragraphs [0044] - [0046], [0054],
[0058], [0062], [0063], [0094] -
[0165], [0113] - [0119]
X US 2004/205101 Al (RADHAKRISHNAN RAKESH 1-20
[US]) 14 October 2004 (2004-10-14)
abstract
figures 1-3,8
paragraphs [0049] - [0056], [0076],
[0077], [0100] - [0109]
- / -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

19 August 2016

Date of mailing of the international search report

26/08/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Weber, Vincent

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/034536

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 20117098973 Al (SEIDMAN DAVID ISAIAH 1-20

[US]) 28 April 2011 (2011-04-28)

abstract

paragraphs [0005], [0006], [0052] -

[0055]
A WO 2013/043170 Al (HEWLETT PACKARD 1-20

DEVELOPMENT CO [US]; BERNSTEIN RUTH [IL];
COHEN IRA [I) 28 March 2013 (2013-03-28)
abstract

figure 1

paragraphs [0013] - [0021], [0085] -
[0089]

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2016/034536
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2015081880 Al 19-03-2015 US 2015081880 Al 19-03-2015
US 2015081881 Al 19-03-2015
US 2015081882 Al 19-03-2015
US 2015081883 Al 19-03-2015
US 2015082432 Al 19-03-2015
US 2004205101 Al 14-10-2004 EP 1482404 A2 01-12-2004
US 2004205101 Al 14-10-2004
US 2011098973 Al 28-04-2011 NONE
WO 2013043170 Al 28-03-2013 (N 103797468 A 14-05-2014
EP 2758881 Al 30-07-2014
US 2014229768 Al 14-08-2014
WO 2013043170 Al 28-03-2013

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - claims
	Page 74 - claims
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - wo-search-report
	Page 94 - wo-search-report
	Page 95 - wo-search-report

