a2 United States Patent

Wickeraad et al.

US008245109B2

US 8,245,109 B2
Aug. 14, 2012

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

@
(22)

(65)

(1)

(52)
(58)

ERROR CHECKING AND CORRECTION
(ECC) SYSTEM AND METHOD

Inventors: John Alan Wickeraad, Granite Bay, CA
(US); King Luk, Elk Grve, CA (US)

Assignee: Hewlett-Packard Development
Company, L.P., Houston, TX (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1283 days.

Appl. No.: 11/394,949

Filed: Mar. 31, 2006

Prior Publication Data

US 2007/0234182 Al Oct. 4, 2007

Int. CL.

G11C 29/00 (2006.01)

US.CL e 714/763

Field of Classification Search

714/763,

714/6, 52,768
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,782,487 A * 11/1988 Smelserccocoevennn. 714/723
5,668,967 A * 9/1997 Olsonetal. . 710/22
5,731,945 A * 3/1998 Bertinetal. 361/111
5959914 A * 9/1999 Gatesetal. 365/201
6,438,726 B1* 82002 Walters, Jr. . .. 714/764
6,510,537 B1* 1/2003 Lee 714/763
7,546,515 B2* 6/2009 Grossetal. . .. 714/763
2004/0216027 Al* 10/2004 Ueno 714/758
2006/0136656 Al* 6/2006 Conley et al. .. 711/103
2009/0044061 Al* 2/2009 Visconticcoene. 714/718

* cited by examiner

Primary Examiner — M. Mujtaba K Chaudry
Assistant Examiner — Enam Ahmed

(57) ABSTRACT

A method stores data and check bits for that data within a
memory chip. The memory chip stores the data and check bits
in a plurality of pages contained in the memory chip, each
page including a plurality of storage locations with each
storage location having an associated address. The method
includes receiving data to be stored in the memory, calculat-
ing check bits for the received data, mapping the data to
addresses associated with the storage locations in a given
page in the memory chip, mapping the check bits to addresses
associated with the storage locations contained in the same
page as the data, and storing the data and check bits in the
page. The method may be applied to a single memory chip or
to multiple memory chips.

20 Claims, 4 Drawing Sheets

214 214/\/1 (from CPU)
i 42 o204
Data Write . Write Merge
Path “éﬁ%e | DDW (128 bits) Logic Merge Data (MD)
Control 414
422 412
Data Path f
—»> Converter (128 bits)
Data 416 (to CPU)
(to DRAM 208) Input WDW (64 bits) | - 64 bits)
(.p (32 bits)| Register | (32 bits) 408 >
1 410 i
2 T ECC Logic (84 bits
418 >214
Data ECC
Read
- Out_put —e— Word ROW
Re‘lg(;sf)ter Register (64 bits) > Data path
400 404 RAW Converter (32 bits)
= (to HPP/)
CLUE)
420
(32 biti) Rea}g Check-blt (8 bits)
igészter (8 Check
=2 Bits) | 32-bit Write
Check-Bit
(Read 32-bit Check Byte CB during RMW) Register
408
Check Byte CB (32 bits)

US 8,245,109 B2

Sheet 1 of 4

Aug. 14,2012

U.S. Patent

(Wv punoiByoeg)

| ainbi4

IIIIIIIIIIIIIIIIIIIIIIIIIII

AV
003

[er40)8
WwY

00T sinpo Asowspy

US 8,245,109 B2

Sheet 2 of 4

Aug. 14, 2012

U.S. Patent

Z 9Inbi4

["]¥4
Ndd

AN

(444 S —
seained mmww,mo wmw_F ¢
abelo)g ndin a :%mo
ssep indinQ ndu|
A A
y
20¢
J8jjouoyy Alowsin
¥0C
90¢ Uled eleqg
Jayng ||||7 9903 L/
Buross|eo) lll_\ \
S85S000Y BJUM A ejeq aul N\
abed umomm_moOV 712
-lelued

[744
Aynond

deway ssaippy

80¢
AVHd

US 8,245,109 B2

Sheet 3 of 4

Aug. 14, 2012

U.S. Patent

~

Ma1

e

(d) 35Vd

¢ ainbi4
vMa €Ma ZMa LMA
"
ga | /9 |9a|sa va | ¢a za| g
~ () Vo 7 N
S1q 962
(1a@) su eleq \/
i \ ™
i | | | o | | m i L
| “ “ | “ “ " “ “ b
¥970 | €970 | 2970 1 1970 | 12170 1 1170 10470 1 670 | 87@ 1-++1 17Q
| [} 1 1 | i | | | | |
| | | | | | | | | | §
| L 1 | { 1 | | |] 1

US 8,245,109 B2

Sheet 4 of 4

Aug. 14, 2012

U.S. Patent

y12<

aJnbi
.v .n_ (suq zg) a0 a1kg ysyo
g0v «
19)siBay - (MWY Buunp g9 81Ag ¥28yJ 1g-ZE peay)
ng-429y9d
AUM 1g-2E Il Amu_._m %
%9949 8) 19)s160y “—
(suag) ug-¥09yD peay [(S4q g¢)
(1}47
p (an1o
sz | /ddH) e o
YA 2E) | jopenuon My voy 0o%
d P 18)s160y 0or
yied ejeqg - (suq +9) lg)sibay
PIOAA ; -
MQy pESY Indino
203 “ied
154 ¥
suq pg) 607003 — % ¥4
< (s)q z€g) | Jaysibey |(sHq Z€) ﬂ
X - i . —L o
- (sua v9)) XMW <7030 mam ndu) (802 Ww¥Q o)
(ngoop | 9% L &iea
\-——————] JeuaAu0)
(S098Z1)| ey ereg
— 7i% F447%
wS o4l [ouog
. 21607 B Yied
ejeq abu W
(aw) erea obian | 5,0 o (suagzi) maa | o AN. ejeq
Sml\\ (A4
(NdD wouy) T/\VFN ¥iz

US 8,245,109 B2

1
ERROR CHECKING AND CORRECTION
(ECC) SYSTEM AND METHOD

BACKGROUND OF THE INVENTION

In many computer systems, error checking and correction
(ECC) is used to detect and correct errors in data stored in a
memory of the computer system. To protect data using error
checking and correction, an algorithm is applied to the data
before the data is stored in the memory, with the algorithm
generating a corresponding error correcting code. Depending
upon the type of error checking and correction being utilized,
the code may allow the detection of one or more erroneous
bits in the data and may also allow for the correction of one or
more such erroneous bits. For example, a common type of
error checking and correction is known as single error cor-
rection double error detection (SECDED). With this type of
error checking and correction, an SECDED code is calculated
for data and may be utilized to detect single or double bit
errors in the data while allowing for the correction of single
bit errors.

A simple parity bit may be viewed as the simplest type of
error checking and correction, although technically parity
bits allow only for the detection and not the correction of bit
errors in store data. A parity bitis a bit appended to a group of
data bits and having a value such that the number of binary 1°s
in the overall word formed by the data and parity bits has
either an even or an odd number of binary 1’s. In the present
description, the term error checking and correction (ECC) is
used generally to refer to any type of error detection alone or
to any type of error checking and correction. Also, the terms
check bits, check byte, and ECC bits, or check word may be
used interchangeably in the present description to refer to the
bits or groups of bits generated by the ECC algorithm or
process being utilized.

FIG. 1 is the block diagram of a conventional memory
module 100 including a number of random access (RAM)
chips 102a-z. The memory module 100 further includes an
ECC RAM chip 104 for storing check bits that allow errone-
ous bits in the RAM chips 102a-7 to be detected and possibly
corrected. As the data is stored in the RAM chips 102a-n,
circuitry (not shown) on the memory module 100 calculates
the corresponding check bits for that data and stores these
check bits in the ECC RAM 104. The operation of the RAM
chips 102a-» an ECC RAM chip 104 will be understood by
those skilled in the art, and thus will now be explained only
very briefly. Each of the RAM chips 102a-» has a large
number of memory cells (not shown) arranged in rows and
columns within the chip. Each memory cell has an associated
address and to access that cell a corresponding address is
applied to the memory module and then data is either written
to or read from the addressed memory cells. Rows of memory
cells are typically referred to as pages, with the address
applied to the memory module 100 including a row address
component corresponding to a respective row or page within
the RAM chips 102a-7. In response to a given row address,
the corresponding page within the RAM chips 102a-% is
accessed and thereafter particular memory cells in the page
are accessed as determined by a column address component
of the applied address.

In operation, to write data into the memory module 100 an
address is first applied to the memory module. In response to
the applied address, corresponding memory cells in the RAM
chips 102a-» are accessed and the data to be stored in the
addressed cells is thereafter written into and stored in these
memory cells. From the data being written into the addressed

20

25

30

35

40

45

50

55

60

65

2

memory cells, circuitry on the memory module 100 calculates
corresponding check bits and stores these check bits in the
ECC RAM chip 104.

When data is read from the memory module 100, once
again an address is first applied to the module. The corre-
sponding memory cells in the RAM chips 102a-» are then
accessed and the data is read out of these memory cells. Atthe
same time, circuitry on the memory module 100 accesses the
check bits associated with the addressed memory cells. The
circuitry then utilizes the data read out of the addressed
memory cells to calculate new check bits for this data and
compares these new check bits to the check bits read from the
ECCRAM chip 104. If the new check bits read from the ECC
RAM chip 104 are the same, then there are no errors in the
read data. If the new check bits are different from the check
bits read from the ECC DRAM chip 104, however, then this
means the data stored in the RAM chips 102a-# is now dif-
ferent than the data originally stored in the cells and thus an
error in the data exists. Depending on the type of check bits
stored in the ECC RAM 104, at this point the circuitry on the
memory module 100 may generate an error flag indicating an
error in data stored in the memory module has been detected
or the circuitry may correct the detected error if possible.

While this type of error checking and correction is satis-
factory in many applications, the inclusion of this error
checking and correction functionality on the memory module
100 increases the cost of the memory module. This is true due
to the requirement for the additional ECC RAM chip 104 and
also due to the additional circuitry (not shown) contained on
the memory module for calculating the check bits and utiliz-
ing the calculated check bits to detect and possibly correct
errors in the data stored in the RAM chips 102a-. As shown
in FIG. 1, the ECC RAM chips 102a-# collectively form the
actual data storage 106 portion of the memory module 100,
with the extra ECC chip 104 merely storing check bits to
detect and possibly correct errors in the stored data and not
being available for use by programs running on a computer
system (not shown) including the module 100.

In addition, the inclusion of error checking and correction
on the memory module 100 may result in reduced perfor-
mance of the memory module particularly during some types
of data transfer operations, such as read-modify-write
(RMW) operations which can result in consecutive read and
write operations to a given page in the RAM chips 102a-n.
Such RMW operations take an undesirably long time to com-
plete due to the delay in calculating the check bits for each
such consecutive data transfer operation, lowering the overall
performance of the memory module 100 as will be appreci-
ated by those skilled in the art.

There is a need for an improved system and method for
providing error checking and correction in the memory of a
computer or other type of electronic system.

SUMMARY OF THE INVENTION

According to one aspect of the present invention, a method
stores data and check bits for that data within a single memory
chip. The memory chip stores the data and check bits in a
plurality of pages contained in the memory chip, each page
including a plurality of storage locations with each storage
location having an associated address. The method includes
receiving data to be stored in the memory, calculating check
bits for the received data, mapping the data to addresses
associated with the storage locations in a given page in the
memory chip, mapping the check bits to addresses associated
with the storage locations contained in the same page as the
data, and storing the data and check bits in the page.

US 8,245,109 B2

3

According to another aspect of the present invention, a data
path has a memory bus adapted to be coupled to a memory
device and a processor bus adapted to be coupled to a proces-
sor. The data path is operable during a write mode of opera-
tion to receive from the processor bus respective data words to
be stored in the memory device and to generate corresponding
check bits for each received data word. The data path is
further operable store the data words and an error checking
word including the check bits in a respective page in the
memory device. The data is operable during a read mode of
operation to receive on the memory bus the data words and the
error checking word from a respective page in the memory
device. The data path is further operable to utilize the bits in
the error checking word to detect errors in the received data
words.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified block diagram of a conventional
memory module including a separate ECC RAM chip for
performing error checking and correction.

FIG. 2 is a functional block diagram of a computer system
including a memory controller an error checking and correc-
tion data path and write coalescing buffer according to one
embodiment of the present invention.

FIG. 3 is a diagram illustrating a page of data contained
within the DRAM of FIG. 2 along with bytes, data words, a
page data word, and a check byte that collectively form the
page.

FIG. 4 is a more detailed functional block diagram of the
ECC data path of FIG. 2 according to one embodiment of the
present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

FIG. 2 is a functional block diagram of a computer system
200 including a memory controller 202 having an error
checking and correction data path 204 and write coalescing
buffer 206 according to one embodiment of the present inven-
tion. In operation, the ECC data path 204 and the write coa-
lescing buffer 206 operate in combination during write opera-
tions to store data words and the corresponding check bits for
those data words in a given page within a single DRAM 208.
During read operations, the ECC data path 204 retrieves a
data line within a given page in the DRAM 208 and deter-
mines whether the data words in that data line contain any
errors using the corresponding check bits contained in the
page. The write coalescing buffer 206 functions to improve
the efficiency read-modify-write operations to the DRAM
208 by buffering modified data words or bytes being written
to a given page within the DRAM. These data words or bytes
are buffered until some other triggering event occurs, such as
arequest to access to a different line within the currently open
page in the DRAM 208, as will be explained in more detail
below.

In the following description, certain details are set forth in
conjunction with the described embodiments of the present
invention to provide a sufficient understanding of the inven-
tion. One skilled in the art will appreciate, however, that the
invention may be practiced without these particular details.
Furthermore, one skilled in the art will appreciate that the
example embodiments described below do not limit the scope
of'the present invention, and will also understand that various
modifications, equivalents, and combinations of the disclosed
embodiments and components of such embodiments are
within the scope of the present invention. Embodiments

20

25

30

35

40

45

50

55

60

65

4

including fewer than all the components of any of the respec-
tive described embodiments may also be within the scope of
the present invention although not expressly described in
detail below. Finally, the operation of well known compo-
nents and/or processes has not been shown or described in
detail below to avoid unnecessarily obscuring the present
invention.

In the computer system 200, a central processing unit
(CPU) 210 transfers data to and from the DRAM 208 through
the memory controller 202. The DRAM 208 is coupled to the
ECC data path 204 through a memory bus 212 that includes
address, control, and data buses through which the memory
controller 202 interfaces with the DRAM. Similarly, the CPU
210 is coupled to the memory controller 202 through a pro-
cessor bus 214 that also includes address, data, and control
busses. The computer system 200 further includes one or
more input devices 218, such as a keyboard or a mouse,
coupled to the memory controller 202 to allow an operator to
interface with the computer system. Typically, the computer
system 200 also includes one or more output devices 220
coupled to the memory controller 202, such output devices
typically including a printer and a video terminal. One or
more mass data storage devices 222 are also typically coupled
to the memory controller 202 to store data or retrieve data
from external storage media (not shown). Examples of typical
storage devices 222 include hard and floppy disks, tape cas-
settes, compact disk read-only (CD-ROMs) and compact disk
read-write (CD-RW) memories, and digital video disks
(DVDs).

The memory controller 202 further includes address remap
circuitry 224 coupled to the processor bus 214 to receive
logical memory addresses from software running on the CPU
210. In response to the logical memory addresses, the address
remap circuitry 224 converts or “remaps” these logical
addresses into physical addresses (i.e., addresses seen by the
DRAM 208) that are then applied over the memory bus 212 to
access corresponding memory cells in the DRAM 208. In
operation, the address remap circuitry 224 remaps the logical
memory addresses from the CPU 210 so that the check bits for
data lines stored in a given page in the DRAM 208 are stored
in the same page.

To read data from the DRAM 208, the CPU 210 applies a
read command in the form of appropriate control and address
signals to the memory controller 202 over the processor bus
214. In response to the read command, the data path 204 and
the address remap circuitry 224 in the memory controller 202
operate in combination to apply appropriate address and con-
trol signals over the bus 212 to access a line of data in desired
page within the DRAM 208. Before continuing with the
description of a read operation, the format in which data is
stored in the DRAM 208 will first be described with reference
to FIG. 3. As shown in FIG. 3, a page P of data includes 64
data lines DL.1-DL64, with a data portion of the page being
designated a line data word LDW that consists of the data
lines DL.9-DL.64. Each data line DL is typically the smallest
unit of data accessible in an open or activated page P. In
addition to the data word LDW, each page P includes a num-
ber of check bits that are collectively designated a check byte
CB and are formed by data lines DL.1-DL8. The check byte
CB has a value that is calculated using the data lines D1.9-
DL 64 in the LDW word and which enables errors in the LDW
word to be detected and possibly corrected, depending on the
type of error checking and correction algorithm being uti-
lized.

FIG. 3 also shows that each data line DL further includes
eight bytes B1-B8 as shown by way of example for the data
line DL61. In this embodiment, each data line DL includes

US 8,245,109 B2

5

256 bits so that each byte B1-B8 corresponds to a 32-bit byte.
A data word DW formed by two bytes B and thus each data
line DL includes four data words DW1-DW4 as shown in
FIG. 3 and as will be discussed in more detail below. In the
example embodiment of FIG. 3, each page P is 512 bytes
(32-bit bytes, or 2048 (2K) 8-bit bytes long) such that there
are the 64 data lines DI.1-DL.64 in each page, with each data
line being 256 bits or eight 32-bit bytes B long. As previously
mentioned, the data line DL is typically the smallest unit of
data accessible in each page P and in the present description
data being transferred to or from an open or activated page
may be discussed in terms of data lines or alternatively in
terms of data words DW and bytes B.

Note that FIG. 3 is merely an example illustrating one page
P merely for purposes of illustration and to assist in the
following description of the operation of the ECC data path
204 and write coalescing buffer 206. The salient point of this
figure is that both the page data in the form of the line data
word LDW along with check bits for that data word in the
form of the check byte CB are stored in the same page P in the
DRAM 208. The location of the check byte CB in the page P
along with the numbers of data lines DL, number of bytes B
in each data line, and the definition of data words DW will
vary in different embodiments of the present invention. In all
such embodiments, however, each line data word LDW along
with the associated check bits forming the check byte CB for
that line data word are stored in the same page P in the DRAM
208. The address remap circuitry 224 remaps logical
addresses from the CPU 210 to ensure that this is the case, as
previously described.

Returning now to FIG. 2 and to the discussion of a read
operation, the ECC data path 204 and address remap circuitry
224 in the memory controller 202 apply appropriate address
and control signals over the memory bus 212 to activate an
addressed page P in the DRAM 208 and to thereafter access
the addressed data line DL in that page. In accessing the
addressed page P and data line DL, the ECC data path 204 first
accesses the check byte CB and thereafter utilizes portions of
this check byte to detect errors in the addressed data line DL,
as bytes B1-B8 of this data line are sequentially read into the
data path. In the example embodiment of FIG. 2, the width of
the memory bus 212 is assumed to have the width of a single
byte B. Therefore, in the addressed page P in the DRAM 208
the check byte CB is initially transferred one byte B at a time
over the memory bus 212 to the data path 204. After the check
byte CB, the bytes B1-B8 of the addressed data line DL are
sequentially transferred over the bus 212 to the data path.
Since the ECC data path 204 initially receives the check byte
CB, the data path can then use portions of the check byte to
sequentially check for errors as the bytes B1-B8 are sequen-
tially received.

Recall that in the example embodiment being described in
more detail to better illustrate the operation of the data path
204, each of the data lines DL is 256 bits or 8 bytes wide with
each byte B being 32 bits wide. Each data word DW1-DW4 is
therefore 64 bits wide and the line data word LDW is 512
bytes wide in this example. The check byte CB includes the
lines DL.1-DL8, with groups of check bits in the check byte
corresponding to the check bits calculated for respective ones
of the data words DW1-DW4 in the data lines DL9-DL64
forming the line data word LDW in assessed page P. Accord-
ingly, during a read operation the data path 204 initially
receives the check byte CB and thereafter latches the
addressed data line DL.

When the first two bytes B1 and B2 of the addressed data
line DL have be latched, the data path 204 utilizes corre-
sponding bits in the check byte CB to determine whether the

20

25

30

35

40

45

50

55

60

65

6

data word DW1 formed by these bytes contains any errors.
While the data path 204 is determining whether the first data
word DW (bytes B1 and B2) in the addressed data line DL,
contains any errors, the data path is simultaneously latching
the next two bytes B3 and B4 corresponding to the second
data word DW2 in the addressed data line. Once the data path
204 has latched the next two bytes B3 and B4 corresponding
to the second data word DW2 and has completed determining
whether the first data word DW1 contains any errors, the data
path then moves on and determines whether the second data
word DW2 formed by the bytes B3 and B4 contains any
errors. To do so, the data path 204 again utilizes a second
group of check bits in the check byte CB. Once again, while
the data path 204 is determining whether the second data
word DW2 contains any errors, the data path is simulta-
neously latching the next two bytes B5 and B6 corresponding
to the third data word DW3 in the addressed data line DL. The
data path 204 thereafter utilizes a third group of check bits in
the check byte CB to determine whether the third data word
DW3 contains any errors. Finally, while the data path 204 is
determining whether the third data word DW contains any
errors, the data path is simultaneously latching the final two
bytes B7 and B8 in the addressed data line DL corresponding
to the fourth data word DW. The data path 204 thereafter
utilizes a final group of check bits in the check byte CB to
determine whether the fourth data word DW4 contains any
errors.

When the data path 204 determines that none of the data
words DW1-DW4 in the addressed data line DL contains any
errors, the data path communicates the data words DW1-
DW4 over the processor bus 214 to the CPU 210 for appro-
priate processing by the CPU. Ifthe data path 204 determines
that any of the data words DW1-DW4 contains an error, the
data path communicates an error flag over the processor bus
214 to the CPU 210. In response to the error flag, the CPU 210
takes appropriate action, such as displaying an error message
on a suitable one of the output devices 220 to notify a user of
the error and allow the user to take appropriate action.

The operation of the memory controller 202 and ECC data
path 204 during a write operation will now be described. The
first write operation to be described is a conventional write
operation in which data is written to all data lines DL in a
given memory page P. To write data into a desired data line
DL within a memory page P in the DRAM 208, the CPU 210
applies a write command in the form of appropriate control
and address signals to the memory controller 202 over the
processor bus 214. In addition to the write command, the CPU
210 supplies the write data to be stored in the desired line
within the DRAM 208 to the memory controller 202 over the
processor bus 214. The width of the data bus portion of the
processor bus 214 will of course determine precisely in what
form the write data is transferred to the memory controller
202. For the purposes of the present description, the data bus
portion of the processor bus 214 is assumed to be 128 bits
wide. As a result, the CPU 210 transfers a first two 64-bit data
words DW1 and DW2 at the same time over the processor bus
214 to the data path 204 within the memory controller 202.
The CPU 210 thereafter transfers a second two 64-bit data
words DW3 and DW4 at the same time over the processor bus
214 to the data path 204.

Within the memory controller 202, the data path 204
latches the data words DW1-DW4 as they are received and the
address remap circuitry 224 does the same with applied logi-
cal addresses, and these to operate in combination to apply the
appropriate control and address signals on the memory bus
212 to access the desired page P within the DRAM 208. The
data path 204 then supplies these data words DW1-DW4 on

US 8,245,109 B2

7

the data bus portion of the memory bus 212 to thereby write
each of these data words into the addressed data line DL and
activated page P within the DRAM 208. As the data path 204
writes each data word DW1-DW4 into the addressed data line
DL within the DRAM 208, the data path calculates the cor-
responding group of check bits for each of the data words.
More specifically, as the data path 204 writes the first data
word DW1 into the DRAM 208 the data path calculates a
corresponding first group of check bits for this data word. The
data path 204 thereafter does the same for the second data
word DW2 and calculates a corresponding second group of
check bits for the second data word as the data path is writing
the second data word into the DRAM 208. In the same way,
the data path 204 generates third and fourth groups of check
bits for the third and fourth data words DW3 and DW4 as each
of these data words is written into the addressed data line
within the DRAM 208.

Once the data path 204 has written all four data words
DW1-DW4 into the activated page P and addressed data line
DL within the DRAM 208, the data path has calculated the
respective groups of check bits for each of these data words.
The data path 204 then combines these four groups of check
bits to form a corresponding portion of the check byte CB for
the data words DW1-DW4 stored in the addressed data line
DL. The data path 204 then repeats these operations for each
data line DL in the activated page P, storing new data for that
data line and calculating corresponding check bits. Once the
data path 204 has done this for all data lines DL in the
activated page P, the data path 204 writes the check byte CB
into the activated page within the DRAM 208 to complete the
write operation.

The operation of the address remap circuitry 224, ECC data
path 204, and write coalescing buffer 206 during a read-
modify-write operation will now be described. A read-
modify-write operation is a data transfer operation that: 1)
accesses a data line DL in the DRAM 208; 2) reads the line
data word LDW stored in the accessed page P; 3) modifies
only a portion of the line data word LDW contained in the
accessed page; and 4) then stores or writes the new line data
word including the modified portion into the accessed page.
Such data transfer operations may commonly occur in some
applications being executed by the CPU 210, such as graphics
applications for displaying images on one of the output
devices 220, as will be understood by those skilled in the art.
In the following description, it is assumed that one or more
data lines DL are being modified during the read-modify-
write operation. In reality, only a portion of an individual data
line DL could actually be modified, such as only one of the
bytes B in the addressed data line, but recall that the data lines
are the minimum units of data accessible in an activated page
P.

During a read-modify-write operation, the data path 204
and address remap circuitry 224 initially operate in the same
way as described above for a read operation. Accordingly, the
CPU 210 applies a read command in the form of appropriate
control and address signals to the memory controller 202 over
the processor bus 214. In response to the read command, the
data path 204 and address remap circuitry 224 operate in
combination to apply appropriate address and control signals
over the bus 212 to activate a desired memory page P and
access a selected data line DL in that page. The data path 204
also accesses the check byte CB and remaining data lines DL
in the activated page as described above for a read operation.
Once all addressed data lines DL have been read from the
DRAM 208 and checked for errors, the data path supplies
these words to the CPU 210 over the processor bus 214.

20

25

30

35

40

45

50

55

60

65

8

At this point, the CPU 210 modifies the data stored in one
or more of these data lines DL but not all of the data lines. In
the present description, it will be assumed that only one of the
data words DW1-DW4 in an addressed data line DL is modi-
fied. The CPU 210 then applies a write command including
the modified data line DL to the memory controller 202 via
the processor bus 214. Only a portion of the line data word
LDW inthe form of the modified data line DL has at this point
been changed, and thus such an access to the DRAM 208 is
commonly termed a “partial-page access.” Instead of imme-
diately operating as described above for a write operation to
write the modified data line DL into the accessed page P inthe
DRAM 208, the modified data line DL instead is applied to
the write coalescing buffer 206.

Upon receiving the modified data line DL, the write coa-
lescing buffer 206 stores the modified data line but does not
initially supply the modified data line to the data path 204 to
be written into the accessed page in the DRAM 208. In
read-modify-write operations, the CPU 210 many times
sequentially modifies the values of data lines DL contained in
the accessed page P in the DRAM 208. The write coalescing
buffer 206 functions to receive and store these sequentially
modified data lines DL from the CPU 210. Once all the data
lines DL contained in the accessed page P in the DRAM 208
have been modified or some other triggering event occurs,
such as the CPU 210 applying a command accessing a differ-
ent page within the DRAM, the write coalescing buffer 206
then at this point applies all-modified data lines to the data
path 204. These modified data lines DL from the write coa-
lescing buffer 206 are indicated as “coalesced line data” in
FIG. 2.

In response to receiving these modified data lines DL from
the write coalescing buffer 206, the data path 204 writes each
of the modified data lines into the accessed page P in the
DRAM 208 and calculates corresponding check bit portions
of the check byte CB for these modified data lines. Once the
data path 204 has written all modified data lines DL into the
accessed page P in the DRAM 208, the data path generates the
new check byte CB by combining the new check bit portions
for the modified data lines DL with any unchanged check bit
portions corresponding to data lines in the accessed page
which have not been modified. After the new check byte CB
has been generated, the data path 204 writes this check byte to
the accessed page P in the DRAM 208 to complete the read-
modify-write operation.

The data path 204 and write coalescing buffer 206 operate
in combination to improve the efficiency the computer system
200 in executing read-modify-write operations. In conven-
tional memory controllers, when ECC is implemented read-
modify-write operations can result in sever performance pen-
alties due to the calculations that must be performed by the
memory controller during such operations. For example, if a
single data line DL is modified in an accessed page P in the
DRAM 208, a separate write operation would be performed
in a conventional memory controller as each data word is
modified. Each of these write operations takes time to per-
form, so subsequent memory accesses from the CPU 210
cannot be performed during this time. Moreover, each such
write operation is particularly time consuming since although
only one data line DL in the accessed page P has been modi-
fied, all data lines in the page must be accessed and combined
with the modified data line to calculate a new check byte CB
for all the data lines in the page. This new check byte CB must
then be written to the accessed page P in the DRAM 208. By
buffering partial-page accesses, only a single write operation
containing all modified data lines DL in a given page P need
be performed, and moreover only new portions of the check

US 8,245,109 B2

9

byte CB need by calculated for these new data lines so that
unchanged data lines need not be accessed, as will be
explained in more detail below.

FIG. 4 is a more detailed functional block diagram of the
ECC data path 204 of FIG. 2 according to one embodiment of
the present invention. In the embodiment of FIG. 4, the data
path 204 includes a data output register 400 that latches 32-bit
data bytes DB applied on the memory bus 212 (FIG. 2) by the
DRAM 208 (FIG. 2) during read operations. Recall, during a
read operation the check byte CB (FIG. 3) in the page being
read from the DRAM 208 is read out of the page first. The data
output register 400 latches this check byte CB applied on the
memory bus 212 and aread check-bit register 402 receives the
check byte from the data output register and stores this value.
The data output register 400 applies the subsequently latched
bytes B1-B8 sequentially applied on the memory bus 212 to
an ECC read word register 404.

The ECC read word register 404 combines pairs of the
latched bytes B1-B8 to form the corresponding data words
DW1-DW4 (FIG. 3) and supplies these data words to a first
input of a multiplexer 406. The data words DW output from
the ECC read word register 404 are designated read data
words RDW. During read-modify-write operations, a write
check-bit register 408 receives and stores the check byte CB
latched by the data output register 400. The write check-bit
register 408 operates during read-modify-write operations to
merge modified portions of the check byte CB corresponding
to modified data words DW with unchanged portions of the
check byte received from the data output register 400. After
having done so, the write check-bit register 408 supplies the
newly generated check byte CB to a data input register 410
which, in turn, applies the newly generated check byte on the
memory bus 212 at the appropriate time to store this check
byte in the accessed page within the DRAM 208.

The data input register 410 also receives 32-bit data bytes
B from a write merge first-in-first-out (FIFO) register 412 and
applies these received data bytes on the memory bus 212
during write operations. The write merge FIFO register 412
receives 128 bit double data words DDW from write merge
logic 414 and sequentially applies the bytes B in these double
data words to the data input register as just mentioned. In
addition, the write merge FIFO register 412 supplies each
64-bit data word DW in the received 128-bit double data word
to a second input of the multiplexer 406. These data words
DW applied to the second input of the multiplexer 406 are
designated write data words WDW.

In the example embodiment of FIG. 4, the write merge
logic 414 receives double data words DDW from the CPU
210 (FIG. 2) through the processor bus 214 and supplies these
double data words to the write merge FIFO register 412. The
write merge logic 414 also receives merge data MD during
read-modify-write operations, with the merge data corre-
sponding to data words DW read from the accessed page
(FIG. 3) within the DRAM 208 (FIG. 2) that are not being
modified at that point in time during the read-modify-write
operation. Recall, each data line DL includes four data words
DW1-DW4 and eight bytes B1-B8. In the description of the
embodiment of FIG. 4, data being transferred between vari-
ous points in the data path 204 will be described in terms of
data words DW and bytes B instead of data lines DL merely
for ease of description.

The data path 204 further includes ECC logic 418 that
implements a suitable error checking and correction algo-
rithm to check data words DW being read from the DRAM
208 during read operations and to calculate check bits for data
words being written to the DRAM during write and read-
modify write operations, as will be described in more detail

20

25

30

35

40

45

50

55

60

65

10

below. In response to a read/write signal R/W being active,
which defines a write operation, the multiplexer 406 applies
the write data words WDW to the ECC logic 418. This occurs
during standard write operations and during the write portion
of'a read-modify-write operation. When the read/write signal
is inactive, which defines a read operation, the multiplexer
406 applies the read data words RDW to the ECC logic 418.
This occurs during standard read operations and during the
read portion of a read-modify-write operation.

During read operations, the ECC logic 418 also receives
eight-bit check bit portions of the check byte CB stored in the
read check-bit register 402 and utilizes these check bit por-
tions to detect errors in the read data words RDW supplied by
the multiplexer 406. Conversely, during write operations the
ECC logic 418 generates eight-bit check bit portions using
the 64-bit write data words WDW received from the multi-
plexer 406. The ECC logic 418 supplies the generated eight-
bit check bit portions to the write check-bit register 408
which, in turn, utilizes these bits in forming the 32-bit check
byte CB that is applied to the data input register 410, as will
be described in more detail below.

During read operations, after the ECC logic 418 has
checked the received read data words RDW for errors, assum-
ing no errors the logic provides the RDW words to the data
path converter 416. The data path converter 416 combines
pairs of RDW words and provides a corresponding double
data word DDW over the processor bus 214 to the CPU 210
(FIG. 2). As previously mentioned, the data path converter
also feeds back the RDW words as merge data MD to the
write merge logic 414. The merge data MD is used during
read-modify-write operations, as will be discussed in more
detail below. The data path 204 may further include a second
data path converter 418 coupled to the ECC logic 418 to
receive the read data words RDW and convert the data words
into another form for transfer over the processor bus 214.

In the example of FIG. 4, the second data path converter
418 transfers the RDW words one 32-bit byte at a time over
the bus 214 to the CPU 210 (FIG. 2) or some other device
coupled to the bus. Finally, the data path 204 includes a
control circuit 422 that generates a plurality of controls sig-
nals 424 to control the overall operation of the data path and
write coalescing buffer 206 (FIG. 2). The control circuit 422
may be viewed as a control circuit for controlling the overall
operation of the memory controller 202, and handles control
of'the components shown in the embodiment of F1G. 4 as well
as interface with the CPU 210 and DRAM 208 of FIG. 2.

The overall operation of the embodiment of the data path
204 depicted in FIG. 4 will now be described in more detail.
During a read operation, the CPU 210 of FIG. 2 supplies a
read command including an address of the line in the DRAM
208 to be accessed as previously described with reference to
FIG. 2. In response to the applied read command, the data
path control circuitry 422 in the data path 204 applies appro-
priate control signals 424 on the memory bus 212 to access
the desired line in the DRAM 208. The control circuit 422
thereafter clocks the data output register 400 to sequentially
clock 32-bit bytes B in the accessed page into the data output
register. As previously described, the first byte clocked into
the data output register 400 is the check byte CB. The data
output register 400 provides the check byte CB to the read
check-bit register 402 which stores the check byte. Subse-
quent 32-bit bytes B clocked into the data output register 400
are thereafter sequentially stored in the ECC read word a
register 404. The ECC read work register 404 combines pairs
of'these bytes B to generate the corresponding read data word
RDW that is applied to the first input of the multiplexer 406.
For example, the register 404 combines 32-bit bytes B1 and

US 8,245,109 B2

11

B2 from the accessed page to thereby formed a data word
DW1, and the register 404 thereafter outputs this data word as
the RDW word. Because this is a read operation, the control
circuit 422 drives the read/write signal R/W inactive, causing
the multiplexer 406 to supply the RDW word applied on the
first input to the ECC logic 418.

At this point, assume the first RDW word corresponding to
the data word DW1 (FIG. 3) is output from the read word
register 404 and applied through the multiplexer 406 to the
ECC logic 418. The read check-bit register 402 at this point
outputs the eight check bits in the check byte CB that corre-
spond to the first RDW word currently applied to the ECC
logic 418. The ECC logic 418 utilizes the applied eight check
bits from the register 402 to determine whether the applied
first RDW word contains any errors. Assuming no errors are
detected, the ECC logic 418 then supplies the first RDW word
to one of the data path converters 416 and 420 which, in turn,
appropriately transfers the data word over the processor bus
214 to the CPU 210 (FIG. 2). For example, where the first
64-bit RDW word is applied to the data path converter 416,
the converter waits for a second 64-bit RDW word (to be
discussed next below) and thereafter transfers these first and
second RDW words as a single double data word DDW over
a corresponding 128 bit data bus portion of the processor bus
214. In the following description, it is assumed the ECC logic
418 outputs all RDW words to the data path converter 416.

After the ECC logic 418 has completed detecting errors in
the first RDW word, the second RDW word corresponding to
the data word DW2 (FIG. 3) is output from the read word
register 404 and applied through the multiplexer 406 to the
ECC logic 418. The read check-bit register 402 at this point
outputs the eight check bits in the check byte CB that corre-
spond to the this second RDW word. The ECC logic 418
thereafter operates in the same way, utilizing the applied eight
check bits from the register 402 to determine whether the
second RDW word contains any errors. Assuming no errors
are detected, the ECC logic 418 then supplies the second
RDW word to the data path converter 416 which, in turn,
appropriately transfers the data word over the processor bus
214 to the CPU 210.

The ECC logic 418 continues operating in this matter,
receiving the next RDW word from the ECC read word reg-
ister 404 via the multiplexer 406 and the corresponding eight
check bits from the read check-bit register 402 and determin-
ing whether RDW word contains any errors utilizing the
check bits. Assuming no errors, each RDW word is output
from the ECC logic 418 to the data path converter 416 and
thereafter transferred over the processor bus 214 to the CPU
210. Note that if at any point the ECC logic 418 detects an
error in one of the RDW words, the ECC logic generates an
error flag that is communicated through the data path con-
verter 416 and over the bus 214 to the CPU 210.

In operation during a write operation, the CPU 210 of FIG.
2 supplies a write command including an address of the page
inthe DRAM 208 to be accessed as previously described with
reference to FIG. 2. In response to the applied write com-
mand, the data path control circuitry 422 in the data path 204
once again applies appropriate control signals 424 on the
memory bus 212 to access the desired page inthe DRAM 208.
The CPU 210 thereafter supplies the data words DW to be
written into the accessed page to the data path 204 over the
processor bus 214. More specifically, two 264-bit data words
DW are combined to form a single double data word DDW
that is applied to the write merge logic 414.

The write merge logic 414 thereafter supplies each
received 128-bit double data word DDW to the write merge
FIFO register, which sequentially stores the received DDW

20

25

30

35

40

45

50

55

60

65

12

words and outputs them one write data word RDW at a time
to the second input of the multiplexer 406. Each RDW word
corresponds to one of the data bytes DW1-DW4 to be stored
in the accessed page in the DRAM 208. Because the current
operation is write operation, the control circuit 422 activates
the R/W signal, causing the multiplexer 406 to apply each
RDW word from the write merger FIFO register 412 to the
ECC logic 418.

During the write operation, 128-bit double data words
DDW supplied from the CPU 210 over the processor bus 214
are transferred through the write merge logic 414 to the write
merge FIFO register 412. The write merge FIFO register 412
thereafter sequentially applies 64-bit write data words WDW
through the multiplexer 406 to the ECC logic 418. For each
received WDW word, the ECC logic 418 applies the error
checking and correction algorithm to generate the corre-
sponding check bits. In the example of FIG. 4, each WDW
word is 64 bits and ECC logic 418 generates eight check bits
for each such 64-bit WDW word. The ECC logic 418 supplies
each generated group of eight check bits to the write check-bit
register 408, which stores the check bits.

The write merge FIFO register 412 sequentially applies
each 64-bit write data word WDW through the multiplexer
406 to the ECC logic 418, and for each such word the ECC
logic 418 generates the corresponding eight check bits and
supplies these to the write check-bit register 408. Four WDW
words corresponding to the data words DW1-DW4 are con-
tained in the page being accessed in the example embodi-
ments of the data 204 of FIG. 4. Thus, after the ECC logic 418
has generated the corresponding eight check bits for each of
the four WDW words, the write check-bit register 408 stores
32 bits and thereby stores the check byte CB for the four write
data DW1-DW4 being written to the accessed page.

While the ECC logic 418 is generating the check byte CB,
the data input register 410 is writing 32-bit bytes B that
collectively form the data words DW1-DW4 into the DRAM
208 via the memory bus 212. Are specifically, as the write
merge FIFO register 412 is supplying the WDW words to the
multiplexer 406, the FIFO register is also applying these
words when byte B at a time to the data input register 410. In
this way, as the data path 204 is calculating the check byte CB
for the data words DW1-DW4 being written to the accessed
page, the data path is simultaneously writing these data words
when byte B at a time to the accessed page via the write merge
FIFO register 412 and data input register 410. Accordingly,
once all four data words DW1-DW4 have been written to the
accessed page, the write check-bit register 408 supplies the
check byte CB for these four data words to the data input
register 410 and the data input register writes the check byte
into the accessed page thereby completing the write opera-
tion.

In operation during a read-modify-write operation, the
CPU 210 (FIG. 2) initially supplies a read command includ-
ing an address of the page in the DRAM 208 to be accessed.
The data path 204 thereafter operates as previously described
during a read operation to output from the data path converter
416 double data words DDW. Thus, the check byte CB in the
accessed page is clocked out of the data output register 400
and stored in the read check-bit register 402. In contrast to a
conventional read operation, during a read-modify-write
operation note that the check byte CB from the data output
register 400 is also stored in the write check-bit register 408.

At this point, as each of the double data words DDW is
output from the data path converter 416 onto the processor
bus 214, the data path converter also feeds back the double
data word in the form of merge data MD to the write merge
logic 414. In this way, the write merge logic 414 stores the

US 8,245,109 B2

13
data words DW that have just been read from the accessed
page in the DRAM 208. The write check-bit register 408 also
stores the check byte CB for the data words DW just read from
the accessed page.

The CPU 210 has at this point read the desired data words
DW from the accessed page of the DRAM 208. Now, the CPU
210 modifies one of the data words DW just read from the
accessed page. The CPU 210 thereafter transfers the modified
data word DW over the processor bus 214 to the write merge
logic 414. Recall, the write merge logic 414 stores the merge
data MD corresponding to the data words DW just read from
the accessed page. The write merge logic 414 at this point
combines or merges the modified data word DW just received
from the CPU 210 with the merge data MD. More specifi-
cally, the merge logic 414 replaces data word DW in the
merge data MD that has been modified with the modified data
word DW. For example, assume that the byte B3 (FIG. 3) has
been modified and thus the CPU 210 writes back a new value
for the data word DW2. The write merge logic 414 in this
situation replaces the old data word DW2 with the modified
data word DW2.

At this point, the write merge logic 414 supplies the modi-
fied data word DW to the write merge FIFO register 412. The
write merge FIFO register 412 thereafter operates as previ-
ously described to supply the modified data word DW in the
form of the WDW word through the multiplexer 406 to the
ECC logic 418. The ECC logic 418 then calculates a new
group of eight check bits for the modified data word DW and
provides these check bits to the write check-bit register 408.
Recall, the write check-bit register 408 at this point stores the
original check byte CB read from the accessed page. The
write check-bit register 408 now replaces the group of eight
bits in the check byte CB corresponding to the old data word
DW with the new group of eight check bits for the modified
data word. Accordingly, the write check-bit register 408 now
stores anew check byte CB having a new value resulting from
the modified data word DW.

At this point, the modified data word DW stored in the
write merge FIFO register 412 is applied a byte B at a time to
the data input register 410 which, in turn, transfers the modi-
fied data word a byte at a time over the memory bus 212 and
into the accessed page in the DRAM 208. After the modified
data word DW has been written into the accessed page, the
new check byte CB stored in the write check bit register 408
is applied to the data input register 410. The data input register
410 thereafter transfers the new check byte over the bus 212
and into the accessed page in the DRAM 208, thereby com-
pleting the read-modify-write operation.

Referring back to FIG. 2, in one embodiment the address
remap circuitry 224 implements address remapping of logical
addresses from the CPU 210 to physical addresses for the
DRAM 208 according to a three part remapping algorithm
that avoids bank conflicts. In one embodiment, the algorithm
remaps logical addresses such that the least significant burst
size bits (bits 5:4) in the received logical address are mapped
to the bank bits for the DRAM 208 to enable bank rotation
within a 512-bit transfer. The algorithm also remaps the logi-
cal address such that the row bits between the logical
addresses and the corresponding physical addresses are the
same. In other words, the algorithm maps physical address
bits (3'6111) to the column bits to thereby enable same page
access for check bits CB addresses and the corresponding
data line addresses. This means that the most significant logi-
cal bits need to be mapped to the column bits. Finally, the
algorithm remaps the remaining address bits to increase page

20

25

30

35

40

45

50

55

60

65

14

hit probability during sequential memory accesses to thereby
improve performance of the CPU 210 and the overall com-
puter system 200.

Even though various embodiments have been set forth in
the foregoing description, the above disclosure is illustrative
only, and changes may be made in detail and yet remain
within the broad principles of the present invention. For
example, the functions performed by components in the com-
puter system 200 of FIG. 2 and the ECC data path 204 of F1G.
3 can be combined to be performed by fewer elements, sepa-
rated and performed by more elements, or combined into
different functional blocks depending upon the actual com-
ponents used in implementing these components as well as
design criteria in a given application, as will be appreciated by
those skilled in the art. Furthermore, the DRAM 208 is a
functional representation of memory and the precise form of
this memory may vary in different applications of the present
invention. For example, the DRAM 208 may include a single
DRAM chip or may include multiple memory chips, and
although indicated as DRAM the memory may be different
types of memory as well, such as FLASH memory or static
random access memory (SRAM), and so forth. Therefore, the
present invention is to be limited only by the appended
claims.

What is claimed is:

1. A method of storing data and check bits for that data
within a memory chip, the memory chip storing the data and
check bits in a plurality of pages contained in the memory
chip, each page including a plurality of storage locations with
each storage location having an associated address, the
method comprising:

receiving data to be stored in the memory, wherein the data

comprises a plurality of data lines having a plurality of
data words;
calculating a separate set of check bits for each individual
data word as the individual data word is received,

mapping each individual data word to an address associ-
ated with the storage locations in a given page in the
memory chip;

mapping each separate set of check bits to an address

associated with the storage locations contained in the
same page of the memory chip as the data word to which
said separate set of check bits corresponds;

storing each data word and the separate set of check bits

corresponding to that data word in the same page of the
memory chip; and

during a read-modify-write operation, merging modified

check bits corresponding to modified data words with
unchanged check bits corresponding to unchanged data
words to form a new set of check bits stored in the same
page as the corresponding modified and unchanged data
words.

2. A method of storing data and check bits for that data
within a memory chip, the memory chip storing the data and
check bits in a plurality of pages contained in the memory
chip, each page including a plurality of storage locations with
each storage location having an associated address, the
method comprising:

receiving data to be stored in the memory, wherein the data

comprises a plurality of data lines having a plurality of
data words;
calculating a separate set of check bits for each individual
data word as the individual data word is received,

mapping each individual data word to an address associ-
ated with the storage locations in a given page in the
memory chip;

US 8,245,109 B2

15

mapping each separate set of check bits to an address
associated with the storage locations contained in the
same page of the memory chip as the data word to which
said separate set of check bits corresponds; and

storing each data word and the separate set of check bits

corresponding to that data word in the same page of the
memory chip;
wherein the data stored in each page includes a plurality of
data words, the data words collectively forming the data
stored in the page and the method further comprising:

reading at least one data word stored in a page in the
memory chip that is to be modified;

modifying the at least one data word;

storing all the modified data words in a buffer; and

when all data words to be modified have been modified or

in response to a triggering event,

obtaining the current values of all data words to be stored in

the page;

from the current values of all the data words, generating

new check bits for the data words; and

storing the new check bits and the current values for the

data words in the page.

3. The method of claim 2 wherein the triggering event
comprises receiving an address indicating data stored in
another page in the memory chip is to be accessed.

4. The method of claim 1 further comprising reading data
and check bits stored in pages in the memory chip, the opera-
tion of reading comprising:

reading the check bits from a given page;

after reading the check bits, sequentially reading data

words that collectively form the data stored in the given
page;

as each data word is read, using the check bits to determine

whether there are any errors in the read data word.

5. The method of claim 1 wherein storing data and check
bits for that data within the memory chip further comprises:

receiving data words to be written to a given page in the

memory chip;

as each data word is received, generating corresponding

check bits;

writing each data word to the corresponding page;

once all data words for the page have been received, writing

the check bits to the page.

6. The method of claim 1 wherein the data includes a
plurality of bits and wherein storing the data and check bits in
the page comprises storing respective bits in the form of a
charge stored on a capacitor, with a first charge being stored
when the bit has a first logic value and a second charge being
stored when the bit has a second logic value.

7. A data path having a memory bus configured to be
coupled to a memory device and a processor bus configured to
be coupled to a processor, the data path being,

operable during a write mode of operation to receive on the

processor bus respective data words to be stored in the
memory device and to generate a separate set of corre-
sponding check bits for each received data word, the data
path being further operable to store the data words and
an error checking word including the separately gener-
ated set of check bits for each of the data words in a same
page in the memory device; and

operable during a read mode of operation to receive on the

memory bus the data words and the error checking word
from a same page in the memory device, and the data
path being further operable to utilize the bits in the error
checking word to detect errors in individual received
data words,

20

25

30

35

40

45

50

55

60

65

16

wherein error checking of a set of words from a page in the
memory device using check bits from that same page is
performed simultaneously with a next set of words from
that same page in the memory device being latched.

8. The data path of claim 7 wherein the data path is further
operable during the write mode of operation to generate, as
each data word is received, corresponding check bits in the
error checking word, and the data path further operable to
sequentially write each received data word to the correspond-
ing page in the memory device, and operable after all data
words of the page have been written to write the error check-
ing word to the page.

9. The data path of claim 7 wherein the data path is further
operable during the read mode of operation to first receive on
the memory bus the error checking word from a given page
being accessed and to thereafter sequentially receive data
words on the memory bus that collectively form the data
stored in the given page, and the data path being further
operable to utilize the check bits in the error checking word to
sequentially determine whether each received data word con-
tains any errors as each data word is received.

10. The data path of claim 7 further comprising:

a data read path including,

a data output register coupled to the memory bus and
operable to latch data bytes applied on the memory bus
from a page being accessed, and operable to provide
each latched data byte on an output;

a read check-bit register coupled to the output of the data
output register to receive and store an ECC data byte
corresponding to the first one of the data bytes latched by
the data output register, and operable to sequentially
output portions of the latched ECC data byte;

an ECC read word register coupled to the data output
register to receive and store latched data bytes from the
data output register, and operable to output data words,
each data word corresponding to combination of two or
more data bytes;

a multiplexer having a first input coupled to the ECC read
word register, a second input, and a control input con-
figured to receive a read/write control signal, the multi-
plexer operable to provide data words from the ECC
read word register on an output responsive to the read/
write signal indicating a read operation;

an ECC logic circuit coupled to the output of the multi-
plexer and coupled to the read check-bit register, the
ECC logic circuit operable during read operations to
sequentially receive data words from the ECC read word
register via the multiplexer and to sequentially receive
portions of the ECC data byte from the read check-bit
register, the ECC logic operable to determine whether
each received data word contains any errors using the
corresponding portion of the ECC data byte and to pro-
vide the data words on the processor bus along with an
indication of whether any errors were detected.

11. The data path of claim 10 further comprising:

a data write path including,

awrite merge logic circuit coupled to the processor bus and
operable during write operations to latch data words
applied on the processor bus and to provide the latched
words on an output and operable during read-modify-
write operations to latch a modified byte or bytes applied
on the processor bus and to combine this modified byte
or bytes with data words from the ECC logic circuit and
provide these combined modified byte or bytes and data
words on the output;

a write merge FIFO register coupled to the write merge
logic circuit and having a first output coupled to the

US 8,245,109 B2

17

second input of the multiplexer and having a second
output, the write merge FIFO operable during write
operations to provide data words received from the write
merge logic circuit on the second output and operable
during read-modify-write operations to provide data
words including the modified byte or bytes on the first
output and to provide data bytes being written to the
memory device on the second output;
a data input register coupled to the memory bus and having
a first input coupled to the second output of the write
merge FIFO and having a second input configured to
receive the ECC data byte corresponding to the data
bytes in a given page, the data input register operable to
apply data bytes received from the write merge FIFO on
the memory bus and operable after all bytes in the given
page have been applied on the memory bus to apply the
ECC data byte on the memory bus;

awrite check-bit register having a first input coupled to the
ECC logic circuit to sequentially receive portions of a
new ECC data byte generated by the ECC logic circuit
during write operations, each portion corresponding to a
value calculated for data words being written to the
memory device during write operations, and the write
check-bit register further including a second input
coupled to the data output register to receive the ECC
data byte for the page being accessed in the memory
device during a read-modify-write operation, the write
check-bit register being operable during read-modify-
write operations to receive at least one new portion of the
ECC data byte from the ECC logic circuit for the data
word including the modified byte or bytes in the page
being accessed, and to merge each new portion with the
other unchanged portions of the ECC data byte and to
output the ECC data byte including each new portion to
the data input register;

the ECC logic circuit operable during write operations to

receive data words being written to a page in the memory
device from the multiplexer and operable to generate a
portion of an ECC data byte for that page from each
applied data word, and operable to apply each generated
portion of the ECC data byte to the first input of the write
check-bit register, and the ECC logic circuit operable
during read modify write operations to supply to the first
input of the write check-bit register the portion of ECC
data byte corresponding to a data word including the
modified byte or bytes.

12. The data path of claim 11 wherein the each data byte is
32-bits wide and each data word is 64-bits wide.

13. The data path of claim 7 further comprising a write
coalescing buffer coupled to the processor bus, the write
coalescing buffer operable to store modified bytes being writ-
ten to a given page within the memory device until a trigger-
ing event occurs or until all bytes in that page have been
modified, and operable during the write mode to thereafter
supply all modified bytes to the data path for storage along
with the corresponding check bits in a respective page in the
memory device.

14. The data path of claim 7, further comprising a memory
system, comprising:

a memory device having address, data, and control busses

collectively referred to as a memory bus;

20

25

30

35

40

45

50

55

60

18

a processor having address, data, and control busses col-

lectively referred to as a processor bus; and

a memory controller coupled to the memory bus of the

memory device and coupled to the processor bus of the
processor, the memory controller including a data path
that is,
operable during a write mode of operation to receive on the
processor bus respective data words to be stored in the
memory device and to generate a separate set of corre-
sponding check bits for each received data word, the data
path being further operable to store the data words and
an error checking word including the check bits in a
same page in the memory device; and
operable during a read mode of operation to receive on the
memory bus the data words and the error checking word
from a same page in the memory device, and the data
path being further operable to utilize the bits in the error
checking word to detect errors in the received data
words.
15. The memory system of claim 14 wherein the memory
device comprises a plurality of DRAMs, with the data path
being operable to store in each page of each of the memory
devices data words and an error checking word corresponding
to those data words.
16. The memory system of claim 14, further comprising
address remap circuitry configured to:
remap a logical address received from the processor such
that least significant burst size bits in the received logical
address are mapped to bank bits for the memory device
to enable bank rotation within a 512-bit transfer;

remap the logical address such that row bits between the
logical addresses and corresponding physical addresses
are the same; and

remap remaining address bits in the received logical

address to increase page hit probability during sequen-
tial memory accesses to thereby improve performance
of the processor.

17. The method of claim 1, wherein each data word com-
prises two 32-bit bytes.

18. The method of claim 1, wherein the calculated check
bits for the individual data words comprise eight check bits
per data word.

19. The data path of claim 7, wherein the data words are
located at an addressed data line and the data path is operable
during the read mode of operation to sequentially receive
bytes comprising the data words for the addressed data line
after receiving a corresponding check byte representing the
error checking word, wherein the page comprises a plurality
of check bytes which are receivable using the data path one
byte at a time for utilization in detecting the errors in the
received data words sequentially, as the data words are
received.

20. The data path of claim 10, wherein the ECC logic
circuit is operable to sequentially determine whether each
received data word contains errors by using corresponding
bits from the corresponding portion of the ECC data byte, and
wherein the data output register is operable to latch a second
data word simultaneously as the determination of errors in a
first data word are made, wherein the received data words
comprise data words from a same data line among a plurality
of data lines in the page.

#* #* #* #* #*

