PCI‘ WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : (11) International Publication Number: WO 91/20024
GO6F 3/00 Al (43) International Publication Date: 26 December 1991 (26.12.91)

(21) International Application Number: PCT/US91/04290 | (81) Designated States: AT (European patent), AU, BE (Euro-

pean patent), CA, CH (European patent), DE (Euro-

(22) International Filing Date: 14 June 1991 (14.06.91) pean patent), DK (European patent), ES (European pa-

tent), FR (European patent), GB (European patent), GR

(European patent), IT (European patent), JP, LU (Euro-

(30) Priority data: pean patent), NL (European patent), SE (European pa-
538,184 14 June 1990 (14.06.90) Us tent).

(71) Applicant: THINKING MACHINES CORPORATION | Published
[US/USI; 245 First Street, Cambridge, MA 02148 (US). With international search report.

(72) Inventor: DAHL, E., Denning ; 27 Ferguson Road, Mald-
en, MA 02148 (US).

(74) Agent: JORDAN, Richard, A.; Thinking Machines Cor-
poration, 245 First Street, Cambridge, MA 02142 (US).

(54) Title: GENERATING COMMUNICATION ARRANGEMENTS FOR MASSIVELY PARALLEL PROCESSING SYS-

TEMS
’ S/ Pt
0o . 0 D
\\ ,‘
22(n)
y : :~ . . o t
l’
" w
22
) (n) » /
(57) Abstract

A system for generating communication pattern information for facilitating communication among processing nodes (2ln,
40) interconnected over communications links (22n) in a predetermined pattern to form a massively parallel processor. The sys-
tem includes a mapping element and a communication pattern information generating element. The mapping element maps prob-
lem vertices (10i) from a problem graph onto processing nodes of a massively-parallel processor in relation to a communication
cost function representing delays associated with communicating among processing nodes (21n, 40) to which the respective prob-
lem vertices have been mapped. The communication pattern information generating element generates communication pattern in-
formation in connection with problem vertices (10i) mapped onto processing nodes (21n, 40) for use in directing message trans-
fers among processing nodes (22n) to facilitate transfers of messages among the processing nodes (21n, 40) over the communica-
tions links (22n) as defined by the problem graph.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

applications under the PCT.

AT Austria
AU Australia
BB Barbados

BE Belgium

BF Burkina Faso

BG Bulgaria

BJ Benin

BR Braxil

CA Canada

CF Central African Republic
CG Congo

CH ~ Switerland
Cl Cote d'lvoire
o] Cameroon
cs Czechoslovakia
DE Germany

DK Denmark

Spain

Finland

France

Gabon

United Kingdom
Guinca

Greece

Hungary

{taly

Japan

Democratic People’s Republic
of Korea

Republic of Korea
Licchtenstein

Sri Lanka
Luxembourg
Monaco

Madagascar
Mali
Mongolia
Mauritania
Malawi
Netherlands
Norway
Poland
Romania
Sudan
Sweden
Senegal
Soviet Union
Chad

Togo

United Statwes of America

-

WO 91/20024 PCT/US91/04290

-1-

Generating Communication Arrangements for Massively Parallel Processing Systems

Background Of The Invention

The invention relates generally to the field of massively parallel computer systems, and more
particularly to communications arrangements for transferring data among processing nodes in such
systems.

A computer system generally includes one or more processors, a memory and an input/output
system. The memory stores data and instructions for processing the data. The processor(s) process
the data in accordance with the instructions, and store the processed data in the memory. The
input/output system facilitates loading of data and instructions into the system, and obtaining

processed data from the system.

Most modern computer systems have been designed around a "von Neumann" paradigm,
under which each processor has a program counter that identifies the location in the memory which
contains its (the processor’s) next instruction. During execution of an instruction, the processor
increments the program counter to identify the location of the next instruction to be processed.
Processors in such a system may share data and instructions; however, to avoid interfering with each
other in an undesirable manner, such systems are typically configured so that the processors process
separate instruction streams, that is, separate series of instructions, and sometimes complex procedures
are provided to ensure that processors’ access to the data is orderly.

In Von Neumann machines instructions in one instruction stream are used to process data in a
single data stream. Such machines are typically referred to as SISD (single instruction/single data)
machines if they have one processor, or MIMD (multiple instruction/multiple data) machines if they
have multiple processors. In a number of types of computations; such as processing of arrays of data,
the same instruction stream may be used to process data in a number of data streams. For these
computations, SISD machines would iteratively perform the same operation or series of operations on
the data in each data stream. Recently, single instruction/multiple data (SIMD) machines havc? been
developed which process the data in all of the data streams in parallel. Since SIMD machine process
all of the data streams in parallel, such problems can be processed much more quickly than in SISD
machines, and at lower cost than with MIMD machines providing the same degree of parallelism.

U. S. Patent No. 4,598,400, issued July 1, 1986, to W. Daniel Hillis, for Method and Apparatus
For Routing Message Packets, and U. S. Patent No. 4,814,973, issued March 21, 1989, to W. Daniel
Hillis, for Parallel Processor (hereinafter referred to as "the Hillis patents”) disclose an SIMD machine
which includes a host computer, a micro-controller and an array of processing elements, each including
a bit-serial processor and a memory. The host computer, inter alia, generates commands which are
transmitted to the micro-controller. In response to a command, the micro-controller transmits one or
more SIMD instructions to the array, each SIMD instruction enabling all of the processing elements to
perform the same operation in connection with data stored in the elements’ memories.

The array disclosed in the Hillis patents also includes two communications mechanisms which

facilitate transfer of data among the processing elements. One mechanism enables all of the

WO 91/20024 PCT/US91/04290

2-

processing elements to, in parallel, transmit data to a selected one of its nearest-neighbor processing
elements, in a regular array pattern. The second mechanism, a global router interconnecting
integrated circuit chips housing the processing elements in a hypercube, enables any processing
element to transmit data to any other processing element in the system. In the first mechanism,
termed "NEWS", the processing elements are organized in a array, and the micro-controller enables all
of the processing elements to transmit bit serial data in unison in a selected direction along one of the
dimensions, and to receive, in unison, bit serial data from the processing element in the other direction
along the same dimension.

On the other hand, in the global router, the data is transmitted in the form of messages, with
each message containing an address that identifies the processing element to receive the data. The
micro-controller enables the processing elements to transmit messages, in bit serial format, through the
global router in unison, and controls the timing of the global router, but it does not control the
destination of the message, as it does in the NEWS mechanism. However, the address, and other
message protocol information that may be transmitted in each message, as well as the time required to
interpret the address in each message to route the message to its destination, represent overhead that
reduces the rate at which data can be transmitted.

Summary Of The Invention

The invention provides a system for generating communications arrangements for facilitating
transfers of data among processing nodes in a processor array.

In brief summary, the invention provides a system for generating communication pattern
information for facilitating communication among processing nodes interconnected over
communications links in a predetermined pattern to form a massively parallel processor. The system
includes a mapping element and a communication pattern information generating element. The
mapping element maps problem vertices from a problem graph onto processing nodes of a massively-
parallel processor in relation to a communication cost function representing delays associated with
communicating among processing nodes to which the respective problem vertices have been mapped.
The communication pattern information generating element generates communication pattern
information in connection with problem vertices mapped onto processing nodes, for use in directing
message transfers among processing nodes to facilitate transfers of messages among the processing
nodes over the communications links as defined by the problem graph.

Brief Description Of The Drawings

This invention is pointed out with particularity in the appended claims. The above and further
advantages of this invention may be better understood by referring to the following description taken in
conjunction with the accompanying drawings, in which:

Figs. 1 through 4C are block diagrams, flow diagrams and diagrams of data structures that are
helpful in understanding the operation of a system constructed in accordance with the invention;

Figs. 5A through 6C are flow diagrams depicting the operations performed by a system

constructed in accordance with the invention; and

WO 91/20024 : PCT/US91/04290

3

Figs 7A through 7C are diagrams of data structures helpful in understanding the operations
described in connection with Figs. SA through 6C.

Detailed Description Of An Hllustrative Embodiment

1. Introduction

The invention provides a communication arrangement generating system for improving
communications in a massively parallel processor, such as that described in the aforementioned Hillis
patents. Before describing the inventive system, it would be helpful to describe types of problems for
which the system is most useful, and also to describe a massively parallel processor for which the
system may improve communications.

The system in accordance with the invention is most useful in connection with processing of
problems, such as finite element analysis, fluid flow analysis, electronic circuit simulation, and
simulated neural networks, in which the problem can be defined in terms of a fixed pattern of array
clements, and in which a communication graph defined for communication between the array elements
is irregular but fixed and known ab initio.

For example, in fluid flow analysis, the array elements may represent fixed points in spaée, and
the analysis may provide information as to the direction and velocity of the flow of the fluid at
successive increments in time. As the analysis proceeds through successive increments in time, the
results of processing at upstream points in space are used in processing for downstream points; the
downstream points are effectively "dependent” on the upstream points. To enable processing at
successive points in time, the results generated for each point in space are used in processing the
downstream points in space. The communication graph for such an analysis represents this pattern
between points in space, effectively showing the dependencies among the points for the flow analysis.

Similarly, in simulation of electronic circuits, the array elements may represent the elements in
the circuit to be simulated, and the simulation may provide such circuit characteristics as, for example,
the voltage and current at the output terminal(s) of the circuit elements at successive points in time.
As the analysis proceeds through successive points in time, the results of processing for each of the
circuit elements are provided for processing of the downstream circuit elements, that is, the circuit
elements connected to the output terminal(s) of each of the circuit elements; the downstream circuit
clements are effectively "dependent” upon the upstream circuit elements. To enable processing at
successive points in time, the results generated for each circuit element are provided to facilitate the
processing of downstream circuit elements. The communication graph for such an analysis represents
this pattern between points in the circuit, effectively showing the dependencies among the circuit
elements for the simulation.

Fig. 1 depicts a problem graph 5 comprising a plurality of problem vertices 10A through 10
[generally identified by reference numeral 10(i)}, interconnected by edges 11A through 11M [generally
identified by reference numeral 11(j)]. Each problem vertex 10(i) represents a point in an array that is
to be processed during processing by the massively parallel processor. For example, in the fluid flow
example, each problem vertex 10(i) represents each point in space. Similarly, in the electronic circuit

simulation example, each problem vertex 10(i) represents each circuit element.

WO 91/20024 PCT/US91/04290

-4

Each edge 11(j) between two problem vertices 10(i) represents the dependencies between the
array points represented by the problem vertices 10(i). Effectively, the edges 11(j) represent
communication of data between the elements of the array to be processed. For example, in a fluid flow
analysis, in which the problem vertices 10(i) represent points in space, the edges 11(j) represent the
pattern of communication of data between the upstream and downstream points in space necessary to
permit determination of the fluid flow characteristics at the successive points in time. Similarly, in the
simulation of an electronic circuit, the edges 11(u) represent the communication pattern between the
respective circuit elements to permit determination of the required electrical characteristics at the
successive points in time.

To effect such processing on a massively parallel processor, such as described in the
aforementioned Hillis patents, the diverse elements of the problem graph 5 are associated with various
processing elements of the processor array; the elements of the problem graph 5 are said to be
"mapped" onto the processor array. The processor array is represented by an ar.ray 20 (Fig. 1),
comprising a plurality of processing elements 21A through 21Q [generally identified by reference
numeral 21(m)] interconnected by communications links generally identified by reference numeral
22(n). In the massively parallel processor described in the Hillis patents, the communications links
22(n) are in the form of a hypercube.

The communication arrangement generating system provides a mapping of the problem
vertices 10(i) to various ones of the processing elements 21(m) of the processor array, to facilitate
efficient communications over the communications links 22(n) and rapid processing by the processor
array. In some cases, the problem vertices 10(i) connected by an edge 11(j) can be mapped to adjacent
processing elements 21(m), that is, those connected by a communications link 22(n). However, in
many cases the problem vertices 10(i) are associated with processing elements 22(m) that are not
adjacent, so that the respective edge 11(j) connected to them will be represented by several
communications links 22(n) and intermediate processing elements 21(m). The system provides tables
that are used at each processing element 21(m) to effecting communications among the processing
elements 21(m), the table at each processing element including entries that effectively associate each
item of data with particular ones of the communications links 22(m) in one or more message transfer
cycles, to enable the data to be transferred among successive processing elements 21(m) to effect the

dependencies.

Before proceeding further, it would be helpful to further describe the processor array for
which one embodiment of the inventive system is used.

The computer system includes a micro-controller 35, which is controlled by a host 36 and
which, in turn, controls an array of processing nodes, one of which, namely, processing node 40, is
shown in Fig. 1. To accomplish processing, the host computer 36 transmits commands to the micro-
controller 35. In response to a command, the micro-controller 35 may transmit one or more
instructions or other sets of control signals which control processing and other operations, in parallel,

to all of the processing nodes concurrently. In addition, a number of processing nodes 40 are

WO 91/20024 PCT/US91/04290

-5-
interconnected, as described in the aforementioned Hillis patents to facilitate the transfer of data
among the processing nodes 21(m).

With reference to Fig. 1, processing node 40 includes two processing element (PE) chips 41H
and 41L (generally identified by reference numeral 41) connected to a memory 42 over a data bus 43.
In one embodiment, the data bus includes thirty-two data lines D(31:0) which are divided into high-
order data lines D(31:16), which connect to PE chip 41H, and low-order data lines D(45:0), which
connect to PE chip 41L.

Each PE chip 41 includes a set of serial processors, generally identified by reference numeral
44, and a router node, generally identified by reference numeral 45. The serial processors operate in
response to SP INSTR serial processor instruction signals from the micro-controller 35 to perform
processing on data stored in the memory 42. Each serial processor 44 has an associated context flag,
generally identified by reference numeral 49, whose condition determines whether the serial processor
44 will perform the operation enabled by the SP INSTR serial processor instruction signals; that is,
processing by a serial processor 44 is conditioned on the condition of the associated context flag 49.
The condition of each context flag 49 can be established by previous processing by, for example, the
associated serial processor 44.

The micro-controller 5 may enable the serial processors 14(i) to emulate a larger number of
virtual processors by essentially providing, in each memory 12, multiple sets of each item of data, one
set associated with each virtual processor. In that case, the micro-controller 5 provides the SP INSTR
serial processor instruction signals multiple times to, in parallel, enable the serial processors 14(i) to
process the sets seriatim. The serial processors 14(i) may also maintain context flags associated with
each virtual processor emulated thereby to condition processing of the particular data set.

The memory 42 operates in response to SEL MEM ADRS selected memory address signals,
which identify storage locations in the memory 42, and MEM CTRL memory control signals which
indicate whether data is to be stored in or transmitted from the location identified by the SEL MEM
ADRS selected memory address signals. The SEL MEM ADRS selected memory address signals are
provided by a multiplexer 46, which operates under control of the MEM CTRL memory control signals
from the micro-controller 35. The multiplexer 46 couples either MC MEM ADRS micro-controller
memory address signals from the micro-controller 35 or IND MEM ADRS indirect memory address
signals to the memory 42 as the SEL MEM ADRS selecte(i memory address signals. The router nodes
45 also operate in response to RTR CTRL router control signals, also from the micro-controller 35, to
transmit messages containing data from one processing node 40 to another.

In one embodiment, each PE chip 41 includes sixteen serial processors 44, each of which is
associated with one of the data lines of the data bus 43. That is, each serial processor 44(i) receives
data bits from, and transmits data bits onto, one of the data lines D(i) ['i" is an integer from the set
(31,..,0)]. The memory 42 has storage locations organized into thirty-two bit slices, with each slice
being identified by a particular binary-encoded value of the SEL MEM ADRS selected memory

address signals from the multiplexer 46. If data is to be transmitted from a slice in memory identified

WO 91/20024 PCT/US91/04290

-6-
by a particular value of the SEL MEM ADRS selected memory address signals, the memory 42 will
transmit bits 61 through 0 of the slice onto data lines D(31) through D(0), respectively. On the other
hand, if data is to be loaded into a slice in memory identified by a particular value of the SEL MEM
ADRS selected memory address signals, the memory 42 will receive bits 61 through 0 of from data
lines D(31) through D(0), respectively, and load them into respective bits of the slice.

To perform processing on multi-bit words of data in the memory 42 using the serial processors
44, the micro-controller 35 iteratively enables generation of SEL MEM ADRS selected memory
address signals whose values identify successive location in memory 42, and MEM CTRL memory
control signals which enable the memory 42 to transmit or store slices of data, and SP INSTR serial
processor instruction signals which enable the serial processors 44 to perform the required operations
on the bits on their associated data lines D(i). The data in the memory 42 thus may be viewed in two
ways, namely, (i) a slice view, identified by the arrow labeled "SLICE," representing fixed-size words of
data ("data slices") that will be transmitted from the memory 42 onto the data bus 43, or that will be
received by the memory 42 from the data bus 43, at one time in response to the MEM ADRS memory
address signals, and (ii) a processor view, identified by the arrow labelled "PROCESSOR," which
represents the organization in memory 42 of data which may be accessed by an individual serial
processor. Each serial processor 44(i) and the associated portion of memory 42 comprises one of the
aforementioned processing elements 21(m) (Fig. 2).

The router nodes 45 of all of the processing nodes 40 are interconnected to facilitate transfer
of messages among the processing nodes 40 comprising the array. Each message includes an address
to identify a processing node 40 and serial processor 44(i) that is the intended recipient of the message,
and data. In one particular embodiment the router nodes are interconnected in the form of a
hypercube, as described in the aforementioned Hillis patents. Each router node 45H and 45L, under
control of RTR CTRL router control signals from the micro-controller 35, transmits messages to other
router nodes 45 on other processing element chips 41 over a plurality of communications links
identified by reference numerals HC_O_H(11:0) and HC_O_L(11:0), respectively.

In addition, each router node 45H and 45L receives messages from communications links
identified by reference numerals HC I H(11:0) and HC I _L(11:0), respectively. The router nodes 45
determine from the address of each received message whether the message is intended for a serial
processor 44(i) on the processing node 40 and, if so, couples it onto a data line D(i) of data bus 43 over
which the serial processor 44(i) that is to receive the message accesses the memory 42. The micro-
controller 35 enables generation of SEL MEM ADRS selected memory address and MEM CTRL
memory control signals to facilitate the storage of the data from the message in the memory 42.

The various communications links HC_O_H(11:0), HC_O_L(11:0), HC_I_H(11:0) and
HC I L(11:0) connected to each processing node 40 are connected to diverse ones of other processing
nodes in a conventional manner to effect the hypercube interconnection. Thus, the outgoing
communications links identified by reference numerals HC_O_H(11:0) and HC_O_L(11:0) correspond

to various incoming communications links, which may be identified by reference numerals

WO 91/20024 PCT/US91/04290

-

HC_I_H(11:0) and HC_I_L(11:0), at router nodes 45 of other processing nodes 40. In one
embodiment, the circuitry of the router nodes 45H and 45L is similar to that described in the
aforementioned Hillis patents and will not be described further herein.

The router nodes 45, under control of the micro-controller 35, perform message transfers in
one or more message transfer cycles. That is, one message transfer operation, which may be initiated
in response to a single message transfer command from the host 36, may require multiple message
transfer cycles to complete. In each message transfer cycle, each processing node 40 may transfer a
message over each communications link connected thereto to another processing node 40. For each
message so transferred, if the destination serial processor 44(i) is located on the receiving processing
node 40, the router node 45 that receives the message will deliver the data in the message thereto.
That is, the router node 45 couples the data onto the data line D(i) associated with the destination
serial processor and stores it, in processor format in memory 42.

On the other hand, if the destination serial processor 44(i) is not located on the receiving
processing node 40, that processing node 40, during a subsequent message transfer cycle, transfers the
message, over a communications link connected thereto, to another processing node 40. Eventually, all
of the messages transferred during the message transfer operation reach their respective destination
serial processor(s), at which point the message transfer operation is finished. During each message
transfer cycle, the micro-controller 35 identifies the same location in memory 42 in which the ejected
message(s) are to be stored. Accordingly, it will be appreciated that, in the systems described in the
aforementioned Hillis patents, if multiple messages have the same destination serial processor 44(i),
unless the router nodes 40 perform combining operations, only one message can be delivered for that
serial processor during a message transfer cycle, with successive messages being delivered during
subsequent message transfer cycles. 7

The processing nodes 40 may also have an auxiliary processor 50 that processes data in
memory 42 that may be organized either in slice format or in processor format, and a transposer
module 51 to interface the auxiliary processor 50 to the data bus 43. The auxiliary processor 50 may
be, for example, a floating point processor, which may perform arithmetic and logic operations in
connection with data in floating point data format. The auxiliary processors 50 and transposer modules
51 in the various processing nodes 40 operate in response to AP INSTR auxiliary processor instruction
signals and XPOSER CTRL transposer control signals, respectively, from the micro-controller 35. As
is the case with the other control signals provided by the micro-controller 35, the micro-controller 35
transmits the AP INSTR auxiliary processor instruction signals and the XPOSER CTRL transposer
control signals to control the auxiliary processor 50 and transposer module 51 of all of the processing
nodes 40 concurrently, enabling them to generally perform the same operation concurrently.

The transposer module 51 includes several transposer circuits 52A through 52M (generally
identified by reference numeral 52). Each transposer 52 receives input data from an input multiplexer
54 and stores it in one of a plurality of slots identified by the contents of a write pointer register 55.

The register 55 may be provided with a pointer prior to storing each item of data in a slot in the

WO 91/20024 PCT/US91/04290

8-
associated transposer 52. Alternatively, the register may be loaded with an initial value before loading
any data in the associated transposer 52 and then incremented for each successive item of data loaded
therein. The input multiplexer 54, under control of the XPOSER CTRL transposer control signals,
selectively couples data signals to the transposer 52 from either the data bus 43 or from a bus 56. Bus
56 carries AP IN (61:0) auxiliary processor in signals representing processed data from the auxiliary
processor 50.

The transposers 52 operate in response to the XPOSER CTRL transposer control signals to
generate transpositions of the data stored therein. The transposer module 51 also includes two output
multiplexers 60 and 61, also controlled by the XPOSER CTRL transposer control signals, which
control the transfer of transposed data onto a bus 62 for transmission to the auxiliary processor 50 or
onto the data bus 43 for transmission to the memory 42 or to the PE chips 41. Multiplexer 60 receives
data signals from the output terminals of transposers 52 and selectively couples the signals from one of
the transposers onto the data bus 43. Similarly, the multiplexer 61 receives data signals from the
output terminals of transposers 52 and selectively couples the signals from one of the transposers onto
the bus 62 for transmission to the auxiliary processor.

The processing node 40 also provides a direct (that is, non-transposing) path between the data
bus 43 and the auxiliary processor 50. It will be appreciated that the transposer module 51 facilitates
the transposition of data transmitted from the memory 42 in processor format, which would be
transmitted serially over separate lines of the data bus 43, into parallel format for processing by the
auxiliary processor 50. If the data is stored in memory 42 in slice format, transposition is not required.
In addition, the transposer module 51 receives processed data from the auxiliary processor 50 and, if it
is required that it be stored in the memory 42 in processor format, transposes the data for transmission
serially over predetermined lines of the data bus 43. If the processed data from the auxiliary processor
50 is to be stored in the memory 42 in slice format, the data may be transmitted by the auxiliary
processor 50 to the memory 42 over the non-transposing path.

The transposer module 51 also includes several components which provide the IND MEM
ADRS indirect memory address signals which are coupled to the multiplexer 46. This indirect memory
addressing capability permits the processing nodes 40 to provide locally-determined memory addresses
to their own memories 42, so that the addressed locations in the respective memories 42 may differ as
among the various processing nodes 40. The transposer module 51 includes an adder 62 which
produces the IND MEM ADRS indirect memory address signals in response to BASE signals provided
from a base register 63 and OFFSET signals from multiplexer 61. Thus, the OFFSET signals may
correspond to the outputs of one of the transposers 52 or the signals on the data bus 43. The base
register 63 and maximum offset register 65 are separately provided with values provided over bus 43 in
response to appropriate XPOSER CTRL transposer control signals from the micro-controller 35.

The compare circuit 66 determines whether the binary-encoded value of the signals from
multiplexer 61 exceeds the binary-encoded value of the MAX OFFSET signals from the register 65, to
provide a COMP OK compare status signal to indicate whether the offset provided by the OFFSET

WO 91/20024 PCT/US91/04290

9.
signals is less than the maximum offset identified by the maximum offset register 65. If the COMP OK
compare status signal indicates that the value of the OFFSET signal exceeds the maximum offset value
contained in the maximum offset register 65, the micro-controller 66 may inhibit storage in the location
identified by the IND MEM ADRS indirect memory address signals.

The transposer module 51 is also used to provide transposed data, originally stored in the
memory 42 in slice format, for transmission by the router nodes 45 of the processing elements 41,
facilitating the transfer of data, in slice format, between processing nodes 40 over the various
communications links interconnecting the router nodes 45 during a message transfer cycle. To
accommodate this operation, since the micro-controller 35 enables the processing nodes 40 to transmit
and receive contemporaneously, one of the transposers, namely transposer 52(i), of the transposer
module 51 in each processing node 40 will be designated a transmit transposer and be used for
transmission, and another transposer, namely transposer 52(j), will be designated a receive transposer
and be used for reception.

The detailed operations by which data slices are transferred between processing nodes 40 will
be described in connection with Figs. 3A and 3B, which contain flow diagrams describing transmission
and reception of the data, respectively, and Figs. 4A and 4B, which contain diagrams illustrating the
organization of the data in the transmit transposer 52(i) and receive transposer 52(j), respectively.
Preliminarily, the transfer of data slices between processing nodes 40 proceeds in four general
sequences. First, the micro-controller 35, in a series of iterations, enables the processing nodes 40, in
unison, to transfer transmit data pointers from the memory 42 to a third transposer, identified as
pointer transposer 52(k) (steps 101 and 102, Fig. 3A). The transmit data pointers, which are stored in
processor format in memory 42, identify slices in memory 12 of the data transfer buffer comprising
data to be transferred during a message transfer cycle. In one particular embodiment, each transmit
data pointer comprises an offset from the base of the data transfer buffer.

After the transmit data pointers have been loaded into the pointer transposer 52(i), the micro-
controller 35 enables the processing nodes, in unison, to use the transmit data pointers to iteratively
identify slices in their respective memories 42 to be loaded into their respective transmit transposers
52(i) (steps 103 and 104). Thereafter, the micro-controller 35 enables the processing nodes 40 to
iteratively transmit, and contemporaneously to receive, the data in the respective transmit transposers
52(i) over the communications links, and to load the received data into the receive transposers 52(j)
(steps 105 through 107, Fig. 3A, and steps 111 through 114, Fig. 3B). After the receive transposers
52(j) have been filled, the micro-controller 35, in a series of iterations, enables the processing nodes 40
to transfer the contents of the receive transposers 52(j) to the transfer data buffer in their respective
memories 42 (steps 116 and 117, Fig. 3B). During each message transfer cycle, the data stored in the
transfer data buffer is stored in memory 42 at addresses above those used during previous message
transfer cycles. This sequence is repeated, through each of the succession of message transfer cycles,
until the message transfer operation has been completed.

More specifically, with reference to Figs. 2 and 3A, initially the memory 42 includes a table of
transmit data pointers ("XMIT DATA PTRS") and transfer data buffer in which the data slices to be

WO 91/20024 PCT/US91/04290

-10-

transmitted are stored ("XFER DATA"). The transmit data pointer table contains pointers to
locations in the transfer data buffer containing the slices to be stored in successive locations, identified
as slots, in the transmit transposer 52(i) during a message transfer cycle. As will be described below in
connection with Fig, 4A, for each message transfer cycle, the order in which the slices from the transfer
data buffer are loaded into the slots of the transmit transposer 52(i) effectively determines the
particular data line D(i) of bus 43 over which the transmit transposer will couple each data slice, which,
in turn, selects the particular communications link HC_O_H(11:0) or HC_O_L(11:0) over which each
data slice will be transmitted. Since the communications links are connected to different processor
nodes 40 in the array, the transmit data pointers effectively select the processing node 40 to receive
each data slice comprising the transmit data transmitted during the message transfer cycle.

As noted above, the micro-controller 35 enables loading of both the pointer transposer 52(k)
and the transmit transposer 52(i) in a series of iterations. In loading the pointer transposer 52(k), the
micro-controller, during each iteration, generates MC MEM ADRS micro-controller memory address,
MEM CTRL memory control and XPOSER CTRL transposer control signals that, in each processing
node 40, (1) enables the memory to couple slices from the transmit data pointers onto the data bus 43,
and (2) enables the transposer module 51 to load the slice on the data bus 43 into the next slot of the
pointer transposer 52(k) (step 101). During each iteration, the MC MEM ADRS micro-controller
memory address signals point to a slice in memory 42, and the MEM CTRL memory control signals
enable the multiplexer 46 to couple the MC MEM ADRS micro-controller memory address signals as
the SEL MEM ADRS selected memory address signals to the memory 42.

In the first iteration, during step 101 the micro-controller 35 generates XPOSER CTRL
signals that initialize the pointer register 55(k) associated with the pointer transposer 52(k) to enable
the first slice to be loaded into the first slot of the pointer transposer 52(k). In succeeding iterations,
the XPOSER CTRL transposer control signals enable the contents of the pointer register 55(k) to be
incremented so that successive slices are loaded into the successive slots of the pointer transposer
52(k). Following step 101, the micro-controller 35 determines whether the pointer transposers 52(k) in
the processing nodes 40 have been filled (step 102). If not, the micro-controller 35 returns to step 101
to perform another iteration. It will be appreciated that the micro-controller 35 may maintain a
counter (not shown) that it increments each time it performs step 101, and use the value of the counter
in determining, in step 102, whether the pointer transposers have been filled.

If the micro-controller 35 determines in step 102 that the pointer transposers have been filled,
it proceeds to a series of iterations in which it enables, in the processing nodes 40 in parallel, the
contents of the respective pointer transposers 52(k) to be used in loading the respective transmit
transposers 52(i). Initially, the micro-controller enables the processing nodes 40 to, in parallel, load a
pointer to the base of the transfer data buffer in their respective base registers 63. During each
iteration, the micro-controller 35 generates MEM CTRL memory control signals and XPOSER CTRL
transposer control signals that, in each processing node 40, (1) enables the pointer transposer 52(k) to

couple a transpose word, which comprises a transmit data pointer, to an input of adder 63, whose

WO 91/20024 PCT/US91/04290

-11-

output comprises the IND MEM ADRS indirect memory address signals identifying the location of a
slice in the transfer data buffer of the respective memory 42, (2) the muitiplexer 46 to éouple the IND
MEM ADRS indirect memory address signals to the memory 42 as the SEL MEM ADRS selected
memory address signals, thereby enabling the memory 42 to couple the data slice identified thereby
onto the data bus 43, and (3) enables the transposer module 51 to load the slice on the data bus into
the next location of the transmit transposer 52(i) (step 103). After enabling a data slice to be loaded
into the transmit transposer 52(i), the micro-controller determines whether the transmit transposer
52(i) has been filled (step 104), that is, if the transmit transposer 52(i) has a data slice which can be
transmitted over each of the communications links HC_O_H(11:0) and HC_O_L(11:0). If not, the
micro-controller returns to step 103 to begin another iteration. If the micro-controller 35 determines
that the transmit transposer has been filled, it sequences to step 105 to begin transmitting the data
therefrom.

In the first iteration, during step 103 the micro-controller 35 generates XPOSER CTRL
signals that initialize the pointer register 55(i) associated with the transmit transposer 52(i) to enable
the first slice to be loaded into the first slot of the transmit transposer 52(i). In succeeding iterations,
the XPOSER CTRL transposer control signals enable the contents of the pointer register 55(i) to be
incremented so that successive slices are loaded into the successive slots of the transmit transposer
52(i). It will be appreciated that the micro-controller 35 may maintain a counter (not shown) that it
increments each time it performs step 103, and use the value of the counter in determining, in step 104,
whether the pointer transposers have been filled.

Before proceeding further, it would be helpful to describe the contents of transmit transposer
52(i) after it has been filled. With reference to Fig. 4A, the trémsmit transposer includes a series of
slots 70(0) through 70(31) [generally identified by reference numeral 70(i)], each of which stores one
data slice transmitted thereto over data lines (31:0) comprising data bus 43. The slot 70(i) in which a
data slice is stored is identified by the pointer stored in the transmit write pointer register 55(1). As
noted above, during each iteration the pointer in register 55(i) is , during step 101, initialized or
incremented prior to loading of the slot in step 103.

In one embodiment, the transmit transposer 52(i) is filled when it contains data slices in at
most slots 70(0) through 70(11) and slots 70(16) through 70(27). Since each of the router nodes 45L
and 45H in each PE chip 41 is connected to twelve output communications links HC_O_L(11:0) and
HC_O_H(11:0), in that embodiment data slices from only twenty-four slots, such as slots 70(0) through
70(11) and 70(16) through 70(17), can be transmitted contemporaneously. In that case, the transmit
transposer 52(i) contains a data slice to be transmitted over each of the communications links, as
shown in Fig. 4A; if data slices are stored in other slots 50(i) they will not be transmitted in that
embodiment. It will be appreciated that, depending on the particular computation being performed by
the computer system, the transmit transposer 52(i) may be deemed "filled," such that transmission can
occur, if fewer than all of the slots 50(0) through 50(11) and 50(16) through 50(27) contain data slices

to be transmitted.

WO 91/20024 PCT/US91/04290

-12-

Returning to Fig. 3A, after the micro-controller 35 determines that the transmit transposer has
been filled, it initiates a series of iterations, each iteration comprising steps 105 through 107, to
facilitate transmission of the data from the transmit transposer 52(i) over the communications links. In
this operation, the micro-controller iteratively enables the transmission of sequential bits concurrently
from all of the data slices stored in the transmit transposer 52(i). That is, during each iteration "i," the
micro-controller 35 generates XPOSER CTRL transposer control signals that enable the transmit
transposer 52(i) to couple a transmit transpose word through multiplexer 60 onto data bus lines 43
(step 106). The transmit transpose word during iteration "i* comprises the "i-th" bits in all of the slots
50 in the transmit transposer. With reference to Fig, 4A, during each iteration the data bit from slot
50(i) is transmitted onto data line D(i) of the data bus 43.

After data has been transmitted onto the data bus 43, the micro-controller 35 generates RTR
CTRL router control signals that enable the router nodes 45H and 45L (Fig. 2) to transmit the bits on
lines D(11:0) and D(16:27) onto the communications links HC_O_L(11:0) and HC_O_H(11:0),
respectively (step 106). Thereafter, the micro-controller 35 determines whether all of the data has
been transmitted from the transmit transposer 52(i) (step 107), and if not, it returns to step 104 to
enable transmission of the next transmit transpose word. If; on the other hand, the micro-controller 35
determines in step 107 that all of the data has been transmitted from the transmit transposer, it exits
the transmission sequence (step 108).

It will be appreciated that the number of iterations of steps 104 through 107 that are required
to transmit the data from the transmit transposer 52(i) corresponds to the number of bits of data in a
data slice stored in the transmit transposer 52(i). The maximum number of transmit transpose words
that the transmit transposer 52(i) can provide corresponds to the maximum number of bits in a data
slice to be transmitted, which is thirty-two in one embodiment. Thus, in determining whether all of the
data has been transmitted from the transmit transposer (in connection with step 104) the micro-
controller 35 can use an iteration counter to count iterations of steps 104 through 107, and exit when
the iteration counter counts to a value corresponding to the number of bits in a data slice, or to a value
corresponding to the number of bits to be transmitted if less than all bits are to be transmitted.

The sequence enabled by the micro-controller 35 in connection with reception of the
transmitted data will be described in connection with Figs. 3B and 4B. It will be appreciated that the
micro-controller 35 will enable the processing nodes 40 to transmit and receive on an interleaved basis,
that is, when the micro-controller 35 enables the router nodes 45H and 45L of the processing nodes 40
to transmit bits of a transpose word onto the communications links HC_O_H(11:0) and HC O_L(11:0)
during one iteration, it also enables the processing nodes 40 to receive the bits from the
communications links HC_J H(11:0) and HC I _L(11:0) during a contemporaneous iteration of the
receive sequence. Thus, at least a portion of the receive sequence depicted on Fig. 3B will occur
contemporaneous with the transmission sequence depicted on Fig, 3A.

With reference to Fig. 3B, reception by the processing nodes 40 of bits from the

communication links proceeds in a series of iterations, comprising steps 112 through 115, each

WO 91/20024 PCT/US91/04290

13-

reception iteration occurring after data bits have been coupled onto the communications links during a
transmission iteration (steps 105 through 107, Fig. 3A). This allows the processing nodes 40 to receive
the bits being transmitted thereto during the transmission iteration. During the successive reception
iterations, the processing nodes 40 receive successive bits of the data slices from the other processing
nodes connected thereto. In each iteration, each processing node 40 receives bits from corresponding
bit locations in the data slices. In the successive iterations, each processing node 40 normally will store
the bits in successive slots of the receive transposer 52(j). Thus, initially the micro-controller 35
generates XPOSER CTRL transposer control signals that enable the transposer module 51 in each
processing node 40 to initialize its write pointer register 55(j) so as to point to the first slot of the
receive transposer 52(j) (step 111).

After initializing the write pointer register 55(j) of each processing nodes 40, the micro-
controller 35 initiates the sequential reception iterations, each comprising steps 112 through 115, to
load received data into the receive transposer 52(j). During each iteration, the micro-controlier 35
generates RTR CTRL router control signals that enable the router nodes 45H and 45L of the
processing nodes 40 to receive the data bits then on communications links HC_I_H(11:0) and
HC_I_L(11:0) respectively and to couple them onto lines D(27:16) and D(11:0) of the data bus 43 (step
112). Thereafter, the micro-controller 35 generates XPOSER CTRL transposer control signals that
enable the multiplexer 54(j) to couple the signals on lines D(31:0) of the data bus 43 to the receive
transposer 52(j), and the receive transposer 52(j) to store them in the slot in receive transposer 52(j)
(step 113) identified by the contents of the write pointer register 55(j).

With reference to Fig. 4B, as is the case with transmit transposer 52(i), the receive transposer
52(j) includes a plurality of slots, identified as slot 60(0) through 60(61) [generally identified by
reference numeral 60(i)]. Slot 60(i) in the receive transposer 52(j) is loaded with the data bits received
during the "i-th" reception iteration. In the successive iterations, bits from each of the communications
links HC I _H(11:0) and HC_I_L(11:0) are coupled to the same bit locations in the successive slots 60.
Thus, as shown in Fig. 4B, the data slices from the processing nodes 40 connected thereto are found in
the same bit location in the successive slots in the receive transposer 52(j). It will be appreciated that
each transpose word provided by the receive transposer 52(j) comprises the bits from the same bit
locations in successive slots 60, which, as noted above, corresponds to the successive bits of a data slice
transmitted to the processing node 40. Accordingly, the transpose words in the receive transposer,
which, as described below, will be stored as data slices in the memory 42 of receiving processing node
40, correspond to the data slices in memory 42 of the processing nodes 40 that transmitted them
thereto.

Returning to Fig. 3B, after step 113 the micro-controller 35 then determines whether the
receive transposers 52(j) in the processing nodes 40 have been filled (step 114), and, if not, enables the
processing nodes 40 to increment the receive write pointer store in their registers 55() (step115). The
receive transposer 52(j) will be filled if the number of reception iterations enabled by the micro-

controller corresponds to the number of bits in a data slice, or a lesser number if fewer than all bits of

WO 91/20024 PCT/US91/04290

-14-
the data slices are to be transmitted. If the micro-controller 35 determines that the receive transposers
52(j) have not been filled, it returns to step 112 to initiate another reception iteration.

On the other hand, if the micro-controller 35 determines, in step 114, that the number of
reception iterations it has enabled during a message transfer cycle corresponds to the number of data
bits in a data slice, it steps to a sequence, comprising steps 116 and 117, in which it enables the
processing nodes 43 to transfer the contents of their respective receive transposers 52(j) to their
memories 42. In this operation, the micro-controller 35 generates (i) MC MEM ADRS micro-
controller memory address signals that identify a location in the receive data region of memory 42, (ii)
XPOSER CTRL transposer control signals that enable the receive transposer 52(j) to couple a
transpose word through multiplexer 60 onto data bus 43, and (iii) MEM CTRL memory control signals
to enable the multiplexer 46 to couple the MC MEM ADRS micro-controller memory address signals
to the memory 42 as the SEL MEM ADRS selected memory address signals, and the data represented
by the signals on data bus 43 to be stored in memory 42 at the location identified by the SEL MEM
ADRS selected memory address signals (step 116). The micro-controller 35 then determines whether
it has enabled storage of all of the transpose words from the receive transposer 52(j) in the processing
nodes 40 in their respective memories 42 (step 117). If the micro-controller 35 makes a negative
determination in step 117, it returns to step 116 to enable storage of the next transpose word from
receive transposers 52(j) in respective memories 42. However, if the micro-controller 35 makes a
positive determination in step 117, it exits (step 120).

It will be appreciated that the micro-controller 35 can enable the operations described above
in connection with Figs. 3A and 3B to be iteratively performed in a plurality of message transfer cycles,
to enable messages to be transferred iteratively relayed through several processing nodes 40 from one
originating processing node 40 to a destination processing node for processing.

It will be further appreciated that, while the processing nodes 50 have been described as
transferring data in slice format, the data may be oﬁginaﬂy in processor format and transposed to slice
format by the transposer module 51 prior to beginning the transfer. Thus, data processed by the serial
processors 44, which is organized in processor format in the memory 42, may be transferred to other
processing nodes if the transposer module 51 transposes it to slice format prior to the transfer.

In addition, it will be appreciated that the micro-controller 35 may, while it is enabling the
received data to be transferred from the receive transposer 52(j) to the transfer data buffer, enable the
use of the transposer module’s indirect addressing facility to provide the SEL MEM ADRS selected
memory address signals, rather than providing the address signals directly. In that case, the micro-
controller 35 may provide the necessary OFFSET signals, which are added to the contents of the base
register 62, which, as noted above in connection with the transmission sequence, contains a pointer to
the base of the transfer data buffer. Accordingly, the adder 62 will produce IND MEM ADRS indirect
memory address signals identifying the location in the transfer data buffer in which the data slice is to
be stored. In that case, the micro-controller 35 will also provide MEM CTRL memory control signals
that enable the multiplexer 46 to couple the IND MEM ADRS indirect memory address signals to the
memory 42 as the SEL MEM ADRS selected memory address signals.

WO 91/20024 PCT/US91/04290

-15-

2. Description Of Communication Arrangement Generating System

With this background, the communication arrangement generating system includes a digital
computer programmed to operate in two phases. In a first phase, the system generates a mapping of
problem vertices 10(i) in a problem graph 5 to processing elcménts 21(m) in an array 20 comprising a
massively parallel processor. As will be described below, during the mapping phase, the system assigns
problem vertices 10(i) to the processing elements 21(m) so as to reduce or minimize the number of
cycles required to transfer messages among processing elements 21(m) for the problem graph 5, which
may increase the rate at which data can be processed for the problem graph 5.

After generating the mapping, the system performs a second, communications link assignment,
phase in which it assigns messages to be generated by the problem vertices 10(i) mapped to the
processing nodes 40, as well as messages received thereby from other processing nodes 40, to particular
communications links 22(n), for the successive message transfer cycles of a message transfer operation.
The results of the assignment enable messages to be transferred among the processing nodes 40 as
described above in connection with Figs. 2 through 4B. In the assignment phase, the system generates,
for each of the successive message transfer cycles, a table of transmit data pointers which are to be
used in performing the message transfers.

In one particular embodiment, the computer used in the system includes the massively-parallel
processor described above in connection with Fig. 2. Figs. 5A through 5D depict the operations
performed during the mapping phase, Figs. 6A through 6C depict the operations performed in
generating the tables of transmit data pointers, and Figs. 7A through 7C depict data structures that may
be used in connection with the system.

A. The Mapping Phase

Generally, in the mapping phase, the system begins with a random mapping, or assignment, of
problem vertices 10(i) to processing nodes 40. After the initial assignment, the system generates a
communication cost function related to the total number of communication links 22(j) required to
transfer messages for all problem vertices 10(i) among the processing nodes 40. Thereafter, the system
performs a series of iterations to attempt to determine an improved mapping that generally reduces the
communications cost function. In each iteration, the system generates a perturbed mapping, that is, a
mapping in which one or more of the problem vertices 10(i) may be assigned to different processing
nodes, so as to differ from the mapping of the previous iterz;tion to a predetermined degreeln addition,
the system, during each iteration, determines for each reassignment a chainge in the communication
cost function. If the change in the communication cost function for selected reassignments is below a
threshold value, the perturbation is permitted, but if the change is above the threshold it is not
permitted. In successive iterations, the threshold values are reduced until they reach a value selected
according to a termination criterion. The final mapping, which is the mapping determmned by the
system, is the mapping that exists when the threshold value reaches the termination criterion.

More specifically, with reference to Fig. 5A, the system, in particular the host 36, initially

determines a maximum occupancy value and an initial threshold value (step 150). In determining the

WO 91/20024 PCT/US91/04290

-16-

mapping, the system permits processing nodes 40 to process multiple problem vertices 10(i), but it
ensures that the number of problem vertices 10(i) processed by each processing node 40 does not
exceed a predetermined maximum occupancy value. The maximum occupancy value may, for example,
correspond to the number of serial processors 44 in each processing node 40, in which case each serial
processor 44 may be assigned one problem vertex 10(i).

After the host has determined the maximum occupancy value and the initial threshold value, it
generates a random mapping, or assignment, of the problem vertices 10(i) to the processing nodes 40
(step 151). In one embodiment, each serial processor 44(i) in the processing array has a unique
identifier. In associating the problem vertices 10(i) with the serial processors, each problem vertex
10(i) is given a unique problem vertex identifier, whose value may be randomly selected. The problem
vertex identifier serves to identify the processing node 40 with which the problem vertex 10(i) has been
associated. The problem vertex identifier may also include a portion to uniquely identify the problem
vertex 10(i) among other problem vertices associated with the same processing node 40, which may, in
turn, serve to associate the problem vertex 10(i) with a particular serial processor 44(i) in the
processing node 40. The random mapping is constrained so that each processing node 40 is assigned at
most the number of problem vertices 10(i) corresponding to the maximum occupancy value. The host
36 determines whether the number of problem vertices 10(i) assigned to all of the processing nodes 40
corresponds to the maximum occupancy value (step 152).

For those processing nodes 40 for which the number of problem vertices 10(i) is less than the
maximum occupancy value, the host generates ghost vertices so that the number of problem vertices
10(i) and the number of ghost vertices for each processing node 40 corresponds to the maximum
occupancy value (step 153). As will be made clear below, the ghost vertices are used during subsequent
iterations to ensure that the number of problem vertices 10(i) assigned to each processing node 40 does
not exceed the maximum occupancy value. At the same time the ghost vertices do not affect the
communication cost function, or change therein, determined for each perturbation. On the other hand,
if the number of problem vertices 10(i) is so large that the number assigned to any processing node 40
exceeds the maximum occupancy value, the serial processors 14(i) can emulate a plurality of virtual
processors as described above, each of which can be assigned a unique identifier, and the problem
vertices 10(i) can be assigned to the virtual processors according to their respective identifiers, and
ghost vertices can be assigned to any virtual processors without problem vertices assigned thereto.

After the host 36 has assigned problem vertices 10(i) and ghost vertices to each processing
node, it generates problem vertex tokens 220 (Fig. 7A) each representing a problem vertex 10(i) or
ghost vertex (step 154). The processing nodes 40 use the problem vertex tokens 220 in subsequent
processing during the mapping phase. A problem vertex token 220 includes a number of fields to
identify the problem vertex 10(i) or ghost vertex represented thereby, problem vertices to which the
represented problem vertex 10(i) is directly connected by an edge 11(j) in the problem graph 5, and

pointers to the processing nodes 40 in the array 20 to which the connected problem vertices are

assigned.

WO 91/20024 PCT/US91/04290

-17-

More specifically, with reference to Fig. 7A, a problem vertex token 220 includes an assigned
processor pointer field 221, a downstream pointer portion 222 and an upstream pointer portion 223.
The assigned processor pointer field 221 contains a pointer to the processing node 40 to which the
problem vertex 10(i) is currently assigned. Initially, the contents of the assigned processor pointer field
221 will contain two values, one corresponding to the identification of problem vertex’s assigned
processing node 40, and a second value identifying the problem vertex as among other problem vertices
assigned to the same processing node 40, with the combination of the values uniquely identifying the
problem vertex 10(i) in the problem graph 5. In subsequent iterations, the contents of the assigned
processor pointer field 221 may change to reflect the perturbations in the problem vertex assignments
as described below. If the problem vertex token 220 represents a ghost vertex, the assigned processor
pointer field 221 will also contain a selected value identifying the processing node 40 to which it has
been assigned.

The downstream pointer portion 222 and upstream pointer portion 223 contain pointers that
point to problem vertex tokens 220 representing problem vertices 10(i) that are downstream and
upstream, respectively, in the problem graph 5. It will be appreciated that, if the problem graph 5 is
such that messages can be transferred in both directions between problem vertices 10(i) over each edge
11(j), the problem vertex token 220 need only contain one pointer portion.

In any case, the downstream pointer portion 222 contains a length field 222 and a plurality of
downstream pointers, generally identified by reference numeral 225(i). The length field 222 identifies
the number of downstream pointers 225(i) contained in the downstream portion 222; if the problem
graph 5 is such that messages are not transmitted by a problem vertex over any of the edges 11(j)
connected thereto, the downstream pointer portion 222 will be empty and the length field 222 will
contain the value zero. If the length field 222 does not contain the value zero, the token 220 will have
one or more downstream pointers 225(i), each of which includes two fields 226(i) and 227(i). Field
226(i) contains the identifier of a problem vertex that is downstream, in the problem graph 5, of the
problem vertex represented by the problem vertex token 220. Field 227(i) includes a pointer, in the
array 20, to the processing node 40 to which the problem vertex token 220 for the problem vertex
identified in field 226(i) has been assigned. Initially, the contents of field 227(i) points to the
processing node 40 with which the problem vertex 10(i) has been assigned, and during subsequent
iterations the contents may be modified to reflect assignments of the problem vertex 10(i) to other
processing nodes 40.

In one particular embodiment, the communication links 22(m) interconnect the processing
nodes 40 in a hypercube. In that embodiment, the pointer in field 227(i) may represent the relative
displacement, or address, in the hypercube from the processing node 40 to which the problem vertex
10(i) represented by a particular problem vertex token 220 has been assigned, to the processing node
40 to which the problem vertex identified in field 226(i) has been assigned. That is, pointer in field
227(i) includes a number of digit locations corresponding to the dimensionality of the hypercube, with

each digit position in the pointer being associated with one dimension in the hypercube, along with a

WO 91/20024 PCT/US91/04290

-18-
value identifying the particular serial processor 44(i), or the virtual processor emulated thereby, of the
processing node 40 to which the problem vertex 10(i) has been assigned.

In such a pointer, each digit location associated with a hypercube displacement has a value
"one" in locations associated with the dimensions in the hypercube to be traversed in going between the
processing nodes, and value "zero" otherwise. The number of transfers required over the
communications links 22(n) from the processing element 21(n) to which the token’s problem vertex
10(i) has been assigned, to the processing element 21(n) to which the problem vertex 10(i) identified by
the contents of field 226(i), corresponds to the number of "ones" in the pointer. This corresponds, in
turn, to the communication cost of the assignment of the two problem vertices 10(i) to the respective
processing nodes 40,

The upstream pointer portion 223 has a length field 230 and upstream pointers 231(i) which
are analogous to length field 224 and downstream pointers 225(i) in the downstream pointer portion
222. An upstream pointer 231(i) includes fields 232(i) and 233(i), which are also analogous to fields
226(i) and 227(i) in a downstream pointer 225(i), as described above, with the qualification that the
problem vertex identified in field 226(i) is one that is upstream, in the problem graph 5, of the problem
vertex 10(i) associated with the problem vertex token 220.

In addition, a problem vertex token 220 may include a problem vertex identification ficld 234
which identifies the problem vertex 10(i). It will be appreciated that the value contained in the
problem vertex identification field 234 will correspond to the identification of the serial processor 44(i),
or the particular virtual processor emulated thereby, with which the problem vertex 10(i) has been
associated. In addition, the contents of respective fields 226(i) and 232(i) identify the particular serial
processors 44(i) to which those problem vertices 10(i) have been associated.

Returning to Fig. 5A, after generating the problem vertex tokens 220, the host 36 enables the
array 20 to load them into the processing nodes 40 with which they have been associated (step 154). In
this operation, the host 36 enables the problem vertex tokens 220 to be loaded into the memories 42 of
the processing nodes 40 in processor format, with the successive bits of a problem vertex tokejn 220
being loaded serially in successive addressable storage locations in the memory 42.

Thereafter, the host assigns a processing node 40 to each communications link 22(m) to
operate as a rendezvous node for that communications link 22(m) (step 155). As will be further
described below, as the assignments of the problem vertices 10(i) to the processing nodes 40 are
perturbed, the processing nodes 40, operating as rendezvous nodes, mediate the perturbations so that
the number of problem vertices 10(i) assigned to each processing node does not exceed the maximum
occupancy value. More specifically, in the embodiment depicted in Fig. 2, each processing node 40 is
connected to twenty four communications links 22(m), with the router nodes 45 of each PE chip 41
being connected to twelve links 22(m). The host 36 identifies twelve serial processors 44 of each
processing node 40 to actually perform the mediation operations as described below.

The host 36 then enables the processing nodes 40, in particular the serial processors 44(i), to,

in parallel, generate random numbers which are used as communication link pointers for use in a

-y

WO 91/20024 PCT/US91/04290

-19-
prospective reassignment of the their associated problem vertices 10(i) (step 156). That is, the value of
the random number generated by each serial processor 44(i) identifies a communications link 22(m)
over which the serial processor’s problem vertices 10(i) might be reassigned during the iteration, which
would, in turn, result in a reassignment of the problem vertex 10(i) to the new processing node 40.

Each communications link pointer generated in step 156 has a number of digit locations
corresponding to the dimensionality of the hypercube in which the communications links 22(m) are
connected, with a "one" in one randomly-selected location, and "zeros" elsewhere. The digit location
with the "one" identifies the communications link 22(m) assigned in the prospective reassignment. The
communications link pointers are used to determine a prospective perturbed mapping of the problem
vertices 10(i) to the processing nodes 40.

Whether a problem vertex 10(i) is actually reassigned during the iteration will depend upon
subsequent processing during the mapping phase. If a problem vertex 10(i) is reassigned, the values of
the digits in the digit locations of the pointers in fields 227(i) and 233(i) in the corresponding problem
vertex token 220 corresponding to the digit location of the communications link pointer having the
value "one" are complemented. If the complementing results in generation of a "one" in the digit
location, the number of communications links 22(n) between processing nodes 40 to which adjacent
problem vertices 10(i) are assigned will be increased, with a consequent increase in communication
cost. On the other hand, if the complementing results in generation of a "zero” in the digit location, the
number of communications links 22(n) between processing nodes 40 to which adjacent problem
vertices 10(i) are assigned will be decreased, with a consequent decrease in communication cost.

After enabling generation of the communications link pointers, the host 36, in parallel, enables
the processing nodes 40, in particular the serial processors 44, to determine the change in the
communication cost which would occur if the problem vertex tokens 220 were actually reassigned over
the communications links identified by the pointers generated in step 156 (step 157). Determining the
actual change in communication cost would require extensive transfers of information as to the changes
regarding the prospective perturbed mapping among the processing nodes 40 to which problem vertices
10(i) directly-connected in the problem graph 5 have been assigned. As a simplification, each
processing node 40, under control of the host 36, estimates the change in communication cost by
determining the effect only of the reassignment of the problem vertices assigned thereto, using the
pointers in the fields 227(i) and 233(i) of the respective problem vertex tokens 220 and the respective
communication link pointers generated in step 156.

In performing step 157, the host 36 enables the processing nodes 40, in particular the serial
processors 44, to estimate the change in communication cost resulting from a prospective reassignment
by determining the number of "zeros" in the pointer fields which would be changed to "ones", and the
number of "ones" which would be changed to "zeros", as a result of the prospective reassignment of the
problem vertex 10(i) associated with the problem vertex token 220. The number of "zeros" that are
changed to "ones" identifies the increase in the communication cost as a result of the prospective
reassignment of the problem vertex 10(i), and the number of "zeros" changed to "ones" identifies the

decrease in the communication cost.

WO 91/20024 PCT/US91/04290

-20-

Since the problem vertex tokens 220 assigned to the various serial processors 44 will have
different numbers of pointers 225(i) and 230(i), in this operation the host 36 may enable the processing
nodes 40 to use the context flags 49 to disable each serial processor 44 after it has processed all of the
pointers in the problem vertex token 220 assigned thereto. It will be appreciated that, since a problem
vertex token 220 associated with a ghost vertex has no pointers 225 or 230, the communication cost
change value determined therefor will have the value zero.

Thereafter, the host 36 enables the processing nodes 40 to generate and transfer messages to
the processing nodes identified as rendezvous nodes for the communications links 22(n) identified by
the communications link pointers generated in step 156 (step 160). Each message includes a message
identifier, which is associated with a particular prospective reassignment, a source identifier, and a
communication cost change value for the reassignment. Upon receipt by the processing nodes 40, the
messages from particular communications links 22(n) are loaded, in processor format, into the portions
of memory 42 associated with the respective serial processors 44 assigned to the communications links
22(n). If multiple messages are received for a particular communications link 22(n), one message is
retained, based on its message identifier. In one particular embodiment, the message identifiers are
random number values, and the retained message is that with the whose message identifier has the
maximum value.

As noted above, the rendezvous nodes mediate prospective reassignments of problem vertices
10(i) between processing nodes 40 connected to the communications links assigned thereto to ensure
that the number of problem vertex tokens, including those associated with problem vertices 10(i) and
those associated with ghost vertices, at each processing node 40 does not exceed the maximum
occupancy value. Accordingly, after enabling transfer of the messages, the host 36 enables the
processing nodes 40, operating as rendezvous nodes, to determine whether they have received
messages associated with prospective reassignments from both processing nodes 40 connected to the
associated communications links 22(n) (step 161).

That is, during step 161 the host 36 enables, in parallel, those serial processors 44 associated
with the communications links 22(n) to search through the messages they have received, stored in their
associated locations in memory 42, and determine whether they have received messages from both
processing nodes 40 at opposing ends of their associated communications links 22(n). If a serial
processor 44 determines that it did receive at least one message from both processing nodes 40 at
opposing ends of its associated communications link 22(n), it sets its context flag 49 (Fig. 2). The host
36 thereafter enables the serial processors 44 with set context flags to, in parallel, select at random one
of the messages from each of the processing nodes 40 at opposing ends of their assigned
communications links 22(n) (step 162).

As noted above, the rendezvous nodes facilitate reassignment of problem vertices 10(i) only if
the change in communication cost is less than the predetermined threshold value. To accomplish this,
the host enables the processing nodes 40 operating as rendezvous nodes, ‘specifically the serial

processors 44 with set context flags 49, to determine a consolidated communication cost change value

WO 91/20024 PCT/US91/04290

21-
using the communication cost change value in the respective selected messages (step 163). In step 163,
each serial processor 44 whose context flag 49 is set generates the sum of the communication cost
change values from the two selected messages. The result provided by each serial processor 44
identifies the change in communication cost which would occur if the prospective reassignment of the
problem vertices 10(i) identified in the selected messages actually occurs.

The host 36 then enables the serial processors 44(i) whose context flags 49 are set to generate
threshold values and to compare the threshold values to the consolidated communication cost change
values determined in step 136 (step 164). Preferably, the threshold during the first iteration is
established at a high enough positive value to permit a substantial amount of reassignment of problem
vertices 10(i) in early iterations. This is desirable, since the original assignments of problem vertices
10(i) to processing nodes 40 are random. During subsequent iterations, the host 36 adjusts the
threshold value, so as to effectively reduce its range.

In one particular embodiment, the threshold values generated by the serial processors 44(i),
and the likelihood of having a positive comparison, are related to a "Boltzmann factor” B related to a
"temperature value" T provided by the host 36 and the respective consolidated communication cost
change value. In particular:

B = exp(-C/T)

where "C" is the respective communication cost change value. Each reassignment is accepted or
rejected with a probability equal to its Boltzmann factor. The host 36 enables the serial processors 44
which determine that the reassignment will occur to maintain their context flags 49 in the set
conditions, and the others to reset their context flags 49 (step 165). The host 36 then enables the serial
processors 44 whose context flags 49 are set to generate problem vertex reassignment enabling
messages for transfer to the processing nodes 40 connected to their associated communications link
22(n) to identify problem vertex tokens 220 that can be reassigned (step 166). In addition, the host 36
enables the serial processors 44 whose context flags are set to clear them (step 167).

At this point, the processing nodes 40 have received messages from the rendezvous nodes
identifying problem vertices 10(i) to be reassigned. In the next several steps 170 through 174 the host
enables the processing nodes 40 to update the pointers in respective fields 227(i) the 233(i) in view of
the reassignments. In these operations, host 36 enables the processing nodes 40 which receive problem
vertex reassignment enabling messages, in particular the processing nodes 40 associated with the
problem vertices to be reassigned, to set their context flags 49.

The host 36 then enables the processing nodes 40, in particular the serial processors 44(i) with
set context flags 49, to generate messages identifying the problem vertices 10(i) to be reassigned and
the communication link pointers generated for the reassignment (step 171). Each serial processor
44(i) whose context flag 49 is set generates one message for each pointer 225(i) and 231(i) in the
problem vertex token 220 maintained thereby. It will be appreciated that, if a serial processor 44(i) is
processing a ghost vertex, it will generate no such messages. The messages will be used to notify the
serial processors processing the problem vertices 10(i) listed in the problem vertex token 220 of the

reassignment, so that they may adjust their pointers in fields 227(i) or 233(i), respectively.

WO 91/20024 PCT/US91/04290

22-

The host 36 enables the serial processors 44(i), in generating the address portion of each
message, to use the contents of the problem vertex identification from a field 226(i) or 232(i) in the
problem vertex token. In particular, since, as noted above, the address in the message is a relative
displacement, in generating the addresses host 36 enables the serial processors 44(i) fo take the bit-
wise exclusive-OR of the hypercube portion of its identifier and of the identifier of the serial processor
44(i) as contained in the respective fields 226(i) and 232(i). The host 36 enables the processing nodes
40 to transfer the generated message (step 172).

At each processing node 40 which receives such a message, the message is stored, in processor
format, in the portions of the memory 42 associated with the serial processor 44(i) processing the
problem vertex token 220 whose pointer is to be adjusted in view of the reassignment. The host 36
then enables the serial processors for which such messages have been received to update the pointers
in fields 227(i) and 233(i) in view of the reassignment (step 173). In this operation, the host 36 enables,
in parallel, each serial processor 44 for which a message was received to identify thc. problem vertex
pointer 225(i) or 230(i) associated with the problem vertex identified in the message received in step
172. The host 36 then enables each such serial processor to use the communication link pointer
received in the message, to complement the bit in the relative address in the respective fields 227(i) or
233(i) of the identified pointer corresponding to the bit of communications link pointer having the
value "one." The result of step 173 is, for each message, the update of the value of the relative address
in a pointer 225(i) or 230(i) that points to the problem vertex token 220 identified in the message to
accommodate the reassignment of the problem vertex 10(i).

In addition, the host 36 enables the serial processors 44(i) associated with reassigned problem
vertices 10(i) to update the relative addresses in fields 227(i) and 233(i) of pointers 225(i) and 230(i),
respectively, in view of the reassignment (step 174). In this operation, the host 36 enables, in parallel,
each serial processor 44 which has a problem vertex 10(i) to be reassigned (that is, those serial
processors with set context flags 49) to complement the bits in the bit locations in the relative addresses
of fields 227(i) and 233(i) of all of the respective pointers 225(i) and 230(i), corresponding to the bit
location in the communications link pointer which has the value "one." The result of step 174 are
relative addresses in each problem vertex token 220 updated to accommodate the reassignment of the
problem vertex 10(i).

Contemporaneously, the host 36 enables the serial ‘processors 44(i) with set context flags, that
is those serial processors 44(i) which have problem vertex tokens 220 for problem vertices 10(i) to be
reassigned, to adjust the values of their respective assignment pointers 221 to reflect the reassignment
of the problem vertex 10(i) associated with the problem vertex token 220 (step 175). In particular, the
serial processors 44(i) with set context flags add the value of the communications link pointers
indicating the reassignment to the value of the assignment pointer 221, the result comprising the
identifier of the processing node 40 to which the problem vertex is to be assigned.

After enabling adjustment of the various pointers in the respective problem vertex tokens 220

in view of the reassignments, the host 36 determines whether to perform another iteration. In one

"

WO 91/20024 PCT/US91/04290

-23-

embodiment, the host 36 makes the determination based on whether the value used by the serial
processors 44(i) in generating the threshold values during the iteration in step 164, is below a°
predetermined termination criterion value (step 176). If not, the host reduces the value (step 177) and
returns to step 156 to begin a new iteration. The host 36 iteratively performs steps 157 through 177,
reducing the threshold value in step 177 at the end of every iteration, until it reaches an iteration at
which the threshold value used during the iteration is below the predetermined termination criterion
value, at which the host exits (step 180) the mapping phase.

As suggested above, the threshold values, used in step 165 in determining whether particular
problem vertices are to be reassigned, preferably during the first iteration, and more preferably during
at least the first few iterations, are relatively large positive numbers. As described above, the threshold
values are used to determine whether an exchange of selected problem vertex tokens 220 should be
permitted over a communications link 22(n) between processing nodes in view of the sum of the values
of the communication cost changes (the aforementioned consolidated communication cost change
value) which would occur as a result of the exchange. Accordingly, it might be considered necessary to
maintain the threshold value at zero or negative for all iterations, so that a reassignment will only occur
if it reduces the sum. However, since the initial mapping of the problem vertex tokens 220 is random |
(step 151), having the threshold values vary in a decreasing manner from an initial positive value in
successive iterations can result in a better final mapping than if the threshold value is maintained at
Zero or negative.

B. The Communications Link Assignment Phase

As noted above, after generating a mapping of the problem vertices 10(i) to the processing
nodes 40, the system performs a phase in which it assigns messages to be generated by the problem
vertices 10(i) mapped thereto, as well as messages received, to particular communications links 22(n),
for the successive message transfer cycles of a message transfer operation. This is to enable messages
to be transferred among the processing nodes 40 as described above in connection with Figs. 2 through
4B. In the assignment phase, the system generates, in a series of iterations a table of transmit data
pointers which are to be used in performing message transfers for each of a succession of message
transfer cycles. Figs. 6A through 6C depict operations performed by the system in the assignment
phase.

With reference to Fig. 6A, the host 36 first enables the problem vertex tokens 220 (Fig. 7A)
generated during the mapping phase into the processing nodes 40 according to the mapping
determined during the mapping phase (step 200). Each problem vertex token 220 includes pointers
225(i) and 230(i) whose relative addresses identify the processing nodes 40 to which the downstream
and upstream problem vertices 10(i) have been mapped during the mapping phase. It will be
appreciated that, if the system goes directly from the mapping phase to the communications link
assignment phase, such that the problem vertex tokens 220 are already loaded into the proper
processing nodes 40, the host need not perform step 200.

Thereafter, the host enables the processing nodes 40 to establish a message token list 240

(Fig. 7B) including one or more message tokens generally identified by reference numeral 241(i)

WO 91/20024 PCT/US91/04290

-24-

(Fig. 7B). ‘The message tokens 241(i) identify all messages that may be generated and transmitted by
the respective processing nodes 40 (step 201). At the beginning of the first iteration, during which the
transmit data pointers are generated for an initial message transfer cycle, the messages transmitted by
a processing node 40 will be those generated during processing of the problem vertices 10(i) assigned
thereto. At that point, for each processing node 40, the message token list 240 will have a message
token 241(i) for each downstream pointer 225(i) in all of the problem vertex tokens 220 mapped to the
processing node 40. During subsequent iterations, during which transmit data pointer tables are
generated for subsequent message transfer cycles, the messages transmitted by a processing node 40
may include those received from other processing nodes, and so the message token list 240 will have
messages tokens 241(i) for such messages.

Before proceeding further, it would be helpful to describe the structure of the message token
list 240. With reference to Fig. 7B, the message token list includes a plurality of message tokens 241(i)
and a count field 242 identifying the number of message tokens 241(i) included in the list 240. Each
message token includes two fields, including a problem vertex identification field 243(i) and a
communications link pointer field 244(i). The contents of a problem vertex identification field 243(i)
identify the problem vertex 10(i) comprising the source of the message represented by the message
token 241(i). The contents of a communications link pointer field 244(i) identify the relative address,
from the processing node 40, to the processing node 40 to which the problem vertex 10(i) has been
mapped that is to receive the message represented by the message token 241(i).

The host 36 also enables the processing nodes 40 to establish a table 260 in which it stores
information relating the message tokens 241(i) and communications links 22(n) for use in selecting the
communications links 22(n) to be assigned to carry a message (step 202). Fig. 7C depicts the structure
of a table 260. With reference to Fig. 6C, table 260 includes an array comprising a plurality of entries
261(i)(j) arrayed in rows and columns. The entries 261(i)(j) in each row are associated with one of the
message tokens 241(i), and entries 261(i)(j) in each column are associated with a communications link
22(m).

In establishing the table 260, the host 36 enables the processing nodes 40 to load each entry
261(i)(j) in the array with a connectivity degree value identifying the degree of connectivity of the
message token 241(i) and communication link 22(n) associated with the array entry 261(i)(j). In one
particular embodiment, the connectivity degree value comprises, (a) for each entry 261(i)(j) in a row
associated with a message token 241(i) and column associated with a communications link 22(n) over
which the associated message may be transmitted, the sum of the number of "ones" in the relative
address of the message token 241(i) and the number of message tokens 241(i) which identify the
communications link associated with the array entry 261(i)(j), and (b) for all other entries 261(i)(j),
Zeros.

The number of "ones" in the relative address of the message token 241(i) identifies the number
of communications links 22(n) connected to the processing node 40 over which the associated message

may be transmitted, and the number of message tokens which identify a communications link 22(n)

WO 91/20024 PCT/US91/04290

25-
identifies the number of messages competing for transmission through that communications link during
the message transfer cycle. Thus, in that embodiment, the connectivity degree value is thus, generally,
a joint measure of (i) the degree difficulty of assigning a message to a communications link during a
message transfer cycle because it may only be transmitted over few communications links and (ii) the
likelihood that a communications link will be used during a message transfer cycle. By using the lowest
value in the table 260, the system enhances the likelihood of maximizing the number of
communications links used during a message transfer cycle. _

After establishing the message token list 240 and the table 260, the host performs a series of
iterations, each comprising a series of steps 203 through 206, to assign communications links 22(n) to
message tokens 241(i) for a message transfer cycle. During each iteration, the host 36 enables the
processing nodes 40 to generate an entry in the transmit data pointer table used during the message
transfer cycle. In particular, the host enables each processing node 40 to select the array entry 261(i)(j)
in the table 260 which has the lowest value (step 203). The host then enables the processing nodes to
establish an entry in the transmit data pointer table (Fig. 2) to be used during a message transfer table.
The transmit data pointer relates the serial processor 44 to which the problem vertex associated with
the array entry 261(i)(j) has been assigned, to the particular communications link 22(n) associated with
the array entry 261(i)(j).

Thereafter, the host 36 enables the processing nodes 40 to delete the contents of the array

entries 261(i)(j) in the row associated with the just-assigned message token 241(i), and to delete the

contents of the array entries 261(i)(j) in the column associated with the just-assigned communications
link 22(n) (step 205). The host 36 then enables the processing nodes 40 to determine whether their
tables 260 are all empty (step 206). If a processing node 40 has a table 260 which is not empty, the host
returns to step 203 to begin another iteration to assign another communications link 22(n) to a message
token 241(i).

The host 36 thus enables the processing nodes 40 to perform steps 203 through 206, iteratively
generating transmit data pointers in the table for the message transfer cycle, until all of the entries
261(i)(j) in all of their tables 260 are empty, at which point it sequences to step 210. It will be
appreciated that the maximum number of communications links 22(n) that can be assigned will be the
number of communications links 22(n) connected to a processing node 40. Instead of performing step
206, the host 36 may instead keep a counter (not shown), which it increments and tests at each
iteration, sequencing to step 210 when the counter counts to the value corresponding to the number of
communications links 22(n) connected to a processing node.

In any case, after sequencing out of the loop comprising steps 203 through 206, the host 36
enables the processing nodes 40 to modify the relative addresses in the message tokens 241(i)
associated with the entries 261(i)(j) selected during in step 203 in the successive iterations to
accommodate the transfer during the message transfer cycle (step 210). The host 36 then enables the
processing nodes 40 to delete from their message token lists 240 any message tokens whose relative

addresses in fields 244(i) are all zero (step 211). This deletes any message tokens 241(i) from the

WO 91/20024 : PCT/US91/04290

-26-
message token lists associated with messages that would be delivered to their final destinations during
the message transfer cycle.

The host 36 then enables the processing nodes 40 to determine if there are any message tokens
241(i) whose relative addresses are not all zeros (step 212). Such message tokens 241(i) are associated
with messages which would not reach their final destination during the message transfer cycle. If so,
the host 36 enables the processing nodes to transfer the non-deleted message tokens for messages
assigned to communications links 22(n) during the message transfer cycle over the communications
links 22(n) to which they have been assigned (step 213), and returns to step 201 to begin processing for
a subsequent message transfer cycle. In that processing, the processing nodes 40 include the message
tokens 241(i) which they receive in their message token list 240, just as they would message tokens
241(i) associated with messages generated by the problem vertices 10(i) assigned thereto.

It will be appreciated that, at some point in the processing of step 212 all of the processing
nodes 40 will determine that the relative addresses in fields 244(i) associated with all remaining
message tokens 241(i) have zero values. In that case, all remaining messages will be transferred to
their final destinations during the message transfer cycle whose transmit data pointer table was just
completed. At that point, the host sequences to step 214 to exit.

C. General

The system enhances processing by massively parallel processors of problems whose
communications follow fixed patterns. In particular, the system eliminates the necessity of generating
and providing addresses in messages transferred among the processing nodes; the tables of transmit
data pointers effectively identify the paths for each message to traverse during subsequent message
transfer cycles of a message transfer operation. Thus, the messages effectively require fewer bits, since
they do not need to include the addresses and thus can sequence through the routing nodes 15 (Fig. 2)
faster. In addition, the circuitry required to interpret the address bits, as described in the
aforementioned Hillis patents, need not be used in the message transfer, which can also provide faster
message transfer.

As noted above, the system is most useful in connection with processing, on the massively
parallel processors described in the aforementioned Hillis patents of problems whose communications
follow irregular, but fixed patterns. In the massively-parallel processors described in the Hillis patents,
a regular, nearest neighbor communication mechanism is provided which can provide communications
in a regular pattern, identified as the "NEWS" communications arrangement. In such processors, the
system may not be necessary in connection with problems in which communications follow regular
patterns. The system may, however, be used in connection with such processors for regular
communications patterns, and will find great utility in connection with such problems in connection
with processors that do not have such a communications mechanism.

In addition, while the system has been described as including a computer including a
massively-parallel processor array, it will be appreciated that the system may instead include a suitably-
programmed serial processor or a multiple-processor computer operating either in parallel or in a non-

parallel multi-processor mode of operation.

(s

WO 91/20024 PCT/US91/04290

27-
The foregoing description has been limited to a specific embodiment of this invention. It will
be apparent, however, that variations and modifications may be made to the invention, with the
attainment of some or all of the advantages of the invention. Therefore, it is the object of the

appended claims to cover all such variations and modifications as come within the true spirit and scope

of the invention.

WO 91/20024 PCT/US91/04290

28

Claims

1. A system for generating communication pattern information for facilitating communication among
processing nodes interconnected over communications links in a predetermined pattern to form a
massively parallel processor, the system comprising:

A. a mapping element for mapping problem vertices from a problem graph onto processing
nodes of a massively-parallel processor in relation to a communication cost function representing
delays associated with communicating among processing nodes to which the respective problem
vertices have been mapped; and

B. a communication pattern information generating element for generating communication
pattern information in connection with problem vertices mapped onto processing nodes, for use in
directing message transfers among processing nodes to facilitate transfers of messages among the

processing nodes over the communications links as defined by the problem graph.

2. A system as defined in claim 1 in which said mapping element comprises:

A. an initial mapping generator for generating an initial current mapping in which said
problem vertices are selectively assigned to said processing nodes;

B. a prospective perturbation generator for generating prospective perturbations in response
to the current mapping, each prospective perturbation comprising a prospective reassignment of a
problem vertex to another of said processing nodes;

C. a perturbation selector for selecting prospective perturbations generated by said prospective
perturbation generator in response to a change in the communication cost function related thereto; and

D. a control element for controlling operations by said prospective perturbation generator and

the perturbation selector in a plurality of iterations.

3. A system as defined in claim 2 in which said mapping element further comprises a perturbation
mapping generator controlled by the control element to generate a new current mapping in response to

prospective perturbations generated by said prospective perturbation generator that are selected by

said perturbation selector.

4. A system as defined in claim 2 in which each prospective perturbation comprises a prospective
reassignment of a problem vertex from one of said processing nodes to another of said processing

nodes connected directly thereto by a communications link.

5. A system as defined in claim 2 in which:
A. said control element initially generates a maximum occupancy value,
B. said initial mapping generator assigns ghost vertices to said processing nodes, such that the

number of problem vertices and ghost vertices assigned to a processing node corresponds to said

maximum occupancy value.

6. A system as defined in claim 2 in which said perturbation selector includes a plurality of rendezvous

nodes each associated with predetermined ones of said processing nodes, each rendezvous node

WO 91/20024 , PCT/US91/04290

-29-
selecting a prospective perturbation generated by said prospective perturbation generator for problem
vertices assigned to its associated processing nodes, each rendezvous node determining a change in the
communication cost function related thereto related to the prospective perturbation and selectively

enabling the prospective perturbation in response thereto.

7. A system as defined in claim 6 in which each prospective perturbation identifies a prospective
reassignment of a problem vertex from one processing node over one communications link to an
adjacent communications link and in which:

A. said control element initially generates a maximum occupancy value,

B. said initial mapping generator assigns ghost vertices to said processing nodes, such that the
number of problem vertices and ghost vertices assigned to a processing node corresponds to said
maximum occupancy value;

C. said prospective perturbation generator also generates a prospective perturbed mapping in
relation to said ghost vertices; and

D. each rendezvous node is associated with two processing nodes that are interconnected by a
communications link, each rendezvous node selecting the same number of prospective perturbations
from its associated processing nodes to maintain the number of problem vertices and ghost vertices

assigned to each processing node corresponding to the maximum occupancy value.

8. A system as defined in claim 7 in which each rendezvous node selects one prospective perturbation

from each of its associated processing nodes.

9. A system as defined in claim 7 in which each rendezvous node includes:

A. a prospective perturbation selector for selecting a paif of prospective perturbations, the pair
comprising a prospective perturbation from each of its associated processing nodes;

B. a communication cost change element for determining a communication cost change value

in response to the pair of prospective perturbations selected by the prospective perturbation selector.

10. A system as defined in claim 9 in which said control element generates a threshold value, and said
rendezvous node further includes a comparator for comparing said communication cost change value

generated by the communication cost change element to said threshold value and for enabling the

prospective perturbations in response thereto.

11. A system as defined in claim 10 in which the control element generates a new threshold value for

each iteration.

12. A system as defined in claim 1 in which said mapping element comprises:
A. a massively-parallel processor including a plurality of processing nodes interconnected by
communications links in a predetermined pattern;
B. a mapping element control portion comprising:
1. an initial mapping generator for generating an initial current mapping in which said problem

vertices are selectively assigned to said processing nodes, said initial mapping generator generating

WO 91/20024 PCT/US91/04290

-30-
problem vertex tokens representing said problem vertices and enabling each problem vertex token to
be loaded into its assigned processing node;

ii. a prospective perturbation generator for enabling said processing nodes to generate prospective
perturbations in response to the current mapping, each prospective perturbation comprising a
prospective reassignment of a problem vertex token to another of said processing nodes;

iii. a perturbation selector for enabling said processing nodes to select prospective perturbations
generated during processing in response to said prospective perturbation generator, in further response
to a change in the communication cost function related thereto; and

iv. an iteration control element for controlling processing in response to the prospective

perturbation generator and the perturbation selector in a plurality of iterations.

13. A system as defined in claim 12 in which said mapping element control portion further comprises a
perturbation mapping generator controlled by the iteration control element for enabling the processing
nodes to reassign the problem vertices of selected prospective perturbations therebetween over the

interconnecting communications link to generate a new current mapping for use during processing of a

subsequent iteration.

14. A system as defined in claim 12 in which, during processing in response to said perturbation
sclector, a plurality of processing nodes are enabled to operate as rendezvous nodes, each rendezvous
node being associated with predetermined ones of said processing nodes, rendezvous node selecting a
prospective perturbation generated during processing in response to the prospective perturbation
generator for problem vertices assigned to its associated processing nodes, each rendezvous node
determining a change in the communication cost function related thereto related to the prospective

perturbation and selectively enabling the prospective perturbation in response thereto.

15. A system as defined in claim 14 in which each prospective perturbation identifies a prospective
reassignment of a problem vertex from one processing node over one communications link to an
adjacent communications link and in which:

A. said mapping element control portion initially generates a maximum occupancy value,

B. said initial mapping generator further generates ghost vertex tokens and enables them to be
loaded into said processing nodes, such that the number of problem vertex tokens and ghost vertex
tokens loaded into a processing node corresponds to said maximum occupancy value;

C. said prospective perturbation generator also enables said processing nodes to generate a
prospective perturbed mapping in relation to said ghost vertices; and

D. each rendezvous node is associated with two processing nodes that are interconnected by a
communications link, each rendezvous node selecting the same number of prospective perturbations
from its associated processing nodes to maintain the number of problem vertices and ghost vertices

assigned to each processing node corresponding to the maximum occupancy value.

16. A system as defined in claim 15 in which each rendezvous node selects one prospective perturbation

from each of its associated processing nodes.

WO 91/20024 PCT/US91/04290

31-
17. A system as defined in claim 15 in which in which the rendezvous nodes operate in response to:

A. a prospective perturbation enabling portion for enabling the processing nodes selected to
be rendezvous nodes to select a pair of prospective perturbations, the pair comprising a prospective
perturbation from each of its associated processing nodes;

B. a communication cost change enabling portion for enabling the processing nodes selected

to be rendezvous nodes to determine a communication cost change value in response to the pair of

selected prospective perturbations.

18. A system as defined in claim 17 in which said mapping element control portion generates a
threshold value, and said rendezvous nodes further operate in response to a comparator enabling
portion for enabling the processing nodes selected to be rendezvous nodes to compare the
communication cost change value generated by the communication cost change element to the

threshold value and for enabling the prospective perturbations in response thereto.

19. A system as defined in claim 18 in which the mapping element control portion generates a new

threshold value for each iteration.

20. A system as defined in claim 1 in which the communication pattern information generating element
comprises:
A. a message/communications link correspondence element for generating correspondences
to facilitate the transfer of a message over a selected communications link at each processing node; and
B. a communication pattern control element for controlling said message/communications
link correspondence element in a series of communications link iterations, during each iteration
enabling the generation of correspondences for one of a plurality of communications links for a

message transfer cycle.

21. A system as defined in claim 20 in which said message/ communications link correspondence
element includes, for each processing node:

A. a message list including a plurality of entries each associated with a message available for
transfer by the processing node during the message transfer cycle;

B. a priority establishment element for generating a priority value associated with each entry in
said message list; and

C. a communications link assignment element for using the priority values generated by said
priority establishment element to associate entries in said message list with communications links
connected to said processing node and for generating said communication pattern information in

response to the associations.

22. A system as defined in claim 21 in which, at each processing node, each message can be t-ansmitted
over selected ones of the communications links connected thereto, said priority establishment element
generates a priority value for each entry and communications link in relation to (i) the number of
communications links the entry’s message can be transmitted over and (ii) the number of messages that

can be transmitted through the communications link.

WO 91/20024 PCT/US91/04290

-30-
23. A system as defined in claim 22 in which the priority value generated by the priority establishment
element corresponds to the sum of (i) the number of communications links the entry’s message can be
transmitted over and (ii) the number of messages that can be transmitted through the communications
link, the communications link assignment element generating communication pattern information for

associations of entries and communications links with low priority values.

24. A system as defined in claim 20 in which said communication pattern control element further
controls said message/communications link correspondence element in a series of message transfer
cycle iterations, each including a plurality of communications link iterations, thereby enabling

generation of correspondences for a plurality of message transfer cycles.

25. A system as defined in claim 24 in which said message/communications link correspondence
element includes, for each processing node:

A. a message list including a plurality of entries each associated with a message available for
transfer by the processing node during the message transfer cycle, including messages determined to be
transferred during a previous message transfer cycle;

B. a priority establishment element for generating a priority value associated with each entry in
said message list; and

C. a communications link assignment element for using the priority values generated by said
priority establishment element to associate entries in said message list with communications links
connected to said processing node and for generating said communication pattern information in

response to the associations.

26. A system as defined in claim 25 in which, at each processing node, each message can be transmitted

over selected ones of the communications links connected thereto, said priority establishment element
generates a priority value for each entry and communications link in relation to (i) the number of

communications links the entry’s message can be transmitted over and (ii) the number of messages that

can be transmitted through the communications link.

27. A system as defined in claim 26 in which the priority value generated by the priority establishment
element corresponds to the sum of (i) the number of communications links the entry’s message can be
transmitted over and (ii) the number of messages that can be transmitted through the communications
link, the communications link assignment element generating communication pattern information for

associations of entries and communications links with low priority values.

28. A system as defined in claim 1 in which the communication pattern information generating element
comprises:
A. a massively-parallel processor including a plurality of processing nodes interconnected by
communications links in a predetermined pattern;
B. a communication pattern control portion comprising;
i. a message/communications link correspondence element for enabling said processing nodes to

generate correspondences to facilitate the transfer of a message over a selected communications link at

each processing node; and

(»

WO 91/20024 PCT/US91/04290

-33-
ii. a communication pattern control element for enabling said processing nodes to control said
processing in response to said message/communications link correspondence element in a series of
communications link iterations, during each iteration enabling the generation of correspondences for

one of a plurality of communications links for a message transfer cycle.

29. A system as defined in claim 28 in which said message,/communications link correspondence
element includes:

A. a message list generating portion for enabling said processing nodes to generate a message
list including a plurality of entries each associated with a message available for transfer by the
processing node during the message transfer cycle;

B. a priority establishment element for enabling said processing nodes to generate a priority
value associated with each entry in said message list; and

C. a communications link assignment element enabling said processing nodes to use the
priority values generated by said priority establishment element to associate entries in said message list
with communications links connected to said processing node and to generate said communication

pattern information in response to the associations.

30. A system as defined in claim 29 in which, at each processing node, each message can be transmitted
over selected ones of the communications links connected thereto, said priority establishment element
enabling said processing nodes to generate a priority value for each entry and communications link in
relation to (i) the number of communications links the entry’s message can be transmitted over and (ii)

the number of messages that can be transmitted through the communications link.

31. A system as defined in claim 30 in which the priority value generated in response to processing
controlled by the priority establishment element corresponds to the sum of (i) the number of
communications links the entry’s message can be transmitted over and (ii) the number of messages that
can be transmitted through the communications link, the communications link assignment clement
enabling said processing node to generate communication pattern information for associations of

entries and communications links with low priority values.

32. A system as defined in claim 28 in which processing in response to said communication pattern
control element further controls enables said processing nodes to process said
message,/communications link correspondence element in a series of message transfer cycle iterations,
each including a plurality of communications link iterations, thereby enabling generation of

correspondences for a plurality of message transfer cycles.

33. A system as defined in claim 32 in which said message/communications link correspondence
element includes:

A. a message list generating portion for enabling said processing nodes to generate a message
list including a plurality of entries each including a message token associated with a message available
for transfer by the processing node during the message transfer cycle, including message tokens

associated with messages determined to be transferred during a previous message transfer cycle;

WO 91/20024 PCT/US91/04290

-34-
B. a priority establishment element for generating a priority value associated with each entry in
said message list; and
C. a communications link assignment element for using the priority values generated by said
priority establishment element to associate entries in said message list with communications links
connected to said processing node and for generating said communication pattern information in

response to the associations.

34. A system as defined in claim 33 in which, at each processing node, each message can be transmitted
over selected ones of the communications links connected thereto, said priority establishment element
enabling said processing nodes to generate a priority value for each entry and communications link in
relation to (i) the number of communications links the entry’s message can be transmitted over and (ii)

the number of messages that can be transmitted through the communications link.

35. A system as defined in claim 34 in which the priority value generated in response to processing
controlled by the priority establishment element corresponds to the sum of (i) the number of
communications links the entry’s message can be transmitted over and (ii) the number of messages that
can be transmitted through the communications link, the communications link assignment element
enabling said processing node to generate communication pattern information for associations of

entries and communications links with low priority values.

36. A system as defined in claim 33 in which the message/communications link correspondence
element further includes a message token transfer element for enabling the processing nodes to
transfer of message tokens over the communications links associated therewith after associations have

been generated for a message transfer cycle.

37. A system as defined in claim 36 in which each message token has a destination pointer, said

message token transfer element enabling the processing nodes to adjust the values of the pointers in

relation to the communications link over which it transfers the message token.

38. A system for mapping problem vertices from a problem graph onto processing nodes of a
massively-parallel processor in relation to a communication cost function representing delays
associated with communicating among processing nodes mapped to the respective problem vertices,
the system comprising;

A. an initial mapping generator for generating an initial current mapping in which said
problem vertices are selectively assigned to said processing nodes;

B. a prospective perturbation generator for generating prospective perturbations in response
to the current mapping, each prospective perturbation comprising a prospective reassignment of a
problem vertex to another of said processing nodes;

C. a perturbation selector for selecting prospective perturbations generated by said prospective
perturbation generator in response to a change in the communication cost function related thereto; and

D. a control element for controlling operations by said prospective perturbation generator and

the perturbation selector in a plurality of iterations.

WO 91/20024 ' PCT/US91/04290

-35-
39. A system as defined in claim 38 in which said mapping element further comprises a perturbation
mapping generator controlled by the control element to generate a new current mapping in response to
prospective perturbations generated by said prospective perturbation generator that are selected by

said perturbation selector.

40. A system as defined in claim 38 in which each prospective perturbation comprises a prospective
reassignment of a problem vertex from one of said processing nodes to another of said processing

nodes connected directly thereto by a communications link.

41. A system as defined in claim 38 in which:
A. said control element initially generates a maximum occupancy value,
B. said initial mapping generator assigns ghost vertices to said processing nodes, such that the

number of problem vertices and ghost vertices assigned to a processing node corresponds to said

maximum occupancy value.

42. A system as defined in claim 38 in which said perturbation selector includes a plurality of
rendezvous nodes each associated with predetermined ones of said processing nodes, each rendezvous
node selecting a prospective perturbation generated by said prospective perturbation generator for
problem vertices assigned to its associated processing nodes, each rendezvous node determining a
change in the communication cost function related thereto related to the prospective perturbation and

selectively enabling the prospective perturbation in response thereto.

43. A system as defined in claim 42 in which each prospective perturbation identifies a prospective
reassignment of a problem vertex from one processing node over one communications link to an
adjacent communications link and in which:

A. said control element initially generates a maximum occupancy value,

B. said initial mapping generator assigns ghost vertices to said processing nodes, such that the
number of problem vertices and ghost vertices assigned to a processing node corresponds to said
maximum occupancy value;

C. said prospective perturbation generator also generates a prospective perturbed mapping in
relation to said ghost vertices; and

D. each rendezvous node is associated with two processing nodes that are interconnected by a
communications link, each rendezvous node selecting the same number of prospective perturbations
from its associated processing nodes to maintain the number of problem vertices and ghost vertices

assigned to each processing node corresponding to the maximum occupancy value.

44. A system as defined in claim 43 in which each rendezvous node selects one prospective perturbation

from each of its associated processing nodes.

45. A system as defined in claim 43 in which each rendezvous node includes:
A. a prospective perturbation selector for selecting a pair of prospective perturbations, the pair

comprising a prospective perturbation from each of its associated processing nodes;

WO 91/20024 PCT/US91/04290

-36-
B. a communication cost change element for determining a communication cost change value

in response to the pair of prospective perturbations selected by the prospective perturbation selector.

46. A system as defined in claim 45 in which said control element generates a threshold value, and said
rendezvous node further includes a comparator for comparing said communication cost change value
generated by the communication cost change element to said threshold value and for enabling the

prospective perturbations in response thereto.

47. A system as defined in claim 46 in which the control element generates a new threshold value for

each iteration.

48. A system for mapping problem vertices from a problem graph onto processing nodes of a
massively-parallel processor in relation to a communication cost function representing delays
associated with communicating among processing nodes mapped to the respective problem vertices,
the system comprising;

A. a massively-parallel processor including a plurality of processing nodes interconnected by
communications links in a predetermined pattern;

B. a mapping element control portion comprising:

i. an initial mapping generator for generating an initial current mapping in which said problem
vertices are selectively assigned to said processing nodes, said initial mapping generator generating
problem vertex tokens representing said problem vertices and enabling each problem vertex token to
be loaded into its assigned processing node;

ii. a prospective perturbation generator for enabling said processing nodes to generate prospective
perturbations in response to the current mapping, each prospective perturbation comprising a
prospective reassignment of a problem vertex to another of said processing nodes;

iii. a perturbation selector for enabling said processing nodes to select prospective perturbations
generated during processing in response to said prospective perturbation generator, in further response
to a change in the communication cost function related thereto; and

iv. an iteration control element for controlling processing in response to the prospective

perturbation generator and the perturbation selector in a plurality of iterations.

49. A system as defined in claim 48 in which said mapping element control portion further comprises a
perturbation mapping generator controlled by the iteration control element for enabling the processing
nodes to reassign the problem vertices of selected prospective perturbations therebetween over the

interconnecting communications link to generate a new current mapping for use during processing of a

subsequent iteration.

50. A system as defined in claim 48 in which, during processing in response to said perturbation
selector, a plurality of processing nodes are enabled to operate as rendezvous nodes, each rendezvous
node being associated with predetermined ones of said processing nodes, rendezvous node selecting a

prospective perturbation generated during processing in response to the prospective perturbation

WO 91/20024 PCT/US91/04290

37-
generator for problem vertices assigned to its associated processing nodes, each rendezvous node
determining a change in the communication cost function related thereto related to the prospective

perturbation and selectively enabling the prospective perturbation in response thereto.

51. A system as defined in claim 50 in which each prospective perturbation identifies a prospective
reassignment of a problem vertex from one processing node over one communications link to an
adjacent communications link and in which:

A. said mapping element control portion initially generates a maximum occupancy value,

B. said initial mapping generator further generates ghost vertex tokens and enables them to be
loaded into said processing nodes, such that the number of problem vertex tokens and ghost vertex
tokens loaded into a processing node corresponds to said maximum occupancy value;

C. said prospective perturbation generator also enables said processing nodes to generate a
prospective perturbed mapping in relation to said ghost vertices; and

D. each rendezvous node is associated with two processing nodes that are interconnected by a
communications link, each rendezvous node selecting the same number of prospective perturbations
from its associated processing nodes to maintain the number of problem vertices and ghost vertices

assigned to each processing node corresponding to the maximum occupancy value.

52. A system as defined in claim 51 in which each rendezvous node selects one prospective perturbation

from each of its associated processing nodes.

53. A system as defined in claim 51 in which in which the rendezvous nodes operate in response to:

A. a prospective perturbation enabling portion for enabling the processing nodes selected to
be rendezvous nodes to select a pair of prospective perturbations, the pair comprising a prospective
perturbation from each of its associated processing nodes;

B. a communication cost change enabling portion for enabling the processing nodes selected

to be rendezvous nodes to determine a communication cost change value in response to the pair of

selected prospective perturbations.

54. A system as defined in claim 53 in which said mapping element control portion generates a
threshold value, and said rendezvous nodes further operate in response to a comparator enabling
portion for enabling the processing nodes selected to be rendezvous nodes to compare the
communication cost change value generated by the communication cost change element to the

threshold value and for enabling the prospective perturbations in response thereto.

55. A system as defined in claim 54 in which the mapping element control portion gencrates a new

threshold value for each iteration.

56. A system for generating communication pattern information to direct message transfers among
processing nodes among processing nodes interconnected over communications links in a
predetermined pattern to form a massively parallel processor, to in turn facilitate communication
among problem vertices mapped onto the processing nodes in a pattern as defined by a problem graph,

the system comprising:

WO 91/20024 PCT/US91/04290

-38-
A. a message/communications link correspondence element for generating correspondences
to facilitate the transfer of a message over a selected communications link at each processing node; and
B. a communication pattern control element for controlling said message/communications
link correspondence element in a series of communications link iterations, during each iteration
enabling the generation of correspondences for one of a plurality of communications links for a

message transfer cycle.

57. A system as defined in claim 56 in which said message/communications link correspondence
element includes, for each processing node:

A. a message list including a plurality of entries each associated with a message available for
transfer by the processing node during the message transfer cycle;

B. a priority establishment element for generating a priority value associated with each entry in
said message list; and

- C. a communications link assignment element for using the priority values generated by said

priority establishment element to associate entries in said message list with communications links
connected to said processing node and for generating said communication pattern information in

response to the associations.

58. A system as defined in claim 57 in which, at each processing node, each message can be transmitted
over selected ones of the communications links connected thereto, said priority establishment element
generates a priority value for each entry and communications link in relation to (i) the number of
communications links the entry’s message can be transmitted over and (ii) the number of messages that

can be transmitted through the communications link.

59. A system as defined in claim 58 in which the priority value generated by the priority establishment
element corresponds to the sum of (i) the number of communications links the entry’s message can be
transmitted over and (ii) the number of messages that can be transmitted through the communications
link, the communications link assignment element generating communication pattern information for

associations of entries and communications links with low priority values.

60. A system as defined in claim 56 in which said communication pattern control element further
controls said message/communications link correspondence element in a series of message transfer
cycle iterations, each including a plurality of communications link iterations, thereby enabling

generation of correspondences for a plurality of message transfer cycles.

61. A system as defined in claim 60 in which said message/communications link correspondence
element includes, for each processing node:

A. a message list including a plurality of entries each associated with a message available for
transfer by the processing node during the message transfer cycle, including messages determined to be
transferred during a previous message transfer cycle;

B. a priority establishment element for generating a priority value associated with each entry in

said message list; and

]

WO 91/20024 PCT/US91/04290

-39-

C. a communications link assignment element for using the priority values generated by said
priority establishment element to associate entries in said message list with communications links
connected to said processing node and for generating said communication pattern information in

response to the associations.

62. A system as defined in claim 61 in which, at each processing node, each message can be transmitted
over selected ones of the communications links connected thereto, said priority establishment element
generates a priority value for each entry and communications link in relation to (i) the number of
communications links the entry’s message can be transmitted over and (ii) the number of messages that

can be transmitted through the communications link.

63. A system as defined in claim 62 in which the priority value generated by the priority establishment
element corresponds to the sum of (i) the number of communications links the entry’s message can be
transmitted over and (ii) the number of messages that can be transmitted through the communications
link, the communications link assignment element generating communication pattern information for

associations of entries and communications links with low priority values.

64. A system for generating communication pattern information to direct message transfers among
processing nodes among processing nodes interconnected over communications links in a
predetermined pattern to form a massively parallel processor, to in turn facilitate communication
among problem vertices mapped onto the processing nodes in a pattern as defined by a problem graph,
the system comprising:

A. a massively-parallel processor including a plurality of processing nodes interconnected by
communications links in a predetermined pattern; |

B. a communication pattern control portion comprising:

i. a2 message/communications link correspondence element for enabling said processing nodes to
generate correspondences to facilitate the transfer of a message over a selected communications link at
each processing node; and

ii. a communication pattern control element for enabling said processing nodes to control said
processing in response to said message/communications link correspondence element in a series of
communications link iterations, during each iteration enabling the generation of correspondences for

one of a plurality of communications links for a message transfer cycle.

65. A system as defined in claim 64 in which said message/communications link correspondence
element includes:

A. a message list generating portion for enabling said processing nodes to generate a message
list including a plurality of entries each associated with a message available for transfer by the
processing node during the message transfer cycle;

B. a priority establishment element for enabling said processing nodes to generate a priority
value associated with each entry in said message list; and

C. a communications link assignment element enabling said processing nodes to use the

priority values generated by said priority establishment element to associate entries in said message list

WO 91/20024 PCT/US91/04290

-40-
with communications links connected to said processing node and to generate said communication

pattern information in response to the associations.

66. A system as defined in claim 65 in which, at each processing node, each message can be transmitted
over selected ones of the communications links connected thereto, said priority establishment element
enabling said processing nodes to generate a priority value for each entry and communications link in
relation to (i) the number of communications links the entry’s message can be transmitted over and (i)

the number of messages that can be transmitted through the communications link.

67. A system as defined in claim 66 in which the priority value generated in response to processing
controlled by the priority establishment element corresponds to the sum of (i) the number of
communications links the entry’s message can be transmitted over and (ii) the number of messages that
can be transmitted through the communications link, the communications link assignment element
enabling said processing node to generate communication pattern information for associations of

entries and communications links with low priority values.

68. A system as defined in claim 64 in which processing in response to said communication pattern
control element further controls enables said processing nodes to process said
message/communications link correspondence element in a series of message transfer cycle iterations,
each including a plurality of communications link iterations, thereby enabling generation of

correspondences for a plurality of message transfer cycles.

69. A system as defined in claim 68 in which said message/communications link correspondence
element includes:

A. a message list generating portion for enabling said processing nodes to generate a message
list including a plurality of entries each including a message token associated with a message available
for transfer by the processing node during the message transfer cycle, including message tokens
associated with messages determined to be transferred during a previous message transfer cycle;

B. a priority establishment element for generating a priority value associated with each entry in
said message list; and

C. a communications link assignment element for using the priority values generated by said
priority establishment element to associate entries in said message list with communications links
connected to said processing node and for generating said communication pattern information in

response to the associations.

70. A system as defined in claim 69 in which, at each processing node, each message can be transmitted
over selected ones of the communications links connected thereto, said priority establishment element
enabling said processing nodes to generate a priority value for each entry and communications link in
relation to (i) the number of communications links the entry’s message can be transmitted over and (ii)

the number of messages that can be transmitted through the communications link.

71. A system as defined in claim 70 in which the priority value generated in response to processing

controlled by the priority establishment element corresponds to the sum of (i) the number of

WO 91/20024 PCT/US91/04290

-41-
communications links the entry’s message can be transmitted over and (ii) the number of messages that
can be transmitted through the communications link, the communications link assignment element
enabling said processing node to generate communication pattern information for associations of

entries and communications links with low priority values.

72. A system as defined in claim 69 in which the message/ communications link correspondence
element further includes a message token transfer element for enabling the processing nodes to

transfer of message tokens over the communications links associated therewith after associations have

been generated for a message transfer cycle.

73. A system as defined in claim 72 in which each message token has a destination pointer, said
message token transfer element enabling the processing nodes to adjust the values of the pointers in

relation to the communications link over which it transfers the message token.

WO 91/20024 PCT/US91/04290

1/16
o
° e o . -~
/ m
.
o . ° \
(’ ° ° ° . \
\ — o
e N
QY

21(n)

FIG. 1A

SUBSTITUTE SHEET

PCT/US91/04290

WO 91/20024

2/16

2 'Old | 0dwod | [— SHav WIN ON
, AHVINOD vagav X . Ot IAON
99 & ONISS3O0Hd "
(1
o) 13s440 JLLS Hiv =
2 |_ 13540 XV [3sval - ©° e JME T <
|l 1 Q T Q o i
2\l3||| " MBERIE SR MIE
alla - H_J O] wanpu_ E= fm_ & av ||=
<||< 19 L ‘ O_ m o« > = - C. = E |
! ”_In_ o T x
05 ‘ =| ves T -0 ___ Of—i v_ 3
XNV o0Hd 7l
w | “aag | HISNIdS u _ o L
VSS Hev o Je! ™
V' I)
el 1 s aelimsl [l
HG O
I e =a) %S |3
A T 7sTNaoN | (osha z by
) (O'1E)NIdV _ HISOJSNVHL | 5y o, 1y I
S5 A& 150 7
16 j 208d v
THLO WaN & O uas HISNI dS
1HIOH3ISOdX |, |-J_438 -
THLO HIH & A= bi \ 5 HOSS3O0Hd
TH10 HASOdX &&= m\ lllllw. o -
HISNI dV ﬂ Ge = O_J - % m:d.._ % w _...L._.
HI1SNI dS &——] 1041NGD Lr._..dl_ o |2—= 08 = o'
ouwow [LLSCH T |0 = o T
sHav Wan o &——j ‘ i 7 77 H10 Hld

ADRS

SUBSTITUTE SHEET

WO 91/20024

PCT/US91/04290

3/16

———

NO

101

102

SET MEM ADRS TO ADRS OF NEXT SLICE OF XMIT
DATA PTRS IN MEMORY AND TRANSFER TO NEXT
SLOT OF AN ADRS TRANSPOSER

HAS ADRS TRANSPOSER BEEN FILLED ?
.| YES

NO

103

104

ENABLE NEXT XMIT DATA PTR TO ADDRESS MEMORY
AND ENABLE CONTENTS OF ADDRESSED MEMORY
LOCATION TO BE COUPLED INTO NEXT SLOT OF AN
XMIT TRANSPOSER

HAS XMIT TRANSPOSER BEEN FILLED ?
—«| YES

NO

105

106

107

ENABLE XMIT TRANSPOSER TO COUPLE TRANSPOSE
WORD ONTO DATA BUS ‘

ENABLE ROUTERS TO TRANSMIT RESPECTIVE BITS ON
DATA BUS LINES D(27:16) AND D(11:0) ON ROUTER
OUTPUT LINES HC_ O_ H (11:0) AND HC_O_L(11:0),
RESPECTIVELY

v
HAVE ALL TRANSPOSE WORDS BEEN TRANSMITTED ?

YES
'

108 EXIT

FIG. 3A
TRANSMIT

SUBSTITUTE SHEET

WO 91/20024

111

PCT/US91/04290

4/16

|

INITIALIZE CONTENTS OF RECEIVE WRITE

—

112

113

114

115

POINTER REGISTER l

ENABLE ROUTERS TO RECEIVE BITS ON ROUTER
INPUT LINES HC_ I _H(11:0) AND HC_I _L(11:0) AND
COUPLE THEM ONTO DATA BUS LINES D(27:16) AND

D(11:0), RESPECTIVELY

ENABLE RECEIVE TRANSPOSER TO RECEIVE BITS ON
DATA BUS LINES D(31:0) AND LOAD THEM INTO SLOT
OF RECEIVE TRANSPOSER IDENTIFIED BY CONTENTS
OF RECEIVE WRITE POINTER REGISTER

YES

HAS THE TRANSMIT TRANSPOSER
BEEN FILLED ?
NO

INCREMENT CONTENTS OF RECEIVE WRITE
POINTER REGISTER

LN

116

117

SET MEM ADRS TO ADDRESS OF NEXT RECEIVE DATA
SLICE AND TRANSFER NEXT TRANSPOSE WORD FROM
RECEIVE TRANSPOSER THERE TO

HAVE ALL TRANSPOSE WORDS BEEN TRANSFERRED
FROM RECEIVE TRANSPOSER ?
YES

120 EXIT

FIG. 3B
RECEIVE

SYBSTITUTE SHEET

WO 91/20024

XMIT WRT w
PTR [>-25 S
w
<
=
o
SLOT O D(O)
31 XMTDATASLICEO O[—=
500 | _ _ o - e - —
D(1)
31 XMIT DATA SLICE 1 opr—
o e e o o —t ——— |
—\ |
_____ s apupp—
D(11)
31 XMITDATASLICE 11 O[—*
|
___________ i
I
—V |
—————————— D(16)
31 XMITDATASLICE16 =~ Of—=
—— — —— ——— == 7 b1y
31 XMITDATASLICE17 O[—~*
s
——————————— D(27)
31 XMITDATASLCE2? O~
____________ I
|
+ !
SLOT81 [~— — — —— — — 7] D(31)
S
50(31)
FIG. 4A
TRANSMIT
TRANSPOSER

5/16

PCT/US91/04290

SUBSTITUTE SHEET

[HC_O_L(O)]

[HC_O_L(1)]

[HC_O_L(11)]

[HC_O_H(O)]

[HC_O_H(17)]

[HC_O_H(27)]

WO 91/20024 PCT/US91/04290

6/16

RCV WRT

/ PTR N\— 28

SLOT 31
(o2
2
«Q
SLOT O
(*2]
Q
o

D(27) [HC_I_H(27)]

D(16) [HC_I _H(16)]

31 XMIT DATA SLICE o le——o0
R
{ —
! i
I !
D(11) [HC_I_L(11)]
31 XMIT DATA SLICE 0 ——
‘- !
' I
? .
| I
I A !
D) [HC_ I_L(O)]
31 XMIT DATA SLICE 0 fo—
@)
D)
a\v
L
->- (1N
T o a FIG. 4B
RECEIVE
TRANSPOSER

SUBSTITUTE SHEET

WO 91/20024 PCT/US91/04290

7/16
150 HOST GENERATES A MAX OCCUPANCY VALUE AND
AN INITIAL THRESHOLD VALUE

151 HOST GENERATES A RANDOM ASSIGNMENT OF
PROBLEM VERTICES TO PROCESSING NODES, WITH
MAXIMUM NUMBER OF PROBLEM VERTICES PER
PROCESSING NODE CORRESPONDING TO MAX

OCCUPANCY VALUE

152 HOST DETERMINES WHETHER ALL PROCESSING g
NODES HAVE NUMBER OF ASSIGNED PROBLEM ——
VERTICES EQUAL TO MAX OCCUPANCY VALUE

NO

153 HOST ASSIGNS GHOST VERTICES TO THOSE
PROCESSING NODES FOR WHICH THE NUMBER OF
- ASSIGNED PROBLEM VERTICES IS LESS THAN THE
MAX OCCUPANCY VALUE, SO THAT THE NUMBER OF
PROBLEM VERTICES AND GHOST VERTICES EQUALS
THE MAX OCCUPANCY VALUE

154 HOST GENERATES TOKENS REPRESENTING PROBLEM
VERTICES AND GHOST VERTICES AND ENABLES THEM
TO BE LOADED INTO TOKEN LISTS IN PROCESSING
NODES '

155 HOST ASSIGNS SELECTED PROCESSING NODES AS
RENDEZVOUS NODES FOR COMMUNICATIONS LINKS
AMONG PROCESSING NODES

|
(A FiG.5B

FIG. 5A

WO 91/20024) PCT/US91/04290

8/16
FIG. 5A

156 HOST ENABLES PROCESSING NODES TO GENERATE
RANDOM COM LINK POINTER FOR EACH TOKEN
IDENTIFYING A PROSPECTIVE TOKEN TRANSFER

157 HOST ENABLES PROCESSING NODES TO DETERMINE,
FOR NEXT TOKEN IN TOKEN LIST, A COM COST
CHANGE VALUE IN RESPONSE TO PROSPECTIVE

TOKEN TRANSFER

v
160 HOST ENABLES PROCESSING NODES TO GENERATE

MESSAGES FOR TRANSMISSION TO PROCESSING
NODES IDENTIFIED AS RENDEZVOUS NODES FOR
COMMUNICATION LINK ASSOCIATED WITH
PROSPECTIVE VERTEX REASSIGNMENT, MESSAGES
INCLUDING MESSAGE ID AND COM COST CHANGE

VALUE

161 HOST ENABLES PROCESSING NODES, OPERATING AS
RENDEZVOUS NODES TO DETERMINE WHETHERIT -
RECEIVED MESSAGES FOR PROSPECTIVE VERTEX
REASSIGNMENTS FROM PROCESSING NODES AT
BOTH ENDS OF ASSOCIATED COMMUNICATIONS LINKS

|

FIG. 5C

FIG. 5B

WO 91/20024

162

163

164

165

166

PCT/US91/04290

9/16

FIG. 5B

HOST ENABLES PROCESSING NODES, OPERATING AS
RENDEZVOUS NODES, THAT RECEIVED NECESSARY
MESSAGES TO SELECT ONE MESSAGE FROM
PROCESSING NODE AT EACH END OF
COMMUNICATIONS LINK

HOST ENABLES PROCE%SING NODES, OPERATING AS
RENDEZVOUS NODES, TO DETERMINE A
CONSOLIDATED COM COST CHANGE VALUE USING
SELECTED MESSAGES :

HOST ENABLES PROCESSING NODES, OPERATING AS
RENDEZVOUS NODES, TO GENERATE THRESHOLD
VALUES AND TO PERFORM A COMPARISON BETWEEN

~ THE RESPECTIVE THRESHOLD VALUES AND COM

COST CHANGE VALUES

HOST ENABLES PROCESSING NODES, OPERATING AS
RENDEZVOUS NODES, WHOSE CONSOLIDATED COM
COST CHANGE VALUES ARE LESS THAN THE
THRESHOLD VALUE, TO SET THEIR CONTEXT FLAGS

HOST ENABLES PROCESSING NODES, OPERATING AS
RENDEZVOUS NODES, WITH SET CONTEXT FLAGS TO
GENERATE VERTEX REASSIGNMENT ENABLE
MESSAGES FOR TRANSFER TO PROCESSING NODES
FROM WHICH THEY RECEIVED SELECTED
PROSPECTIVE VERTEX REASSIGNMENT MESSAGES

FIG. 5D

FIG. 5C

WO 91/20024 PCT/US91/04290

10/16
FIG. 5C

167 HOST ENABLES PROCESSING NODES, OPERATING AS
RENDEZVOUS NODES, WITH SET CONTEXT FLAGS, TO
TRANSMIT GENERATED VERTEX REASSIGNMENT
ENABLE MESSAGES AND CLEAR CONTEXT FLAGS

170 HOST CONTEMPORANEOQOUSLY ENABLES PROCESSING
NODES THAT RECEIVE VERTEX REASSIGNMENT
ENABLE MESSAGES TO SET CONTEXT FLAGS AND TO
IDENTIFY VERTICES RE-REASSIGNED

—@ FIG. 5D-2

FIG. 5D-2 (&)
'

175 HOST ENABLES PROCESSING NODES WITH SET
CONTEXT FLAGS TO ADJUST VALUE OF ASSIGNMENT
POINTER IN VIEW OF VALUE OF COM LINK POINTER TO
REFLECT REASSIGNMENT

176 HOST DETERMINES WHETHER THRESHOLD VALUE IS YES
BELOW A SELECTED TERMINATION CRITERION VALUE
NO

177 HOST ENABLES REDUCTION OF THRESHOLD VALUE

é‘\) FIG. 5B

1

180 EXIT

FIG. 5D-1

WO 91/20024

171

172

173

174

PCT/US91/04290

11/16
FIG. 5D-1

HOST ENABLES PROCESSING NODES WITH SET
CONTEXT FLAGS TO GENERATE MESSAGES FOR
TRANSMISSION TO PROCESSING NODES WITH
PROBLEM VERTEX TOKENS FOR UPSTREAM AND
DOWNSTREAM PROBLEM VERTICES, USING
IDENTIFIED PROBLEM VERTEX TOKEN, THE
MESSAGES IDENTIFYING THE TOKENS TO BE
TRANSFERRED AND THE COM LINK

HOST ENABLES PROCESSING NODES TO TRANSFER
GENERATED MESSAGES

HOST ENABLES RECEIVING PROCESSING NODES TO
UPDATE POINTERS OF THEIR PROBLEM VERTEX
TOKENS IN RESPONSE TO RECEIVED MESSAGES

HOST ENABLES PROCESSING NODES WITH SET
CONTEXT FLAGS TO UPDATE POINTERS OF
IDENTIFIED PROBLEM VERTEX TOKENS TO REFLECT

COMMUNICATIONS LINKS OVER WHICH THEY WILL BE
TRANSFERRED

FIG. 5D-1

FIG. 5D-2

WO 91/20024

200

PCT/US91/04290

12/16 :
HOST ENABLES PROBLEM VERTEX TOKENS TO BE
LOADED INTO PROCESSING NODES ACCORDING TO
PREVIOUSLY DETERMINED MAPPING

FiG.6c (D)

201

202

HOST ENABLES PROCESSING NODES TO ESTABLISH
MSG TOKEN LIST INCLUDING MSG TOKENS
IDENTIFYING ALL MESSAGES THAT MAY BE
TRANSMITTED

HOST ENABLES PROCESSING NODES TO ESTABLISH A
MSG TOKEN/COMMUNICATIONS LINK DEGREE TABLE
WITH DEGREE IDENTIFIERS FOR ALL
MESSAGE/COMMUNICATIONS LINKS PAIRINGS

—

203

204

205

HOST ENABLES PROCESSING NODES TO DETERMINE
ENTRY IN RESPECTIVE MSG
TOKEN/COMMUNICATIONS LINK DEGREE TABLE
WHICH CONTAINS LOWEST DEGREE VALUE

HOST ENABLES PROCESSING NODES TO ESTABLISH
ENTRY IN XPOSER SLOT PTR TABLE FOR MESSAGE
CYCLE TO RELATE SERIAL PROCESSOR ASSIGNED TO
PROBLEM VERTEX TO COMMUNICATIONS LINK

HOST ENABLES PROCESSING NODES TO DELETE

ENTRIES IN MSG TOKEN/COMMUNICATIONS LINK
DEGREE TABLE IN ROW AND COLUMN CONTAINING

THE SELECTED ENTRY

FIG. 6B

FIG. 6A

WO 91/20024 PCT/US91/04290

13/16

206 HOST ENABLES PROCESSING NODES TO DETERMINE

YES ____ WHETHER THEIR MSG TOKEN/COMMUNICATIONS LINK
DEGREE TABLES ARE ALL EMPTY
NO
(B) FIG.6A

210 HOST ENABLES PROCESSING NODES TO ADJUST DN
PTR VALUES OF MESSAGE TOKENS ASSIGNED TO
HC_O TERMINALS TO REFLECT TRANSFER DURING

MESSAGE CYCLE

211 HOST ENABLES PROCESSING NODES TO DELETE
MESSAGE TOKENS WHOSE DN PTR VALUES ARE ZERO

FROM MSG TOKEN LIST

ves 212 HOST ENABLES PROCESSING NODES TO DETERMINE
—— WHETHER THERE ARE ANY MESSAGE TOKENS WITH

NON-ZERO DN PTR VALUES
: NO
214 EXIT

FIG. 6C

FIG. 6B

WO 91/20024 PCT/US91/04290

14/16

FIG. 6B

213 HOST ENABLES PROCESSING NODES TO TRANSFER
MSG TOKENS ASSIGNED TO COMMUNICATIONS LINKS
OVER THE ASSIGNED COMMUNICATIONS LINKS TO
RECEIVING PROCESSING NODES

FIG. 6A

FIG. 6C

WO 91/20024 PCT/US91/04290

15/16

PROBLEM VERTEX
TOKEN 220

PROB VERTEX ID _[—234
ASSIGN PROCPTR 221
224~ NO. DOWN STRM PTRS

225(0)—" | VERTID O DNPTRO [-—227(0)
226(0) A DOWN
225(N)\ A— kPCZDgION
1

226(N)~] VERTIDN | DNPTRN [~227(N) |
230—]___ NO UP STRM PTRS

231(0)—" " VERTIDO | UPPTRO [N~-233(0) upP

o320 L——A— —]) PORTION
2N~ ey T ——— 223
~ _“{VERTIDM ; UPPTRM ~~233(M) |
232(M)
FIG. 7A
MSG TOKEN LIST 240

242~ NUM MSG TOKENS
241(0)—= | PROB DN PTR O f—— 244(0)
243(0)—"] VERT ID

T = T
241() ~ PROB DN PTRN .
- _1VERTID 244(j)
V) —A

e\

2410 ~. [FROB
JLVERTID DNPTRZ | - 244(n)

FIG. 7B
SUBSTITUTE SHEET

papfbaiugmary)

WO 91/20024 PCT/US91/04290

16/16

MSG TOKEN/ COMMUNICATIONS LINKS

DEGREE TABLE 260
N\
AN
\
MSG TOKEN \
ID AN COM LINK
\
N Lo L1 12 » _H10 _H11
<PROB VERT ID, 1 T
DNPTRO > Lo j_ L
R B R R
|
S | L
| | | i
| : l 1
< PROB VERT ID, “‘l""l""'l ————— T
DN PTRN > oy l |
___|._.1__]__.___.|___|-_...
Col L
T | | =
W | | | I |
<PROBVERTID, [~ —I——————=7— 77
DNPTRZ > b |

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US91 /04290

i. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) 8

© U.S.Cl.: 364/

Accoﬁj(::ng<(aslnternational Patent Classification (IPC) or to both National Classification and IPC

Il. FIELDS SEARCHED

Minimum Documentation Searched 7

Classification System

Classification Symbols

U.S.Cl. 395/800

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fieids Searched §

Ill. DOCUMENTS CONSIDERED TO BE RELEVANT ¢

Category * Citation of Docunient, !! with indication, where appropriate, of the relevant passages \ Relevant to Claim No. ¥

Y US, A, 4,933,933 (DALLY) 12 June 1990 1-73
(See col. 3, line 18 O col. 8 line 23).

Y,P | US, A, 4,972,314 (GEIZINGER) 20 November 1990 1-7
(See col. 14, line 33 - col. 26, line 14) >

Y US, A, 4,435,758 (LORIE) 06 March 1984 1-35,56~
(See col. 4, line 25 - col. 8, line 50). 6773

Y Us, A, 4,380,046 (FUNG) 12 April 1983 1,38,48,5
(See col. 5,,line 27 - col. 8, line-64). ,38,48,56

A Us, A,.4,621,339 (WAGNER) 04 November 1986 1-11
(See Figs. 2, 3, 9 and col. 2, lines 5-33).

A US, A, 4,920,487 (BAFFES) 24 April 1990 1,38,48,56,64
(See col. 4, line 12 - col. 4, line 21).

A Us, A,.4,267,892 (LAWRENCE) 27 January 1981 1,38,48,56,64
(See Figs. 2-5 and col. 5, line 45 - col. 6, line 65)

* Spacial categories of cited documents: 10

“A" document defining the general state of the art which is not
considered to be of particular relevance s

“E" earlier d t but published on or after the international
filing date

sL" document which may throw doubts on priority ciaim(s) or
which is cited to establish-the publication date of another
citation or other special reason (as specified)

“Q" document referring to an oral disclosure, use, exhibition or
other means

upH document published prior to the international filing date but
later than tha priority date claimed

e

%

ugn

» document of particular relevance; the claimed invention

later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

document of particular reievance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step

cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
gne{;jt!. ::xch combination being obvious to & person skilled
in the art.

document member of the same patent family

IV. CERTIFICATION

Date of the Actual Compietion of the international Search

11 September 1991

Date of Mailing of this international Search Report

03.0CT 1991 X |

international Searching Authority

ISA/US

Form PCTASAZ10 (second sheed (Rev.11-87)

e of Au%%d Officer gz 2

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

