PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 3 : (11) International Publication Number: WO 94/14115
GOG6F 9/44 A2 .

(43) International Publication Date: 23 June 1994 (23.06.94)

(21) International Application Number: PCT/US93/11468 | (81) Designated States: CA, JP, European patent (AT, BE, CH, DE,

DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date: 24 November 1993 (24.11.93)

Published
(30) Priority Data: Without international search report and to be republished
07/984,868 1 December 1992 (01.12.92) Us upon receipt of that report.

(71) Applicant: MICROSOFT CORPORATION [US/US]; One
Microsoft Way, Redmond, WA 980352-6399 (US).

(72) Inventors: KOPPOLU, Srinivasa, R.; 2402 236th Avenue
N.E., Redmond, WA 98052 (US). MacKICHAN, Barry,
B.; 12730 Manzanita Road N.E., Bainbridge Island, WA
98110 (US). McDANIEL, Richard; 6017 Stanton Avenue,
Apartment 1, Pittsburgh, PA 15206 (US). REMALA, Rao,
V.; 19011 N.E. 151st Street, Woodinville, WA 98072 (US).
WILLIAMS, Antony, S.; 22542 N.E. 46th Street, Redmond,
WA 98053 (US).

(74) Agents: PIRIO, Maurice, J. et al.; Seed and Berry, 6300
Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-
7092 (US).

(54) Title: A METHOD AND SYSTEM FOR IN-PLACE INTERACTION WITH EMBEDDED OBJECTS

= Microsoft Excel - Worksheet in VAC1.DOC Via 901
Eile Edit Formula Format Data Options Macro Window Help /

M e S e N

Word Excel Excel Word Excel

\ 902 \ 903 \ 904 \ 905 \ 906

(57) Abstract

A computer method and system for interacting with a containee object contained within a container object. In a preferred embodiment
of the present invention, the container object has a container application with a container window environment that has container resources
for interacting with the container object. The containee object has a server application with a server window environment with server
resources for interacting with the containee object. The method of the present invention displays the container window environment on a
display device. A user then selects the containee object. In response to selecting the containee objects, the method integrates a plurality of
the server resources with the displayed container window environment. When a user then selects a server resource, the method invokes the
server application to process the server resource selection. Conversely, when a user selects a container resource, the method invokes the
container application to process the container resource selection.

applications under the PCT.

-]
83EEZL

$SRABRERQB2Z2E399 288

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cbte d'Ivoire
Cameroon
China
Czechostovakia
Czech Republic
Germany
Deamark
Spain

Finland

France

Gabon

GB
GE
GN
GR

SEEE5<ERERE KREWARE

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kemya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

MR
MW
NE
NL
NO
NZ
PL
PT
RO
RU
sD
SE
SI
SK
SN
™
TG
Y
T
UA
Us
vz
VN

Slovakia

Senegal

Chad

Togo

Tajikistan

Trinidad and Tobago
Ukraine

United States of America
Uszbeki

Viet Nam

WO 94/14115 PCT/US93/11468

10

15

20

30

Description

A METHOD AND SYSTEM FOR IN-PLACE INTERACTION
WITH EMBEDDED OBJECTS

Technical Field

This invention relates generally to a computer method and system for
interacting with linked and embedded objects and. more specifically. to a method and
system for editing and otherwise interacting with a contained object within the context
of its container application.

Background of the Invention

Current document processing computer systems allow a user to prepare
compound documents. A compound document is a document that contains information
in various formats. For example, a compound document may contain data in text
format, chart format, numerical format, etc. Figure 1 is an example of a compound
document. In this example, the compound document 101 is generated as a report for a
certain manufacturing project. The compound document 101 contains scheduling data
102, which is presented in chart format; budgeting data 103, which is presented in
spreadsheet format; and explanatory data 104, which is presented in text format. In
typical prior systems, a user generates the scheduling data 102 using a project
management computer program and the budgeting data 103 using a spreadsheet
computer program. After this data has been generated, the user creates the compound
document 101, enters the explanatofy data 104, and incorporates the scheduling data
102 and budgeting data 103 using a word processing computer program.

Figure 2 shows how the scheduling data, budgeting data, and explanatory
data can be incorporated into the compound document. The user generates scheduling
data using the project management program 201 and then stores the data in the
clipboard 203. The user generates budgeting data using the spreadsheet program 204
and then stores the data in the clipboard 203. The clipboard 203 is an area of storage
(disk or memory) that is typically accessible by any program. The project management
program 201 and the spreadsheet program 204 typically store the data into the clipboard
in a presentation format. A presentation format is a format in which the data is easily
displayed on an output device. For example, the presentation format may be a bitmap
that can be displayed with a standard bitmap block transfer operation (BitBlt). The

storing of data into a clipboard is referred to as "copying" to the clipboard.

WO 94/14115 PCT/US93/11468

10

15

20

25

35

3]

After data has been copied to the clipboard 203, the user starts up the word
processing program 206 to create the compound document 101. The user enters the
explanatory data 104 and specifies the locations in the compound document 101 to
which the scheduling data and budgeting data that are in the clipboard 203 are to be
copied. The copying of data from a clipboard to a document is referred to as "pasting"
from the clipboard. The word processing program 206 then copies the scheduling data
102 and the budgeting data 103 from the clipboard 203 into the compound document
101 at the specified locations. Data that is copied from the clipboard into a compound
document is referred to as "embedded" data. The word processing program 206 treats
the embedded data as simple bitmaps that it displays with a BitBlt operation when
rendering the compound document 101 on an output device. In some prior systems, a
clipboard may only be able to store data for one copy command at a time. In such a
system. the scheduling data can be copied to the clipboard and then pasted into the
compound document. Then. the budgeting data can be copied to the clipboard and then
pasted into the compound document.

Since word processors typically process only text data, users of the word
processing program can move or delete embedded data, but cannot modify embedded
data, unless the data is in text format. Thus, if a user wants to modify, for example, the
budgeting data 103 that is in the compound document 101, the user starts the
spreadsheet program 204, loads in the budgeting data 103 from a file, makes the
modifications, copies the modifications to the clipboard 203, starts the word processing
program 206, loads in the compound document 101, and pastes the modified clipboard
data into the compound document 101. The spreadsheet program "implements" the
spreadsheet data, that is, the spreadsheet program can be used to manipulate data that is
in spreadsheet format. The format that a program implements is referred to as native
format.

Some prior systems store links to the data to be included in the compound
document rather than actually embedding the data. When a word processing program
pastes the data from a clipboard into a compound document, a link is stored in the
compound document. The link points to the data (typically residing in a file) to be
included. These prior systems typically provide links to data in a format that the word
processing program recognizes or treats as a presentation format. For example, when
the word processing program 206 is directed by the user to paste the scheduling data
and budgeting data into the compound document by linking, rather than embedding, the
names of files in which the scheduling data and budgeting data reside in presentation

format are inserted into the document. Several compound documents can contain links

WO 94/14115 PCT/US93/11468

10

15

20

25

30

(O

to the same data to allow one copy of the data to be shared by several compound
documents.

Summary of the Invention

It is an object of the present invention to provide a method and system for
interacting with a contained object within a window environment of a container
application of a container object.

It is another object of the present invention to provide a method and system
for combining menus of the container application with menus of a server application of
the contained object.

These and other objects. which will become apparent as the invention is
more fully described below. are provided by a computer method and system for
interacting with a containee object contained within a container object. In a preferred
embodiment, the container object has a container application with a container window
environment that has container resources for interacting with the container object. The
containee object has a server application with a server window environment with server
resources for interacting with the containee object. The method of the present invention
displays the container window environment on a display device. A user then selects the
containee object. In response to selecting the containee object. the method integrates a
plurality of the server resources with the displayed container window environment.
When a user then selects a server resource. the method invokes the server application to
process the server resource selection. Conversely, when a user selects a container
resource, the method invokes the container application to process the container resource

selection.

Brief Description of the Drawings

Figure 1 is an example of a compound document.

Figure 2 is a diagram showing how the scheduling data, budgeting data, and
explanatory data can be incorporated into the compound document.

Figure 3 is a diagram of the sample compound document shown in Figure 1
as it appears when edited within the word processing application before in-place
interaction occurs.

Figure 4 is a diagram of the embedded spreadsheet object as it appears when
activated in place within the compound document.

Figure 5 is a diagram which shows the relationship between an object

handler and the container and server processes.

WO 94/14115 PCT/US93/11468

10

15

20

25

30

35

Figure 6 is a block diagram of a sample instance of a linked or embedded
object.

Figure 7 is a block diagram showing a public view of an object.

» Figure 8 is a sample user menu provided by a container application to
display and select the actions available for an object.

Figure 9 is a diagram showing the composite menu bar resulting from the
merger of the server application menus with the container application menus of the
example shown in Figure 4. ‘

Figure 10 is a diagram of the menu groups that compose a composite menu
bar in a preferred embodiment of the present invention.

Figure 11 is a diagram showing the component windows of a tvpical Single
Document Interface application.

Figure 12 is a diagram showing the component windows of an Multiple
Document Interface application.

Figure 13 is a block diagram showing the typical window hierarchy of a
container application when it is editing an embedded object in place.

Figure 14 is a flow diagram showing message processing in an event-driven
windowing operating system environment.

Figure 14B is a block diagram showing the public interfaces required to
support in-place interaction.

Figure 15 is a flow diagram of an implementation of the
IOLEInPlaceFrame::SetMenu method.

Figure 16 is a flow diagram of an implementation of the
IOLEInPlaceFrame::EnableModeless method.

Figure 17 is a flow diagram of an implementation of the
IOLEInPlaceParent::OnlnPlaceActivate method.

Figure 18 is a flow diagram of an implementation of the
IOLEInPlaceParent:: OnUIActivate method.

Figure 19 is a flow diagram of an implementation of the
IOLEInPlaceParent::OnUIDeactivate method.

Figure 20 is a flow diagram of an implementation of the
IOLEInPlaceObject::InPlaceDeactivate method.

Figare 21 is a flow diagram of an implementation of the
IOLEInPlaceObject:: InPlaceUlDeactivate method.

Figare 22 is a flow diagram of an implementation of the
IOLEInPlaceObject::Activate method.

WO 94/14115 PCT/US93/11468

10

20

30

Figure 23 is a flow diagram of an implementation of the ActivateUl
function.

Figure 24 is a flow diagram of an implementation of the
CreateObjectToolbars function.

| Figure 25 is a block diagram of the shared menu data structure
corresponding to the example discussed in Figure 4.

Figure 26 is a flow diagram of an implementation of the ObjectSetMenu
function.

Figure 27 is a flow diagram of an implementation of the function
Process_Object_Activation.

Figure 28 is a flow diagram of an implementation of the object linking and
embedding API function ObjectLoad.

Figure 29 is a flow diagram of an implementation of the
IOLEObject::DoVerb method. This method is the primary method for interacting with
a containee object.

Figure 30 is a flow diagram of an implementation of the function
Process_Activation_Message called by the window procedure of an MDI document
window to process activation and deactivation messages.

Figure 31 is a flow diagram of an implementation of the
Process_Mouse_LButtonUp function.

Detailed Description of the Invention

Table of Contents
Overview
In-Place Interaction Overview

Window Support for In-Place Interaction

W -

In-Place Interaction API
4.1 JOLEWindow Interface
4.1.1 IOLEWindow::GetWindow
4.2 IOLEInPlaceUIWindow Interface
4.2.1 TOLEInPlaceUIWindow::GetBorder
4.2.2 IOLEInPlaceUI'Window::QueryBorderSpace
4.2.3 IOLEInPlaceUIWindow::SetBorderSpace
4.3 IOLEInPlaceFrame Interface
4.3.1 JOLEInPlaceFrame::SetMenu

WO 94/14115

10

15

20

25

30

35

4.4

4.5

4.6

4.7

PCT/US93/11468

4.3.2 IOLEInPlaceFrames::InsertMenus

4.3.3 JOLEInPlaceFrame::RemoveMenus
4.3.4 10LEInPlaceFrame::SetStatusText

4.3.5 1I0LEInPlaceFrame::EnableModeless
4.3.6 I0LEInPlaceFrame::TranslateAccelerator
IOLEInPlaceParent Interface

4.4.1 1OLEInPlaceParent::CanInPlaceDeactivate
4.4.2 10LEInPlaceParent::OnlnPlaceActivate
4.4.3 10LEInPlaceParent::OnUlActivate

4.4.4 TOLEInPlaceParent::OnUlIDeactivate
4.4.5 IOLEInPlaceParent::OnDeactivate

4.4.6 10LEInPlaceParent::ShadeBorder

4.4.7 10LEInPlaceParent::GetWindowContext
IOLEInPlaceObject Interface

4.5.1 IOLEInPlaceObject::InPlaceDeactivate
4.5.2 10LEInPlaceObject::InPlaceUlIDeactivate
4.5.3 IOLEInPlaceObject:: TranslateAccelerator
4.5.4 TOLEInPlaceObject::Activate

4.5.5 I0LEInPlaceObject::ResizeBorder

4.5.6 TIOLEInPlaceObject::EnableModeless
4.5.7 10LEInPlaceObject::SetVisRect

Other Server Application Functions

4.6.1 ActivateU]

4.6.2 CreateNewMenu

4.6.3 CreateObjectToolbars

4.6.4 RemoveMenus

Object Linking and Embedding API Helper Functions
4.7.1 SetActiveObjectHwnd

4.7.2 GetActiveObjectHwnd

4.7.3 ObjectCreateSharedMenu

4.7.4 ObjectDestroySharedMenu

4.7.5 ObjectShade

4.7.6 ObjectSetMenu

Use of In-Place Interaction API

5.1

Procedure for Activation in Place
5.1.1 Activation In Place Within a Multiple

WO 94/14115 PCT/US93/11468

10

15

20

25

35

Document Interface Application
5.2 User Selection of Pulldown Menus Message
Handling
5.3 In-Place Deactivation Procedure
5.4 Closing the Container Application
5.5 Interacting with Modeless Dialogs

5.6 Handling Accelerator Key Combinations

1. Overview

The present invention provides a generalized method, referred to as in-place
interaction, for interacting with embedded or linked data in the context of a compound
document. That is, the application to be used to interact with the embedded or linked
data is made accessible to the user through the windowing context (menus and
windows) of the application that implements the compound document. This
accessibility 1s referred to as activation in place. In a preferred embodiment. when
embedded or linked (contained) data is activated in place, the menus of the application
that implements the contained data are merged with the menus of the application that
implements the compound document to create a composite menu bar. The order of the
menus in the composite menu bar is determined by a set of menu groups. Each
application categorizes its menus into these menu groups and places its menus in the
composite menu bar in the order of the menu groups. The composite menu bar is then
installed as the menu bar of the application implementing the compound document. and
a message handler is installed to filter messages sent to the windows of this application.
When the user selects a menu item, the message handler determines whether the menu
item belongs to a menu of the application implementing the contained data or the
application implementing the compound document. The message handler then sends
the input message corresponding to the selected menu item to the correct application.

The present invention defines a set of abstract classes (interfaces) and
functions through which contained data is activated in place. (In the C++ programming
language, an abstract class is a class with a definition of its data and methods. but with
no implementation for those methods. It is the responsibility of the application
implementing the class to provide the actual code for the methods available to
manipulate the class instance data.) The application implementing the compound
document is responsible for implementing some of these interfaces and the application
implementing the contained data is responsible for implementing others.

WO 94/14115 PCT/US93/11468

10

15

20

25

30

35

In a preferred embodiment of the present invention. an application program
that creates a compound document controls the manipulation of linked or embedded
data generated by another application. In object-oriented parlance, this data is referred
to as an object. (The reference Budd., T.. "An Introduction to Object-Oriented
Programming.” Addison-Wesley Publishing Co., Inc.. 1991, provides an introduction to
object-oriented concepts and terminology.) An object that is either linked or embedded
into a compound document is "contained" within the document. Also. a compound
document is referred to as a "container" object and the objects contained within a
compound document are referred to as "contained" or "containee" objects. Referring to
Figures 1 and 2, the scheduling data 102 and budgeting data 103 are containee objects
and the compound document 101 is a container object. The user can indicate to the
word processor that the user wants to edit a containee object. such as the budgeting data
103. When the user indicates that the budgeting data 103 is to be edited. the word
processing program determines which application should be used to edit the budgeting
data (e.g.. the spreadsheet program) and launches (starts up) that application. The user
can then manipulate the budgeting data using the launched application, and changes are
reflected in the compound document. The same procedure is used whether the
budgeting data is stored as an embedded or linked object.

If the application used to edit the budgeting data supports in-place
interaction, then, when it is launched by the word processing program, it is activated
within the window environment of the word processing program. Figures 3 and 4
illustrate the process of activating the embedded budgeting data 103 in place.

Figure 3 is a diagram of the sample compound document shown in F igure |
as it appears when edited within the word processing application before in-place
interaction occurs. The main window of the container application 301 contains a title
bar 302, a menu bar 303, and a client window 304. The client window 304 displays the
manufacturing project report discussed in Figure 1. The compound document contains
an embedded spreadsheet object (the budgeting data 305). When the user edits the
native text data of the compound document, the menu bar 303 appears as shown: it
includes all of the commands necessary to interact with the word processing application.

When the user decides to edit the budgeting data 305, the user selects the
spreadsheet object 305 and requests the word processing application to edit the object
(e.g., by double clicking using the mouse). The word processing application then
launches the spreadsheet application requesting that it edit the spreadsheet object 305.

The spreadsheet application negotiates with the word processing application to edit the

WO 94/14115 PCT/US93/11468

10

15

20

25

30

35

spreadsheet object 305 using windows 301 and 304 and the menu bar 303 of the word
processing application.

Figure 4 is a diagram of the embedded spreadsheet object as it appears when
activated in place within the compound document. The spreadsheet object 405 is edited
directly in the client window 404 of the word processing application. The title bar 402
is changed to reflect that the application implementing the compound document, in this
case a word processing application, is editing a spreadsheet worksheet within the
compound document "VAC1.DOC." Also, the menu bar 403 is changed to a new
composite menu bar, which comprises menus from the word processing application and
menus from the spreadsheet application. In addition. various aspects of the embedded
spreadsheet object 405 are changed to reflect that it is being edited within its container
compound document. A selection highlight 406 in the form of a hatched border pattern
is placed around the object. Also, the standard tools of the spreadsheet application, in
this case the row and column markers 407, are placed around the spreadsheet object.
Also, the spreadsheet selection cursor 408 is placed around the currently selected cell.
At this point, the user is ready to edit the spreadsheet object 405 using all of the
spreadsheet application commands.

In a preferred embodiment, application programs ("applications") cooperate
using object linking and embedding facilities to create and manipulate compound
documents. An application that creates a compound document is referred to as a
container (or client) application, and an application that creates and manipulates
containee objects is referred to as a server application. An application can behave as
both a container and server. That is. an application can contain objects and the objects
that the application implements can. be contained within other objects. Referring to
Figure 2, the project management program 201 and the spreadsheet program 204 are
server applications, and the word processing program 206 is a container application. A
container application is responsible for selection of the various objects within the
container object and for invoking the proper server applications to manipulate the
containee objects. Server applications are responsible for manipulating the contents of
the containee objects.

In a preferred embodiment, applications are provided with an
implementation-independent Application Programming Interface (API) that provides
object linking and embedding functionality. The API is a set of functions that are
invoked by container and server applications. These functions manage, among other
things, the setup and initialization necessary for container applications to send and

WO 94/14115 PCT/US93/11468

10

15

20

25

30

35

10

receive messages and data to and from server applications. The API provides functions
to invoke server applications to manipulate containee objects.

The invoking of a server application can be relatively slow when the server
application executes as a separate process from the container application. In certain
situations this slowness may be particularly undesirable. For example, if a user wants to
print a compound document that includes many containee objects, it may take an
unacceptably long time to invoke the server process for each containee object and
request each server process to print the object. To ameliorate this unacceptable
performance, a server application can provide code that can be dynamically linked
during runtime into the process of the container application to provide certain
functionality more efficiently. This code is called an "object handler." Object handlers
provide functionality on behalf of the server application so that the object linking and
embedding API can avoid starting up server processes and passing messages to the
server process. In the above example, an object handler could provide a print function
that the object linking and embedding API could invoke to print a containee object.

Figure 5 is a diagram which shows the relationship between an object
handler and the container and server processes. The object handler 502 is linked into
the container process address space 501 during runtime by the object linking and
embedding API 503. Typically, the object linking and embedding API 503 invokes the
object handler 502 directly, and the container application code need not be aware that a
handler is providing the functionality, rather than a server process 507.

In addition to providing a set of functions, the object linking and embedding
("OLE") APl defines 'interfaces” through which container applications can
communicate with their contained objects. An interface is a set of methods (in C++
parlance) which abide by certain input, output, and behavior rules. If a contained object
supports a particular interface, the container application can invoke the methods of that
interface to effect the defined behavior. In a preferred embodiment, the container
application does not directly access the object data. Rather, it preferably accesses the
object data using the supported interfaces. A container application is bound to a
contained object through a pointer to an interface. The container application accesses
the object data by invoking the methods of the interface. To access the object data, the
methods may send messages to the server application requesting the specified access.
In a preferred embodiment, messages are sent between container and server applications
when the server application is implemented as a separate process using interprocess
communications mechanisms provided by the underlying operating system.

WO 94/14115 PCT/US93/11468

10

15

20

25

30

35

11

Figure 6 is a block diagram of a sample instance of a linked or embedded
object. In a preferred embodiment, the layout of the instance conforms to the model
defined in U.S. Patent Application Serial No. 07/682.537. entitled "A Method for
Implementing Virtual Functions and Virtual Bases in a Compiler for an Object Oriented
Programming Language" which is hereby incorporated by reference. The instance
contains object data structure 601 and interface data structure 613 for each supported
interface. The object data structure 601 contains pointers 602 to the interface data
structures 613 and may contain private data of the instance. The private data of this
sample instance includes a class identifier 603, handle 604 to the storage for the object.
and data 605 for tracking the state of the object. The class identifier (CLASS _ID) is
used to access the appropriate server application for the object. It is similar to a data
structure "type" used in programming languages. The interfaces can determine the
server application for the object by using the CLASS_ID as an index into a persistent
global registry. The persistent global registry is discussed further below. As shown-in
Figure 6. each interface data structure 613 contains a private data structure 606 and a
virtual function table 608. The private data structure 606 contains a pointer 607 to the
virtual function table 608. The virtual function table 608 contains pointers 609, 611 to
the code 610, 612 that implements the methods of the interface.

Table 1

define interface class

interface intf {public:
virtual RETCODE fnc (argl, arg2) = 0;
virtual RETCODE fnc5 (argl, arg2) = 0;
virtual RETCODE finc3 () = 0;

b

Table 1 represents the definition for the interface for the first entry pintf} in
the object data structure 601. In Table 1, the word "interface" is defined to mean a C++
class. The definition shows three methods with their parameters. The "=0" at the end
of each parameter list indicates that the method has no code implementation. In the
C++ programming language, these functions are termed "pure virtual functions". A
class with a pure virtual function is referred to as an abstract class.

Figure 7 is a block diagram showing a public view of an object. The public

‘view of an object is the various interfaces that the object supports 702-706. Each

interface provides methods through which container applications can access the object.

Each object supports an IUnknown interface 702. Container applications use the

WO 94/14115 PCT/US93/11468

10

15

20

25

30

35

12
IUnknown interface 702 to determine which other interfaces the object supports. The
implementation of IUnknown interface 702 for a particular object knows what other
interfaces the object supports and returns to the invoking application pointers to those
interfaces. In a preferred embodiment, the method IUnknown::Querylnterface is used
for this purpose. Interfaces 703 through 706 are examples of typical interfaces that can
be supported by an object. These interfaces derive from the IUnknown interface. For
example, the IDataObject interface 703 provides methods for storing data in and
retrieving data from the object. The IOLEContainer interface 704 provides methods for
listing the containee objects that are contained within the object. The IPersistStorage
interface 705 provides methods for storing the object to and retrieving the object from
persistent storage. The IOLEObject interface 706 provides methods through which a
container application invokes the functionality of an object that corresponds to a user-
selected action.
In addition to the AP, the object linking and embedding facilities of the
present invention provide information to container and server applications through a
persistent global "registry." This registry is a database of information such as (1) for
each type of object, the server application that implements the object type, (2) the
actions that each server application provides to container applications, (3) where the
executable files for each server application are located, and (4) whether each server
application has an associated object handler.

2. In-Place Interaction Overview

Once objects have been linked or embedded into a document. a user can
select objects and request that certain actions be performed upon the selected objects. A
user requests actions by first selecting the object and then selecting an action (e.g., a
menu item) to be performed upon the object. The implementing server application is
then invoked to perform the selected action. One skilled in the art will appreciate that
there are many ways to display the choices of possible actions to a user and allow the
user to select an action. In a preferred embodiment. the container application
determines from the global registry what actions are supported by the server application
implementing the selected object and then displays the actions in a menu.

Figure 8 is a sample user menu provided by a container application to
display and select the actions available for an object. Menu item 803 is the entry for the
object on the container application Edit menu 802. The entry varies based on the
currently selected object. When no embedded or linked objects are selected. menu item
803 is not displayed. Submenu 804 displays the actions supported by an "Excel

WO 94/14115 PCT/US93/11468

10

15

20

25

30

()
W

Worksheet Object." In this example, the supported actions are "Edit." "Open," and
"Type." The first action (e.g., "Edit") on a submenu is the default action. which is
performed when a user double-clicks with a mouse pointing device on the object, or
enters functionally equivalent keys.

| Once a user has selected a desired action (from the menu or by double-
clicking on the object), the container application can then invoke the server application
passing it what action to perform on behalf of the container application. The container
application does this by obtaining the IOLEObject interface for the object and then
invoking the object's DoVerb method passing it the selected action. (The DoVerb
method performs the object-specific actions on the object.) The server application in
turn determines whether the object can be activated in place within the context of the
container application. If so. the server application and container application merge their
menus into a composite menu bar, negotiate the placement of server application tool
bars, palettes, formula bars, etc.. and set up merged message handling. At this point, the
server application is ready to receive user input.

Continuing the example of Figure 4, the figure shows the user editing the
spreadsheet object (the budgeting data 405) in place within the window environment of
a word processing application. Figure 9 is a diagram showing the composite menu bar
resulting from the merger of the server application menus with the container application
menus of the example shown in Figure 4. The composite menu bar 901 comprises
menus 902, 905 from the word processing application and menus 903, 904. 906 from
the spreadsheet application. When the user selects a particular menu item from one of
these menus, the container application through the merged message handler determines
whether to dispatch the message .to the word processing application or to the
spreadsheet application.

In a preferred embodiment of the present invention, a composite menu bar

is created based upon a set of predetermined conventions. Each application menu to be

~ included in the composite menu bar is assigned to a menu group. The menus are then

inserted into the composite menu bar according to the assigned menu group.

Figure 10 is a diagram of the menu groups that compose a composite menu
bar in a preferred embodiment of the present invention. The composite menu bar 1003
comprises menu groups 1001 from the container application and menu groups 1002
from the server application. The container application menu groups 1001 include the
File group, the Container group, and the Window group. The server application menu
groups 1002 include the Edit group, the Object group. and the Help group. In a

preferred embodiment. the container and server application menus are interleaved in the

WO 94/14115 PCT/US93/11468

10

15

20

25

30

35

14

final composite menu bar, according to the Microsoft application user interface style
guidelines, which is specified in "The Windows Interface: An Application Design
Guide," Microsoft Corp., 1992. which is herein incorporated by reference. Specifically.
in the composite menu bar 1003, the groups are arranged left to right in the following
order: File, Edit, Container, Object, Window. and Help.

3. Window Support for in-Place Interaction

In a preferred embodiment, the in-place interaction API is implemented
using the capabilities of the underlying window system. The present invention is
described assuming the underlying window system is similar to the Microsoft Windows
3.1 operating system ("Windows"), although one skilled in the art will appreciate that
the present invention can be implemented in a different underlying window system.
The Microsoft Windows 3.1 operating system is described in "Programmer's Reference.
Volume 2: Functions." Microsoft Corp.. 1992; "Programmer's Reference, Volume 3:
Messages, Structures, and Macros," Microsoft Corp., 1992; and "Guide to
Programming," Microsoft Corp., 1992, which are herein incorporated by reference.

In window environments, applications support a single document interface
or a multiple document interface. A single document interface ("SDI") application
interacts with one document (file) at a time. For example, a word processing
application that supports SDI would display the file currently being edited in its primary
window. A multiple document interface ("MDI") application interacts with multiple
documents (files) by devoting at least one window to each document. For example, a
word processing application that supports MDI would display each file currently being
edited in a separate document window. The user selects the document window of the
file the user wishes to edit either by clicking on the title bar of the desired document
window or by selecting the window title from a list on the Window menu of the
application.

Figure 11 is a diagram showing the component windows of a typical Single
Document Interface application. A typical SDI application provides a frame window
1101, and, depending upon the application, may additionally provide pane windows
1105 and 1106 and a parent window 1107 for an embedded object resides. In the case
of an SDI application, the frame window 1101 is also the document window. Pane
windows 1105, 1106 provide multiple views of a compound document. A parent
window 1107 may be created by the container application to delineate the object when
the object is first inserted into the compound document. In the example shown in

Figure 11, the embedded object is a spreadsheet object. which is displayed within an

WO 94/14115 PCT/US93/11468

10

15

20

25

35

15

object window 1108, which is contained within the parent window 1107 of the
container application. The object window 1108 is owned by the server application. The
frame window 1101 contains a title bar 1102, a menu bar 1103, and a tool bar 1104.
Typically, tool bars and other application-specific tools are attached to either the frame
window or a pane window of a container application. They may also appear as floating
palettes, which are windows that are independent of the windows shown in Figure 11
and thus appear to "float" on top.

Figure 12 is a diagram showing the component windows of a typical
Multiple Document Interface application. A typical MDI application allows a user to
edit multiple compound documents from within the same container application. In the
example shown in Figure 12, the user edits two separate compound documents in the
two document windows 1205, 1206. Each document window can contain pane
windows in a manner analogous to the SDI application. Document window 1205
contains two pane windows 1207, 1208. Also, the MDI application can provide a
parent window 1209 for containing embedded objects in a manner analogous to the SDI
application. Figure 12 shows an embedded spreadsheet object presented within an
object window 1210. As in the case of an SDI application, the application-specific tools
may appear anywhere.

The windows managed by either an SDI or MDI application are created and
maintained in a hierarchical fashion. Figure 13 is a block diagram showing the typical
window hierarchy of a container application when it is editing an embedded object in
place. The window hierarchy comprises container application windows 1301 from the
container application, and server application windows 1307 from the server application.
The container application 1302 manages its frame window 1303, which contains a
document window 1304, which may contain a pane window 1305, which may contain a
parent window 1306. When an object is activated in place, the server application 1308
creates a root window 1309 for the embedded object and any child windows it requires.
The object root window 1309 contains object child windows 1310, 1311, 1312.

Every application, when implemented as a separate process, contains an
input queue for receiving events connected with the windows residing in the
application's window hierarchy. The window hierarchy of Figure 13 is supported by
two different applications. Thus, there are separate input queues associated with the
windows belonging to the container application and the windows belonging to the
server application. Input queue 1313 is associated with the container application
windows 1301. Input queue 1314 is associated with the server application windows

1307. When a user clicks with the mouse. or inputs keystrokes to one of these

WO 94/14115 PCT/US93/11468

10

15

20

25

30

35

16

windows, the underlying window system puts an appropriate message on either the

container input queue 1313 or the server application queue 1314,
4. In-Place Interaction API

The object linking and embedding API provides functions and defines
interfaces through which the container and server applications communicate to support
in-place interaction. The methods of these interfaces and the other API functions are
invoked by application code in the usual course of processing user input. In an event-
driven windowing system, an application invokes the appropriate method or function in
response to receiving a message indicating that a user has selected a particular menu
item or object.

Figure 14 is a flow diagram showing message processing in an event-driven
windowing operating system environment. Each window has its own message handler,
which is registered with the underlying window system when the window is created.
When messages are received on an application input queue (for example. the input
queue of the container application 1313), the application filters, translates. or dispatches
the message to the window system. The window system dispatcher in turn sends the
message to the message handling function (the "message handler") that was previously
registered for the particular window indicated in the message. Upon receipt of the
message, the message handler processes the message. The processing may include
using the object linking and embedding API. Steps 1401 and 1402 compose a message
pump. In step 1401, the application waits for a message on its input queue. In step
1402, the application filters or translates the message, if appropriate, or dispatches the
message to the windowing system dispatch function. Steps 1403 and 1404 are the steps
in the window system dispatch function that dispatch the message to the appropriate
window message handler. In step 1403. the window system dispatcher locates the
message handler for the window that is indicated in the message. In step 1404, the
window system dispétcher sends the message to the located message handler (e.g., by
invoking the message handler).

Steps 1405 through 1412 compose a typical message handler for a window.
A message handler is referred to as a "window procedure." In a preferred embodiment,
if an application does not provide a window procedure for a particular window. the
underlying window system provides a default window handler called DefWindowProc.
In steps 1405 through 1408, the application decodes the message to determine what type
of event has occurred. Typically, for each type of event, the application invokes a

different function. as shown in steps 1409 through 1412. These functions may in turn

WO 94/14115 PCT/US93/11468

10

15

20

25

30

17

use the object linking and embedding APl. For example. when a menu event is
received, the application. in step 1411, invokes a function that processes menu events.
Step 1411 invokes the Process_Object_Activation function (shown as step 1413). which
activates a containee object in place. As will be discussed further below, the
Process_Object_Activation function uses the object linking and embedding API to
activate a containee object.

The in-place interaction APl defines the following interfaces:
IOLEWindow, IOLEInPlaceUIWindow, IOLEInPlaceFrame, IOLEInPlaceParent, and
IOLEInPlaceObject. The IOLEWindow interface provides a method for retrieving the
window handle associated with one of the other interfaces. The
IOLEInPlaceUlWindow interface provides methods through which a server application
negotiates with a container application for placement of window tools. The
IOLEInPlaceFrame interface provides methods through which a server application
communicates with the frame window of a container application. The
IOLEInPlaceParent interface provides methods through which a server application
communicates with the parent window of a container application. The
IOLEInPlaceObject interface provides methods through which a container application
activates and deactivates a server application. Figure 14B is a block diagram showing
the public interfaces required to support in-place interaction. The container object
14B01 supports the IOLEWindow interface 14B02, the IOLEInPlaceParent interface
14B03, and the IOLEInPlaceFrame interface 14B04. The containee object 14B05
supports the IOLEInPlaceObject interface 14B06. Each of these interfaces is described
below in detail.

4.1 IOLEWindow Interface

Table 2 lists the IOLEWindow interface. In object-oriented parlance, the
IOLEWindow interface is the "base class" for the other in-place interaction interfaces.
Thus, the other interfaces are derived from the IOLEWindow interface and inherit its
public methods. In the IOLEWindow interface there is only one public method called
GetWindow.

Table 2

interface JOLEWindow: public IUnknown {public:
virtual SCODE GetWindow (HWND FAR *phwnd) = 0;

}

WO 94/14115 PCT/US93/11468

10

15

20

25

30

18

4.1.1 IOLEWindow::GetWindow

The GetWindow method retrieves the window handle (unique window
identifier) corresponding to the IOLEInPlaceUIWindow, IOLEInPlaceFrame.
IOLEInPlaceParent, or IOLEInPlaceObject interface from which it was invoked. The
retrieved window handle is typically used when invoking underlying window system
functions.

4.2 IQLEInPlaceUIWindow Interface
Table 3 lists the IOLEInPlaceUIWindow interface. The

JOLEInPlaceUIWindow interface methods are invoked by a server application to
negotiate tool placement within the document and pane windows of a container

application.

Table 3

interface IOLEInPlaceUIWindow: public IOLEWindow {public:
virtual SCODE GetBorder (RECT borderRect) = 0;
virtual SCODE QueryBorderSpace (RECT widthRect) = 0;
virtual SCODE SetBorderSpace (RECT widthRect) = 0;

}

4.2.1 IOLEInPlaceUlWindow::GetBorder

The GetBorder method retrieves the location where the server application is
allowed to place its tools (which are implemented as child windows). This method
returns a rectangle located inside the frame of either a document or pane window.
depending upon whether the document or pane interface was invoked. Once the server
application has retrieved this rectangle, it can determine the width of space it needs to
place any tools and can then request this space using the QueryBorderSpace method. If
the rectangle returned by the container application is rejected, the server application can

choose not to continue with activation in place or can choose to not activate its tools.

4.2.2 IOLEInPlaceUIWindow::QueryBorderSpace

The QueryBorderSpace method retrieves the designated amount of space in
a pane or document window where the server application can place its tools. The
method takes one parameter, a rectangle of border space, within the rectangle retrieved
from a previous call to GetBorder, that the server application needs for its tool
placement. The method returns an indication as to whether the document or pane

window is able to accommodate the request. If the request cannot be accommodated.

WO 94/14115 PCT/US93/11468

10

15

20

25

30

19

the server application can invoke the method again with a different rectangle, can

choose not to continue activation in place, or can choose to not activate its tools.

4.2.3 IOLEInPlaceUIWindow::SetBorderSpace

’ The SetBorderSpace method informs its associated container application
that it is actually allocating the designated space in the pane or document window to
place the server application's tools. This method is called after the space has been
successfully requested from the pane or document window in a previous call to
QueryBorderSpace. The server application is responsible for allocating the space it
needs. The method takes one parameter, the rectangle of space the server application is
allocating to its tool child window. The designated rectangle may be smaller than that
successfully previously requested. The term "designated" refers to a passed in
parameter and "specified” refers to the interface, class, window, or object to which a
particular method belongs. The method moves or sizes, as necessary, any of the
specified pane or document window user interface resources.

4.3 IOLEInPlaceFrame Interface
Table 4 lists the IOLEInPlaceFrame interface. The IOLEInPlaceFrame

interface provides methods invoked by a server application to communicate with the

frame window of its container application.

Table 4

interface IOLEInPlaceFrame: public IOLEInPlaceUIWindow {public:
virtual SCODE SetMenu (HANDLE hSharedMenu. HWND hwndObject) = 0;
virtual SCODE InsertMenus (HANDLE hmenu, UINT FAR *IpiMenuCounts) = 0;
virtual SCODE RemoveMenus (HANDLE hmenu) = 0;
virtual SCODE SetStatusText (LPSTR IpszStatusText) = 0:
virtual SCODE EnableModeless (BOOL fEnable) = 0;
virtual SCODE TranslateAccelerator (LPMSG Ipmsg, WORD WID) = 0;

4.3.1 10LEInPlaceFrame::SetMenu

The SetMenu method installs and removes the designated composite menu
bar as the menu bar of the container application and installs a message handler for the
composite menu bar. Figure 15 is a flow diagram of an implementation of the
IOLEInPlaceFrame::SetMenu method. This method uses different mechanisms to
install the composite menu bar depending upon whether the container application is an
MDI or SDI application. In step 1501, the method determines whether the designated

WO 94/14115 PCT/US93/11468

10

20

composite menu bar is NULL and. if so. continues at step 1502, else continues at step
1503. In step 1502, the method invokes the helper function ObjectSetMenuDescriptor
to remove the message handler for the composite menu bar, and returns. In step 1503,
the method determines whether the container application is an SDI application, and if it
is, continues at step 1504, else continues at step 1505. In step 1504, the method invokes
the underlying window system function SetMenu to install the composite menu bar as
the menu bar of the container application frame window, and then it continues at step
1507. In step 1505, the method sends a message to the frame window telling it to
perform its MDI menu setup. In step 1506, the method invokes the underlying window
system function DrawMenuBar to redraw the menu bar. In step 1507. the method
invokes the helper function ObjectSetMenuDescriptor to install the message handler for
the composite menu bar. In step 1508, the method performs any other processing that

may be required at the time of changing its menu bar and then returns.

WO 94/14115 PCT/US93/11468

10

15

20

25

30

35

40

45

21

4.3.2 IOLEInPiaceFrame::InsertMenus

Code Table 1
VOID IOleInPlaceFrame::InsertMenus (hmenu, ContrCounts) {
1 . if there are File Group menus present {
2 for each filegroupmenu {
3 hfilemenu = CreateMenu ();
4 InsertMenu (hmenu, MF_APPEND, MF_BYPOSITION | MF_POPUP. hfilemenu);
5 ContrCounts[0] = ContrCounts[0] + 1;
6 for each filegroupmenu_item {
7 InsertMenu (hfilemenu. MF_APPEND, MF_BYPOSITION | MF_STRING,
8 item_id, "string to be displayed");
9)
10}
11 .if there are Container Group menus present §
12 for each containergroupmenu {

13 hcontmenu = CreateMenu ();

14 InsertMenu (hmenu, MF_APPEND, MF_BYPOSITION | MF_POPUP. hcontmenu);
15 ContrCounts[1] = ContrCounts[1] + 1:

16 for each contgroupmenu_item {

17 InsertMenu (hcontmenu, MF_APPEND, MF_BYPOSITION | MF_STRING.

18 item_id, "string to be displayed");

19 }

20 ;

21 if there are Window Group menus present {
22 for each windowgroupmenu {

23 hwndmenu = CreateMenu ();

24 InsertMenu (hmenu, MF_APPEND, MF_BYPOSITION | MF_POPUP, hwndmenu);
25 ContrCounts[2] = ContrCounts[2] + 1;

26 for each wndgroupmenu_item {

27 InsertMenu (hwndmenu, MF_APPEND, MF_BYPOSITION | MF_STRING,

28 item_id, "string to be displayed");

29 }

30 s

31 return ();

The InsertMenus method inserts the menus of the container application into
the composite menu bar being created by the server application. Code Table 1 shows
pseudo-code for an implementation of the IOLEInPlaceFrame::InsertMenus method.
The method takes two parameters: a composite menu bar and an array of menu counts.
For each of the menu groups represented by the menus of the container application.
there is a loop which inserts the menus for that group. In lines 1-10, if there are any File
group menus, then the method inserts these menus in the composite menu bar, and
increments the menu count array at the index corresponding to the File group. (For
example, index=0 if the menu bar presented in the example of Figure 4 is used.) In

lines 11-20, if there are any Container group menus, the method inserts these menus

WO 94/14115 PCT/US93/11468

10

15

20

25

30

8]
[}

into the composite menu bar and increments the menu count array at the index
corresponding to the Container group. Finally. in lines 21-30. if there are any Window
group menus to be added, the method inserts these menus into the composite menu bar
and then increments the menu count array at the index corresponding to the Window
grdup. At the completion of this method, the value stored at each index in the menu
count array indicates the number of menus that the container application inserted for
that particular menu group. The method invokes standard functions from the underlying
window system (CreateMenu and InsertMenu) to create the menus for the container

application and to insert them in the composite menu bar.

4.3.3 JOLEInPlaceFrame::RemoveMenus

The RemoveMenus method aliows the container application to remove its
menus from the composite menu bar before the server application deallocates the
composite menu bar. This method is invoked from the
IOLEInPlaceObject::InPlaceDeactivate method. The RemoveMenus method takes one
parameter: the handle of the composite menu bar where the container menus are stored.
The composite menu bar is expected to be clear of all server menus before this method
is invoked. '

4.3.4 IOLEInPlaceFrame::SetStatusText

The SetStatusText method allows the server application to set the status
window (if there is one) of the container application's frame window. Typically. the
status window is located at the bottom of the frame window and contains status or
hinting information corresponding to the current selection. The SetStatusText method
is container application specific and will perform whatever operations the container
application usually performs to set its status window. The method takes one parameter:
the text string to insert in the status window.

4.3.5 IOLEInPlaceFrame::EnableModeless

The EnableModeless method enables or disables the currently displayed
modeless dialog for the container application. A modeless dialog is an input window
which is displayed until it is explicitly closed by the user. While this window is
displayed, the user is able to interact with other windows. A modal dialog, on the other
hand, is an input window which blocks out other window processing until the user
enters acceptable input. This method is invoked by a server application when it wants
to display a modal dialog, but and its associated container application is already
displaying a modeless dialog. '

WO 94/14115 PCT/US93/11468

10

15

20

25

30

Figure 16 is a flow diagram of an implementation of the
IOLEInPlaceFrame::EnableModeless method. This method hides the modeless dialog
of the container application, and when called again restores the modeless dialogs. If the
designated flag fEnable is true, then the hidden dialogs are displayed. otherwise any
currently displayed modeless dialogs are hidden (removed from display. but in-memory
data structures not deallocated). In step 1601, the method determines whether F Enable
Is true, and, if it is, continues at step 1602, else continues at step 1603. In step 1602, the
method invokes an underlying window system function ShowWindow to restore the
windows associated with the previously saved modeless dialogs, and then returns. In
step 1603, the method saves the window handle of the next currently displayed
modeless dialog. In step 1604, the method invokes an underlying window system
function ShowWindow to hide the window associated with the modeless dialog. In step
1605. the function checks to see if there are any more modeless dialogs displayed. and.
if there are, the function loops back to step 1603, otherwise the function returns.

4.3.6 10LEInPlaceFrame::TranslateAccelerator

The TranslateAccelerator method allows a container application to process
accelerator key combinations when a server application receives a keystroke it does not
recognize. Accelerator key combinations are keyboard shortcuts for menu commands
and are discussed further below. The TranslateAccelerator method is invoked indirectly
by the function ObjectTranslateAccelerator which is called in the server application
message pump. The container application should perform its normal accelerator
processing and then return an indication of whether or not the accelerator was
processed. This value is then passed on to the server application by the function
ObjectTranslateAccelerator. Note that because the message has been transferred from
the server application to the container application. the underlying window system may
not have retained any additional key state or message information associated with the
designated message.

4.4 1OLEInPlaceParent Interface

Table 5 lists the IOLEInPlaceParent interface. The IOLEInPlaceParent
interface provides the methods invoked by the server application to communicate with
the parent window. This window is also referred to as the in-place "container site" for
the object.

WO 94/14115 PCT/US93/11468

10

20

25

30

Table 5

interface IOLEInPlaceParent: public IOLEWindow {public:

virtual SCODE CanlnPlaceActivate () = 0;

virtual SCODE OnlInPlaceActivate () = 0;

virtual SCODE OnUlActivate () = 0;

virtual SCODE OnUlDeactivate () = 0;

virtual SCODE OnDeactivate () = 0;

virtual SCODE ShadeBorder (LPRECT Iprect, DWORD grfState) = 0;

virtual SCODE GetWindowContext (IOLEInPlaceFrame *pFrame, IOLEInPlaceUIWindow
*pDoc, IOLEInPlaceUlWindow *pPane, LPRECT IprectChildPosition, HANDLE *hAccelTable) = 0;
1

s

4.4.1 IOLEInPlaceParent::CanlnPlaceActivate

The CanlnPlaceActivate method is used by the server application to
determine whether the container application supports in-place interaction. This method
gives the container application a chance to accept or refuse the activation in place of a
selected containee object. The method returns an indication of whether the container
application is allowing in-place interaction.

4.4.2 I0LEInPlaceParent::OnInPlaceActivate

The OnInPlaceActivate method is invoked by a server application to give its
container application a chance to perform any necessary operations before the server
application creates the new composite menu bar (at activation time). Figure 17 is a flow
diagram of an implementation of the IOLEInPlaceParent:: OnInPlaceActivate method.
In this implementation, the only operation performed is setting a flag in step 1701
indicating that a containee object has been activated. This information is used later,
whenever the specified object's parent container object is asked to activate or deactivate.
This flag tells the parent container application whether it needs to activate or deactivate
an object contained within it (a nested object), instead of activating or deactivating its

own user interface.

4.4.3 10LEInPlaceParent::OnUlActivate

The OnUlActivate method removes all of the container application menus
and tools in preparation for activation of a containee object in place. Figure 18 is a flow
diagram of an implementation of the IOLEInPlaceParent::OnUIActivate method. The
steps performed by the method depend on whether the container object is itself an
object that has been activated in place. In step 1801, the method determines whether the
container object has been activated in place. If it has not, the method continues at step

1802, else it continues at step 1803. In step 1802. because the container object is a top

WO 94/14115 PCT/US93/11468

10

20

25

30

25

level container object (not activated in place), the method uses its normal procedure to
remove the container application menus and any extraneous tools, and then returns. In
step 1803, because the container object is also a containee object., the method retrieves
the object's own IOLEInPlaceObject interface to access the methods that treat the
container object as a containee object. In step 1804, the method invokes the activate
method of the container object to deactivate itself. In step 1805. the method hides all of
the container object's document and pane window level tools. In step 1806. the method
invokes the shade border method of the parent container object to remove the in-place
interaction user feedback from around the container object and returns. The container
object's object window is actually deactivated at a later time (e.g.. when the containee
object deactivates).

4.4.4 IOLEInPlaceParent::OnUIDeactivate

The OnUlDeactivate method is invoked by a server application at the end of
deactivating its user interface resources to allow its parent container application 1o
either activate its own user interface or invoke its parent container application to allow
the parent container application to activate its user interface. Figure 19 is a flow
diagram of an implementation of the IOLEInPlaceParent::OnUIDeactivate method.
This method provides two different behaviors depending upon whether the container
object is itself a containee object or is a top level container object. In the former case, if
this container is to become the new object activated in place. then its own user interface
Is activated, otherwise the container requests its parent container application to activate
its user interface. In the latter case, the container application restores its user interface
using normal procedures. In step 1901, the method clears the flag indicating that the
container application has activated a containee object. In step 1902, the method
determines whether the specified container object is a containee object, and if it is not,
continues at step 1903, else continues at step 1905. In step 1903, the method sets the
container application menus and its title bar using normal procedures, and continues in
step 1904 to set the input focus to the desired window, and returns. The input focus is
set to a particular window when that window is to receive keyboard input. In step 1905,
the method examines the flag ABOUT TO ACTIVATE to determine whether the
container object is about to become the activated object, and if it is not, continues at
step 1906, else continues at step 1907. (The ABOUT_TO_ACTIVATE flag is set when
the container application is selected by the user, e.g.. in the Process_Mouse_LButtonUp
function discussed in detail below.) In step 1906, the method invokes the
IOLEInPlaceParent::OnUIDeactivate method of the container object to activate the user

WO 94/14115 PCT/US93/11468

10

15

20

25

30

26

interface of the container application of the parent container object, and returns. In step
1907, the method invokes function ActivateUl to activate the user interface of the

container application, and returns.

4.4.5 10LEInPlaceParent::OnDeactivate

The OnDeactivate method is invoked by the server application to give its
associated container application a chance to free any resources or set flags associated
with the activated containee object before the containee object is fully deactivated. The
method is invoked from the IOLEInPlaceObject::InPlaceDeactivate method of the

containee object.

4.4.6 IOLEInPlaceParent::ShadeBorder

The ShadeBorder method draws or removes a hatched pattern border from
around the selected. or about to be deselected. containee object. The hatched pattern
border is used to give the user feedback that the containee object has been activated in
place. This method can invoke the helper object linking and embedding API function
ObjectShade to create the proper shading pattern. The method takes two parameters: a
rectangle surrounding the object where the border should be placed and a set of flags.
The set of flags indicates whether the border should be on (SHADEBORDER_ON = 1)
or off and whether the border should be drawn in the same color as the text contained in
the title bar of the active window (SHADEBORDER_ACTIVE = 1) or the same color
as disabled text. The active window is the window that has input focus.

4.4.7 IOLEInPlaceParent::GetWindowContext
The GetWindowContext method returns the set of container application
interfaces associated with a particular containee object. Specifically. it returns the
following parameters:
pFrame, which is a pointer to an IOLEInPlaceFrame interface;
pDoc, which is a pointer to an JOLEInPlaceUIWindow interface;
pPane, which is a pointer to an IOLEInPlaceUIWindow interface;
IprectChildPosn, which is a pointer to the location where the associated
JOLEInPlaceParent instance will display the object window of the object within the
parent window; and
hAccelTable. which is a handle to the container application's accelerator table
(described below).
These values are used by the server application to negotiate and handle

activation and deactivation. This method creates and associates instances of these

WO 94/14115 PCT/US93/11468

10

15

20

25

30

27

interfaces with the relevant frame, document, pane. and parent windows of the container
application.

4.5 IOLEInPlaceObject Interface
Table 6 lists the IOLEInPlaceObject interface. The IOLEInPlaceObject

interface methods are invoked by a container application to activate and deactivate a
contained object. Some of these methods access contained objects in a nested fashion.
through the containment hierarchy. Others access only the current active object. which
is the containee object displaying the editing menus. An alternative implementation
would split this interface into two others: one to access only the active object and

another to access a containee object through the containment hierarchy.

Table 6

interface IOLEInPlaceObject: public IOLEWindow {public:
virtual SCODE InPlaceDeactivate () = 0;
virtual SCODE InPlaceUlDeactivate () = 0;
virtual SCODE TranslateAccelerator (LPMSG lpmsg) = 0;
virtual SCODE Activate (BOOL fActivate, BOOL fDocActivate) = 0;
virtual SCODE ResizeBorder (RECT borderRect) = 0;
virtual SCODE EnableModeless (BOOL fEnable) = 0:
virtual SCODE SetVisRect (LPRECT Iprect) = 0;

4.5.1 IOLEInPlaceObject::InPlaceDeactivate

The InPlaceDeactivate method is invoked by a container application to
completely deactivate a containee object after an "undo" operation no longer needs to
access the containee object and before the container application closes. This method
performs the final deallocation of any resources associated with the activation of the
containee object in place. Figure 20 is a flow diagram of an implementation of the
IOLEInPlaceObject:: InPlaceDeactivate method. The method first determines whether
it has activated a (nested) object contained within it, and if it has. it invokes the nested
object's InPlaceDeactivate method. Otherwise, the object deactivates itself. In step
2001, the method determines whether the specified object is also a container object and
has activated a nested containee object. If it has, the method continues at step 2002,
else it continues at step 2004. In step 2002, the method retrieves the
IOLEInPlaceObject interface of the activated containee object (which the server
application of the specified object has previously stored), and in step 2003 invokes
IOLEInPlaceObject::InPlaceDeactivate method of the retrieved interface, and then
returns. In step 2004, the method checks to see whether the specified object's user

WO 94/14115 PCT/US93/11468

10

15

20

30

35

28

interface is still active, and if it is. continues at step 2005, else continues at step 2006.
In step 2005, the method invokes the specified object's InPlaceUlDeactivate method to
deactivate its own user interface, and then continues at step 2006. In step 2006. the
method invokes a server application function Remove Menus to remove the server
application menus from the composite menu bar. In step 2007, the method invokes the
IOLEInPlaceFrame::RemoveMenus method of the specified object's container object to
allow the parent container application to remove its menus from the composite menu
bar. In step 2008, the method invokes the object linking and embedding API function
ObjectDestroySharedMenu to deallocate the structure for the composite menu bar. The
ObjectDestroySharedMenu function is window system specific and invokes whatever
underlying window system functions are necessary to deallocate structures associated
with a composite menu bar. In step 2009, the method invokes the underlying window
system function DestroyMenu to dealiocate the composite menu bar structure and to
deallocate the window associated with the specified object. Finally, in step 2010, the
method invokes the IOLEInPlaceParent:: OnDeactivate method of the specified object's
container object, and returns.

4.5.2 IOLEInPlaceObject::InPlaceUlDeactivate

The InPlaceUlDeactivate method hides all of the user interface elements
associated with the specified object that has been activated in place. This method is
invoked either by the container application when it processes the user selection of a
different object or area within the compound document, or from the specified object's
InPlaceDeactivate function if the specified object's user interface has not yet been
deactivated (See Figure 20). Figure 21 is a flow diagram of an implementation of the
IOLEInPlaceObject:: InPlaceUlDeactivate method. This method first determines
whether the specified object is a container object and has activated a nested object, and
if so invokes the nested object's InPlaceUlDeactivate function. Otherwise. the method
hides its own user interface and informs its container application that it has deactivated
its user interface. In step 2101, the method determines whether the flag indicating that a
nested containee object has been activated in place is true, and if so, continues at step
2102, else continues at step 2104. In step 2102, the method retrieves the
IOLEInPlaceObject interface for the activated nested containee object, and in step 2103
invokes the nested containee object's InPlaceDeactivate method, and returns. In step
2104, the method clears the flag ABOUT _TO_ACTIVATE to indicate that the user has
selected a different object. In step 2105, the method invokes the specified object's
Activate method sending it a parameter of false to request the method to deactivate.
This method removes all of the specified object's user interface elements that were

WO 94/14115 PCT/US93/11468

10

15

20

25

30

35

29

associated with the parent container application frame window. In step 2106, the
method invokes the object linking and embedding API function SetActiveObjectHwnd
to remove the specified object's IOLEInPlaceObject interface from its association with
the parent container application document window. This means that if the container
application is an MDI application, and if the user later selects this document window.
the specified object will no longer be reactivated in place. In step 2107, the method
uses an underlying window system function to hide any user interface elements
belonging to the server application that were associated with the parent container
application's pane or document window. In step 2108, the method invokes the
IOLEInPlaceParent:: ShadeBorder method of the specified object to remove the hatched
border pattern feedback from around the deactivating object. In step 2109, the method
invokes an underlying window system function to hide the window associated with the
specified object. Finally, in step 2110, the method invokes the IOLEInPlaceParent::
OnUlDeactivate method to allow the container application to install its own user

interface, and returns.

4.5.3 IOLEInPlaceObject:: TranslateAccelerator

The TranslateAccelerator method allows a server application to process
accelerator key combinations before the container application has a chance to process
them. Accelerator key combinations are keyboard shortcuts for menu commands and
are discussed further below. In a preferred embodiment of the present invention. the
object activated in place, by convention, processes accelerator key combinations first.
The Translate Accelerator method is invoked by the container application in its message
pump (see Code Table 9). The only operation required to be performed by this method
is to invoke the underlying window system function TranslateAccelerator with the
specified server application accelerator table. Such invocation is not necessary if the
containee object is implemented by a separate executable process, because the separate
process receives these key combinations in its own message pump and the container
application never receives them. In that case, the TranslateAccelerator method will do
nothing.

4.5.4 1OLEInPlaceObject::Activate

The Activate method activates or deactivates the user interface elements
installed in the frame window of the parent container application depending upon
whether the designated flag fActive is true or false. If called when an MDI document
window is activated or deactivated, this method installs or removes the composite menu

bar associated with the object activated in place and puts a hatched border pattern

WO 94/14115 PCT/US93/11468

10

20

30

35

30

around the specified object if it is being activated. If called when the top level frame
window is activated or deactivated. this method places a hatched border pattern around
the specified object if it is being activated, otherwise removes it. In this case there is no
need to activate or deactivate other user interface elements. Figure 22 is a flow diagram
of an implementation of the IOLEInPlaceObject::Activate method. In step 2201, the
method determines whether it has been called as a result of activating or deactivating
the top level frame window or an MID (child) document window. If called as a result of
activating or deactivating an MDI document window, the method continues at step
2202, else continues at step 2210. In step 2202. the method determines whether the
specified object is to be activated, and if it is not, continues at step 2203, else it
continues at step 2206. In step 2203. the method invokes the
IOLEInPlaceFrame::SetMenu method of the parent container object to remove the
composite menu bar associated with activation of the specified object in place. In step
2204, the method hides any user interface elements installed in the parent container
application frame window. In step 2205. the method invokes the
IOLEInPlaceParent::ShadeBorder method of the parent container object to remove the
hatched border pattern from around the specified object, and returns. In step 2206. the
method invokes the IOLEInPlaceFrame::SetMenu method of the parent container object
to install the composite menu bar as the menu bar of the associated frame window. In
step 2207. the method sets the title bar of the frame window of the container application
to indicate that the container application has activated the specified object. In step -
2208, the method invokes an underlying window system function to display any frame
level user interface elements. In step 2209, the method invokes the
IOLEInPlaceParent::ShadeBorder method of the parent container object to draw a
hatched border pattern around the specified object, indicating that it has been activated
in place, and returns. In step 2210, the method determines whether the specified object
1s to be activated, and if it is, continues at step 2209, else it continues at step 2211. in
step 2211, the method removes the hatched border pattern from around the specified
object, and returns.

4.5.5 I0LEInPlaceObject::ResizeBorder

The ResizeBorder method is called by the container application to request
the server application to resize the user interface tools the server application has placed
within the pane or document windows of its parent container application. In response to
invocation of this method, the server application should begin another tool placement
negotiation loop with the container application using the QueryBorderSpace and

WO 94/14115 PCT/US93/11468

10

15

20

25

SetBorderSpace methods of the interface instance associated with the pane or document
window.

4.5.6 I0LEInPlaceObject::EnableModeless

' The EnableModeless method enables or disables the currently displayed
modeless dialog for the server application. Typically. this method is implemented in a
manner analogous to the IOLEInPlaceFrame::EnableModeless method. which is
discussed above with reference to Figure 16.

4.5.7 10LEInPlaceObject::SetVisRect

The SetVisRect method is called by the innermost level container object to
communicate the amount of the object actually visible. The visible (clipping) rectanglc
of the object may have changed, for example. due to border negotiation. scrolling. or
sizing. The designated rectangle is the clipping rectangle and it is the server

application's responsibility to resize the containee object window to the correct (clipped)
visible size.

4.6 Other Server Application Functions

In a preferred embodiment. a server application provides the following set
of functions: ActivateUl, CreateNewMenu, CreateObjectToolbars, and RemoveMenus.
These functions are shared by multiple server application interfaces including
IOLEInPlaceObject and IOLEObject.

4.6.1 ActivateUl
SCODE ActivateUI (IOLEInPlaceUlWindow *pDoc, IOLEInPlaceObject pObject)

The ActivateUl function is a function implemented by a server application
to control activation of the designated containee object's user interface resources. This
high level function activates the frame, document, and pane level user interface
elements, draws the hatched border pattern around the object, and displays the
composite menu bar. Figure 23 is a flow diagram of an implementation of the
ActivateUl function. The function takes two parameters: a pointer to a document
nterface and a pointer to a containee object. In step 2301. the function gets the window
handles for the designated document window and the designated containee object. In
step 2302, the function invokes the object linking and embedding API function
SetActiveObjectHwnd to set the designated document window's currently active object
to a pointer to the interface of the containee object. This enables a container application

WO 94/14115 PCT/US93/11468

10

)
89

implemented as an MDI application to activate the proper containee object when one of
its document windows is selected by the user. In step 2303, the function invokes
IOLEInPlaceObject::Activate method to activate the designated object. In step 2304,
the function invokes the underlying window system function ShowWindow to display
any user interface elements associated with the container application pane or document
windows. In step 2305, the function determines the dimensions of a border or rectangle
to surround the designated containee object, and, in step 2306, the function invokes the
IOLEInPlaceObject::ShadeBorder method of the designated containee object to draw a
hatched border pattern around the designated containee object using this rectangle. In
step 2307, the function sets the input focus to the object window of the designated
containee object. Finally. in step 2308, the function invokes the underlying window

system function DrawMenuBar to redisplay the composite menu bar. and returns.

WO 94/14115 PCT/US93/11468

10

15

25

30

35

40

45

50

(U]
(US]

4.6.2 CreateNewMenu
HANDLE CreateNewMenu (IOLEInPlaceFrame *pFrame)

Code Table 2

HANDLE CreateNewMenu (IOLEInPlaceFrame *pFrame) |
hmenu = CreateMenu ();
pFrame -> InsertMenus (hmenu, ContrCounts);
IpiMenuCount[0] = ContrCount[0];
IpiMenuCount[2] = ContrCount[1];
IpiMenuCount[4] = ContrCount[2];
if there are Edit group menus present {
for each editgroupmenu {
heditmenu = CreateMenu ();
insertion_point = lleenuCount[O] + IpiMenuCount[1] + 1;
InsertMenu (hmenu. insertion_point, MF_BYPOSITION | MF_POPUP.
heditmenu, NULL);
2 IpiMenuCount[1] = IpiMenuCount[1] + 1
13 for each editgroupmenu_item {
14 InsertMenu (heditmenu, -1, MF BYPOSITION | MF_STRING. item_id,
15 "string to be displayed"):
16 }
17 5
18 if there are Object group menus present {
19 for each objectgroupmenu {

OO0 WnN LN —

— e
D — O

20 hobjmenu = CreateMenu ();

21 insertion_point = IpiMenuCount[0] + IpiMenuCount[1] + IpiMenuCount|[2]
+

22 IpiMenuCount[3]+ 1;

23 InsertMenu (hmenu, insertion_point, MF_BYPOSITION | MF_POPUP,

24 hobjmenu, NULL);

25 IpiMenuCount[3] = lpiMenuCount[3] + 1

26 for each objectgroupmenu_item {

27 InsertMenu (hobjmenu, -1, MF _BYPOSITION | MF_STRING. item_id,
28 "string to be dlsplayed”)

29 }

30 L

31 if there are Help group menus present {
32 for each helpgroupmenu {

33 hhelpmenu = CreateMenu ();

34 InsertMenu (hmenu, -1, MF_BYPOSITION | MF_POPUP, hhelpmenu.

35 NULL);

36 IpiMenuCount[5] = IpiMenuCount[5] + 1;

37 for each objectgroupmenu_item {

38 InsertMenu (hhelpmenu, -1 MF_BYPOSITION | MF_STRING,
item_id,

39 "string to be displayed");

40 }

41 1~

42 hSharedMenu ObjectCreateSharedMenu (hmenu, IpiMenuCount);
43 return (hSharedMenu);

}

WO 94/14115 PCT/US93/11468

10

15

20

25

30

35

34

The CreateNewMenu function is a function implemented by a server
application to manage the creation of a composite menu bar. This function allocates the
structures associated with the composite menu bar, requests the container application to
insert its menus, and inserts the server application menus. Code Table 2 represents an
implementation of the CreateNewMenu function. In line 1, the function invokes an
underlying window system function to create the data structure for the composite menu
bar. In line 2, the function invokes the IOLEInPlaceFrame::InsertMenus method of the
container application frame window to insert the container application menus into the
composite menu bar. In lines 3-5, the function tracks the number of menus the
container application inserted for each menu group. In lines 6-17, assuming the server
application has Edit group menus, the function creates each Edit group menu and inserts
it into the correct spot in the composite menu bar, keeping track of how many menus it
inserted. The correct spot is calculated in line 9 by determining how many menus have
already been inserted to the left. For the Edit group, this will be the number of menus
the container application inserted as part of the Container Group plus the number of
Edit group menus already inserted, plus one for the current insertion. In lines 18-30, 31-
41, the function performs analogous steps for any menus belonging to the Object group
and Help group respectively. In line 42, the function invokes the object linking and
embedding API function ObjectCreateSharedMenu to create the data structure
associated with message handling for the composite menu bar and, in line 43, returns a
handle to this structure.

4.6.3 CreateObjectToolbars
void CreateObjectToolbars (IOLEInPlaceFrame *pFrame, IOLEInPlaceUlWindow *pDoc,
10LEInPlaceUIWindow *pPane)

The CreateObjectToolbars function is a function implemented by a server
application to negotiate between the server and container applications for any space
needed for server application tools. Figure 24 is a flow diagram of an implementation
of the CreateObjectToolbars function. Steps 2401 through 2408 are repeated as many
times as necessary to create tools for the server application. In step 2401, the function
determines whether there are more tool bars to create, and if not, returns, else continues
at step 2402. In step 2402, the function invokes the IOLEInPlaceUIWindow::GetBorder
method of a frame, document, or pane window of the container application (depending
upon where the server application desires to place the tools) to begin the negotiation. In
step 2403, the function invokes the IOLEInPlaceUIWindow:: QueryBorderSpace
method of the desired frame, document or pane window to request a specific width of

WO 94/14115 PCT/US93/11468

10

15

20

25

30

35

40

35

border space inside the rectangle returned by the previous call to the GetBorder method.
These methods were discussed in more detail above. In step 2404, if the specific width
cannot be accommodated, then the function continues at 2405, else it returns. An
implementation can choose to renegotiate for a different amount of space by calling
QueryBorderSpace as many times as desired with different values. In step 2405, the
function invokes the IOLEInPlaceUIWindow::SetBorderSpace method with the space
previously negotiated in step 2403. In step 2406, the function creates a child window of
the desired frame, document, or pane window of the parent container application. In
step 2407, the function draws the tool in the child window it created earlier, and then
returns to the beginning of the loop.

4.6.4 RemoveMenus
void RemoveMenus (HANDLE hSharedMenu)

Code Table 3
RemoveMenus(HANDLE hSharedMenu) {
1 menu = hSharedMenu -> menu;
descriptor = hSharedMenu -> descriptor;
for (i = descriptor[0] + 1, i <= descriptor[1], i++) {
RemoveMenu (menu, heditmenu, MF_BYPOSITION)

for (i = descriptor[2] + 1, i <= descriptor[3], i++ {
RemoveMenu (menu, hobjmenu, MF_BYPOSITION)

Nell-LIEN No WU, RN SRS i &)

for (i = descriptor[4] + 1, i <= descriptor[5], i++ {
RemoveMenu (menu, hhelpmenu, MF_BYPOSITION)
11 }

12 return ();
}

—
[w)

The RemoveMenus function removes the menus of the server application
from the composite menu bar upon containee object deactivation. The method is
invoked from the containee object's InPlaceDeactivate method. Code Table 3 shows an
implementation of the RemoveMenus function. The function uses the information
stored in the shared menu descriptor (see Figure 25), which contains the number of
menus within each menu group, to remove all of the server application menus by
invoking the underlying window system function RemoveMenu. Lines 3-5 remove the
menus belonging to the Edit group, lines 6-8 remove the menus belonging to the Object
group, and lines 9-11 remove the menus belonging to the Help group.

WO 94/14115 PCT/US93/11468

10

15

20

25

30

36

4.7 Object Linking and Embedding API Helper Functions

In addition to interface definitions, the object linking and embedding API
provides a set of helper functions to be used by container and server applications. These
functions include the following; SetActiveObjectHwnd, GetActiveObjectHwnd,
ObjectCreateSharedMenu, ObjectDestroySharedMenu, ObjectShade, and
ObjectSetMenu.

4.7.1 SetActiveObjectHwnd
void SetActiveObjectHwnd (HWND hwndDOC, IOLEInPlaceObject *pObject)

The SetActiveObjectHwnd function sets the currently selected object in an
MDI application. Each MDI (document) window in an MDI container application has
associated with it an object interface corresponding to the object activated in place,
which was displayed when that MDI window last had input focus. If no object had been
activated in place from within the MDI window, then the associated object interface is
NULL. This mechanism enables an MDI window to activate the proper containee
object when the MDI window later receives input focus, for example, when the user
clicks with the mouse on the title bar of the MDI window. (When the user clicks on the
title bar of some other MDI window, any in-place interaction associated with the first
window disappears from the display.) The SetActiveObjectHwnd function takes two
parameters: the window handle of the MDI (document) window and the
IOLEInPlaceObject interface of the object currently activated in place. One skilled in
the art will realize that there are many ways to associate the window handle with an
object interface. In one embodiment, the function stores the object interface as a
property of the document window using underlying window system functions. Note
that this implementation requires storage for each MDI window active in the system.
An alternative approach is to add a method to the document, pane, and frame window
interfaces to keep track of the currently selected object.

4.7.2 GetActiveObjectHwnd
HWND GetActiveObjectHwnd (HWND hwndDOC)

The GetActiveObjectHwnd function retrieves the containee object to be
activated in place when the MDI window receives input focus. This function returns the
object interface that was previously stored using the SetActiveObjectHwnd function.

WO 94/14115 PCT/US93/11468

10

15

20

25

30

35

40

37

4.7.3 ObjectCreateSharedMenu
HANDLE ObjectCreateSharedMenu (HMENU hMenuCombined, UINT IpiMenuCounts)

Code Table 4

HANDLE ObjectCreateSharedMenu (hmenu, IpiMenuCount) {
1 hSharedMenu = AllocateSharedMenuHandle();

2 hSharedMenu -> menu = hmenu;

3 for (1= 0,1 <number_menu_groups; i ++) {

4 if (1> 0) {

5 hSharedMenu -> descriptor[i].count =

6 hSharedMenu -> descriptor[i - 1].count + IpiMenuCount][i];
7 if 1iseven

8 hSharedMenu -> descriptor(i].function = Id_Container
9 else hSharedMenu -> descriptor(i].function = Id_Object;
10 }

11 else {

12 hSharedMenu -> descriptor{0].count = IpiMenuCount[0];
13 hSharedMenu -> descriptor[0].function = Id_Container;
14 4

15 }

16 return (hSharedMenu);

}

The ObjectCreateSharedMenu function creates the shared menu data
structure associated with the composite menu bar of an object activated in place. The
function is invoked from the CreateNewMenu function when a containee object is
activated. Code Table 4 shows an implementation of the ObjectCreateSharedMenu
function. The function takes two parameters: a handle to a composite menu bar and an
array of menu counts which contains the number of menus in each menu group. The
function returns a handle to the newly created shared menu data structure. In line 1. the
function allocates the memory required for the shared menu data structure. In line 2, the
function saves the handle to the composite menu bar in this data structure. In lines 3-
15, the function sets up the shared menu descriptor according to the information stored
in the menu count array. This descriptor is used by the window procedure, when it
receives menu commands, to determine whether to forward the menu command to the
container application or to the server application.

Although one skilled in the art will recognize that there are different ways to
maintain this information, in one embodiment, the descriptor stores at each index the
number of the last menu contained in the menu group associated with that index. (The
menus are numbered from 1 on the left.) Also, an indication of whether the menu group
belongs to the container or server application is stored at each index. One skilled in the

art will also recognize that any menu grouping scheme could be supported by passing

WO 94/14115 PCT/US93/11468

10

15

20

25

38

additional parameters to indicate which application should be notified for which menu
group. Using this descriptor arrangement, the window procedure can determine within
which index a particular menu item selection falls by counting the number of menus up
to and including the menu item selection and then comparing the menu number with the
desériptor values to find the correct index. Once the index has been determined, the
window procedure can retrieve the indicator that specifies whether a container or server
application function should be invoked. This procedure is discussed further below in
reference to Code Table 5.

Figure 25 is a block diagram of the shared menu data structure
corresponding to the example discussed in Figure 4. The shared menu data structure
consists of a pointer to the composite menu bar 2502 and a descriptor 2505 which
contains the menu count for each menu group. The composite menu bar 2503
comprises the menus from the container and server applications 2504. Each element in
the descriptor 2505 has a count field 2506 and a function field 2507. The count field
2506 indicates the number, starting from the left, of the last menu within a menu group.
For example, the second menu group is the Edit group and contains only one menu.
This menu 2503 is the second menu from the left in the composite menu bar; therefore,
the count field 2509 contains the number 2. As another example, the fourth menu group
is the Object group. This group contains five menus from the server application 2510.
Therefore, the count for this menu group 2511 contains the number 7, since the seventh
menu is the Macro menu which is the last menu in the Object group.

4.7.4 ObjectDestroySharedMenu
void ObjectDestroySharedMenu (HMENU hMenuCombined)

The ObjectDestroySharedMenu function destroys the shared menu data
structure built in a previous call to ObjectCreateSharedMenu. This function is invoked
from the IOLEInPlaceObject::InPlaceDeactivate method of the activated containee
object after the container and server applications have removed their menus from the
composite menu bar.

WO 94/14115 PCT/US93/11468

10

15

20

25

30

35

39

4.7.5 ObjectShade
void ObjectShade (HWND hwndParent, LPRECT lprc, DWORD griState)

The ObjectShade function is provided by the object linking and embedding
API to create the hatched border pattern placed around objects activated in place. The
hwndParent parameter is the window handle associated with the IOLEInPlaceParent
interface of the activated (or to be activated) object. The Iprc parameter is the rectangie
in the parent window coordinates where the pattern will be placed. The grfState flags
are identical to those described in the IOLEInPlaceParent::ShadeBorder method and

include SHADEBORDER_ON and SHADEBORDER_ACTIVE.

4.7.6 ObjectSetMenuDescriptor

SCODE ObjectSetMenu (HWND hwndFrame, HOLEMENU hMenuCombined, HWND
hwndObject)

The ObjectSetMenuDescriptor function sets up or removes the message
handler for the compositt menu bar. The function is invoked by the
IOLEInPlaceFrame::SetMenu method of the associated container object of the
activating containee object. Figure 26 is a flow diagram of an implementation of the
ObjectSetMenuDescriptor function. It takes three parameters: the window handle of the
frame window associated with the container application, the handle to the shared menu
data structure returned by the ObjectCreateSharedMenu function, and the window
handle of the object to be currently activated in place. If the handle to the shared menu
structure is null, then the function removes the message handler for the composite menu
bar, otherwise it sets up the message handler. In step 2601, the function determines
whether the handle to the designated shared menu data structure is null. and if it is
continues at step 2602, else continues at step 2603. In step 2602, the function invokes
the underlying window system function SetWindowLong to remove the special message
handler that was previously associated with the container application. In step 2603, the
function removes the properties previously set up for the composite menu and then
returns. In step 2604, the function sets a property on the frame window to store the
shared menu data structure to be later used by the special message handler. In step
2605, the function sets another property on the frame window corresponding to the
window handle of the activating object. In step 2606, the function uses the underlying
window system function SetWindowLong to install the special message handler as the
new window procedure for the frame window of the parent container application. The
old window procedure is saved for later use in the property Old_Filter. (See, e.g., Code

Table 5, discussed in detail below.) The function then returns.

WO 94/14115 PCT/US93/11468

10

15

20

25

30

40

5. Use of In-Place Interaction API

The object linking and embedding API functions supporting in-place
interaction are invoked to:
’ e activale an object in place within an SDI or MDI container
application,

® process messages when a user selects a menu item from the container
application composite menu bar,

e deactivate user interface resources of an object activated in place
when the user either chooses to activate a different object or chooses
to restore the top level container application to its normal processing,

* deactivate the in-place interaction resources for a server application
when the container application no longer needs them,

e enable and disable modeless dialogs when a server application
displays a dialog and the container application is currently displaying
a modeless dialog (or vice versa), and

e process accelerator key combinations to distribute them between
container and server applications.

5.1 Procedure for Activation In Place

As described earlier, once objects have been linked or embedded into a
document, a user can select objects and request that certain actions be performed upon
the selected objects. Returning to the example of Figures 3 and 4. if the user wishes to
activate the spreadsheet object 305 in place, the user can either click twice with the
mouse input device on the object presentation format or use the container application
menus to select an action on the object. Figure 8 demonstrates one way the user can use
menus to activate the spreadsheet object 305 in place. When the user selects the menu
item "Excel Worksheet Object" 803 from the container application (the word processing
application) Edit menu 802, and then selects any action from the "Excel Worksheet
Object" submenu 804, the word processing application invokes the spreadsheet
application to activate the spreadsheet object in place.

The process of activating the spreadsheet object 305 is accomplished in
several steps. First, the window procedure for the frame window of the word
processing application is invoked by the underlying window system in response to user
selection of a menu item on the object action submenu 804. (See, e.g.. Figure 14.)

Second, when a menu event is received. the window procedure invokes the function

WO 94/14115 PCT/US93/11468

10

15

20

25

35

4]

Process_Object_Activation. (See, e.g.. steps 1407, 1411, and 1413.) Third, the
function Process_Object_Activation loads the data for the spreadsheet object 305 using
the object linking and embedding API function ObjectLoad. Finally. the function
Process_Object_Activation program invokes the DoVerb method of the spreadsheet
object 305 to request the spreadsheet application to perform the selected action.

Figure 27 is a flow diagram of an implementation of the function
Process_Object_Activation. The function loads the selected object and invokes its
DoVerb method to perform the selected action. In step 2701, the function invokes the
object linking and embedding API function ObjectLoad. passing it a pointer to the
storage for the object, and an indication that it wants the IOLEObject interface. The
function ObjectLoad returns a pointer to the IOLEObject interface of the loaded object.
In step 2702. the function invokes the SetClientSite method of the containee object to
hand the containee object a pointer to its associated parent containee object interface
(pclientsite). In step 2703, the function invokes the loaded object's
IOLEObject::DoVerb method, passing it the selected action, an indication of whether
the action was selected by a double click, and a previously created IOLEClientSite
interface for the object. The function then returns.

Figure 28 is a flow diagram of an implementation of the object linking and
embedding API function ObjectLoad. This function creates the in-memory instance of
an object, readies a server application for future interaction, and returns a pointer to the
designated interface. The function takes three parameters: a pointer to storage where
the object data is to be loaded from, an indication of the interface the caller desires to
have returned, and a return pointer to the in-memory instance of the object. In step
2801, the function retrieves the CLASS_ID from the designated storage. In step 2802,
the function uses the retrieved CLASS_ID to locate the code for creating an in-memory
instance of this type of object. In a preferred embodiment of the present invention. an
IOLECreate interface is provided by every server application to create in-memory
instances of objects it implements. In step 2803, the function invokes the
IOLECreate::Createlnstance method to create the in-memory structure for the object and
returns a pointer to an IPersistStorage interface through which the persistent storage for
the object is accessed. In step 2804, the function invokes the IPersistStorage::Load
method, which loads the object data from the designated storage. In step 2805, the
function invokes the IPersistStorage::Querylnterface method to retrieve the designated
interface, and returns the retrieved interface.

Figure 29 is a flow diagram of a typical implementation of the
IOLEObject::DoVerb method. This method is the primary method for interacting with

WO 94/14115 PCT/US93/11468

10

15

20

25

30

35

42

a containee object. The method negotiates with the container application to perform in-
place interaction and causes the server application's user interface to be activated. The
method takes four parameters: the user-selected action. a pointer to the message
structure received by the container application window procedure when the user
selected the action, a pointer to the IOLEClientSite interface of the object. and a set of
flags controlling the execution of the verb, for example, whether the server application
should take the input focus upon invocation. In step 2901, the method invokes the
IOLEClIientSite::Querylnterface method to get the IOLEInPlaceParent interface for the
specified object. In step 2902, the method invokes the
IOLEInPlaceParent::CanInPlaceActivate method to determine whether the container
application supports in-place interaction. In step 2903, if the container application does
not support in-place interaction. the method continues at step 2904, else the method
continues at step 2906. In step 2904, the method creates and displays a server
application frame window, because the container application could not perform in-place
interaction. In step 2905, the method continues its normal processing of the designated
action, and returns. In step 2906, the method invokes the IOLEInPlaceParent::
GetWindowContext method to obtain the interfaces associated with the container
application. In step 2907, the method calculates the size of the object window it needs
to create to support in-place interaction with the specified object. In step 2908, the
method determines whether the area returned by the
IOLEInPlaceParent::GetWindowContext method necessitates scaling or clipping and
whether the specified object can support this. If it can support the required size, the
method continues at step 2909, else the method abandons in-place interaction and
continues at step 2904. In step 2909, the method retrieves the window handle for the
window corresponding to the IOLEInPlaceParent interface. In step 2910. the method
creates a new window as a child of the window corresponding to the IOLEInPlaceParent
interface to be used as the object root window. (See, e.g., item 1309 in Figure 13.) In
step 2911, the method determines whether the user interface resources for the specified
object are still available, that is, have been allocated but not yet deallocated. If the
resources are available, the method continues at step 2913, else the method continues at
step 2912. In step 2912, the method invokes the IOLEInPlaceParent:: OnUlActivate
method to enable the container application to remove its user interface resources in
preparation for activation of the specified object in place. In step 2913. the method
invokes the IOLEInPlaceParent::OnInPlaceActivate method to allow the container
application to record that it has activated a nested object in place. In step 2914, the

method invokes the function CreateNewMenu to create the new composite menu bar

WO 94/14115 PCT/US93/11468

10

15

20

25

30

35

43

(see Code Table 2). In step 2915, the method determines whether the specified object
requires the activation of any additional user interface tools, and if it does. continues at
step 2916, else continues at step 2917. In step 2916, the method invokes the function
CreateObjectToolbars to negotiate the location of and to place the additional user
interface tools of the specified object (see Figure 24). In step 2917, the method invokes
the function ActivateUl, which causes all of the user interface resources of the specified
object to be displayed (see Figure 23), and returns.

5.1.1 Activation In Place Within a Multiple Document Interface Application

The previous section discussed the activation of a containee object
assuming the object was activated from an SDI container application. If, on the other
hand, the object is activated within an MDI container application, which application by
definition can interact with multiple compound documents at the same time, then
activation and deactivation occurs whenever the document (MDI) window containing
the object is activated or deactivated. The window procedure for the document window
receives an activation message from the underlying window system whenever the user
selects the window (for example, by clicking in the title bar of the document window).
The window procedure for the document window will receive a deactivation message
when the user then selects a different window. In response to these messages, the
window procedure for the document window will invoke a function (e.g.
Process_Activation_Message) to perform the activation and deactivation of the
document window and any activated object contained within it.

Figure 30 is a flow diagram of an implementation of the function
Process_Activation_Message called by the window procedure of an MDI document
window to process activation and deactivation messages. In one embodiment, the
document window handle is passed in as a parameter to the function. The function
determines whether the window contains an object previously activated in place when
the window was last active. If so, the function activates or deactivates that object. else
the function activates or deactivates the document window in its normal fashion. In
step 3002, the function performs its normal window deactivation procedures, and
returns. In step 3001, the function retrieves the IOLEInPlaceObject object interface for
the previously active contained object, if there is one, by invoking the function
GetActiveObjectHwnd. In step 3002, the function determines whether the object
interface is null. If it is null. then there is no previously active contained object and the
function continues at step 3003, else the function continues at step 3004. In step 3003,

the function performs its normal window activation or deactivation procedures such as

WO 94/14115 PCT/US93/11468

15

20

25

30

35

40

44

setting up the document window tools and menus, and returns. In step 3004, the
function determines whether the designated flag FActive is true. If the flag FActive is
true, then the previously active contained object is to be activated and the function
continues at step 3005, else the object is to be deactivated and the function continues at
stép 3006. In step 3005, the function invokes the IOLEInPlaceObject:: Activate method
of the retrieved interface requesting the previously activated object to activate itself, and
returns. In step 3006, the function invokes the IOLEInPlaceObject:: Activate method of
the retrieved interface requesting the previously activated object to deactivate itself, and
then returns.

5.2 User Selection of Pulldown Menus Message Handling

Once the user has activated an object in place, the user interacts with the
object within the container application by selecting actions through the menu bar of the
container application (which is the composite menu bar). Because some of the menus
belong to the server application and others of the menus belong to the container
application, the window procedure for the container application frame window must
decide whether to send the menu input event to a function within the container
application or within the server application. For this purpose, a special message handler
is installed by the object linking and embedding API function ObjectSetMenuDescriptor
when it is invoked by the server application to install the newly created composite menu
bar. This special message handler becomes the new window procedure for the container
application frame window once it is installed. Thus, all messages received by the
container application that correspond to its frame window are thereafter routed first to
the special message handler. This special message handler then decides to which
application to route the message event received.

Code Table 5

InPlaceWndProc (hwnd, message, wparam, Iparam) {

1 /* wparam = item id of menu item selected ; */

2 /* hiword (lparam) = hmenu containing the item */

3 switch (message) {

|4 case WM_COMMAND:

5 SetFocus (Old_Focus);

6 if (saveMenuRoutine = =1d_Object) {

7 hwndObj = GetProp(hwndFrame, "InPlaceObject");
8 PostMessage(hwndObj, message, wparam, lparam);
9

10 else {
11 Old_Filter = GetProp(hwndFrame, "OldFilter");
12 call Old_Filter (hwndFrame, message, wparam, lparam);

WO 94/14115 PCT/US93/11468

10

15

20

25

30

35

40

45

50

45
13 1
14 break;
15 case WM_INITMENUPOPOP,
16 WM_ENTERIDLE,
17 WM_MEASUREITEM,
18 WM_DRAWITEM:
19 if (saveMenuRoutine = = Id_Object) {
20 hwndObj = GetProp(hwndFrame, "InPlaceObject");
21 PostMessage(hwndObj, message, wparam, Iparam);
22 }
23 else {
24 Old_Filter = GetProp(hwndFrame, "OldFilter");
25 call Old_Filter (hwndFrame, message, wparam, lparam):;
26 s
27 break;
28 case WM_MENUSELECT:
29 hSharedMenu = GetProp(hwndFrame, "SharedMenu");
30 CombinedMenu = hSharedMenu -> menu:
31 count = Q; '
32 for (current = 1st menu entry of CombinedMenu; current < = last menu entry
33 of Combined Menu: current ++) {
34 if (current -> item_id = = hiword (lparam))
35 found = true;
36 count = count + 1;
37 }
38 if (found)
39 GetFocus(Old_Focus);
40 SetFocus(hwndFrame);
41 descr = hSharedMenu -> descriptor;
42 saveMenuRoutine = NULL;
43 for (d = 0; d <= sizeof (descr); d++) {
44 if (d = 0) and (count <= descr [d].count)
45 saveMenuRoutine = descr{d].function;
46 else if (count > descr[d - 1].count) and (count <= descr [d].count)
47 saveMenuRoutine = descr[d].function;
48 }
49 break;
50 default:
51 Old_Filter = GetProp(hwndFrame, "OldFilter");
52 call Old_Filter (hwndFrame, message, wparam, Iparam);
53 break:
54 }

55 return ();
!
J

Code Table 5 shows an implementation of the special message handler
provided by the object linking and embedding API. Lines 3-54 implement a case
statement based upon the type of message received. Lines 28-49 provide initialization
to enable the handler to route the message properly when it receives a menu command
message from the underlying window system. Lines 4-27 and lines 50-53 provide the

basic routing mechanisms when a menu command message is received. In line 29. the

WO 94/14115 PCT/US93/11468

10

15

20

25

30

46

handle to the shared menu data structure is retrieved from the properties of the container
application frame window. In lines 32-37, the handler walks the entries of the
composite menu bar trying to match the menu received in its input message. In the
process, it keeps track of the number of menus encountered (line 36). Once the loop is
exited, and if the menu is found, the variable count represents the number of the
selected menu starting from the left. This count is then used in the loop contained in
lines 43-48 to determine to which descriptor element the menu belongs. Specifically,
the value stored at each index of the descriptor is checked, and if the menu number is
less than or equal to that value and is greater than the value stored in the descriptor at
the index to the left, then the correct descriptor element has been located. Once the
correct element is known, the handler retrieves the indicator corresponding to whether a
container or server application function should be called. This indicator is then saved in
the variable saveMenuRoutine in lines 45 and 47. For the handler to properly process
menu mneumonics (including system menu key sequences), the handler sets the input
focus to the frame window when responding to the menu command message.

A menu mneumonic is a key sequence such as "Alt, -, F, N" which provides
a way to access menus using a keyboard instead of using a mouse. Typically, a menu
item has one letter designated as its unique mneumonic, e.g.. underlined on Windows
3.1. In order to access the menu item, its unique mneumonic is appended to the
mneumonics of its containing menus. The entire key sequence is prefaced by the
system key, which informs the system that the user wishes to type in a menu
mneumonic. Menu mneumonics pose a special problem when in-place interaction is
implemented with certain underlying window systems. Specifically, under unmodified
conditions, when a containee object has been activated in place, all keyboard input with
the exception of the System Key (the "ALT" key on Windows 3.1) and other navigation
keys is sent to the window procedure for the object root window (see item 1309 in
Figure 13), because the object root window is given input focus when the object is
activated. However, the underlying window system sends the System Key to the
window procedure for the container application frame window, because this key is
handled specially. Thus. the container application will never receive the key input
corresponding to the selected menu item in the system key sequence. For example, if
the menu mneumonic key sequence is ALT, -, m (for "move"). the "ALT" key press
would be sent to the container application and the "-" and "m" key presses would be
sent to the server application. To solve this problem, the input focus is temporarily set
to the container application frame window while the frame window procedure is

processing menu events. An example of this solution is shown in lines 5, 39. and 40.

WO 94/14115 PCT/US93/11468

10

15

20

25

30

35

47

In lines 4-14, when the handler receives a menu command., the handler first
restores the input focus so that normal processing may continue. Next. the handler
checks the indicator that was saved in SaveMenuRoutine. If it indicates the menu
belongs to the server application, then the handler invokes the window procedure of the
object window, otherwise it invokes the original container application window
procedure. Specifically, in line 7. the handler gets the window handle of the object,
which was stored as a property of the frame window of the container application. In
line 8, the handler asynchronously posts a message to the object window forwarding the
original message and the original parameters. In line 11, if the indicator did not specify
the server application, then the handler retrieves the original window procedure of the
container application frame window and in line 12 invokes this procedure with the
designated message and parameters. The original window procedure of the container
application frame window was saved in the call to ObjectSetMenuDescriptor, which
installed the new window procedure.

In lines 15-27, when the handler receives other menu related messages, it
dispatches the message appropriately to either the container or object application in the
same manner provided in lines 6-13. In lines 50-53, if any other kind of message is
received, then the old window procedure is retrieved and the message and parameters
are forwarded to it.

5.3 In-Place Deactivation Procedure

When the user selects an area outside the object activated in place. the
object is deactivated. In general, this behavior occurs when the user clicks with a
mouse button in another area in the window of the container application, or in a
different document window in the case of an MDI container application. Therefore,
generally speaking the deactivation methods of the in-place interaction API are invoked
from a function called by the container application to process a mouse button event.

Figure 31 is a flow diagram of an implementation of the
Process_Mouse_LButtonDown function. This function processes the input event
signaled by the receipt of a left button down message. One skilled in the art will
recognize that such a function could be invoked upon receipt of any kind of input event,
and that other events can be used to select and deselect. In step 3101, the function sets a
flag indicating that the container application is about to activate. This flag is used in the
sequence of nested deactivation invocations to ensure the correct user interface
resources are displayed in the case of nested activations. In step 3102, the function
checks the flag ACTIVATED_SOMEONE to determine whether an object has been

WO 94/14115 PCT/US93/11468

10

15

20

25

30

35

48

activated in place, and if it has, continues at step 3104, else continues at step 3103. In
step 3103, the function performs its normal left button down event processing. and
returns. In step 3104, the function retrieves the IOLEInPlaceObject interface for the
currently activated object. In step 3105, the function invokes that object's
IOLEInPlaceObject:: InPlaceUIDeactivate method. The function then continues at step
3103.

As shown in Figure 21, the currently activated object's
IOLEInPlaceObject::InPlaceUlDeactivate method will in turn invoke its
IOLEInPlaceParent::OnUlDeactivate method to allow the container application to
install its user interface resources. This deactivation will nest upwards until either the
top level container, or the container of the object about to be activated. is reached. (See
Figure 19.) For example. referring to Figure 4. if the embedded chart object 409 shown
within the embedded spreadsheet object 405 were the currently activated object, and the
user selected the spreadsheet object 405 to activate it in place, then the chart's
IOLEInPlaceObject:: InPlaceUIDeactivate method would be invoked, which would in
turn invoke the spreadsheet's IOLEInPlaceObject:: OnUlIDeactivate method. This latter
method would then install the user interface for the spreadsheet object as shown in
Figure 4. On the other hand, if the user had clicked somewhere else in the compound
document, then the spreadsheet's IOLEInPlaceObject::OnUIDeactivate method would
invoke the compound document's IOLEInPlaceObject:: OnUIDeactivate method. This
latter method would install the word-processing user interface because this object is the
top level container object.

A container application may display scroll bars for scrolling the displayed
container object vertically or horizontally. The scroll bars are part of the container
window. If the container object has an activated containee object. then when the user
clicks on an area outside the containee object, the containee object is deactivated. In a
preferred embodiment, the container application upon receiving a scroll bar message
does not deactivate the containee object. Rather, the container application effects the
scrolling and ensures that the input focus stays with the containee object.

5.4 Closing the Container Application

Some time after a container application is no longer able to perform an undo
operation, which would reactivate a previously activated object, and before the
container application is closed by the user. the container application permanently
deallocates the user interface resources associated with a previously activated object.

To deallocate these resources, the container application invokes the

WO 94/14115 PCT/US93/11468

10

15

20

(OS]
W

49

IOLEInPlaceObject::InPlaceDeactivate method associated with the previously activated
object. This method in turn deallocates the shared menu data structure and the menus

associated with the composite menu bar. (See Figure 20 and associated text.)

5.5 Interacting with Modeless Dialogs

When the user is interacting with an object activated in place whose server
application has displayed a modeless dialog, then, if the user wants to select a menu
item from a container application menu that presents its own modal dialog. then the
container application temporarily hides the server application modeless dialog.
Modeless dialog boxes are hidden because a user may be confused seeing two dialog
boxes displayed simultaneously and not understand to which box the input is routed
because the server and container applications are meant to appear as one application.
Also. modal dialogs are not programmed to avoid conflicts with other dialogs because,
in traditional applications, the underlying window system prohibits input outside the
modal dialog within a single application. With the use of in-place interaction, such
conflicts are not automatically avoided because two applications cooperate to appear as
one. Therefore, the applicants should cooperate to avoid conflicts between modal and
modeless dialogs. For example, suppose the user has selected the "Find..." menu item
on the Edit menu of a spreadsheet application, which results in the display of a
modeless dialog by the server application. Now, suppose the user wishes to print out a
part of the compound document, so the user selects the "Print..." menu item on the File
menu, which belongs to the word processing (container) application. The word
processing application hides the "Find..." dialog because both dialogs are preferably not
displayed at the same time. To do this, the word processing application invokes the
IOLEInPlaceObject:: EnableModeless method of the spreadsheet application to request
it to hide any modeless dialogs. Then, after the container application has finished
processing the "Print..." dialog. 1t invokes the EnableModeless method to redisplay the
modeless dialogs.

The similar situation can occur where the server application needs to hide a
modeless dialog of the container application. In this case the
IOLEInPlaceFrame::EnableModeless method is used.

5.6 Handling Accelerator Key Combinations
In a preferred embodiment of the present invention, the underlying window

system supports a concept referred to as accelerator key combinations to enable the user
to invoke menu commands through keyboard shortcuts. An accelerator key

WO 94/14115 PCT/US93/11468

10

15

20

25

30

35

40

50

combination is a sequence of keys assigned by an application to be equivalent to
invoking a particular menu command. For example. the key sequence consisting of
pressing the "CNTRL" key followed by the pressing the "N" key might translate to the
menu command "New" on the "File" menu. In a typical system, accelerator key
combinations are assignable by the user and need to be unique within an application.

In general. accelerator key combinations ("accelerators") are processed in
the message pump of an application (see step 1402 in Figure 14). A typical message
pump invokes an underlying window system function passing it an accelerator
translation table and lets the window system determine to which menu item command
the accelerator corresponds. The window system then sends the resulting menu
command to the éppropriate window procedure.

A problem can be encountered in the object linking and embedding in-place
interaction API with respect to accelerators. First, because a server application can be
implemented as an object handler within the process space of its container application,
the container application should ensure that the server application has a chance to
translate its own accelerators. Preferably, the server application is given priority over
the container application in processing ambiguous application accelerators when the
server application has been activated in place. Also, in the case where a server
application is implemented in its own process space, it should pass on any accelerators
it does not recognize to the container application.

To solve this problem, the message pumps of the container application and
the server application are modified to allow each other a chance to translate the
application accelerators. Code Tables 6 and 7 show changes to the server application
message pump applicable when the server application executes as a separate process.
Code Table 8 shows changes to the container application message pump applicable
when the server application executes within the same process as the container
application (as an object handler).

Code Table 6
Object's message loop:

1 while (GetMessage (&msg, NULL, NULL. NULL) {

2 if (not (TranslateAccelerator (hwndObj. hAccel, &msg)) {

3 if (not (ObjectTranslateAccelerator (&msg, hwndFrame, hAccel Table)) §
4 TranslateMessage (&msg);

5 DispatchMessage (&msg);

6

IRR)
Py

WO 94/14115 PCT/US93/11468

10

15

51

Code Table 6 shows an implementation of the changes to the message pump
of an object activated in place. These changes allow the server application to give the
container application a chance to translate application accelerators before the server
application (a separate process) finally disposes of an incoming message. In line 2. the
server application attempts to translate an accelerator using its own translation table
(stored in the variable hAccel). In line 3, if this translation was unsuccessful, either
because there was no accelerator to translate or because the accelerator was not found in
the server application translation table, then the server application invokes a special
object linking and embedding API function ObjectTranslateAccelerator. The
ObjectTranslateAccelerator function determines whether the accelerator is desired by
the container application and. if so. sends a message through a remote procedure call to
the container application to request it to translate the accelerator. The remote procedure
call mechanism, due to its synchronous nature, ensures that the container application
will process the message and return before the caller (the server process) receives any
more input. In lines 4-5, if the container application did not translate the accelerator,
then the server application handles the input message in its normal fashion (filtering and
then dispatching it).

WO 94/14115 PCT/US93/11468

10

15

20

25

30

35

40

45

Code Table 7

ObjectTranslateAccelerator(lpmsg. hwndFrame. hAccelFrame)¢
if (keystroke in Ipmsg not found in hAccelFrame)
_ return (false)
else {
Send RPC message to hwndFrame to invoke
hwndFrame -> TranslateAccelerator
return (value from RPC call)

i

O\kh-hb)!\)»—-

Code Table 7 shows an implementation of the object linking and embedding
API function. ObjectTranslateAccelerator. This function allows the server application
to give the container application a chance to process accelerators. In order to avoid the
pitfalls inherent in synchronous message handling (such as indefinite waiting).
ObjectTranslateAccelerator checks first to see if the container application is interested
in the accelerator before attempting to invoke the container application's
TranslateAccelerator method. The container application's accelerator table is a
designated parameter passed in by the server application. It is accessible to the server
application through a call to IOLEInPlaceParent:: GetWindowContext. If the container
application's TranslateAccelerator method is invoked, this function returns the value
returned by the container application to the server application, so that the server
application can dispose of the message properly.

Code Table 8
Container's message loop:

1 while (GetMessage (&msg, NULL, NULL, NULL) {

2 pwhOb;j = GetActiveObjectHwnd (hwndDoc);

3 translated = false;

4 if ((pwhObject ! = NULL) {

5 pipObj = determine the IOLEInPlaceObject interface for pwhObj;
6 if (pipObj -> TranslateAccelerator (&msg))

7 translated = true;

8]

9

s
if (not (translated)) {

10 if (not (TranslateMDISysAccel (hwndMDlcontainer, &msg))
11 if (not (TranslateAccelerator (hwndFrame, hAccel, &msg)) §
12 TranslateMessage (&msg);
13 DispatchMessage (&msg);

N

jiid

Code Table 8 represents a typical implementation of a message pump of a
container application that supports in-place interaction. These changes allow the

WO 94/14115 PCT/US93/11468

10

15

container application to give the server application (executing within the same process
as the container application) a chance to translate application accelerators before the
container application finally disposes of an incoming message. In line 2, the code
retrieves the currently active object window handle associated with the document
window of the container application. In lines 4-8, if there is an active object window

“handle, then the code invokes the IOLEInPlaceObject TranslateAccelerator method

corresponding to the object window handle to enable the server application to translate
the accelerator key combination. In lines 9-11, if the server application did not translate
the accelerator, or if no object is active. then the container application attempts to
translate any accelerators using its own translation table (stored in the variable hAccel).
In lines 12-13, if there was no recognized accelerator to translate, then the container
application handles the input message in its normal fashion (filtering and then
dispatching it).

Although the present invention has been described in terms of a preferred
embodiment, it is not intended that the invention be limited to his embodiment.
Modifications within the spirit of the invention will be apparent to those skilled in the
art. The scope of the present invention is defined by the claims which follow.

WO 94/14115 PCT/US93/11468

54

Claims

1. A method in a computer system of activating a containee object contained
within a container object, the container object having a container application with a container
window environment, the container window environment having container resources for
interacting with the container object, the containee object having a server application with
server resources for interacting with the containee object, the method comprising the steps of:

displaying the container window environment;

displaying the containee object within the displayed container window
environment;

selecting the containee object; and

integrating a plurality of the server resources with the displayed container
window environment wherein when a user selects a server resource the server application

processes the server resource selection.

2. The method of claim 1 wherein the container application has container
menus and the server application has server menué, and wherein the step of integrating a
plurality of server resources generates a composite menu bar having a server menu and a
container menu.

3. The method of claim 2 wherein the step of integrating interleaves server
menus and container menus in the composite menu bar.

4. The method of claim 2 wherein the container application has a menu bar for
displaying a plurality of menus and wherein the composite menu bar is displayed as the menu
bar of the container application.

5. A method in a computer system of interacting with a containee object
contained within a container object, the container object having a container application with a
container window environment, the container window environment having container
resources for interacting with the container object, the containee object having a server
application with a server window environment, the server window environment having server
resources for interacting with the containee object, the method comprising the steps of:
displaying the container window environment;

selecting the containee object;

WO 94/14115 PCT/US93/11468

55

integrating a plurality of the server resources with the container window
environment;

when a user selects a server resource, invoking the server application to process
the server resource selection; and

when a user selects a container resource, invoking the container application to
process the container resource selection.

6. The method of claim 5 wherein the container application has a window for
displaying data and including the steps of negotiating with the container application to place
server resources within the window.

7. The method of claim 6 wherein only the server application has knowledge
of the server resources.

8. The method of claim 5 wherein the container application and the server
application execute as separate computer processes.

9. The method of claim 5 including the steps of displaying the containee
object and highlighting the displayed containee object to indicate that server resources are
available for user selection.

10. The method of claim 5 wherein the container application has a container
message handler for receiving and processing messages and wherein the server application
has a server message handler for receiving and processing messages. the method including the
step of replacing the container message handler with a special message handler that sends
container resource selection messages to the container message handler and sends server

resource selection messages to the server message handler.

11. The method of claim 5 wherein the container application has a window and
the server application has a window and including the steps of:
designating the server application window as having input focus for receiving
user input;
recelving a menu command from a user; and
in response to receiving the menu command,
designating the container application window as having input focus for

receiving user input:

WO 94/14115 | PCT/US93/11468

56

receiving a menu mneumonic; and
in response to receiving the menu mneumonic. redesignating the server

application window as having input focus for receiving user input.

12. The method of claim 11 where the container application window is a frame
window.

13. The method of claim 5 wherein the computer system has a keyboard for
inputting keys, wherein the container application has a plurality of accelerator key
combinations for selecting container resources, wherein the server application has a plurality
of accelerator key combinations for selecting server resources, and wherein the container
application upon receiving an accelerator key combination invokes the server application to

determine if a server resource is selected.

14. A method in a computer system of interacting with a containee object
contained within a container object, the container object having an associated container
application with a plurality of container menus, the container application having an associated
menu bar for displaying a list of menus, the containee object having an associated server
application with a plurality of server menus, the method comprising the steps of:

generating a composite menu list that includes a container menu and a server
menu;

displaying the composite menu list in the menu bar;

in response to a user selecting a displayed container menu, invoking the container
application to process the selected menu; and

in response to a user selecting a displayed server menu, invoking the server
application to process the selected menu.

15. A method in a computer system for integrating menus from a plurality of
applications, the method comprising the steps of:

defining a set of menu groups for each application, each menu group having a
plurality of menu items; '

combining the menu groups into a composite menu;

displaying the composite menu on a display device;

selecting a menu item of a menu group of the displayed composite menu; and

invoking the application that defines the menu group of the selected menu item.

WO 94/14115 PCT/US93/11468

57

16. The method of claim 15 wherein the plurality of applications includes of a
container application and a server application and including the step of displaying the

composite menu displays the composite menu as a menu of the container application.

17. A method in a computer system for dynamically combining window
hierarchies, the computer system having a display device and a window system for managing
the displaying of windows on the display device, the method comprising the steps of:

invoking a first application program and creating a first window hierarchy:

designating a window of the first window hierarchy as a parent window of a
second application program; and

invoking a second application and creating a second window hierarchy such that a
root window of the window hierarchy is a child window of the designated window.

18. A method in a computer system for scrolling a window, the computer
system having a display device and a window system for managing the displaying of windows
on the display device, the window system allowing the scrolling of data displayed within a
window, the method comprising the steps of:

indicating data to be selected, the data contained within an inner window that is
contained within an outer window; and

in response to a user input to scroll the outer window, maintaining the indicated
data as the selected data.

19. The method of claim 18 including the step of maintaining the indicated data
as selected when the inner window is scrolled out of view of the user.

20. The method of claim 18 including the steps of designating the inner
window as having the input focus for receiving input and maintaining the inner window as

having input focus when the inner window is scrolled out of view of the user.

21. A method in a computer system for indicating that an object displayed on a
display device is selected, the method comprising the step of displaying a hatched pattern
border around the object.

22. A computer system for activating a containee object contained within a
container object, the container object having a container application with a container window

environment, the container window environment having container resources for interacting

WO 94/14115 PCT/US93/11468

58

with the container object, the containee object having a server application with server
resources for interacting with the containee object, the system comprising:

means for displaying the container window environment;

means for displaying the containee object within the displayed container window
environment;

means for selecting the containee object; and

means for integrating a plurality of the server resources with the displayed
container window environment wherein when a user selects a server resource the server

application processes the server resource selection.

23. The system of claim 22 wherein the container application has container
menus and the server application has server menus, and wherein the integrating means
includes means for generating a composite menu bar having a server menu and a container
menu.

24. The system of claim 23 wherein integrating means includes means for
interleaving server menus and container menus in the composite menu bar.

25. The method of claim 23 wherein the container application has a menu bar
for displaying a plurality of menus and wherein the composite menu bar is displayed as the
menu bar of the container application.

26. A computer system for interacting with a containee object contained within
a container object, the container object having a container application with a container
window environment, the container window environment having container resources for
interacting with the container object, the containee object having a server application with a
server window environment, the server window environment having server resources for
interacting with the containee object, the system comprising:

means for displaying the container window environment on a display device;

means for selecting the containee object;

means for integrating a plurality of the server resources with the container
window environment when a containee object is selected;

means for selecting a server resource;

means for invoking the server application to process the server resource selection
when a server resource is selected;

means for selecting a container resource; and

WO 94/14115 PCT/US93/11468

59

means for invoking the container application to process the container resource
selection when a container resource is selected.

27. The system of claim 26 wherein the container application has a window for
displaying data and wherein the integrating means includes means for negotiating with the
container application to place server resources within the window.

28. The system of claim 27 wherein only the server application has knowledge
of the server resources.

29. The system of claim 26 wherein the container application and the server
application execute as separate computer processes.

30. The system of claim 26 including means for displaying the containee object
and means for highlighting the displayed containee object to indicate that server resources are
available for user selection.

31. The system of claim 26 wherein the container application has a container
message handler for receiving and processing messages and wherein the server application
has a server message handler for receiving and processing messages, the system including
means for replacing the container message handler with a special message handler that sends
container resource selection messages to the container message handier and sends server
resource selection messages to the server message handler.

32. The system of claim 26 wherein the container application has a window and
the server application has a window, the system including:

means for designating the server application window as having input focus for
receiving user input;

means for receiving a menu command from a user;

means for designating the container application window as having input focus for
receiving user input in response to receiving a menu command;

means for receiving a menu mneumonic; and

means for redesignating the server application window as having input focus for

receiving user input in response to receiving a menu mneumonic.

WO 94/14115 PCT/US93/11468

60

33. The system of claim 32 wherein the container application window is a
frame window.

34. The system of claim 26 wherein the computer system includes a keyboard

~ for 1nputt1r1g keys, wherein the container application has a plurality of accelerator key

combinations for selecting container resources, wherein the server application has a plurality

of accelerator key combinations for selecting server resources, and including means for

invoking the server application to determine if a server resource is selected upon receiving an
accelerator key combination.

PCT/US93/11468

WO 94/14115
1731
F1O1
VAC1.DOC
VAC1 PROJECT July 1, 1990
Schedule:
WK1 | WK2 | WK3 | WK4 | WK5
MODULE2 102
MODULE1 /-
GLOBAL
|
TABLE 1; SCHEDULE
J,,— 104
Budget:
HEV B3 |1 &XRre| DELTA | RUNNING
SUPPLIES 100.00 50.00 | +50.00 50.00
COMPUTERS | 4000.00 | 3895.00 | +195.00 | 3945.00 103
MANUALS 500.00| 500.00 0.00 | 4445.00 _/
TOTAL 5600.00 | 4445.00 | +245.00 | 4445.00
TABLE 2: VAC1 BUDGET

Figure 1

SUBSTITUTE SHEET (RULE 26)

WO 94/14115 PCT/US93/11468
2731

201 204
/ /

Project Spreadsheet
Management Program
- Program
Clipboard
Scheduling Budgeting
Data Data
/ 203
Scheduling Data
Budgeting Data
y

Word 206
Processing /_

Program

Y

Scheduling f 207

Data

Budgeting
Data

Explanatory
Data

/

Figure 2

SUBSTITUTE SHEET (RULE 26)

WO 94/14115 PCT/US93/11468
3/31

/ 301 p 302

= Microsoft Word - VAC1.DOC - Via 303
Tools Table Window Help —/

File Edit View Insert Format
VAC1 PROJECT July 1, 1990

Schedule:

WK1 | WK2 | WK3 | WK4 | WK5 | WKB

MODULE2
MODULE1
GLOBAL

TABLE 1: SCHEDULE —/_ 304

Budaget:
ITEM EST. $ | EXPENSES
SUPPLIES 100,000 500.00 /‘ 305
COMPUTERS | 4,000,000 3895.00
MANUALS 500,000 400.00
TOTALS 4,600,000 | 4,795.00

TABLE 2. VAC1 BUDGET

Figure 3

| SUBSTITUTE SHEET (RULE 26)

PCT/US93/11468

403
/‘

WO 94/14115
L/31
401
/ Vs 402
. . . /
— Microsoft Excel - Worksheet in VAC1.DOC v
Eile Edit Formula Format Data Options Macro Window Help -
VAC1 PROJECT July 1, 1990
Schedule:
WK1 | WK2 | WK3 | WK4 | WK5 | WK6
MODULE?2 [N
MODULE1
GLOBAL
TABLE 1: SCHEDULE
Budget: 406
— ////// /////////////////////////////////////// 77
— A7 ET g TR R R o P
%. TN - & r~:\g;.-~.. I 7
5 1 ITEM EST. s EXPENSES 7
A2- SUPPLIES 100,000 500.00 1/
43". @ CCW“)UTERS 4,000,000 3895.00 ; 405
; 4. MANUALS 500,000 400.00
%5; TOTALS 4,600,000 4,795.00 é
7 /77 Y // Y/ Y, /
409 408

/— 404

Figure 4

SUBSTITUTE SHEET (RULE 26)

WO 94/14115 PCT/US93/11468

5731

CLIENT
APPLICATION

SERVER
APPLICATION

OBIJECT
HANDLER

502

Figure 5

SUBSTITUTE SHEET (RULE 26)

WO 94/14115 PCT/US93/11468

6731
~ 613
_______ T T
610
Data 608 /
Structure vtbl / 609 “odeTorT
vptr D pinc, ! D fo © orb-nc‘
D poby < Dfinc i n;:'(po), argl, arg2)
/- 606 pfncy > I
pfncy > I }
pincs => 611
pfics +>| | e Ve 612
L | code for fnc,,
e — —] l fncz('pobj.argl, arg2){
pintf| }
/ 601
D pintf;
602 pintf; et—>
pintf3 '———)
603
\J cLASS ID
604\
—> Handle to Storage
DATA for Object
DATA»
605 DATA;
DATA
OBJECT DATA STRUCTURE
Figure 6

SUBSTITUTE SHEET (RULE 26)

WO 94/14115 PCT/US93/11468

7731

[Unknown

702

701
704 e

IOLEContainer O—L Implementation 703
705 of | IDataObject

/ Object
IPersistStorage ()—<——

706

IOLEODbject

Figure 7

SUBSTITUTE SHEET (RULE 26)

WO 94/14115 PCT/US93/11468
8/31
[Microsoft Word - VAC1.DOC ViA 801
File |Edity| View |Insert Format Tools Table Window Help /
. Undo
Repeat
Cut
Copy 803
802< | ... f
Microsoft Excel Worksheet { Edit
Find . .. Qpen 804
Figure 8
m— Microsoft Excel - Worksheet in VAC1.DOC ViA 901
File Edit Formuia Format Data QOptions Macro Window Help _/
e — N—— S
Word Excel Word Excel

\ 902 \ 903

Excel

\ 904 \ 905 \ 906

Figure 9

SUBSTITUTE SHEET (RULE 26)

WO 94/14115 PCT/US93/11468
9/31
File Container Window
1001 Group Group Group
File empty Window
Obiject
Edit Group Help
Group A Group
1002 " ¢ N
Edit Formula] Format | Data | Options| Macro Help
Container (e.g., View menu)
Object
File Edit A Window Help
NN I Yot Yot
File Edit |Formulaj Format | Data |Options| Macro |Window | Help
g 1003 Composite Menu Bar
Figure 10

SUBSTITUTE SHEET (RULE 26)

WO 94/14115

PCT/US93/11468

10/3 1
/ 1102
1103 \ = Title Bar B via \
1104 - Yo Menu Bar
\\ Tool Bar
-]]
s Parent Window
3 I~ 1107
Pane .)
Window
1105 o\
Object Window
1108
\‘ Pane 1 - Pane 2 - }
n v
\\ 1106
Figure 11
//-1102
1203 \ = Title Bar via
1204 - Y- Menu Bar
\\ Tool Bar
Title Bar \
s |
- R
| Titie Bar an 25 &5 o 1205
1208[Tool Bar Y & O
\ Pane 1 o Pane 2 —'-}
B
Parent — “(?.bj\gct
1 maow
it 1207 |, |
N N/
Pane Window document
1207 windows
Figure 12

SUBSTITUTE SHEET (RULE 26)

1101
frame

window

document
window

window
1201

WO 94/14115 PCT/US93/11468

11731
;302
1301 .
Cont
e _ L7 e
1303 Code
| _ |
| | 1
Frame
| Window | /13]3
Input
| 1304 l (Queue >
R =
Document
| Window | /1314
| |
Input
: 305 l - l: (Q?;I::e)
Pane
| Window | 1/308
| I Server
o .
Parent
: Window :
L e] e e
T SR
-
| Object Root |~ 1307
| Window l
| |
| 1310 . 1/31] - /1312 |
~ ,
: Object Child Object Child Object Child :
’ Window Window Window |
L V. L
| |
_
Figure 13

SUBSTITUTE SHEET (RULE 26)

WO 94/14115

1401

7”7

y -~
Block On
Message Input
Queue

1402
vy ~
Filter, Translate,
And Dispatch
Message

Window
Procedure

Keyboard

Input
?

Title Bar

Event
?

v 1408

=

12731

<

1409
_

Do Keyboard
Processing

1410
_

Do Title Bar
Processing

1411
_

Do Menu Event
Processing

1412
_

Do Message
Processing

Figure 14

SUBSTITUTE SHEET (RULE 26)

PCT/US93/11468

Window System
Dispatcher

1403
v i

Find Handler For
The Window

1404
v~
Send Message
To That
Handler

Y
< Return)

1413
L

Call
Process_Object
Activation

WO 94/14115

13731
[Unknown
1401
7
[OLEContainerO—-— Implementation
of
Container
IOLEClientSite O——— Object
[Unknown
1405
[PersistStorage ()———
Implementation
[DataObject O——— of
Containee
Object
IOLEObject ()———

Figure 14B

PCT/US93/11468
1402
IOLEInPiaceUIWindow
1403
IOLEInPlaceParent
1404
IOLEInPlaceFrame
1406
IOLEInPlaceObject

SUBSTITUTE SHEET (RULE 26)

WO 94/14115

14731 PCT/US93/11468
IOLEInPlaceFrame::\ (hSharedMenu,
SetMenu hwndObject)
2
1501 b2
Is Call ObjectSetMenu
hSharedMenu Descriptor
NULL (hwndFrame. NULL,
? hwndObject)

1505

SendMessage
(hwndFrame,
wm_MDISetMenu,
(hSharedMenu
- menu, 0)

Y

DrawMenuBar
(hwndFrame)

!

1506
.

<R§;m>

1504

4

Call SetMenu
(hwndFrame.
hSharedMenu

- menu)

Figure 15

1507
Y [~
Call ObjectSet
MenuDescriptor
(hwndFrame,
hSharedMenu,
hwndObject)

1508
-~

Do Other
Menu Processing

C=D

SUBSTITUTE SHEET (RULE 26)

WO 94/14115 PCT/US93/11468

1573 1
IOLEInPlaceFrame::
: (EnableModeless (FEnable)

1603

1601 7

Is SavedWindow=

FEnable= «| Set To hwnd Of

True "1 Next Modeless
Dialog

1604

_

Call ShowWindow

F or All Saved (SavedWindow.
Dlalogs, Call SW_HIDE)
ShowWindow il
(savedwindow)
1605
v Any
More Windows
Return To Hide
2

=D

Figure 16

SUBSTITUTE SHEET (RULE 26)

WO 94/14115

PCT/US93/11468

16731

IOLEInPlaceParent::
OnlInPlaceActivate

|

l 1701
~
Set Flag
ACTIVATED _

SOMEONE = True

(e)

Figure 17

SUBSTITUTE SHEET (RULE 26)

WO 94/14115 PCT/US93/11468
17731

IOLEInPlaceParent::
OnUlActivate

1801

Is
FEnable=
True

1802
Y
Remove All
Extraneous Menus
And Tools
Self -
Querylinterface

(ID_IOLEInPlace
Object, pipobj)

Y
C Retumn)
1804
/

pipobj — activate
(false)

1805

4

Hide All Doc
And Pane Level
Tools

1806
2 —~

Call pipActiveSite
- ShadeBorder (0)

\4
(Return >

Figure 18

SUBSTITUTE SHEET (RULE 26)

WO 94/14115 PCT/US93/11468
18731
IOLEInPlaceParent:;
OnUIDeactivate
1901
\ -
Set Flag ACTIVATED _
SOMEONE = False
1903 1902
< Am
Set Menus and
Title Normally I'an Embedded
Drawn Menu Bar Ob%CCt
1904
L
Set_Focus to ;906
Desired Window
Call pipActiveSite
->OnUIDeactivate()

=D

Call
ActivateUI ()

=D

Figure 19

SUBSTITUTE SHEET (RULE 26)

C=D

WO 94/14115 PCT/US93/11468
19731

IOLEInPlaceObject::
InPlaceDeactivate

2002
/

pipObject =
Determine Activated
IOLEInPiaceObject

2003

Y ~
Call pipObject

- InPlaceDeactivate

0

Ul Still
Active

Call Self-»
InPlaceUl
\/ Deactivate()

7

Call
Remove_Menu
(hSharedMenu)

> 2006
L

2007

/
Call pFrame—

RemoveMenus
(hSharedMenu-»
menu)

2008

, 2 Figure 20
Call
ObjectDestroy
SharedMenu()

2009
Y ot
DestroyMenu

(hmenu)
DestroyWindow
(hwndObject)

2010
_

Call pipActiveSite
-On Deactivate

D

SUBSTITUTE SHEET (RULE 26)

WO 94/14115

20/3

PCT/US93/11468
1

InPlaceUIDeactivate(

COLElnPlaceObjec3
),

2102
/
pipObject =
Determine the
Activated
[OleInPlaceObject

2103
Y Z

Set Flag
ABOUT TO_ACTI
VATE = False

Call pipObject
- InPlaceUl
Deactivate

2105

Call
Self - Activate
(false)

P Y
(Return >

21
_

Call
SetActiveObjectHwnd
(hwndDoc, NULL)

2
y =

Call ShowWindow
(..., SW_HIDE)
for any Document
or Pane Level Tools

\ -~

. 2108

Call pipActiveSite
- ShadeBorder
(NULL, NULL)

Figure 21

2
A4 e

Call
ShowWindow
(hwndObject,

SW_HIDE)

21
Y Z

10

Call pipActiveSite
-OnUlDeactivate
0

Y

)

SUBSTITUTE SHEET (RULE 26)

WO 94/14115
21/31

PCT/US93/11468

@LEIHP laceObje% (fActive, fDocActivate)

Activate
l 2201
Is
Y fDocActivate N
= True
?
2206
2202 =
s Call pFrame -
fActive = T SetMenu
fve= true (hSharedMenu,
hwndObject)
2207
/
Call pFrame _, Set hv;‘riltclif rame
SetMenu (SetWindowText)
(NULL. hwndObject ,
2204 /2208
Ty Call ShowWindow
leve ; Yl’o;?;ne For Any Frame
Level Tool
(ShowWindow) Sve 008
Is
2205 <€ Y fActive = True
N A 2209
Call pipActiveSite y /
-»ShadeBorder Call pipActiveSite
(ON, Iprect, - Shade Border
grfState) (ONJACTIVE,
Iprect. grfState) Call pipActiveSite
- ShadeBorder
(ON, Iprect,
grfState)

(=) ()

Figure 22

_—

SUBSTITUTE SHEET (RULE 26)

WO 94/14115

PCT/US93/11468
22731

@erver Applicati@ ActivateUI (pDoc, pObject)

2301
,//

hwndDoc =
pDoc GetWindow

2302
/ et

Call SetActive
ObjectHwnd
(hwndDoc,

pObject)

2303
y -~

Call
pObject _, Activate

(true, true)

2307
y
2304 =

/ Call SetFocus

Call ShowWindow (hwndObject)
for any document
or pane level tools

2308

Y ~
2305 Call

= ' DrawMenuBar

Iprect = Determine (hwndDoc)
rectangle surrounding A
object

\
2306
Y ~ < Return >
Call pipActiveSite

—ShadeBorder
(ON|Active, Iprect,

grfState)

Y

Figure 23
SUBSTITUTE SHEET (RULE 26)

WO 94/14115

PCT/US93/11468
23731

CreateObject CreateObjectToolbars
(Toolbars) (pFrame, pDoc, pPane)

More
Toolbars to
Create

Return >

Call pF rame—
GetBorder or
pDoc-» GetBorder or
pPane-GetBorder |-

(borderRect)

2403
4 ol
Call pFrameor
pDoc - or pPane -
QueryBorderSpace
(widthRect)

Was
QueryBorderSpace
Successful

Call pFrame-sor

pDoc-sor pPane -»

SetBorderSpace
(widthRect)

2406
2 ~
Get hwnd of pFrame
/pDoc/pPane and
hwndChild = Create
Window (...hwnd...)

2407

/
Draw the Rod .
Barin hwndChild Figure 24

|
SUBSTITUTE SHEET (RULE 26)

PCT/US93/11468

WO 94/14115

24 /31

L0OST 90SC
sugnol Junod

Iauteluo) (11
lurejuo) (]

6
8
Joureluo) (i _@
[4
©)
1

Jeureiuo) (I
Jauteuo) (I |
BUEo) (1

G¢ ainb14
P0ST snuspy umoping
\\\1 01¢6¢ j
'l Y
Adopy way|] S wey
my wypl o5 wayg
a»ﬁ:&&# Q way]
opun) wayf| N way
A A \ A A Y y / /
(dpYy) | (mopum) | (owewr) | (suondo) | (eep) | G(euuoy) | (emuuoy) | (upo) (o)
\.\
£0S¢C

A

%

J

\\\cmm

101d119s3(] §0ST

1} -60ST

J

nuaw 70¢e

\.\

105¢
nuaj\paIeysy

D

SUBSTITUTE SHEET (RULE 26)

WO 94/14115 PCT/US93/11468
25731

ObjectSetMenuDes- | (hwndFrame, hSharedMenu,
criptor hwndObject)

2602
_
Call (Remove Filter)
SetWindowLong
> (hwndFrame,
GWL_WNDPROC,
Old_Filter)
2603
Y ~
Call RemoveProp
(hwndFrame,
"Shared Menu"),
Call RemoveProp
(hwndFrame,
"InPlaceObject")
2605
Y et
Call SetProp
(hwndFrame, y
"InPlaceObject",
hwndObject) Return
2606
4 =
Old-Filter =
SetWindowLong
(hwndFrame,
GWL_WNDPROC,
&InPlace WndProc)
Call SetProp
(hwndFrame,
"Old-Filter",
Old-Filter)

(e)

Figure 26

SUBSTITUTE SHEET (RULE 26)

WO 94/14115 PCT/US93/11468

2673 1

Process_Object
Activation

2701
y -
Call ObjectLoad
(pstg, IID_
IOLEObject,
ppvObyj)

2702
y -
ppvObj—
SetClientSite
(pclientsite)

2703
/ =
Call ppvobj -
DoVerb (VERB _
PRIMARY, WM _
LBUTTONDBLLK,
pclientsite, 0)

CeD)

Figure 27

SUBSTITUTE SHEET (RULE 26)

WO 94/14115

GetClassObject
(cid, 1id, ppv)

27731

PCT/US93/11468

(ObjectLoad >(pstg, iidInterface, ppvobj)

2801
y -
Get CLASS_ID
From pstg
2802
/ -~
Call GetClass
Object with
CLASS ID to Get
ICreate Instance
2803
y o
ppv-Create
Instance
(IID_IPexsis}Storage,
pObyj)
2804
y =
pObj-Load
(pstg)
2805
y ~
pObj—»Query
Interface
(iidInterface,
ppvobj)
Y
C Return)
Figure 28

SUBSTITUTE SHEET (RULE 26)

WO 94/14115

PCT/US93/11468
28 /31

e RPe (iVerb, lpmsg, pActiveSite,
@LEOb]ect..DoVerB orfFlags)

2901

Y
Call pActiveSite
- Querylnterface

(IID_IOLEInPlace

Parent,
pipActiveSite)

2902
/ -
Call pipActiveSite
- CanInPlaceAc-
tivate ()

2903

In-place
Interaction >
Supported /
?
Y 2906
/
Call pipActiveSite 2904
- GetWindowCon- / =

text (pFrame, Create and

pDoc, pPane, Display Application
IprectChildPosn, Frame Window

hAccelDoc)
2907 2905
4 ~ v ~
Calculate Size ~ Continue Normal
of Desired Application
Object Window Processing of iverb
Y
C Return

Scaling Required >

but not Supported
?

hwndparent =
pipActiveSite —»
GetWindow(
pipActiveSite)

Figure 29A

Y

Vs
SUBSTITUTE SHEET (RULE 26)

WO 94/14115 PCT/US93/11468

29 /31

2910
_

hwndObject=

Create Object
Window as a Child

of hwndParent

2912 2911
Call pipActi S't/ Is
e Object Ul

-On Ul . _
Activate() Still Available

2913
Y ~

Call pipActiveSite
- OnInPlace
Activate ()

2914
Y ~
hShared Menu=
CreateNewMenu
(pFrame)

2915

Does
Object Need to
Place any
Tools

Call CreateObject
Toolbars (pFrame,
pDoc, pPane)

Ny,

~ 2917
L

4
Call
Activate Ul
(pDoc, pObject)

Y

Figure 29B (Return)

| SUBSTITUTE SHEET (RULE 26)

WO 94/14115

3005
/
Call pipObject -
Activate (True,
True)

/\

PCT/US93/11468

20/31

Document Window | Process Activation Message
(FActive)

3001
/ ot
pipObject =
Get Active Object
Hwnd (hwndDoc)

3003
!
Is Do Normal
pipObject Document Window
NULL Activation or
2 Deactivation
N
4
< Return }
v 3004

true
?

3006

4 ~

Call pipObject —

Activate (False,
True)

Figure 30
SUBSTITUTE SHEET (RULE 26)

WO 94/14115 PCT/US93/11468
31731 -

Process Mouse _ .
C LButtonDown (Ipmsg) (container)

3101
~

Set Flag
ABOUT _TO_
ACTIVATE = True

3103
-

Do Normal Left
Button Down __)C Return >
Processing

SOMEONE
true

3104
et

pipObject=
Determine the
[OleInPlace
Object

3105
4 e
Call pipObject
- InPlaceUl
Deactivate

Y

Figure 31

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

