This invention relates to binders of metal or like structurally rigid material, for securing a stack of sheets to be bound and more particularly relates to a novel means for positively locking the ring fingers thereof in a closed position when desired.

Metal loose leaf binders, of the type to which applicant's novel locking means is particularly directed, include a base portion or backbone having a plurality of ring fingers extending therefrom in which the ring fingers have integral flanges adjacent the underside of the backbone pivotally abutting one another so that upon separation of the ring fingers the intertumed flanges abut the underside of the base portion, or at least a portion thereof, to limit the opening movement of the ring fingers.

Applicant contemplates a novel locking arrangement for loose leaf binders of the type above described which comprises the provision of a movably locking having a lug on one end thereof wherein the lug is arranged to be selectively interposed between the intertumed flanges of the ring fingers and the backbone or back portion of the binder to prevent opening of the ring fingers. Applicant has devised such a lock which may readily be moved to a position to permit opening of the fingers when the notebook or other article with which the binder is associated is opened out to a flat or nearly flat position.

It is well known that when loose leaf binders of the type above described, which are not provided with a means for locking the ring fingers in a closed position, are dropped or subjected to substantial shock they are liable to become opened thus releasing the sheets they were intended to bind. Accordingly, applicant has attempted to remedy and obviate these undesirable characteristics by providing a novel means for locking the ring fingers of such a binder in the closed position wherein only manual movement of the locking means will permit the opening of the ring fingers wherein shock on a binder so locked will not cause opening of the ring fingers.

Accordingly, it is a principal object of this invention to provide a novel means for releasably locking a plurality of ring fingers in a binder in the closed position.

It is another object of the present invention to provide a means for readily manually locking a plurality of ring fingers in a binding device of the type above described in the closed position wherein the subjection of the binding device to shock will not cause opening of the ring fingers so locked.

A still further object of the present invention is to provide means for locking a plurality of ring fingers in a binder of the type above described in a closed position comprising the provision of a manually movable lug which can selectively be interposed between the intumescing flanges of the ring fingers and the backbone or back portion of the binder to prevent opening movement of the ring fingers.

These and other objects of the present invention will become apparent from time to time as the following specification proceeds and with reference to the accompanying drawings, wherein:

Figure 1 is a fragmentary plan view of a binder embodying the principles of the present invention and showing the binder mounted in a notebook; Figure 2 is a vertical sectional view through a binder showing the binder fingers locked in the closed loop position by a binder lock constructed in accordance with the present invention; Figure 3 is a vertical sectional view through a binder illustrated in Figure 1 similar to Figure 2, but showing the ring fingers in the open position; Figure 4 is a bottom plan view of the binder illustrated in Figure 1; Figure 5 is an axial vertical sectional view through the binder illustrated in Figure 1 and showing the binder lock in association therewith; and Figure 6 is a plan view of the binder lock which forms the subject of the present invention.

In the embodiment of the invention illustrated in the drawings there is shown a binding element or binder member 10 which is suitably secured to the back portion 11 of a notebook 12 in a manner which will hereinafter be more fully described. The back portion 11 of the binder or binding element 10 is shown as including a stiffening board 13 which underlies a metallic support 14 having a plurality of upwardly disposed recesses 15. A covering 14a of leather, cloth, or other suitable material is shown as being formed about the supporting members 13 and 14 of the back portion 11 and as being fitted about the similarly constructed supporting members of the front and rear covers 15 and 19, respectively, of the notebook 12 and as being suitably apertured to fit about the upwardly disposed recesses 15 of the supporting plate 14.

The binder 10 comprises an arcuate shaped backbone 20 having depending flanges 21 and 22 extending along opposed longitudinal edges thereof. A pair of comb-shaped members 23 and 24 having intertumed flanges 25 and 26, respectively, and having a plurality of ring fingers 27 and 28, respectively, extending therefrom are associated with the backbone 20 and are so positioned that each of the ring fingers extends through suitable receiving slots (not shown) in the backbone 20. It will be particularly noted in Figure 1 that the fingers 25 are suitably grooved in the outer free ends thereof to receive a complementary portion on the outer free end of the ring fingers 27 when the fingers are in the closed loop position as shown therein.

Referring now more particularly to Figures 2 and 4 it will be noted that the intertumed flanges 25 and 26 of the comb-shaped members 23 and 24 are formed with a plurality of concave grooves 29 along the abutting longitudinal edges thereof which lie intermediate a plurality of projecting engaging ribs 30 so as to form a plurality of apertures 31. The intertumed flange 26 has a concave grooved portion 32 along the inner longitudinal edge thereof which is complemetary with a convex portion 33 along the inner longitudinal edge of the intertumed flange 25 to permit rockable movement of the flanges 25 and 26 with respect to one another.

A release lever 35 is shown as being lugs 36 on opposed sides thereof which are received within suitable apertures within the depending flanges 21 and 22 adjacent the end of the binder 10 and as having a central lug 37 underlying the intertumed flanges 25 and 26. The release lever 35 is rockable about the lugs 36 and may be pushed downwardly so that the lug 37 acts upwardly on the intertumed flanges 25 and 26 to snap thecomb-shaped members 27 and 28 to the position as illustrated in Figure 3 in a manner which is well known in the art. There may, of course, be a release lever provided at each end of the binder 10 to facilitate opening of the
ring fingers 27 and 28 for insertion or removal of sheets from the binder.

A binder lock 40, which forms the subject of the present invention, is shown as comprising a flat plate 41 which has an upturned end 42 at one end thereof and which has an upwardly extending lug 43 on the other end thereof. The lug 43 has a radially reduced shank 44 which may be welded, brazed, soldered or otherwise suitably secured to the plate 41 and has a radially enlarged elongated head portion 46. The elongated head 46 is so positioned on the binder lock 40 that the head may fit through one of the apertures 31 in the binder 10 when the axis of the lock 40 is positioned at right angles to the axis of the binder 10 as shown in Figure 3.

Referring now more particularly to Figures 2 and 5 it may be seen that when the ring fingers 27 and 28 are in the closed loop position the binder lock 40 may be rotatably moved from the position illustrated in Figure 3 until it is coaxially aligned with the binding element 10 so that the head 46 of the lug 43 is interposed between the truncated flanges 25 and 26 and the backbone 20 so that the underside of the head 46 abuts the truncated flanges to prevent opening of the ring fingers 27 and 28. It will further be noted that the upturned end 42 of the binder lock 40 lies under the release lever 35 and that the lug 43 is arranged to cooperate with the aperture 31 on the outermost end of the binding element 10. Obviously, if so desired a binder lock may be provided at each end of the binding element though one is generally quite satisfactory in use.

The binding element 10 is generally associated with a book such as the notebook 12 and is connected therewith by means of a rivet or other suitable securing means which interconnects the backbone 20 with one of the recesses 15. Since the outer portion of each of the recesses 15 extends generally above the lateral surface of the back portion 11 of the notebook 12 the binder 10 is so secured that the flanges 21 and 22 terminate above the lateral surface of the back portion 11 to thus permit the movement of the binder lock 40 therewith. It will further be noted that in his particular embodiment of the invention the binder lock 40 is shown as extending over the back cover 19 of the notebook 12 across the heat seal hinge 49 so that when the binder lock is in the unlocked position of the figure the notebook cannot be closed. Similarly, the binder lock cannot be moved from the closed to the open position unless the notebook is opened. It will be understood, however, that this is not a necessary limitation since it may be desirable to provide a binder lock of shorter dimension or to form the back portion 11 of the binder of greater dimension so that the binder may be maintained in the unlocked position when the notebook is closed, such as, for instance, when the binder must be opened and closed many times over a short interval of time.

Referring again to Figure 3 of the drawings it is apparent that when the binder lock 40 is positioned with its axis perpendicular to the longitudinal axis of the binding element 10 the truncated flanges 25 and 26 of the combination members 23 and 24, respectively, are free to be moved upwardly about the lug 43 by the lever 35 since the apertures 31 are of greater dimension than the head 46. In this manner, a positively locking binder lock has been provided which can readily be manually moved to permit opening of the ring fingers in a mechanical binding element.

It will herein be understood that this embodiment of the invention has been used for illustrative purposes only and that various modifications and variations in the present invention may be effected without departing from the spirit and scope of the novel concepts thereof.

I claim as my invention:

In a binding element and in combination with a notebook back having a relatively flat surface, an accurate backbone secured to said back in vertically spaced relation with respect thereto and having a concave portion facing said back and flanges depending therefrom and extending along opposite edges thereof and terminating in spaced relation with respect to said notebook back, a plurality of apertures spaced along opposite edge portions of said backbone adjacent the juncture of said flanges therewith, a plurality of ring fingers extending through said apertures and cooperating to form a plurality of closed loops, truncated flanges extending inwardly from said ring fingers between the underside of said backbone and notebook back, and extending along and engaged by said first mentioned flanges and pivotally engaging one another on the underside of said backbone and spaced from said backbone when said fingers are in a closed loop position, said truncated flanges having a plurality of concave grooves formed along the adjacent edges thereof and registering with each other to form a plurality of elongated apertures affording communication between said notebook back and the underside of said backbone, a locking plate between said truncated flanges and said notebook back and in engagement with the latter, said locking plate having an outer edge portion adapted to be gripped by the fingers for moving said locking plate angularly along said back into alignment with said backbone and in angularly extended relation with respect to said backbone in the space between one of said first mentioned depending flanges and said notebook back, said locking plate having a locking lug extending upwardly therefrom having a Shank portion of reduced cross-sectional area extending upwardly through one of said apertures for angular movement with respect thereto and having an elongated head portion extending into engagement with said backbone, longer than the width of the associated aperture and shorter than the length of said associated aperture and of a width less than the narrowest dimension of said aperture, interposed between the underside of said backbone and the upper faces of said flanges with the longer dimension of said head portion out of alignment with the longest axis of said aperture when said locking plate is in alignment with said backbone to lock said binder from opening, and accommodating opening of the binder by angular movement of said locking plate beneath one of said depending locking lugs in alignment with the longest axis of the associated aperture.

References Cited in the file of this patent

UNITED STATES PATENTS

1,575,591 Newman ------------------ Mar. 2, 1926
1,787,957 Shade ------------------ Jan. 6, 1931
2,020,129 Wedge ------------------ Nov. 5, 1935
2,178,767 Unger et al. ------------ Nov. 7, 1939