as United States

a2 Reissued Patent
Bugaj et al.

(10) Patent Number:
(45) Date of Reissued Patent:

USOORE44369E

US RE44,369 E
Jul. 16, 2013

(54) AUTOMATIC PRE-RENDER PINNING OF
CHANGE ISOLATED ASSETS METHODS
AND APPARATUS

(75) Inventors: Stephan Vladimir Bugaj, Emeryville,
CA (US); Brett Levin, Emeryville, CA
(US); Zachariah Baum, Milwaukee, W1
(US)

(73) Assignee: Pixar, Emeryville, CA (US)

(21) Appl. No.: 13/469,280

(22) Filed: May 11, 2012
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 7,821,516
Issued: Oct. 26,2010
Appl. No.: 10/977,346
Filed: Oct. 28,2004

U.S. Applications:
(60) Provisional application No. 60/572,015, filed on May
17, 2004.

(51) Imt.ClL
GO6T 13/00
(52) US.CL
USPC e 345/473
(58) Field of Classification Search
None
See application file for complete search history.

(2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

4,912,637 A * 3/1990 Sheedy etal. ..
5,649,200 A * 7/1997 Leblangetal. .
5,706,510 A * 1/1998 Burgoon

USER SPECIFIES AGGREGATE ASSET (E.G.
SCENE) TO RENDER

l 410
| USER SPECIFIES SUB-ASSETS TOPIN ‘/
| y

USER REQUESTS RENDERING OF THE
AGGREGATE ASSET

l 430
’ ABSOLUTE OR STATIC LOCATIONS OF ALL J/

N
S

SUB-ASSETS DETERMINED

l ”
ABSOLUTE OR STATIC LOCATIONS OF ALL
SUB-ASSETS SENT TO RENDERING ENGINE

2
=

LRENDERING ENGINE RENDERS AGGREGATE

ABSOLUTE OR STATIC LOCATIONS OF PINNED
SUB-ASSETS WRITTEN TO PINSET FILE /
RENDERED IMAGE AND PINSET FILE
ASSOCIATED AND STORED

o

5,752,244 A * 5/1998 Roseetal. ..o /1
5,930,797 A * 71999 Hill ..o /1
5,974,428 A * 10/1999 Gerardetal. ... 717/170
5,995,107 A * 11/1999 Berteigetal. ... 345/420
6,112,024 A * 82000 Almondetal. ... 717/122

6,181,336 Bl *
6,278,466 Bl *

1/2001 Chiuetal. ...
8/2001 Chen

6,362,817 B1* 3/2002 Powers et al. . 345/419
6,557,012 B1* 4/2003 Arunetal. ... /1
6,573,898 B1* 6/2003 Mathur et al. 345/473
6,611,262 B1* 82003 Suzuki 345/419
6,704,739 B2* 3/2004 Craftetal. ... /1
7,159,212 B2* 12007 Schenk et al. 717/153
7,287,029 B1* 10/2007 Craftetal.ccooeivinn /1
7,463,264 B2* 12/2008 Harrison et al. .. 345/473
2004/0003370 Al1* 1/2004 Schenketal. 717/100
2004/0243597 Al* 12/2004 Jensenetal. 707/100

OTHER PUBLICATIONS

Cook et al., “The Reyes Image Rendering Architecture”, Computer
Graphics, vol. 21, No. 4, 1987, pp. 95-102.

* cited by examiner

Primary Examiner — Daniel Hajnik

(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLP

(57) ABSTRACT

A method for a computer system includes receiving a selec-
tion of a plurality of assets to be rendered from a user, wherein
the selection comprises a plurality of symbolic references,
determining respective static references associated with each
asset from the plurality of assets in response to the plurality of
symbolic references, rendering the plurality of assets in
response to asset data associated with the respective static
references to form a rendered image, storing the respective
static references associated with each asset from the plurality
of assets in a pinset file, and associating the rendered image
with the pinset file.

27 Claims, 5 Drawing Sheets

| PINSET FILE RETRIEVED ’/

l 490

ABSOLUTE OR STATIC LOCATIONS OF
CHANGE-ISOLATED SUB-ASSETS RETRIEVED
FROM PINSET FILE

l 500

ABSOLUTE OR STATIC LOCATIONS OF NON-
CHANGE-ISOLATED SUB-ASSETS DETERMINED

510

ABSOLUTE OR STATIC LOCATIONS OF ALL
SUB-ASSETS SENT TO RENDERING ENGINE

520

| RENDERING ENGINE RENDERS AGGREGATE

; 5

ABSOLUTE OR STATIC LOCATIONS OF PINNED
SUB-ASSETS WRITTEN TO PINSET FILE /
RE-RENDERED IMAGE AND PINSET FILE

ASSOCIATED AND STORED

US RE44,369 E

Sheet 1 of 5

Jul. 16, 2013

U.S. Patent

l Old

ﬁ%v///

oFlL /

omr/

~ 061

octL k

HOLINCW

0oL

o_,_‘k

321A30 LNdNI JOV4YIINI |
QYvOAIM TYOIHAVHO SHOMLAN
A A -~ h V/
AHOWAW
3IAA YSIa $S3I00V SHOSSIOONd
NOANYY
08l \ 0LL : 091

<_~
HHOMULIEN

U.S. Patent Jul. 16, 2013 Sheet 2 of 5 US RE44,369 E

//»200
= 220
= 4
ANIMATION / RENDERING <>

SYSTEM

SOFTWARE
ASSETS
/ 300 310
ANIMATION / RENDERING DATABASE 320
SYSTEM MANAGEMENT [
SYSTEM/
ASSET
MANAGEMENT
SYSTEM
SOFTWARE
ASSETS

FIG. 3

U.S. Patent Jul. 16, 2013 Sheet 3 of 5 US RE44,369 E

400

USER SPECIFIES AGGREGATE ASSET (E.G. /
SCENE) TO RENDER

| o

USER SPECIFIES SUB-ASSETS TO PIN

l 420
USER REQUESTS RENDERING OF THE ’/
AGGREGATE ASSET

i 430
ABSOLUTE OR STATIC LOCATIONS OF ALL /
SUB-ASSETS DETERMINED

l 440
ABSOLUTE OR STATIC LOCATIONS OF ALL -
SUB-ASSETS SENT TO RENDERING ENGINE

l 450
RENDERING ENGINE RENDERS AGGREGATE /
ASSET

l 460
ABSOLUTE OR STATIC LOCATIONS OF PINNED /
SUB-ASSETS WRITTEN TO PINSET FILE /
RENDERED IMAGE AND PINSET FILE

ASSOCIATED AND STORED

FIG. 4A

U.S. Patent Jul. 16, 2013 Sheet 4 of 5 US RE44,369 E

RE-RENDER AGGREGAT
ASSET?

PINSET FILE RETRIEVED

l)90

ABSOLUTE OR STATIC LOCATIONS OF
CHANGE-ISOLATED SUB-ASSETS RETRIEVED
FROM PINSET FILE

l 500
ABSOLUTE OR STATIC LOCATIONS OF NON- J
CHANGE-ISOLATED SUB-ASSETS DETERMINED

l i

ABSOLUTE OR STATIC LOCATIONS OF ALL
SUB-ASSETS SENT TO RENDERING ENGINE

l 520
RENDERING ENGINE RENDERS AGGREGATE "/
ASSET

l 530

ABSOLUTE OR STATIC LOCATIONS OF PINNED /
SUB-ASSETS WRITTEN TO PINSET FILE/
RE-RENDERED IMAGE AND PINSET FILE

ASSOCIATED AND STORED

FIG. 4B

U.S. Patent Jul. 16, 2013 Sheet 5 of 5 US RE44,369 E

600
A

FIG. 5A

AMENDED

610
\\

FIG. 5B

AMENDED

US RE44,369 E

1
AUTOMATIC PRE-RENDER PINNING OF
CHANGE ISOLATED ASSETS METHODS
AND APPARATUS

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS-REFERENCES TO RELATED
APPLICATIONS

The present application incorporates by reference for all
purposes and claims priority to Provisional Application No.
60/572,015, filed May 17, 2004. The present application also
incorporates by reference for all purposes patent application
Ser. No. 10/810487, filed Mar. 26, 2004.

BACKGROUND OF THE INVENTION

The present invention relates to asset management sys-
tems. More particularly, the present invention relates to meth-
ods and apparatus for automatically locking to an unchanging
instance of an animation asset during rendering and recording
the pinned animation assets.

Throughout the years, movie makers have often tried to tell
stories involving make-believe creatures, far away places,
and fantastic things. To do so, they have often relied on
animation techniques to bring the make-believe to “life.” Two
of the major paths in animation have traditionally included,
drawing-based animation techniques and stop motion anima-
tion techniques.

Drawing-based animation techniques were refined in the
twentieth century, by movie makers such as Walt Disney and
used in movies such as “Snow White and the Seven Dwarfs”
(1937) and “Fantasia” (1940). This animation technique typi-
cally required artists to hand-draw (or paint) animated images
onto a transparent media or cels. After painting, each cel
would then be captured or recorded onto film as one or more
frames in a movie.

Stop motion-based animation techniques typically
required the construction of miniature sets, props, and char-
acters. The filmmakers would construct the sets, add props,
and position the miniature characters in a pose. After the
animator was happy with how everything was arranged, one
or more frames of film would be taken of that specific
arrangement. Stop motion animation techniques were devel-
oped by movie makers such as Willis O’Brien for movies such
as “King Kong” (1933). Subsequently, these techniques were
refined by animators such as Ray Harryhausen for movies
including “Mighty Joe Young” (1948) and Clash Of The
Titans (1981).

With the wide-spread availability of computers in the later
part of the twentieth century, animators began to rely upon
computers to assist in the animation process. This included
using computers to facilitate drawing-based animation, for
example, by painting images, by generating in-between
images (“tweening”), and the like. This also included using
computers to augment stop motion animation techniques. For
example, physical models could be represented by virtual
models in computer memory, and manipulated.

One of the pioneering companies in the computer aided
animation (CA) industry was Pixar, more popularly known as
Pixar Animation Studios. Over the years, Pixar developed and
offered both computing platforms specially designed for
CAA, and rendering software now known as RenderMan®.

20

25

30

35

40

45

50

55

60

65

2

RenderMan® renders images based upon conceptual “soft-
ware assets” including geometric scene descriptors including
references to object models.

Typically, scenes to be rendered are specified (assembled)
by one or more users (e.g. animators, lighters, etc.). These
scenes include descriptions of the objects, camera angles,
lighting sources, and the like. The scene data file (also known
as a scene descriptor file) that describes the entire scene is
typically very large, on the order of gigabytes. Because the
sizes of typical scene descriptor files are typically large, Pixar
developed an internal technique for segmenting a scene
descriptor file from one large file into a series of smaller files.
As described in the co-pending application described above,
Pixar developed and used the concept of “hook set” files and
references to “hook files” to describe a scene. Accordingly, a
typical scene is actually composed of a number of separate
data files. More generally, logical assets, such as a scene, a
shot (a group of scenes), an object, and the like are themselves
composed of a number of separate assets.

The inventors of the present invention have recognized that
when rendering a lengthy animated feature, such as a feature
film, tens or hundreds of related frames need to be rendered.
This process typically takes a substantial period of time, even
when parallelized. However, during the time which one frame
takes to render, it is possible for different users to install new
versions of one or more assets (e.g. objects to be rendered)
referenced in the frame. Because frames are not necessarily
rendered chronologically, a change to an object, such as a new
version of an object, may result in a visual discontinuity, or a
“pop” if the new object looks different from the old one in the
various scenes. Alternatively, the inclusion of a new version
of'an object may cause the rendering engine to terminate early
with an error.

The inventors of the present invention have recognized that
it is not typically feasible to prevent users from modifying a
logical asset (e.g. a sequence, a shot, an object) throughout the
rendering process. This is because, scenes or shots of anima-
tion are finalized at different times, and it would be very
inefficient to begin rendering scenes or shots only when all of
the scenes or shots have been finished. Accordingly, the
inventors have recognized that methods for reducing the
effect of changing object versions are required.

The inventors of the present invention have also recognized
that after a shot or sequence has been rendered and that render
approved, it is very common for images to need to be re-
worked after being approved to make them ready for “film-
out.” However, versions of the assets that were used often no
longer exist, thus it is extremely difficult to re-render or
replicate exactly the same images. Further, in practice, the
Inventors have recognized that logical assets (e.g. characters,
props, sets, and the like) are used in many different scenes and
shots in a feature, and the logical assets are often changed to
meet the needs of the specific shots. Accordingly, a “latest”
versions of a logical asset may not be the version that is
desired. Therefore, the inventors have recognized that meth-
ods for identifying versions of objects that are used for spe-
cific scenes or shots are required.

Some techniques that the inventors have considered to
address the above problems have included: making and stor-
ing local copies of logical assets before rendering the scene.
Drawbacks to this technique include that when there are a
large number of assets, and a large number of scenes, storing
copies of assets for each scene in local directories requires an
wasteful amount of memory. Another drawback is that such a
technique would be very slow and expensive when applied to
thousands of CPUs in a large render farm because of the
amount of data that would be stored and passed back and

US RE44,369 E

3

forth. Yet another disadvantage is that this technique does not
address the replicability problem described above.

Another technique the inventors have considered included
preventing users from installing new versions of objects dur-
ing the rendering process. Disadvantages to this technique
include that would cause an expensive and large bottleneck in
the production pipeline. For example, because rendering of
certain shots or scenes may last for hours and days, this
technique would lock out other users from installing versions
of objects for their shots or scenes. Other users would have to
wait until small windows of opportunity between renderings
to install new versions of objects. Yet another drawback
includes that it is inefficient to have users who are attempting
to install new versions of objects be made aware of all the
other users of the same object and their rendering schedules.
Still another disadvantage is that this technique does not
address the replicability problem described above.

A technique the inventors considered to address the issue
of replicability is through the use of timestamps and tradi-
tional version control of assets. However, disadvantages to
these techniques includes that different rendering processes
can be performed at the same time through the use of local
copies of the asset during the development process. Accord-
ingly, no versioning control is provided until an asset is
checked-in, thus replicating of scenes before check-in is not
supported. Additionally, when such assets are checked-in,
different versions of an object from different users may have
the same timestamp or have an out-of-order version number
(e.g. version 1.2 includes changes in version 1.3, but version
1.3 lacks changes made in version 1.2.) As such, no version
control data exists between the different users. Another draw-
back to this approach includes that, rolling back of changes to
objects is slow, and computationally expensive (i.e. burdens
the CPU).

Accordingly what is desired is an improved method and
apparatus for asset management, without the drawbacks
described above.

SUMMARY OF THE INVENTION

The present invention relates to asset management. More
specifically, the present invention relates to methods and
apparatus for automatically pinning of objects to be rendered
in a scene.

Embodiments of the present invention reduce visual incon-
sistencies in a scene and provide replicability of rendered
scenes. One innovation includes the use of symbolic refer-
ences to allow the pre-render phase to copy path references to
global, static versions of an asset rather than make local
copies. Another innovation is that these techniques may be
combined with virtually any traditional version control sys-
tem or change isolation system. Yet another innovation is that
the pinning mechanism can be used both in an interactive
session or in a rendering session.

Using embodiments of the present invention, the inventors
have discovered that it is not necessary to prevent users from
installing new assets or changes to assets during rendering of
the asset. Further, by keeping copies of the assets in a logi-
cally central location, the replicability problem described is
addressed. Additionally, it is believed that less disk space is
required on the individual rendering machines because local
copies are not needed.

According to one aspect of the invention, a method for a
computer system is disclosed. One technique includes receiv-
ing a selection of a plurality of assets to be rendered from a
user, wherein the selection comprises a plurality of symbolic
references, and determining respective static references asso-

20

25

30

35

40

45

50

55

60

65

4

ciated with each asset from the plurality of assets in response
to the plurality of symbolic references. Techniques also
include rendering the plurality of assets in response to asset
data associated with the respective static references to form a
rendered image, storing the respective static references asso-
ciated with each asset from the plurality of assets in a pinset
or manifest file, and associating the rendered image with the
pinset file.

According to another aspect of the invention, a computer
program product for a computer system display is disclosed.
One product includes code that directs the processor to
receive a specification of a logical asset comprising a first
plurality of assets, and code that directs the processor to
receive a selection of a second plurality of assets from the first
plurality of assets, wherein a third plurality of assets from the
first plurality of assets are not selected. One product also
includes code that directs the processor to determine a first
plurality of symbolic references associated with the first plu-
rality of assets, wherein the first plurality of symbolic refer-
ences includes a second plurality of symbolic references
associated with the second plurality of assets and a third
plurality of symbolic references associated with the third
plurality of assets, and code that directs the processor to
determine a first plurality of file identifiers associated with the
first plurality of symbolic references, wherein the first plural-
ity of file identifiers includes a second plurality of file iden-
tifiers associated with the second plurality of symbolic refer-
ences and a third plurality of file identifiers associated with
the third plurality of symbolic references. In other embodi-
ments, computer program product includes code that directs
the processor to provide the first plurality of file identifiers to
a rendering system, and code that directs the processor to
store the second plurality of file identifiers and the third
plurality of symbolic references in a manifest file. The codes
typically reside on a tangible media such as optical media,
magnetic media, semiconductor media, quantum storage
media, or the like.

According to one aspect of the invention, a computer sys-
tem is disclosed. One apparatus includes a memory config-
ured to store a plurality of pinset files. An apparatus may also
include a processor coupled to the memory, wherein the pro-
cessor is configured to receive a specification of a logical
asset comprising a first plurality of assets, wherein the first
plurality of assets are associated with a plurality of symbolic
references, wherein the processor is configured to receive a
selection of a second plurality of assets from the first plurality
of assets, wherein the processor is also configured to deter-
mine respective static references associated with each asset
from the first plurality of assets in response to the plurality of
symbolic references, wherein the processor is configured to
provide the respective static references associated with each
asset from the first plurality of assets to a rendering engine,
wherein the processor is configured to store a first plurality of
static references associated with the second plurality of assets
into a pinset file. In various embodiments, the plurality of
pinset files includes the pinset file.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to more fully understand the present invention,
reference is made to the accompanying drawings. Under-
standing that these drawings are not to be considered limita-
tions in the scope of the invention, the presently described
embodiments and the presently understood best mode of the
invention are described with additional detail through use of
the accompanying drawings in which:

US RE44,369 E

5

FIG. 1 illustrates a block diagram of a computer system
according to one embodiment of the present invention;

FIG. 2 illustrates a block diagram of an embodiment of the
present invention;

FIG. 3 illustrates another embodiment of the present inven-
tion;

FIGS. 4A-B illustrate a block diagram of a flow process
according to an embodiment of the present invention; and

FIGS. 5A-B illustrate an example according to an embodi-
ment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 is a block diagram of typical computer system 100
according to an embodiment of the present invention.

In the present embodiment, computer system 100 typically
includes a monitor 110, computer 120, a keyboard 130, auser
input device 140, a network interface 150, and the like.

In the present embodiment, user input device 140 is typi-
cally embodied as a computer mouse, a trackball, a track pad,
wireless remote, and the like. User input device 140 typically
allows a user to select objects, icons, text, control points and
the like that appear on the monitor 110. In some embodi-
ments, monitor 110 and user input device 140 may be inte-
grated, such as with a touch screen display or pen based
display such as a Cintiq marketed by Wacom.

Embodiments of network interface 150 typically include
an Ethernet card, a modem (telephone, satellite, cable,
ISDN), (asynchronous) digital subscriber line (DSL) unit,
and the like. Network interface 150 are typically coupled to a
computer network as shown. In other embodiments, network
interface 150 may be physically integrated on the mother-
board of computer 120, may be a software program, such as
soft DSL, or the like.

Computer 120 typically includes familiar computer com-
ponents such as a processor 160, and memory storage
devices, such as a random access memory (RAM) 170, disk
drives 180, and system bus 190 interconnecting the above
components.

In one embodiment, computer 120 is a PC compatible
computer having multiple microprocessors such as Xeon™
microprocessor from Intel Corporation. Further, in the
present embodiment, computer 120 typically includes a
UNIX-based operating system.

RAM 170 and disk drive 180 are examples of tangible
media for storage of asset data, audio/video files, computer
programs, operating system, embodiments of the present
invention, including an asset management system, a database,
logical and aggregate assets, object data files, a dependency
analyzer, dependency graphs, a rendering engine, operating
system, and the like. Other types of tangible media include
floppy disks, removable hard disks, optical storage media
such as CD-ROMS and bar codes, semiconductor memories
such as flash memories, read-only-memories (ROMS), bat-
tery-backed volatile memories, networked storage devices,
and the like.

In the present embodiment, computer system 100 may also
include software that enables communications over a network
such as the HTTP, TCP/IP, RTP/RTSP protocols, and the like.
In alternative embodiments of the present invention, other
communications software and transfer protocols may also be
used, for example IPX, UDP or the like.

FIG. 1 is representative of computer systems capable of
embodying the present invention. It will be readily apparent
to one of ordinary skill in the art that many other hardware and
software configurations are suitable for use with the present
invention. For example, the use of other microprocessors are

20

25

30

35

40

45

50

55

60

65

6

contemplated, such as Pentium™ or [tanium™ microproces-
sors; Opteron™ or AthlonXP™ microprocessors from
Advanced Micro Devices, Inc; PowerPC G4™, G5™ micro-
processors from Motorola, Inc.; and the like. Further, other
types of operating systems are contemplated, such as Win-
dows® operating system such as WindowsXP®, Win-
dowsNT®, or the like from Microsoft Corporation, Solaris
from Sun Microsystems, LINUX, UNIX, MAC OS from
Apple Computer Corporation, and the like.

FIG. 2 illustrates a block diagram of an embodiment of the
present invention. Specifically, FIG. 2 illustrates a computer
system 200 and a storage system 210.

In embodiments of the present invention, computer system
200 renders a scene based upon a geometric description of a
scene from storage system 220. In embodiments of the
present invention, computer system 200 may include one or
more computer systems 100. Storage system 220, may
include any organized and repeatable way to access the geo-
metric description of a scene including object models, light-
ing models, camera models, and the like. For example, in one
embodiment, storage system 220 includes a simple flat-direc-
tory structure on local drive or network drive, or the like.
Additionally, locations of object models may be specified by
absolute file path locations, relative file paths, specific direc-
tories, aliases, UNIX “symlinks™ and the like.

In one embodiment of the present invention, a geometric
scene descriptor is typically a text file that specifies the
objects within the scene. Objects include lighting objects,
camera objects, geometric objects, and the like. These objects
are used to specify the scene for rendering purposes. In the
present embodiments, the scene descriptor file also specifies
the position of objects in the scene, the orientation of objects,
the colors and textures for the objects, properties for objects,
and the like. In the present invention, the scene descriptor file
is a textual file referred to as a “hook set” or “hook file” A
scene descriptor file may be associated with only the frame to
be rendered, may be associated with a shot of images, may be
associated with a portion of a feature, may be associated with
the entire feature, or the like. In other embodiments, other
types of representation of a scene descriptor can be used with
embodiments of the present invention.

An example of the content of a simple hook file may
include the following text references to a camera object, a
light object, and a (three-dimensional) object:

hook “cameral” {properties of camera 1};

hook “light1” {properties of light 1};

hook “object1” {properties of object 1};

In one embodiment, for a camera object, properties may
include: type of projection (e.g. perspective); field of view;
width; position; azimuth; pitch, pan, and roll; aspect ratio;
focusing option; cropping; shifting; tv aspect ratio, pan and
scan option, number of tracks, number of cranes, and the like.
An example of a portion of a camera hook is as follows:

hook “main_cam” {
desc = main_cam: production camera, aka camera0Ola;
kind = camera;

filename = stdobj/Camera0la.m; (filename of camera model) ...

As seen in this example, reference to a file including a
specification of a camera model is illustrated as a “.m” file.
The .m file is accessed and used when rendering the scene
using the camera object. In embodiments of the present inven-
tion, other file types for objects are contemplated, such as

US RE44,369 E

7

model files compatible with other three-dimensional creation
and manipulation programs, such Maya, Softlmage, or the
like.

In another embodiment, for a light object, properties may
include: light quality, light type, light shape, light color, and
the like. Not all camera objects or light objects need to support
the same properties. For example, an “atmospheric fog light”
may have a unique fog properties. An example of a portion of
a lighting object hook is as follows:

hook “LP_Lspt_onPodium” {
use “stdlight/glight01a/glight0la.hook”;
kind = light;
class = _Clsss_GlightOla;
macro = glightOla(name);

filename = stdlight/glight01a/glightOla.m; (filename of light model)

As seen in this example, reference to a file including a
specification of a light model is also illustrated as a “.m” file.
The .m file is accessed and used when rendering the light
object in the scene.

In embodiments of the present invention, geometric
objects may include three dimensional descriptions of
objects, such as an animated character (e.g. Bob, Marlin,
Woody), a prop (e.g. a table, a chair), and the like. Addition-
ally, geometric objects may include virtually any imaginable
properties supported. For example, one geometric parameter
may be: number of wheels for an automobile object; number
of eyeballs for a monster object, or other animation variable,
and the like. Additionally, a geometric object may include
references to files including physical models. An example of
a portion of a geometric object hook is as follows:

hook “object1” {fullfmodel = “object]_full.mdl”;
number_of legs = 4;

standin_model = “object] _standin.mdl”;
number_of legs = 1;

)

In this example, a first geometric description file is speci-
fied “objectl_full.mdl” and a second geometric description
file is also specified “object]_standin.mdl.” These respective
.mdl files are accessed and used when rendering the geomet-
ric object inthe scene. In the present embodiment, each model
descriptor file is an industry standard mdl file that specifies
how object 1 is to be rendered in the scene. In other embodi-
ments, the model descriptor files may include procedurally
generated geometric components, procedurally generated
textures, and the like for objectl. In still other embodiments,
combinations of both pre-defined and procedurally generated
aspects of objectl may be used.

Further, the .mdl files typically store pre-defined geometric
components, shaders, textures, colors, or the like. In embodi-
ments of the present invention, assets may themselves be
aggregate assets, for example, the geometric components
may include references to other geometric components, a
referenced shader may be an aggregate of other shaders, and
the like.

The techniques described above have used representations
of objects that are found at “hard coded” or relative computer
locations, such as at specific computer disk directories, at
specific network directories, with specific file names or
aliases, or the like. However, in other embodiments, data-
bases and asset management software may be used to provide
the object models.

20

25

30

35

40

45

50

55

60

65

8

In various embodiments, the user may or may not specify
specific versions ofthe models to use when rendering a scene.
In embodiments where a version number is not provided, it is
assumed the user desires a default version of an object such as
a release version, a stable version, the latest version, or the
like. In other embodiments, the user may specify a symbolic
reference to the desired model version, such as “latest” or
“stable.” In this example, the symbolic reference is associated
with a specific directory or location for the “latest” version of
a model, for the “stable” version of a model, or the like.

FIG. 3 illustrates another embodiment of the present inven-
tion. More specifically, FIG. 3 illustrates a computer system
coupled to a database.

FIG. 3 includes a computer system 300, a database man-
agement system (dbms) 310, and a database 320. In the
present embodiment, computer system 300 is a typical ren-
dering system, described above in FIG. 1. Further, database
management system 310 and database 320 may be a conven-
tional database systems, available from Oracle, Sybase, or the
like.

In the present embodiment, dbms 310 may include con-
ventional database access mechanisms, such as an SQL query
tool, or the like. In various embodiment, dbms 310 may
include additional front-end software that provides organized
access to database 320. In one example, the additional front-
end software may include “asset management” software, i.e.
software that enables users to more easily store and later
retrieve software assets via a structured interface. In embodi-
ments of the present invention, any conventional software
asset management system may be adapted to be used.

In operation, computer system 300 may retrieve a scene
descriptor file from dbms 310, similar to the above. In this
embodiment, the scene descriptor file may simply specify an
object name (asset name), specific search terms, a database
query, or other terms that are used by dbms 310 to locate a
model file. For example, instead of specifying a filename
within a directory, as shown above, the scene descriptor file
may specify a series of key search terms to dbms 310. In
response, in this example, dbms 310 uses the key search terms
to query database 320 and return a pointer or a specific direc-
tory location where the desired object representation may be
found. In other embodiments, the model file may be returned.
In an additional embodiment, an asset management system
may be used along with dbms 310. In such examples, the
scene descriptor file may provide search terms associated
with the desired object. In response, the asset management
system would return a pointer to the file, a directory, the
model file, or the like.

Similar to the embodiment above, a scene descriptor file
(e.g. hook set file) may also specity specific versions of mod-
els to use. Examples of versions include: version 1.0, version
2.2, “latest version” “release version,” “preproduction ver-
sion,” and the like.

Embodiments of the present invention can be used with
both of the above file access methods to automatically pin
versions of assets during a scene rendering.

FIGS. 4A-B illustrate a block diagram of a flow process
according to an embodiment of the present invention.

Initially, a user initially specifies a scene to be rendered,
step 400. In some embodiments, the user specifies assets to be
included into the scene, such as character objects, camera
objects, lighting objects, and the like. In other embodiments,
the user specifies that the scene should be rendered, however
a different user specifies which assets are included the scene.
In still other embodiments, more than one user may specify
assets in a scene.

2 <

US RE44,369 E

9

In embodiments of the present invention, the user may
specify the scene to be rendered by file name of the scene
descriptor file; and in other embodiments, the user may
specify a scene name, or the like. The scene descriptor data is
then used by an asset management system, or database, to
identify or provide the scene descriptor file. Many other
methods for specifying the scene are contemplated in alter-
native embodiments, such as clicking on the name of the
scene or asset from a list, or the like.

In the present embodiments, the user next specifies assets
making-up the scene to be “change-isolated” assets, step 410.
As described in the embodiments above, a scene or a shot
(group of related scenes) may be described in a hook set file,
or the like as a nested set of asset references (e.g. file names).
Accordingly, assets making-up the scene or shot are actually
stored separately from one another and not in one single file.
In the present embodiment, in this step, the user may specify
which of these separately stored assets should not change if
the scene is to be re-rendered at a later time. For example, a
user may specify that only the geometric description of a
character object should not change when the scene is re-
rendered.

In the present embodiments, the user need not specify that
all assets in the scene should be change-isolated assets. For
example, the user may specify that the character objects and
prop objects in a scene should be locked, however, camera
objects and lighting objects may be repositioned and changed
if and when the scene is to be re-rendered. In other examples,
only a specific character object may be “locked” while, the
other character objects can be changed.

In embodiments of the present invention, the user may
manually specify which assets should be change-isolated
assets from a list of assets or the like. In embodiments of the
present invention, the user may view a dependency graph of
the scene and click upon branches of assets that should be
pinned or change isolated. In other embodiments, pre-defined
assets may automatically be change-isolated assets depend-
ing upon the user, for example, for a user such as an animator,
the geometric description of objects that are animated may
automatically be pinned, however textures and shading data,
and the like for the object may not be automatically pinned.
Additionally, in such embodiments, the user may add objects
or subtract objects from the list of automatically selected
objects.

In other embodiments of the present invention, “aggregate
assets” may be change-isolated. For example, character
objects (aggregate assets) are typically comprised of a num-
ber of sub-assets, as illustrated above, the character object
(aggregate asset) may be associated with a version and the
sub-assets can also be associated with versions. In various
embodiments, when a character object is put into change-
isolation mode, all of the sub-assets are also automatically
placed in change-isolation mode.

Inembodiments of the present invention, the scene descrip-
tor may be used to specify which assets are to be change-
isolated assets. For example, the scene descriptor may include
symbolic references to specific versions of the object models.
In the various embodiments, versions of objects may include
numeric versioning identifiers, textual identifiers, or the like.

In the present embodiment, textual identifiers may include
terms such as “stable version” to refer to the latest stable
version of an object. For example, the most recent version of
an object may be version 3.3, however, the stable version is
defined as version 2.7. Additionally, textual identifiers may
include other terms such as “latest version” to refer to the
latest version of the object. Using the example above, the
latest version of the object would be version 3.3. In still other

20

25

30

35

40

45

50

55

60

65

10

embodiments, many other labels are contemplated to refer to
different versions of object, such as “scene 1 version,” “pro-
totype version,” “ post-crash version,”
and the like.

Inthe present embodiment, the user may select one or more
rendering options, and submit the rendering job to the ren-
dering system, step 420. In the present embodiment, any
conventional high-quality rendering software may be used to
perform the conversion of geometric data to an image (ren-
dering), such as Pixar’s Renderman rendering software. In
other embodiments, other rendering software may also be
used. In the present embodiments, different options may also
be specified when rendering a scene. For example, as dis-
cussed in the above-referenced application, rendering of a
scene may be performed for different purposes, accordingly,
the user may specify a specific a “switch” that causes a selec-
tion between different object models for rendering, or acti-
vates certain parameters of object models, or the like.

In response to the rendering request, embodiments of the
present invention resolves any symbolic references of assets
in the scene descriptor file and locates physical files and
directories for the assets, step 430. As an example, if a sym-
bolic reference is to a particular version of the object, the
global path (static path) to that object version is returned.
Additionally, the global paths are typically unique for each
version. For instance version 5A of an object will map to a
first object file and version 6L. of an object will map to a
second object file. In this example, the object files may be in
the same directory or in different directories. In embodiments
of the present invention, a default or “release” version for an
object is selected when no version for an object is specified.

In embodiments of the present invention, the physical
object files are only accessed through an asset management
system. Accordingly, in this step, uniquely identifying refer-
ences for each object are determine.

In embodiments of the present invention, a dependency
graph may be generated in this step, as described in one of the
co-pending patent applications referenced above. Accord-
ingly in such an embodiment, a graph may include nodes such
as branch nodes (representing aggregate assets) and leaf
nodes (representing physical files, or the like). In the present
embodiments, at each node leaf node, the absolute or static
locations of the asset in a directory structure may be stored. In
various embodiments, multiple dependency graphs may be
generated in this embodiment to represent specific objects in
a scene. The result would be a “forest” of absolute paths or
references.

In embodiments where some assets are not under change-
isolation, the symbolic reference for all references are typi-
cally resolved to an absolute or static directory location. As
one example, an object to be rendered in the scene may
always be mapped to a directory structure where the “latest”
version of the object is stored. For instance, a directory such
as c:\object\latest_version may be created to always store the
“latest” version of an object. In such an example, the directory
location c:\object\latest_version would be the returned static
location.

Next, the “forest” of absolute paths or references is pro-
vided to the rendering engine, step 440, and in response the
rendering engine renders the scene, step 450. In embodiments
of the present invention, the rendering engine traverses the
forest of absolute paths or references to locate the appropriate
object files. Next, the rendering engine renders the scene
using the appropriate object files.

In the present embodiment, after rendering, the absolute
paths or references for the change-isolated assets are written
into a file, step 460. More specifically, for each asset under

2

pre-crash version,

US RE44,369 E

11

change isolation, the location of the object file used in the
rendering is written to a “manifest” of “pinset” file. This
pinset file is then associated with the rendered image, and
both are stored.

In embodiments of the present invention, assets not under
change isolation may also be tracked in this pinset file. In one
embodiment, the location of the object file for these assets are
also associated and stored in the same pinset file. In another
embodiment, the symbolic reference of assets not under
change isolation are stored in the pinset file. As examples, a
“latest” version of an untracked object may have a directory
location of c:\object\version_2_ 0. In the first embodiment,
c:\object\version_2 0 would be stored in the pinset file,
however in the second embodiment, “latest” label may be
stored. In still other embodiments, objects not under change-
isolation are not tracked in the pinset file.

Subsequently, if the scene is to be re-rendered, step 470, the
pinset file associated with the scene is determined and
retrieved, step 480. In various embodiments, the pinset file
and the rendered image may be stored in a common directory,
be stored in an asset management system, or the like. Next,
from the pinset file, for change-isolated objects, the respec-
tive directory locations for the objects are identified, step 490.

In some embodiments of the present invention, objects not
under change-isolation are referenced by symbolic link, such
as “latest” version, “release” version, or the like in the pinset
file. Inresponse, the symbolic link is resolved into an absolute
or static directory path, step 500. In the case where an asset
management system is used, uniquely identifying keywords
may be used as input into the asset management system.
Further, in other embodiments, objects not under change iso-
lation and not stored in the pinset file are also resolved to
absolute or static directory paths. For example, in one
instance, objects not under change isolation are assumed to
refer to “latest” versions of objects stored in specific loca-
tions.

Next, the “forest” of absolute paths or references is pro-
vided to the rendering engine, step 510, and in response the
rendering engine re-renders the scene, step 520. In embodi-
ments of the present invention, the rendering engine again
traverses the forest of absolute paths or references to locate
the appropriate object files. Next, the rendering engine ren-
ders the scene using the appropriate object files.

In embodiments of the present invention, a new pinset file
may or may not be created for the newly rendered image. In
various embodiments, the new pinset file is then associated
with the re-rendered image, and both are stored, step 530.

FIGS. 5A-B illustrate examples according to an embodi-
ment of the present invention. More specifically, FIGS. 5A
and 5B illustrate rendered images 600 and 610. In FIG. 5A,
rendered image 600 includes trees 620 and object 630. In this
example, when rendering the scene, a user places object 630
under change isolation. Accordingly using embodiments of
the present invention, a pinset file [640] is created and asso-
ciated with rendered image 600. [As can be seen, in] In the
pinset file [640], a reference to the absolute path of object 630
is thus included.

In FIG. 5B, the scene is later re-rendered forming rendered
image 610 including trees [650] 640. In the present embodi-
ment, pinset file [640] is accessed to determine which objects
are under change isolation. In this example, the version of
object 630 specified by the path in e pinset file [640] is used
when rendering rendered image 610. Because the trees are not
under change-isolation, FIG. 5B illustrates that the rendering
system typically access the latest version of the trees, which,
in this case are different. In this example, as shown trees [650]
640 appear differently from trees 620.

20

25

30

35

40

45

50

55

60

65

12

Many changes or modifications are readily envisioned. In
light of the above disclosure, one of ordinary skill in the art
would recognize that many variations may be implemented
based upon the discussed embodiments.

Itshould be understood that “rendering” may refer to a high
quality process of converting an image from a mathematical
description of a scene using a program such as RenderMan®.
Additionally, “rendering” may refer to any graphical visual-
ization of the mathematical description of the scene, or any
conversion of geometry to pixels, for example “rendering”
with a lower quality rendering engine, or the like. Examples
of low-quality rendering engines include GL. and GPU hard-
ware and software renderers, and the like

Further embodiments can be envisioned to one of ordinary
skill in the art after reading this disclosure. In other embodi-
ments, combinations or sub-combinations of the above dis-
closed invention can be advantageously made. The block
diagrams of the architecture and flow charts are grouped for
ease of understanding. However it should be understood that
combinations of blocks, additions of new blocks, re-arrange-
ment of blocks, and the like are contemplated in alternative
embodiments of the present invention.

The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the invention as set forth in the
claims.

What is claimed is:
1. A method for a computer system including a memory, a
processor and a user input device comprises:
receiving a selection of a plurality of assets to be rendered
from a user with the user input device, wherein the
selection comprises a plurality of symbolic references;

determining respective static references associated with
each asset from the plurality of assets in response to the
plurality of symbolic references with the processor;

rendering the plurality of assets in response to asset data
associated with the respective static references to form a
rendered image with the processor;

storing the respective static references associated with each

asset from the plurality of assets in a pinset file in the
memory;

associating the rendered image with the pinset file in the

memory;

wherein the respective static references associated with

each asset from the plurality of assets comprises respec-
tive absolute directory path locations associated with
each asset from the plurality of assets;

storing the respective static references associated with each

asset from the plurality of assets in the pinset file com-
prises storing the respective absolute directory path
locations associated with each asset from the plurality of
assets in the pinset file in memory;

retrieving the pinset file from the memory;

determining the respective absolute directory path loca-

tions for the plurality of assets in response to the pinset
file in the memory; and

re-rendering the plurality of assets in response to data

stored in the respective absolute directory path locations
to form a re-rendered image with the processor.

2. The method of claim 1 wherein the plurality of symbolic
references comprises references to versions of the plurality of
assets.

3. The method of claim 2 wherein the references to versions
comprise at least one of (a) a reference to a specific numeric

US RE44,369 E

13

version of an asset, (b) a reference to a latest version of an
asset, and (c) a reference to a stable version of an asset.

4. The method of claim 2 wherein determining the respec-
tive static references associated with each asset from the
plurality of assets comprises:

providing references to the versions of the plurality of

assets to an asset management system with the proces-
sor; and

receiving the respective static reference associated with

each asset from the asset management system with the
processor.

5. The method of claim 1

wherein rendering the plurality of assets in response to

asset data stored in the respective absolute directory path
locations comprises rendering the plurality of assets in
response to asset data stored in the respective absolute
directory path locations and in response to a first version
of a first asset to form the rendered image with the
processor; and

wherein re-rendering the plurality of assets in response to

asset data stored in the respective absolute directory path
locations comprises rendering the plurality of assets in
response to asset data stored in the respective absolute
directory path locations and in response to a second
version of the first asset to form the re-rendered image
with the processor.

6. A computer system comprising:

aprocessor configured to receive a selection of assets from

aplurality of assets to be rendered from a user with auser
input device, wherein the plurality of assets comprises a
plurality of symbolic references,

wherein the processor is configured to determine respec-

tive static references associated with each asset from the
plurality of assets in response to the plurality of sym-
bolic references,

wherein the processor is configured to render the plurality

of assets in response to asset data associated with the
respective static references to form a rendered image;
and

amemory coupled to the processor, wherein the memory is

configured to store respective static references associ-
ated with each asset from the selection of assets in a
pinset file,

wherein the processor is configured to associate the ren-

dered image with the pinset file;

wherein the respective static references associated with

each asset from the plurality of assets comprises respec-
tive absolute directory path locations associated with
each asset from the plurality of assets;

wherein the memory is configured to store respective abso-

lute directory path locations associated with each asset
from the election of assets in the pinset file;

wherein the processor is configured to retrieve the pinset

file from the memory;
wherein the processor is configured to determine the
respective absolute directory path locations for the
selection of assets in response to the pinset file; and

wherein the processor is configured to re-render the plu-
rality of assets in response to data stored in the respective
absolute directory path locations to form a re-rendered
image.

7. The computer system of claim 6 wherein the plurality of
symbolic references comprises references to versions of the
plurality of assets.

8. The computer system of claim 7 wherein the references
to versions comprise at least one of' (a) a reference to a specific

5

25

30

35

40

45

50

55

60

65

14

numeric version of an asset, (b) a reference to a latest version
of'an asset, and (c) a reference to a stable version of an asset.

9. The computer system of claim 7

wherein the processor is configured to provide references

to the versions of the plurality of assets to an asset
management system; and

wherein the processor is configured to receive the respec-

tive static reference associated with each asset from the
asset management system.

10. The computer system of claim 6

wherein the processor is configured to render the plurality

of assets in response to asset data stored in the respective
absolute directory path locations and in response to a
first version of a first asset to form the rendered image;
and

wherein the processor is configured to render the plurality

of assets in response to asset data stored in the respective
absolute directory path locations and in response to a
second version of the first asset to form the re-rendered
image.

11. A computer program product that comprises a non-
transitory media storing computer-executable code for execu-
tion upon a computer system including a processor, the com-
puter program product comprising:

code that directs the processor to receive a selection of

assets from a plurality of assets to be rendered from a
user with a user input device, wherein assets from the
plurality of assets are associated with a plurality of sym-
bolic references;

code that directs the processor to determine respective

static references associated with each asset from the
plurality of assets in response to the plurality of sym-
bolic references;
code that directs the processor to render the plurality of
assets in response to asset data associated with the
respective static references to form a rendered image;

code that directs the processor to store respective static
references associated with each asset from the selection
of assets in a pinset file in a memory;

code that directs the processor to associate the rendered

image with the pinset file in the memory; code that
directs the processor to retrieve the pinset file from the
memory;

code that directs the processor to determine the respective

absolute directory path locations for the selection of
assets in response to the pinset file; and

code that directs the processor to re-render the plurality of

assets in response to data stored in the respective abso-
lute directory path locations to form a re-rendered
image;

wherein the respective static references associated with

each asset from the plurality of assets comprises respec-
tive absolute directory path locations associated with
each asset from the plurality of assets; and

wherein the computer program product further comprises:

code that directs the processor to store respective abso-
lute directory path locations associated with each asset
from the selection of assets in the pinset file in the
memory.

12. The computer program product of claim 11 wherein the
plurality of symbolic references comprises references to ver-
sions of the plurality of assets.

13. The computer program product of claim 12 wherein the
references to versions comprise at least one of (a) a reference
to a specific numeric version of an asset, (b) a reference to a
latest version of an asset, and (c) a reference to a stable
version of an asset.

US RE44,369 E

15

14. The computer program product of claim 12 further
comprising:

code that directs the processor to provide references to the

versions of the plurality of assets to an asset manage-
ment system with the processor; and

code that directs the processor to receive the respective

static reference associated with each asset from the asset
management system.

15. A method for rendering images using symbolic and
static references for a plurality of assets, the method compris-
ing:

receiving a selection of the plurality of assets to be ren-

dered, in electronically readable form readable by one
or more processors of one or more computer systems,
wherein each selection comprises a symbolic reference
to a corresponding asset or a version of the correspond-
ing asset;

determining, using the one or more processors of the one or

move computer systems, for each asset in the selection, a
respective static veference, thus forming a plurality of
respective static references for the selection, wherein
determining a respective static veference associated
with a selected asset uses the corresponding symbolic
reference, each respective static reference comprising a
respective absolute directory path location associated
with the corresponding selected asset;

storing the plurality of respective static references in a

pinset file in a memory of the one or more computer
systems, wherein a respective static reference associated
with an asset includes the respective absolute directory
path location associated with the asset;

determining the respective absolute directory path loca-

tions for the plurality of assets in vesponse to the pinset
file in the memory; and
rendering, with the one or more processors of the one or
move computer systems, the plurality of assets in
response to data stored in the respective absolute direc-
tory path locations to form a rendered image, wherein
rendering is vepeatable using a given set of assets and
the respective absolute divectory path locations in the
pinset file.
16. The method of claim 15, wherein the pinset file is a
database file.
17. The method of claim 15, wherein the plurality of sym-
bolic references comprises references to versions of the plu-
rality of assets.
18. The method of claim 17, wherein the references to
versions comprise one or more of (a) a reference to a specific
numeric version of an asset, (b) a reference to a latest version
of an asset, and/or (¢) a reference to a stable version of an
asset.
19. The method of claim 17, wherein determining the
respective static references associated with each asset from
the plurality of assets comprises:
providing, with the one or more processors of the one or
move computer systems, references to the versions of the
plurality of assets to an asset management system; and

receiving, at the one or more computer systems, the respec-
tive static reference associated with each asset from the
asset management system.

20. The method of claim 135,

wherein rendering the plurality of assets in response to

asset data stoved in the respective absolute directory
path locations comprises rendering, with the one or
more processors of the one or more computer systems,
the plurality of assets in response to asset data stored in

20

25

30

35

40

45

50

55

60

65

16

the respective absolute directory path locations and in
response to a first version of a first asset to form the
rendered image; and

wherein rendering the plurality of assets in response to

asset data storved in the respective absolute directory
path locations comprises rendering, with the one or
more processors of the one or more computer systems,
the plurality of assets in response to asset data stored in
the respective absolute directory path locations and in
response to a second version of the first asset to form the
re-rendered image.

21. The method of claim 15, wherein receiving a selection
comprises receiving a selection of assets from a user via a
user input device.

22. A system for rendering images, using symbolic and
static references, for a plurality of assets, the system compris-
ing:

a processor; and

a memory, in communication with the processor, config-

ured to store a set of instructions which when executed

by the processor cause the processor to:

store a selection of the plurality of assets to be rendered,
wherein each selection comprises a symbolic refer-
ence to a corresponding asset or a version of the
corresponding asset;

determine, for each asset in the selection, a respective
static reference, thus forming a plurality of vespective
static references for the selection, wherein a respec-
tive static reference associated with a selected asset
depends on the corresponding symbolic reference,
each respective static reference comprising a respec-
tive absolute directory path location associated with
the corresponding selected asset;

store a pinset file containing the plurality of respective
static references, wherein a vespective static reference
associated with an asset includes the respective abso-
lute directory path location associated with the asset;

determine the respective absolute directory path loca-
tions for the plurality of assets in response to the
pinset file; and

render the plurality of assets in response to data stored
in the respective absolute divectory path locations to
form a rendered image to be stored in rendered image
storage, wherein rendering is repeatable using a
given set of assets and the respective absolute direc-
tory path locations in the pinset file.

23. The system of claim 22, wherein the pinset file is a
database file.

24. The system of claim 22, wherein the plurality of sym-
bolic references comprises references to versions of the plu-
rality of assets.

25. The system of claim 24, wherein the references to ver-
sions comprise one or more of (a) a reference to a specific
numeric version of an asset, (b) a reference to a latest version
of an asset, and/or (¢) a reference to a stable version of an
asset.

26. The system of claim 24, wherein the respective static
references associated with each asset from the plurality of
assets comprise logic for providing references to the versions
of the plurality of assets to an asset management system and

for receiving the respective static reference associated with
each asset from the asset management system.

27. The system of claim 22, further comprising a user input
for receiving the selection of assets from a user via a user
input device.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE44,369 E Page 1 of 1
APPLICATION NO. : 13/469280

DATED : July 16, 2013

INVENTOR(S) : Stephan Vladimir Bugaj, Brett Levin and Zachariah Baum

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
On the Title Page:

In the Inventors Section (75), delete:
“Stephan Vladimir Bugaj, Emeryville, CA (US); Brett Levin, Emeryville, CA (US); Zachariah
Baum, Milwaukee, WI (US)”
and insert:
--Stephan Vladimir Bugaj, San Pablo, CA (US); Brett Levin, San Francisco, CA (US);
Zachariah Baum, Milwaukee, WI (US)--

In the Claims Section:
Claim 3, Column 12, Line 67, delete:
“...comprise at least one of (a)...”
and insert:
--...comprise a reference selected from the group consisting of: at least one of (a)...--

Claim 8, Column 13, Line 67, delete:
“...comprise at least one of (a)...”
and insert:
--...comprise a reference selected from the group consisting of: at least one of (a)...--

Claim 8, Column 14, Line 1, delete:
“latest”

and insert:
--stable--

Claim 13, Column 14, Line 64, delete:
“...comprise at least one of (a)...”
and insert:
--...comprise a reference selected from the group consisting of: at least one of (a)...--

Signed and Sealed this
Twenty-fourth Day of September, 2013

Teresa Stanek Rea
Deputy Director of the United States Patent and Trademark Office

