(57) **Abrégé/Abstract:**
A method of promoting wound healing, treating fibrosis and/or promoting angiogenesis is provided. The method comprises administering to a subject in need thereof a therapeutically effective amount of a procollagen, thereby promoting wound healing, treating fibrosis and/or promoting angiogenesis in the subject.
METHODS OF GENERATING AND USING PROCOLLAGEN

A method of promoting wound healing, treating fibrosis and/or promoting angiogenesis is provided. The method comprises administering to a subject in need thereof a therapeutically effective amount of a procollagen, thereby promoting wound healing, treating fibrosis and/or promoting angiogenesis in the subject.
METHODOGS OF GENERATING AND USING PROCOLLAGEN

FIELD AND BACKGROUND OF THE INVENTION

The present invention, in some embodiments thereof, relates to compositions which comprise procollagen and uses of same in promoting wound healing, treating fibrosis and promoting angiogenesis.

The rapid response of the mammalian body to initiate the healing response to prevent life threatening bleeding and infection has evolved to ensure survival, often at the expense of efficient regeneration of the damaged tissue. The wound healing process entails different stages, some being sequential, while others concomitant. However, all stages are carefully orchestrated at the damaged tissue site to regenerate a tissue with normal functionality. The sequence of events involves clotting, inflammation, tissue deposition (migration and proliferation) and finally tissue remodeling.

At the time of tissue injury, blood is released from damaged vessels leading to the formation of a fibrin fiber mesh with platelets entrapped within. The mesh functions as a scaffold for recruited cells to migrate towards and throughout. The activated platelets degranulate and release chemotactic agents including cytokines and growth factors such as transforming growth factor-β1 (TGF-β1), resulting in recruitment of fibroblasts and keratinocytes. Several days after injury the fibroblasts begin to replace the damaged tissue by depositing new collagen matrices. Collagen fibers gradually increase in thickness and align along the stress line of the wound. In normal scar formation, collagen fibers typically align in parallel to the epidermis. This newly formed granulation tissue is eventually organized and contracted into a more dense structure by myofibroblasts.

Scars usually form as a result of the normal progression of the wound healing response and are composed of connective tissue deposited during the healing process. Most scars exhibit a certain degree of both abnormal organization (as seen in scars of the skin) and amounts of connective tissue (as seen in scars of the central nervous system). However, alterations in the normal tissue production cascade result in less than optimal wound healing with excessive deposit of scarring tissue resulting in keloid and hypertrophic scar formation, also termed fibrosis. Hypertrophic scars are characterized by excessive collagen deposition, altered collagen remodeling and
contraction and differ from keloid scars in that they are defined within the boundaries of the wound site.

Transforming growth factor-β1 (TGF-β1) plays an important role in these healing processes and has been reported to mediate the transition of fibroblasts into myofibroblasts. This fibroblast subtype is characterized by α-smooth muscle actin (α-SMA) expression and is involved in wound contraction. TGF-β1 induces collagen deposition by upregulation of both mRNA stability and expression of procollagen. In addition, it reduces collagen degradation rates by inhibiting the expression of matrix metalloproteinases (MMPs) while inducing the expression of tissue inhibitors of metalloproteinases (TIMPs).

Aside from the MMP/TIPMP balance, the accessibility of a collagen molecule to such enzymatic activity is also a central factor in determining collagen degradation rates. This accessibility is primarily determined by the organizational state of the collagen (helical monomers versus monomers organized into fibrils) and the extent of crosslinking between collagen triple helices.

Types I and III collagen are fibril-forming collagens, which constitute the bulk of the dermal extracellular matrix. Collagen is synthesized as a procollagen precursor, in which three collagen polypeptides coil into each other, forming the triple helix. These helices are subsequently linked together at the final step of collagen fibril biosynthesis. Type I procollagen consists of two alpha 1 collagen chains and a single alpha 2 chain. Type III is composed of three alpha 1 chains.

In all of the fibrillar collagen molecules, the three polypeptide chains are constructed from a repeating Gly-X-Y triplet, where X and Y can be any amino acid but are frequently the imino acids proline and hydroxyproline. An important feature of fibril forming collagens is that they are synthesized as precursor procollagens containing globular N- and C-terminal extension propeptides.

Each procollagen molecule assembles within the rough endoplasmic reticularum from its three constituent polypeptide chains. As the polypeptide chain is co-translationally translocated across the membrane of the endoplasmic reticularum, hydroxylation of proline and lysine residues occurs within the Gly-X-Y repeat region. Once the polypeptide chain is fully translocated into the lumen of the endoplasmic reticularum, the three pro-alpha chains associate via their C-propeptides to form a trimeric
molecule allowing the Gly-X-Y repeat region to form a nucleation point at its C-terminal end, ensuring correct alignment of the chains. The Gly-X-Y region then folds in a C-to-N direction to form a triple helix.

Removal of the propeptides by procollagen N- and C-proteinases dramatically lowers the solubility of procollagen and is necessary to initiate the self-assembly of collagen into fibers at 37 °C. Crucial to this assembly process are the short non triple-helical peptides called telopeptides which are the remnants of the N-and C-terminal propeptides following digestion with N/C proteinases. These peptides act to ensure correct covalent registration of the collagen molecules within the fibril structure via their crosslinkable aldehydes by lowering the critical concentration necessary for self-assembly (Bulleid et al., 2000, supra).

To date, animal-derived collagen is the major source of collagen for medical applications. Animal-purified collagen is fully processed containing crosslinked telopeptides which render it highly insoluble. Solubilization of animal-purified collagen is typically effected using an extraction method which involves proteolytic removal of the telopeptide region with proteolytic enzymes such as trypsin, yielding atelocollagen which can be solubilized (see U.S. Pat. Nos. 3,934,852; 3,121,049; 3,131,130; 3,314,861; 3,530,037; 3,949,073; 4,233,360 and 4,488,911 for general methods for preparing purified soluble collagen). Atelocollagen undergoes fibrillogenesis under physiological conditions, to form fibers. Such fibers are relatively stable structures, resistant to proteolysis by MMPs. However, these fibers lack the molecular domains found in procollagen, essential to natural wound healing processes and to the natural formation of collagen structures.

As mentioned, alterations in the normal tissue production cascade during the process of wound healing may lead to excessive deposition of scarring tissue resulting in fibrosis.
U.S. Patent Number 6,448,278 and references therein describe specific procollagen C-proteinase (PCP) inhibitors for the treatment of various medical conditions associated with unregulated production of collagen, including pathological fibrosis or scarring.

Saggers, et al., [Wounds 13(2):66-71, 2001] reported that acid-soluble collagen isolated from rat tail tendons inhibits types I and III procollagen mRNA expression in human dermal fibroblasts grown on collagen-coated dishes. The anabolic steroid, oxandrolone, antagonized such collagen substrate inhibition of procollagen mRNA expression. These findings suggest that oxandrolone may directly enhance wound healing by increasing the expression of procollagen mRNA in fibroblasts associated with a collagen matrix analogous to the healing wound.

U.S. Patent App. Nos. 20030199441 and 20050282737 teach medicaments for treating or preventing fibrotic diseases. They describe application of a (poly) peptide with antifibrotic activity, comprising at least one N-terminal procollagen (III) propeptide and a C-terminal procollagen (III) propeptide, or a fragment of the (poly) peptide.

SUMMARY OF THE INVENTION

According to an aspect of some embodiments of the present invention there is provided a method of promoting wound healing, treating fibrosis and/or promoting angiogenesis comprising administering to a subject in need thereof a therapeutically effective amount of a procollagen, thereby promoting wound healing, treating fibrosis and/or promoting angiogenesis in the subject.

According to an aspect of some embodiments of the present invention there is provided use of a procollagen for promoting wound healing, treating fibrosis and/or promoting angiogenesis.

According to an aspect of some embodiments of the present invention there is provided an article of manufacture comprising a packaging material which packages as
active ingredients procollagen and an agent for promoting wound healing, treating fibrosis and/or promoting angiogenesis.

According to an aspect of some embodiments of the present invention there is provided a pharmaceutical composition comprising as an active ingredient procollagen and a pharmaceutically acceptable carrier.

According to an aspect of some embodiments of the present invention there is provided a method of purifying procollagen, the method comprising:

(a) providing a procollagen preparation; and
(b) purifying the procollagen from the procollagen preparation.

According to some embodiments of the invention, the purifying is effected by a method selected from the group consisting of, gel filtration, salting-out and anion exchange chromatography.

According to some embodiments of the invention, the packaging material comprises at least two separate containers separately packaging the procollagen and the agent for promoting wound healing and/or treating fibrosis.

According to some embodiments of the invention, the article of manufacture of, further comprises instructions for use in promoting wound healing and/or treating fibrosis.

According to some embodiments of the invention, the administering is effected into a tissue area which comprises the wound or a fibrotic tissue.

According to some embodiments of the invention, the administering is effected prior to fibroblast recruitment to the wound.

According to some embodiments of the invention, the procollagen comprises human procollagen.

According to some embodiments of the invention, the procollagen is derived from Type I or Type III collagen.

According to some embodiments of the invention, the procollagen is produced in plant cells.

According to some embodiments of the invention, the procollagen is degradable by collagenase.

According to some embodiments of the invention, the wound is related to a fibrotic condition selected from the group consisting of systemic or localized
scleroderma, liver fibrosis, alcoholic cirrhosis, biliary cirrhosis, hepatitis, veno-occlusive disease, idiopathic interstitial fibrosis, idiopathic pulmonary fibrosis, interstitial pulmonary fibrosis, acute pulmonary fibrosis, acute respiratory distress syndrome, perimyscular fibrosis, pericentral fibrosis, dermatofibroma, kidney fibrosis, diabetic nephropathy, glomerulonephritis, keloids, hypertrophic scars, joint adhesions, arthrosis, myelofibrosis, corneal scarring, cystic fibrosis, muscular fibrosis, Duchenne's muscular dystrophy, esophageal stricture, retroabdominal scarring, Crohn's disease, ulcerative colitis, atherosclerotic alterations, pulmonary hypertension, angiopathy of the arteries and veins, aneurysms of large vessels or are induced or initiated by scar revisions, plastic surgeries, glaucoma, cataract fibrosis, corneal scarring, graft vs. host disease, tendon surgery, nerve entrapment, Dupuytren's contracture, OB/GYN adhesions, pelvic adhesions, peridural fibrosis, diseases of the thyroid gland or the parathyroids, metastatic bone disease, multiple myeloma and restenosis.

According to some embodiments of the invention, the wound is an acute wound.

According to some embodiments of the invention, the wound is a chronic wound.

According to some embodiments of the invention, the wound is inflicted by diabetes.

According to some embodiments of the invention, the wound is selected from the group consisting of an ulcer, a burn and a surgical wound.

According to some embodiments of the invention, the procollagen comprises monomeric procollagen.

Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.

30 **BRIEF DESCRIPTION OF THE DRAWINGS**

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.

In the drawings:

FIGS. 1A-D are schematic representations of DNA constructs used to generate the tobacco plants of some embodiments of the present invention.

FIGS. 2A-B are images of Coomassie blue-stained SDS PAGE (Figure 2A) and Western blot analysis (Figure 2B) showing step-wise purification of procollagen from CP A3-29 transgenic tobacco plants (lot #CP C-18). Lanes represent protein samples separated from either wild type (WT) or CP A3-29 plant lines after homogenization - (Lane A); after centrifugation and saturation with 15 % AMS (Lane B); after centrifugation and saturation with 25 % AMS (Lane C); and after resuspension of the 25 % AMS pellet (Lane D). "M" denotes lanes in which molecular weight markers were loaded.

FIGS. 3A-B are images of Western blot analyses of anion exchange fractions #9-20 separated on an 8% SDS-PAGE. The lane labeled "concentrated pellet" corresponds to proteins within the 10-fold-concentrated 25% ammonium sulfate pellet. The lane labeled "Total" corresponds to the protein sample prior to separation on the column.

FIG. 4 is a Gel Filtration chromatogram of pooled anion exchange fractions comprising procollagen. Absorbance was measured at 226nm.

FIGS. 5A-B are silver stain images of gel filtration fractions separated on 8% SDS-PAGE. Samples were run in parallel to a molecular weight protein marker (M) and an unfiltered sample prior (total). Upper arrow: procollagen α₁. Lower arrow: procollagen α₂.

FIGS. 6A-B are images of Western blot analyses of gel filtration fractions separated on an 8% SDS-PAGE and run in parallel to a molecular weight protein marker (M) and an unfiltered sample prior (total).

FIGS. 7A-B are scans of instant blue-stained 12% gels following separation of proteins in fractions 3 and 4 following a 10-fold concentration step run in parallel to a
protein molecular weight maker (left lane). Figure 7B is a magnification of the upper section of Figure 7A.

FIG. 8 is a scan of an instant blue-stained SDS-PAGE separation of the AMS-precipitated anion exchange procollagen-containing fraction sample following ethanol precipitation dialysis and spin down (lane 2). Lane 3 includes the same sample following filtration through a 0.2 μm filter. Lanes 4-7 were loaded with samples as in lane 3, following a 24 h (lane 4), or 72h (lane 5) incubation at 4°C, following two freeze and thaw cycles (lane 6), or following lyophilization and resuspension in DDW (lane 7).

DESCRIPTION OF EMBODIMENTS OF THE INVENTION

The present invention, in some embodiments thereof, relates to compositions and methods for use in wound healing and treatment of fibrosis.

It is to be understood that the invention is not necessarily limited in its application to the details set forth in the following description or exemplified by the Examples. The invention is capable of other embodiments or of being practiced or carried out in various ways.

Although the formation of collagen fibrils is essential to morphogenesis and to healing of wounds and bone fractures in the adult, excessive formation of fibrous collagenous ECM causes much morbidity in the general population. These conditions include keloids (excessive skin scarring), surgical adhesions, and deep-seated fibroses of organs including lungs, liver and kidneys. The deep-seated fibroses are particularly ominous, as the replacement of parenchymal tissue by scar tissue composed essentially of fibrous collagenous ECM destroys organ function.

Whilst reducing the present invention to practice, the present inventors discovered that in sharp contrast to fibrillar collagen, procollagen, as well as acid-soluble atelocollagen or telopeptide-containing collagen isolated by recombinant techniques or from animal tissues can be advantageously used to promote wound healing and prevent scar formation.

Procollagen, as compared to collagen is a nonfibrous, highly soluble substance due to the presence of the C- and N-terminal extensions, herein termed propeptides. Provision of procollagen early in the wound healing process, prior to massive
recruitment of fibroblasts provides a readily available soluble substrate to collagenase already present in the wound site resulting in the production of chemotactic collagen fragments, which in turn recruits fibroblasts enhancing the healing process.

Furthermore, procollagen added to the wound site should be readily recognized by natural wound healing elements such as C-propeptide proteinase and N-propeptide proteinase, yielding telopeptide-containing collagen. Telopeptide-containing collagen can be readily incorporated into tissues by natural tissue forming mechanisms which require the presence of the telopeptide region to generate correctly organized collagen deposits. Telopeptide-containing collagen produced by natural elements in the wounded tissue may form tissues with a fiber orientation more closely resembling intact tissues and thus prevent or reduce scar tissue formation. In addition, the released N- and C-propeptides may serve to regulate de-novo synthesis of procollagen thereby preventing fibrosis and scarring.

Thus, according to one aspect of the present invention, there is provided a method of promoting wound healing. The method comprises administering to a subject in need thereof a therapeutically effective amount of a procollagen, thereby promoting wound healing in the subject.

The term "wound" as used herein refers broadly to injuries to the skin, subcutaneous tissue, bone and deep sited organs or connective tissue, initiated in any one of a variety of ways (e.g., pressure sores from extended bed rest, trauma-induced wounds, surgery-related wounds and the like) and with varying characteristics.

As used herein, "wound healing" or "tissue regeneration" refers to the reconstitution of a functional tissue (e.g., skin tissue, bone tissue or mucous membrane), with minimal or complete absence of fibrous tissue capable of compromising tissue functionality.

Examples of wounds which are the subject of the present teachings include, but are not limited to, bruises, scrapes, burn wounds, sunburn wounds, incisional wounds, excisional wounds, surgical wounds, necrotizing fascitis, ulcers, venous stasis ulcers, diabetic ulcers, decubitus ulcers, aphthous ulcers, scars, alopecia areata, dermatitis, allergic contact dermatitis, atopic dermatitis, berloque dermatitis, diaper dermatitis, dyshidrotic dermatitis, psoriasis, eczema, erythema, warts, anal warts, angioma, cherry angioma, athlete's foot, atypical moles, basal cell carcinoma, Bateman's purpura,

Wounds are typically classified into one of four grades depending on the depth of the wound: (i) Grade I: wounds limited to the epithelium; (ii) Grade II: wounds extending into the dermis; (iii) Grade III: wounds extending into the subcutaneous tissue; and (iv) Grade IV, also known as full-thickness wounds: wounds wherein bones are exposed (e.g., a bony pressure point such as the greater trochanter or the sacrum).

The term "partial thickness wound" used herein refers to wounds that encompass Grades I-III; examples of partial thickness wounds include burn wounds, pressure sores, venous stasis ulcers, and diabetic ulcers.

The term "full thickness wound" used herein is meant to include both Grade III and Grade IV wounds.

The term "chronic wound" used herein refers to a wound that has stalled and that has not healed within thirty days.

As mentioned, the procollagen of the present invention may be useful for treating wounds in the bone. It will be appreciated however that the procollagen may also be useful for treating other bone disorders including, but not limited to osteoporosis (including postmenopausal osteoporosis, male and female senile osteoporosis and corticosteroid-induced osteoporosis), osteoarthritis, Paget's disease, osteomalacia, prolonged bed rest, chronic disuse of a limb, anorexia, microgravity, exogenous and
endogenous gonadal insufficiency, bone fracture, non-union, defect, prosthesis implantation and the like.

As explained in detail in the background section, formation of fibrotic tissue is an integral part of wound healing. However, in some cases during the healing process or in patients with fibrotic conditions or diseases, collagen production may be qualitatively altered or mislocalized to the extracellular space. In such diseases, the fibrotic tissue becomes rigid, firm and nonelastic.

Thus, according to further embodiments of this aspect of the present invention there is provided a method of treating fibrosis.

As used herein, the term "treating" includes abrogating, substantially inhibiting, slowing or reversing the progression of a condition, substantially ameliorating clinical or aesthetical symptoms of a condition or substantially preventing the appearance of clinical or aesthetical symptoms of a condition.

As used herein, the phrase "medical conditions associated with fibrosis" refers to medical conditions which result from fibrosis or in which fibrosis occurred during the progression of the disease or syndrome.

Fibrotic diseases are induced or initiated by scar revisions, plastic surgeries, glaucoma, cataract fibrosis, corneal scaring, graft vs. host disease, tendon surgery, nerve entrapment, Dupuytren's contracture, OB/GYN adhesions, pelvic adhesions, infertility, peridural fibrosis, diseases of the thyroid gland or the parathyroids, metastatic bone disease, multiple myeloma, or restenoses.

Specific examples of medical conditions associated with fibrosis include, but are not limited to, systemic or localized scleroderma, liver fibrosis of various etiologies, alcoholic cirrhosis, e.g. alcoholic liver cirrhosis, biliary cirrhosis, hepatitis of viral or other origin, veno-occlusive disease, idiopathic interstitial fibrosis, idiopathic pulmonary fibrosis, interstitial pulmonary fibrosis, acute pulmonary fibrosis, acute respiratory distress syndrome, perimuscular fibrosis, pericentral fibrosis, dermatofibroma, kidney fibrosis, diabetic nephropathy, glomerulonephritis, keloids, hypertrophic scars, joint adhesions, arthrosis, myelofibrosis, corneal scaring, cystic fibrosis, muscular fibrosis, Duchenne's muscular dystrophy, esophageal stricture, retroabdominal scarring, Crohn's disease, ulcerative colitis, atherosclerotic alterations, pulmonary hypertension, angiopathy of the arteries and veins, aneurysms of large vessels.
The procollagen of the present invention may also be useful for promoting angiogenesis (e.g. at a site of a wound, during tissue remodeling, following ischemic stroke, ischemic heart disease and gastrointestinal lesions).

The term "angiogenesis" as used herein, refers to the de novo formation of vessels such as that arising from vasculogenesis as well as those arising from branching and sprouting of existing vessels, capillaries and venules.

The term "procollagen" as used herein, refers to a collagen molecule (e.g. human) that comprises either an N-terminal propeptide, a C-terminal propeptide or both. Exemplary human procollagen amino acid sequences are set forth by SEQ ID NOs: 1, 2, 7, 8 and 12 and 13.

Procollagen may comprise polypeptides of any fibril-forming collagens (types I, II, III, V, and XI), networks forming collagens (types IV, VIII, and X), collagens associated with fibril surfaces (types IX, XII, and XIV), collagens which occur as transmembrane proteins (types XIII and XVII), or collagens which form 11-nm periodic beaded filaments (type VI). According to embodiments of this aspect of the present invention, the procollagen comprises an alpha 1 and/or 2 chain of type I collagen {e.g., \([\alpha_1(I)]_2; \alpha_2(I); [\alpha_1(I)]_3\)} or collagen (III) homotrimers \([\alpha_1(III)]_3\).

According to some embodiments of this aspect of the present invention, the procollagen is provided in a monomeric form (due to steric hindrance that the propeptides form, and as such is an intrinsic property of the procollagen molecule).

Although the use of collagenase-catalyzed procollagen fragments is advantageous as a source for signaling, application of genetically modified forms of procollagen may be preferred when attempting to recruit fibroblasts to a particular tissue or to establish functional tissue architecture. More specifically, collagenase-resistant collagens and the like may be preferred for such purposes [Wu et al., Proc Natl. Acad Sci, Vol. 87, p.5888-5892, 1990].

The recombinant human procollagen may be expressed in any cell, including but not limited to prokaryotic cells (e.g., bacteria), plant cells and other eukaryotic cells such as yeast and fungus, as long as the procollagen is not subject to the activity of N and/or C proteinases.

Recombinant synthesis of procollagen in yeast has been described in U.S. Patent Number 5,593,859.
Recombinant synthesis of procollagen in plants has been described in U.S. Patent Number 6,617,431.

Plants in which the human procollagen may be produced (i.e. expressed) may be any lower (e.g. moss and algae) or higher (vascular) plant, and can include tissues or isolated cells and extracts thereof (e.g., of a cell suspension). Preferred plants are those which are capable of accumulating large amounts of collagen chains, collagen and/or the processing enzymes described herein below. Such plants may also be selected according to their resistance to stress conditions and the ease at which expressed components or assembled collagen can be extracted. Examples of plants in which human procollagen may be expressed include, but are not limited to tobacco, maize, alfalfa, rice, potato, soybean, tomato, wheat, barley, canola, carrot, lettuce and cotton.

Production of recombinant human procollagen is typically effected by stable or transient transformation with an exogenous polynucleotide sequence encoding human procollagen.

Exemplary polynucleotide sequences encoding human procollagen are set forth by SEQ ID NOs: 3 and 4.

The stability of the triple-helical structure of collagen requires the hydroxylation of prolines by the prolyl-4-hydroxylase (P4H) enzyme to form hydroxyproline residues within the collagen chain. Although plants are capable of synthesizing hydroxyproline-containing proteins, the prolyl hydroxylase responsible for synthesis of hydroxyproline in plant cells exhibits relatively loose substrate sequence specificity as compared with mammalian P4H and thus, production of collagen with hydroxyproline only at the Y position of Gly –X–Y triplets requires co-expression of collagen and human or mammalian P4H genes.

Thus, according to one embodiment, the procollagen is expressed in a subcellular compartment of a plant that is devoid of endogenous P4H activity so as to avoid incorrect hydroxylation thereof. As is used herein, the phrase "subcellular compartment devoid of endogenous P4H activity" refers to any compartmentalized region of the cell which does not include plant P4H or an enzyme having plant-like P4H activity. According to one embodiment, the subcellular compartment is a vacuole.

Accumulation of the expressed procollagen in a subcellular compartment devoid of endogenous P4H activity can be effected via any one of several approaches.
For example, the expressed procollagen can include a signal sequence for targeting the expressed protein to a subcellular compartment such as the apoplast or an organelle (e.g. chloroplast). Examples of suitable signal sequences include the chloroplast transit peptide (included in Swiss-Prot entry P07689, amino acids 1-57, SEQ ID NO: 10) and the Mitochondrion transit peptide (included in Swiss-Prot entry P46643, amino acids 1-28, SEQ ID NO: 11).

Alternatively, the sequence of the procollagen can be modified in a way which alters the cellular localization of the procollagen when expressed in plants.

Some embodiments of the present invention therefore contemplate genetically modified cells co-expressing both human procollagen and a P4H, capable of correctly hydroxylating the procollagen alpha chain(s) [i.e. hydroxylating only the proline (Y) position of the Gly-\(-X-Y\) triplets]. P4H is an enzyme composed of two subunits, alpha and beta as set forth in Genbank Nos. P07237 and P13674. Both are needed to form an active enzyme while the beta subunit also possesses chaperon and protein disulfide isomerase function.

The P4H expressed by the genetically modified cells of the present invention is preferably a human P4H which is encoded by, for example, SEQ ID NOs: 5 and 6. In addition, P4H mutants which exhibit enhanced substrate specificity, or P4H homologues can also be used. A suitable P4H homologue is exemplified by an Arabidopsis oxidoreductase identified by NCBI accession NP_179363.

Since P4H is required to co-accumulate with the expressed procollagen chain, the coding sequence thereof is preferably modified accordingly (e.g. by addition or deletion of signal sequences such as for vacuolar targeting).

In mammalian cells, collagen is also modified by Lysyl hydroxylase, galactosyltransferase and glucosyltransferase. These enzymes sequentially modify lysyl residues at specific positions to hydroxylysyl, galactosylhydroxylysyl and glucosylgalactosyl hydroxylysyl residues. A single human enzyme, Lysyl hydroxylase 3 (LH3), as set forth in Genbank No. O60568, can catalyze all three consecutive steps in hydroxylysine linked carbohydrate formation [Wang et al. Matrix Biol. 2002 Nov;21(7):559-66].
Thus, the genetically modified cells of the present invention may also express mammalian LH3. An LH3-encoding sequence such as that set forth by SEQ ID NO: 9 can be used for such purposes.

The procollagen(s) and modifying enzymes described above can be expressed from a stably integrated or a transiently expressed nucleic acid construct which includes polynucleotide sequences encoding the procollagen alpha chains and/or modifying enzymes (e.g. P4H and LH3) positioned under the transcriptional control of functional promoters. Such a nucleic acid construct (also termed herein as an expression construct) can be configured for expression throughout the whole organism e.g. plant, defined tissues or defined cells, or at defined developmental stages of the organism. Such a construct may also include selection markers (e.g. antibiotic resistance), enhancer elements and an origin of replication for bacterial replication.

It will be appreciated that constructs including two expressible inserts (e.g. two alpha procollagen chain types, or an alpha chain and P4H) preferably include an individual promoter for each insert, or alternatively such constructs can express a single transcript chimera including both insert sequences from a single promoter. In such a case, the chimeric transcript may include an IRES sequence between the two insert sequences such that the downstream insert can be translated therefrom.

Numerous functional expression promoters and enhancers which can be either tissue specific, developmentally specific, constitutive or inducible can be utilized by the constructs of the present invention, some examples are provided hereunder.

As used herein in the specification, the phrase "plant promoter" or "promoter" includes a promoter which can direct gene expression in cells (including DNA containing organelles) of plants, fungus and yeast. Such a promoter can be derived from plant, bacterial, viral, fungal or animal origin. Such a promoter can be constitutive, i.e., capable of directing high levels of gene expression in a plurality of tissues, tissue-specific, i.e., capable of directing gene expression in a particular tissue or tissues, inducible, i.e., capable of directing gene expression under a stimulus, or chimeric, i.e., formed of portions of at least two different promoters.

Thus, the plant promoter employed can be a constitutive promoter, a tissue-specific promoter, an inducible promoter or a chimeric promoter.
Examples of constitutive promoters include, without being limited to, CaMV35S and CaMV19S promoters, FMV34S promoter, sugarcane bacilliform badnavirus promoter, CsVMV promoter, Arabidopsis ACT2/ACT8 actin promoter, Arabidopsis ubiquitin UBQ1 promoter, barley leaf thionin BTH6 promoter, and rice actin promoter.

Examples of tissue-specific promoters include, without being limited to, bean phaseolin storage protein promoter, DLEC promoter, PHS promoter, zein storage protein promoter, conglutin gamma promoter from soybean, AT2S1 gene promoter, ACT11 actin promoter from Arabidopsis, napA promoter from Brassica napus and potato patatin gene promoter.

The inducible promoter is a promoter induced by a specific stimulus such as stress conditions comprising, for example, light, temperature, chemicals, drought, high salinity, osmotic shock, oxidative conditions or pathogenic-related stress and include, without being limited to, the light-inducible promoter derived from the pea rbcS gene, the promoter from the alfalfa rbcS gene, the promoters DRE, MYC and MYB active in drought; the promoters INT, INPS, prxEa, Ha hsp17.7G4 and RD21 active in high salinity and osmotic stress, and the promoters hsr203J and str246C active in pathogenic stress.

The promoter utilized in the present invention should preferably be a strong constitutive promoter such that overexpression of the construct inserts is effected following transformation.

It will be appreciated that any of the construct types used in the present invention can be co-transformed into the same cells using same or different selection markers in each construct type. Alternatively the first construct type can be introduced into a first organism e.g. plant while the second construct type can be introduced into a second isogenic plant, following which the transgenic plants resultant therefrom can be crossed and the progeny selected for double transformants. Further self-crosses of such progeny can be employed to generate lines homozygous for both constructs.

Ch. 3; and Bitter, 1987, "Heterologous Gene Expression in Yeast," in Methods in Enzymol. 152:673-684. A constitutive yeast promoter such as ADH or Leu2 or an inducible promoter such as GAL can be used ("Cloning in Yeast," ch. 3, R. Rothstein In: DNA Cloning, Vol. 11, A Practical Approach, Ed. D. M. Glover, 1986, IRL Press, Wash. D.C.). Alternatively, vectors which promote integration of foreign DNA sequences into the yeast chromosome can be used.

In addition, several methods exist in which a nucleic acid construct can be directly introduced into the DNA of a DNA-containing organelle such as a chloroplast.

There are two principle methods of effecting stable genomic integration of exogenous sequences such as those included within the nucleic acid constructs of the present invention into plant genomes:

The Agrobacterium system includes the use of plasmid vectors that contain defined DNA segments that integrate into the plant genomic DNA. Methods of inoculation of the plant tissue vary depending upon the plant species and the Agrobacterium delivery system. A widely used approach is the leaf disc procedure which can be performed with any tissue explant that provides a good source for initiation of whole plant differentiation (Horsch et al. in Plant Molecular Biology Manual A5, Kluwer Academic Publishers, Dordrecht (1988) p. 1-9). A supplementary approach employs the Agrobacterium delivery system in combination with vacuum infiltration. The Agrobacterium system is especially viable in the creation of transgenic dicotyledenous plants.

There are various methods of direct DNA transfer into plant cells. In electroporation, protoplasts are briefly exposed to a strong electric field. In microinjection, the DNA is mechanically injected directly into the cells using very small micropipettes. In microparticle bombardment, the DNA is adsorbed on microprojectiles such as magnesium sulfate crystals, tungsten particles or gold particles, and the microprojectiles are physically accelerated into cells or plant tissues.

Following transformation plant propagation is exercised. The most common method of plant propagation is by seed. Regeneration by seed propagation, however, has the deficiency that due to heterozygosity there is a lack of uniformity in the crop, since seeds are produced by plants according to the genetic variances governed by Mendelian rules. Basically, each seed is genetically different and each will grow with its own specific traits. Therefore, it is preferred that the transformed plant be produced such that the regenerated plant has the identical traits and characteristics of the parent transgenic plant. Therefore, it is preferred that the transformed plant be regenerated by micropropagation which provides a rapid, consistent reproduction of the transformed plants.
Transient expression methods which can be utilized for transiently expressing the isolated nucleic acid included within the nucleic acid construct of the present invention include, but are not limited to, microinjection and bombardment as described above but under conditions which favor transient expression, and viral mediated expression wherein a packaged or unpackaged recombinant virus vector including the nucleic acid construct is utilized to infect plant tissues or cells such that a propagating recombinant virus established therein expresses the non-viral nucleic acid sequence.

Viruses that have been shown to be useful for the transformation of plant hosts include CaMV, TMV and BV. Transformation of plants using plant viruses is described in U.S. Pat. No. 4,855,237 (BGV), EP-A 67,553 (TMV), Japanese Published Application No. 63-14693 (TMV), EPA 194,809 (BV), EPA 278,667 (BV); and Gluzman, Y. et al., Communications in Molecular Biology: Viral Vectors, Cold Spring Harbor Laboratory, New York, pp. 172-189 (1988). Pseudovirus particles for use in expressing foreign DNA in many hosts, including plants, is described in WO 87/06261.

When the virus is a DNA virus, the constructions can be made to the virus itself. Alternatively, the virus can first be cloned into a bacterial plasmid for ease of constructing the desired viral vector with the foreign DNA. The virus can then be excised from the plasmid. If the virus is a DNA virus, a bacterial origin of replication can be attached to the viral DNA, which is then replicated by the bacteria. Transcription and translation of this DNA will produce the coat protein which will encapsidate the viral DNA. If the virus is an RNA virus, the virus is generally cloned as a cDNA and inserted into a plasmid. The plasmid is then used to make all of the constructions. The RNA virus is then produced by transcribing the viral sequence of the plasmid and translation of the viral genes to produce the coat protein(s) which encapsidate the viral RNA.

Construction of plant RNA viruses for the introduction and expression in plants of non-viral exogenous nucleic acid sequences such as those included in the construct of
the present invention is demonstrated by the above references as well as in U.S. Pat. No. 5,316,931.

A technique for introducing exogenous nucleic acid sequences to the genome of the chloroplasts is known. This technique involves the procedures as described below. First, the exogenous nucleic acid is introduced via particle bombardment into the cells with the aim of introducing at least one exogenous nucleic acid molecule into the chloroplasts. The exogenous nucleic acid is selected such that it is integratable into the chloroplast's genome via homologous recombination which is readily effected by enzymes inherent to the chloroplast. To this end, the exogenous nucleic acid includes, in addition to a gene of interest, at least one nucleic acid stretch which is derived from the chloroplast's genome. In addition, the exogenous nucleic acid includes a selectable marker, which serves by sequential selection procedures to ascertain that all or substantially all of the copies of the chloroplast genomes following such selection include the exogenous nucleic acid. Further details relating to this technique are found in U.S. Pat. Nos. 4,945,050; and 5,693,507.

A polypeptide can thus be produced by the protein expression system of the chloroplast and become integrated into the chloroplast's inner membrane.

Regardless of the technique used for transformation, once procollagen-expressing progeny are identified, such plants are further cultivated under conditions which maximize expression thereof. Progeny resulting from transformed plants can be selected, by verifying presence of exogenous mRNA and/or polypeptides by using nucleic acid or protein probes (e.g. antibodies). The latter approach enables localization of the expressed polypeptide components (by for example, probing fractionated plants extracts) and thus also verifies a potential for correct processing and assembly.

Following cultivation of such plants, the procollagen is typically harvested. Plant tissues/cells are preferably harvested at maturity, and the procollagen molecules are isolated using any biochemical method known in the art.

Thus, embodiments of the present invention further provide for a method of purifying procollagen.

The method comprising providing procollagen preparation and purifying the procollagen.
21

Procollagen may be generated using any method known in the art (for example those described above).

Procollagen may be fully purified or partially purified using any protein purification technique known in the art. These methods are typically based on size, charge or binding affinity purification.

According to one embodiment, the procollagen is comprised in a procollagen-containing composition, in which at least 0.1 %, at least 0.25 %, at least 0.5 %, at least 1 %, at least 2.5 %, at least 5 %, at least 10 %, at least 20 %, at least 30 %, at least 40 %, at least 50 %, at least 60 %, at least 70 %, at least 80 %, at least 90 %, at least 92 %, at least 93 %, at least 94 %, at least 95 %, at least 96 %, at least 97 %, at least 99 % or 100 % is procollagen. Other components comprised in the procollagen composition may include but are not limited to collagen, hyaluronic acid, alginate, carboxymethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, oxidized cellulose, cellulose whiskers, and starch.

As used herein, "purifying" refers to the isolation of the protein from its natural environment or site of accumulation within the recombinant host. Separation from small molecules is typically effected by dialysis such as using cellulose membranes. Gel-filtration chromatography is typically used as a more discriminative technique. Alternatively or additionally, salting-out is used, such as with ammonium sulfate which is typically used for protein purification e.g., to precipitate fibrinogen. Yet alternatively or additionally, ion exchange chromatography is used to separate procollagen on the basis of net charge. Affinity chromatography is another powerful approach for isolation of proteins of interest. More specifically, antibodies can be used or affinity-binding methods based on the protein’s natural attractive forces to certain chemical groups.

Exemplary methods of purifying or semi-purifying procollagen of the present invention are described in detail in the Examples section which follows.

Regardless of the method of production, once the procollagen is at hand it can be administered to the subject per se or in a pharmaceutical composition.

As used herein, a "pharmaceutical composition" refers to a preparation of the active ingredients described herein with other chemical components such as physiologically suitable carriers and excipients. The purpose of the pharmaceutical
composition is to facilitate administration of the active ingredients (e.g., procollagen) to the subject.

As used herein, the term "active ingredient" refers to the procollagen accountable for the intended biological effect (i.e., promoting wound healing and treating fibrosis).

Hereinafter, the phrases "physiologically acceptable carrier" and "pharmacologically acceptable carrier", which may be interchangeably used, refer to a carrier or a diluent that do not cause significant irritation to the subject and do not abrogate the biological activity and properties of the administered active ingredients. An adjuvant is included under these phrases.

Herein, the term "excipient" refers to an inert substance added to the pharmaceutical composition to further facilitate administration of an active ingredient of the present invention.

Techniques for formulation and administration of drugs may be found in "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, latest edition.

The pharmaceutical composition may be formulated as a unit dosage form. In such form, the preparation is subdivided into unit doses containing appropriate quantities of the active ingredients such as for a single administration. The unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, for example, an adhesive bandage, a non-adhesive bandage, a wipe, a baby wipe, a gauze, a pad and a sanitary pad.

The pharmaceutical compositions of the present invention may be applied in a local manner, for example, via administration of the compositions directly onto a tissue region (e.g. wound) of the subject. Suitable routes of administration of pharmaceutical compositions may, for example, include topical (e.g., to a keratinous tissue, such as the skin, hair, nail, scalp), subcutaneous, mucosal (e.g., oral, vaginal, eye), intramuscular administrations.

The pharmaceutical compositions of the present invention may also be applied via injecting the composition including the active ingredient and a physiologically acceptable carrier. For local administration, the compositions may be injected into the
wound, and/or into healthy tissue (e.g., skin) that surrounds the wounded tissue, or both e.g., subcutaneous.

Pharmaceutical compositions of the present invention may be manufactured by processes well known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes.

The active ingredient may also be in a powder form for constitution with a suitable vehicle, e.g., sterile, pyrogen-free water based solution, before use.

Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries, which facilitate processing of the active ingredients into preparations. Proper formulation is dependent upon the administration approach chosen.

Determination of a therapeutically effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. Treatment can be effected prior to the formation of massive scar tissue, such as prior to the recruitment of fibroblasts to the affected site. However, the present invention also envisages administering the procollagen at any other stage of healing.

For any preparation used in the method of the invention, the therapeutically effective amount or dose can be estimated initially from in vitro assays. In addition, a dose can be formulated in tissue culture systems or in animal models to achieve a desired concentration or titer. Animal models may be used in order to establish criteria for administration. For example, a diabetic rat or mouse wound model may be used [Galeano et al., Diabetes. (2004) 53(9):2509-17]. Outcome measures such as perfusion and survival, as well as histological and functional criteria, can be employed to assess the efficacy of the different parameters, in order to approach optimal efficiency.

Such information can be used to more accurately determine useful doses in humans.

Toxicity and therapeutic efficacy of the active ingredients described herein can be determined by standard pharmaceutical procedures in vitro, in cell cultures or experimental animals. The data obtained from these in vitro and cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The
dosage may vary depending upon the type of formulation employed and the route of administration utilized. The exact formulation, route of administration, and dosage can be chosen by the individual physician in view of the patient’s condition. (See, e.g., Fingl, E. et al. (1975), "The Pharmacological Basis of Therapeutics," Ch. 1, p.1.)

Depending on the severity of the condition (e.g., the area, depth and degree of the wound or the scar) and the responsiveness of the skin, dosing can be of a single or a plurality of administrations, with course of treatment ranging from several days to several weeks or until cure is effected or diminution of the condition is achieved. In exemplary embodiments, the pharmaceutical composition of the present invention is administered at least once a day.

The amount of a composition to be administered will, of course, be dependent on the subject being treated, the severity of the affliction, the manner of administration, the judgment of the prescribing physician, etc.

Compositions of the present invention may, if desired, be presented in a pack or dispenser device, such as an FDA-approved kit, which may contain one or more unit dosage forms containing the active ingredient. The pack may, for example, comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. The pack or dispenser device may also be accompanied by a notice in a form prescribed by a governmental agency regulating the manufacture, use, or sale of pharmaceuticals, which is reflective of approval by the agency of the form of the compositions for human or veterinary administration. Such notice, for example, may include labeling approved by the U.S. Food and Drug Administration for prescription drugs or of an approved product insert. Compositions comprising a preparation of the invention formulated in a pharmaceutically acceptable carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition, as further detailed above.

Since the pharmaceutical compositions of the present invention are utilized in vivo, the compositions are preferably of high purity and substantially free of potentially harmful contaminants, e.g., at least National Food (NF) grade, generally at least analytical grade, and preferably at least pharmaceutical grade. To the extent that a given compound must be synthesized prior to use, such synthesis or subsequent purification shall preferably result in a product that is substantially free of any potentially
contaminating toxic agents that may have been used during the synthesis or purification procedures.

To improve therapeutic efficacy, additional agents may be incorporated into the pharmaceutical compositions of the present invention. Agents for promoting wound healing, treating fibrosis and/or promoting angiogenesis can be formulated in a single composition together with the procollagen (e.g., single container) or when desired, packed in separate containers and included in an article of manufacture, which may further comprise instructions for use. Such agents include, but are not limited to, extracellular matrix components (e.g. vitronectin, laminin, collagen, elastin), growth factors (e.g. FGF 1, FGF 2, IGF 1, IGF 2, PDGF, EGF, KGF, HGF, VEGF, SDF-1, GM-CSF, CSF, G-CSF, TGF alpha, TGF beta, NGF, PDWHF and ECGF), hypoxia inducible factors (e.g. HIF-1 alpha and beta and HIF-2), hormones (e.g., insulin, growth hormone (GH), CRH, Leptin, Prolactin, oxandrolone and TSH), angiogenic factors (e.g., angiogenin and angiopoietin), coagulation and anticoagulation factors (e.g., Factor I, Factor XIII, tissue factor, calcium, vWF, protein C, protein S, protein Z, fibronectin, antithrombin, heparin, plasminogen, low molecular weight heparin (Clexan), high molecular weight kininogen (HMWK), prekallikrein, plasminogen activator inhibitor-1 (PAI1), plasminogen activator inhibitor-2 (PAI2), urokinase, thrombomoduline, tissue plasminogen activator (tPA), alpha 2-antiplasmin and Protein Z-related protease inhibitor (ZPI)), cytokines (IL-1 alpha, IL-1 beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13 and IFN-alpha, IFN, beta, and IFN-gamma), Bone morphogenetic proteins (BMPs), chemokines (e.g., MCP-1 or CCL2), enzymes (e.g. endoglucosidases, exoglycosidases, endonucleases, exonucleases, peptidases, lipases, oxidases, decarboxylases, hydrases, chondroitinase, chondroitinase ABC, chondroitinase AC, hyaluronidase, keratanase, heparanases, heparanase splice variance, collagenase, trypsin, catalases), neurotransmitters (e.g., acetylcholine and monoamines), neuropeptides (e.g. substance P), vitamins (e.g., D-biotin, Choline Chloride, Folic acid, Myo-inositol, Niacinamide, D-Pantothenic acid, Calcium salts, Pyridoxal.HCl, Pyrodixine.HCl, Riboflavin, Thiamine.HCl, Vitamin B12, vitamin E, vitamin C, vitamin D, vitamin B1-6, vitamin K, vitamin A and vitamin PP), carbohydrates (e.g. Mono/Di/Polsacharides including glucose, mannose, maltose and fructose), ions, chelators (e.g. Fe chelators, Ca chelators), antioxidants (e.g., Vitamin E, Quercetin,
superoxide scavengers, Superoxide dismutase, H₂O₂ scavengers, free radicals scavengers, Fe scavengers), fatty acids (e.g., Triglycerides, Phospholipids, Cholesterol, free fatty acids and non free fatty acids, fatty alcohol, Linoleic acid, oleic acid and lipoic acid), antibiotics (e.g., Penicillins, Cephalosporins and Tetracyclines), analgesics, anesthetics, antibacterial agents, anti-yeast agents, anti-fungal agents, antiviral agents, pro-biotic agents, anti-protozoal agents, anti-pruritic agents, anti-dermatitis agents, anti-emetics, anti-inflammatory agents, anti-hyperkeratolytic agents, antiperspirants, anti-psoriatic agents, anti-seborrheic agents, antihistamine agents, amino acids (e.g., essential and nonessential, especially glutamine and arginine), salts sulfates (e.g. Calcium Sulfate), steroids (e.g., androgens, estrogens, progestagens, glucocorticoids and mineralocorticoids), catecholamines (e.g., Epinephrine and Nor-epinephrine), Nucleosides and Nucleotides (e.g., Purins and Pyrimidines), Prostaglandins (e.g. Prostaglandin E2), Leucotriens, Erythropoietins (e.g. Thrombopoietin), Proteoglycans (e.g. Heparan sulfate, keratan sulfate), Hydroxyapatites (e.g. Hydroxyapatite (Ca₁₀(PO₄)₆(OH)₂)), Haptoglobins (Hp1-1, Hp2-2 and Hp1-2), Superoxide dismutases (e.g. SOD 1/2/3), Nitric Oxides, Nitric Oxide donors (e.g. nitroprusside, Sigma Aldrich, St. Louis, MO, USA, Glutathione peroxidases, Hydrating compounds (e.g. vasopressin), cells (e.g. Platelets), cell medium (e.g. M199, DMEM/F12, RPMI, Iscoves), serum (e.g. human serum, fetal calf serum, , fetal bovine serum), buffers (e.g., HEPES, Sodium Bicarbonate), detergents (e.g., Tween), disinfectants, herbs, fruit extracts, vegetable extracts (e.g. cabbage, cucumber), flower extracts, plant extracts, flavinoids (e.g. pomegranate juice), spices, leaves (e.g. Green tea, Chamomile), Polyphenols (e.g. Red Wine), honey, lectins, microparticles, nanoparticles (liposomes), micelles, calcium carbonate (CaCO₃, e.g. precipitated calcium carbonate, ground/pulverized calcium carbonate, albacar, PCC, GCC), calcite, limestone, crushed marble, ground limestone, lime, and chalk (e.g. whiting chalk, champagne chalk, french chalk).

The present compositions may also contain ingredients, substances, elements and materials containing, hydrogen, alkyl groups, aryl groups, halo groups, hydroxy groups, alkoxy groups, alkylamino groups, dialkylamino groups, acyl groups, carboxyl groups, carboxamido groups, sulfonamide groups, aminoacyl groups, amide groups, amine groups, nitro groups, organo selenium compounds, hydrocarbons, and cyclic hydrocarbons.
The present compositions may be combined with substances such as benzol peroxide, vasoconstrictors, vasodilatators, salicylic acid, retinoic acid, azelaic acid, lactic acid, glycolic acid, pyreuric acid, tannins, benzlidencamphor and derivatives thereof, alpha hydroxyis, surfactants.

Compositions of some embodiments of the present invention may be bioconjugated to polyethylenglycol (e.g. PEG, SE-PEG) which preserves the stability (e.g., against protease activities) and/or solubility (e.g., within a biological fluid such as blood, digestive fluid) of the active ingredients while preserving their biological activity and prolonging their half-life.

The compositions of the present invention can be formulated as putty, ointment, inhalants, woven/non-woven pads, bandages, sponge, gels or hydrogels, (formulated with for example, gellatine, hyaluronic acid) or on the basis of polyacrylate or an oleogel (e.g. made of water and Eucerin).

Oleogels comprising both an aqueous and a fatty phase are based particularly on Eucerinum anhydricum, a basis of wool wax alcohols and paraffin, wherein the percentage of water and the basis can vary. Furthermore additional lipophilic components for influencing the consistency can be added, e.g. glycerin, polyethylene glycols of different chain lengths, e.g. PEG400, plant oils such as almond oil, liquid paraffin, neutral oil and the like. The hydrogels of the present invention can be produced through the use of gel-forming agents and water, wherein the first are selected especially from natural products such as cellulose derivatives, such as cellulose ester and ether, e.g. hydroxyethyl-hydroxypropyl derivatives, e.g. tylose, or also from synthetic products such as polyacrylic acid derivatives, such as Carbopol or Carbomer, e.g. P934, P940, P941. They can be produced or polymerized based on known regulations, from alcoholic suspensions by adding bases for gel formation.

Exemplary amounts of procollagen in the gel include 0.01-30 g per 100g of gel, 0.01-10 g per 100 g of gel, 0.01-8 g per 100 g of gel, 0.1-5 g per 100 g of gel.

In addition, the pharmaceutical compositions of this aspect of the present invention also include a dermatologically acceptable carrier.

The phrase "dermatologically acceptable carrier", refers to a carrier which is suitable for topical application onto the skin, i.e., keratinous tissue, has good aesthetic
properties, is compatible with the active agents of the present invention and any other components, and is safe and non-toxic for use in mammals.

In order to enhance the percutaneous absorption of the active, one or more of a number of agents can be added to the pharmaceutical compositions including, but not limited to, dimethylsulfoxide, dimethylacetamide, dimethylformamide, surfactants, azone, alcohol, acetone, propylene glycol and polyethylene glycol.

The carrier utilized in the compositions of the invention can be in a wide variety of forms. These include emulsion carriers, including, but not limited to, oil-in-water, water-in-oil, water-in-oil-in-water, and oil-in-water-in-silicone emulsions, a cream, an ointment, an aqueous solution, a lotion, a soap, a paste, an emulsion, a gel, a spray, a foam or an aerosol. As will be understood by the skilled artisan, a given component will distribute primarily into either the water or oil/silicone phase, depending on the water solubility/dispersibility of the component in the composition.

Emulsions according to the present invention generally contain a pharmaceutically effective amount of the agent disclosed herein and a lipid or oil. Lipids and oils may be derived from animals, plants, or petroleum and may be natural or synthetic (i.e., man-made). Examples of suitable emulsifiers are described in, for example, U.S. Pat. No. 3,755,560, issued to Dickert, et al. Aug. 28, 1973; U.S. Pat. No. 4,421,769, issued to Dixon, et al., Dec. 20, 1983; and McCutcheon's Detergents and Emulsifiers, North American Edition, pages 317-324 (1986).

The emulsion may also contain an anti-foaming agent to minimize foaming upon application to the keratinous tissue. Anti-foaming agents include high molecular weight silicones and other materials well known in the art for such use.

Suitable emulsions may have a wide range of viscosities, depending on the desired product form.

An especially preferred oil-in-water emulsion, containing a structuring agent, hydrophilic surfactant and water, is described in detail hereinafter.
A preferred oil-in-water emulsion comprises a structuring agent to assist in the formation of a liquid crystalline gel network structure. Without being limited by theory, it is believed that the structuring agent assists in providing rheological characteristics to the composition which contribute to the stability of the composition. The structuring agent may also function as an emulsifier or surfactant.

A wide variety of anionic surfactants are also useful herein. See, e.g., U.S. Pat. No. 3,929,678, to Laughlin et al., issued Dec. 30, 1975.

In addition, amphoteric and zwitterionic surfactants are also useful herein.

The pharmaceutical compositions of the present invention can be formulated in any of a variety of forms utilized by the pharmaceutical or cosmetic industry for skin application including solutions, lotions, sprays, creams, ointments, salves, gels, oils, wash, etc., as described below.

The pharmaceutical or cosmetic compositions of the present invention may be formulated to be sufficiently viscous so as to remain on the treated skin area, does not readily evaporate, and/or is not easily removed by rinsing with water, but rather is removable with the aid of soaps, cleansers and/or shampoos.

Methods for preparing compositions having such properties are well known to those skilled in the art, and are described in detail in Remington's Pharmaceutical Sciences, 1990 (supra); and Pharmaceutical Dosage Forms and Drug Delivery Systems, 6th ed., Williams & Wilkins (1995).

The topical compositions of the subject invention, including but not limited to lotions and creams, may comprise a dermatologically acceptable emollient. As used herein, "emollient" refers to a material useful for the prevention or relief of dryness, as well as for the protection of the skin. Wide varieties of suitable emollients are known and may be used herein. See, e.g., Sagarin, Cosmetics, Science and Technology, 2nd Edition, Vol. 1, pp. 3243 (1972), which contains numerous examples of materials suitable as an emollient. A preferred emollient is glycerin.

Lotions and creams according to the present invention generally comprise a solution carrier system and one or more emollients.
The topically applied pharmaceutical or cosmetic composition of the present invention may also include additional components which are added, for example, in order to enrich the pharmaceutical or cosmetic compositions with fragrance and skin nutrition factors.

Such components are selected suitable for use on human keratinous tissue without inducing toxicity, incompatibility, instability, allergic response, and the like within the scope of sound medical judgment. In addition, such optional components are useful provided that they do not unacceptably alter the benefits of the active compounds of the invention.

The CTFA Cosmetic Ingredient Handbook, Second Edition (1992) describes a wide variety of non-limiting cosmetic ingredients commonly used in the skin care industry, which are suitable for use in the compositions of the present invention. Examples of these ingredient classes include: abrasives, absorbents, aesthetic components such as fragrances, pigments, colorings/colorants, essential oils, skin sensates, astringents, etc. (e.g., clove oil, menthol, camphor, eucalyptus oil, eugenol, menthol lactate, witch hazel distillate), anti-acne agents, anti-caking agents, antifoaming agents, antimicrobial agents (e.g., iodopropyl butylcarbamate), antioxidants, binders, biological additives, buffering agents, bulking agents, chelating agents, chemical additives, colorants, cosmetic astringents, cosmetic biocides, denaturants, drug astringents, external analgesics, film formers or materials, e.g., polymers, for aiding the film-forming properties and substantivity of the composition (e.g., copolymer of eicosene and vinyl pyrrolidone), opacifying agents, pH adjusters, propellants, reducing agents, sequestrants, skin-conditioning agents (e.g., humectants, including miscellaneous and occlusive), skin soothing and/or healing agents (e.g., panthenol and derivatives e.g., ethyl panthenol), aloe vera, pantothenic acid and its derivatives, allantoin, bisabolol, and dipotassium glycyrrhizinate, skin treating agents, thickeners, and vitamins and derivatives thereof.

It will be appreciated that the procollagen of the present invention may be incorporated into products already developed or being developed by cosmetic companies, including but not limited to Estee Lauder, Helena Rubinstein and L'Oreal.

The pharmaceutical or cosmetic compositions of the present invention can be applied directly to the skin. Alternatively, it can be delivered via normal skin
application by various transdermal drug delivery systems which are known in the art, such as transdermal patches that release the composition into the skin in a time released manner. Other drug delivery systems known in the art include pressurized aerosol bottles, iontophoresis or sonophoresis. Iontophoresis is employed to increase skin permeability and facilitate transdermal delivery. U.S. Pat. Nos. 5,667,487 and 5,658,247 disclose an ionosonic apparatus suitable for the ultrasonic-iontophoretically-mediated transport of therapeutic agents across the skin. Alternatively, or in addition, liposomes or micelles may also be employed as a delivery vehicle.

Since wounds and ischemia may engage the scalp, the pharmaceutical compositions of the present invention further include emollients, surfactants and/or conditioners which are suitable for use on the scalp skin and hair.

The emollients include, but are not limited to, hydrocarbon oils and waxes, such as mineral oil, petrolatum, and the like, vegetable and animal oils and fats, such as olive oil, palm oil, castor oil, corn oil, soybean oil, and the like, and lanolin and its derivatives, such as lanolin, lanolin oil, lanolin wax, lanolin alcohols, and the like. Other emollients include esters of fatty acids having 10 to 20 carbon atoms, such as including myristic, stearic, isostearic, palmitic, and the like, such as methyl myristate, propyl myristate, butyl myristate, propyl stearate, propyl isostearate, propyl palmitate, and the like. Other emollients include fatty acids having 10 to 20 carbon atoms, including stearic, myristic, lauric, isostearic, palmitic, and the like. Emollients also include fatty alcohols having 10 to 20 carbon atoms, such as cetyl, myristyl, lauryl, isostearyl, stearyl and the like.

An emulsifier/surfactant is preferably utilized when formulating the pharmaceutical compositions of the present invention for use on hair.

Examples of surfactants include, but are not limited to, polyoxyalkylene oxide condensation products of hydrophobic alkyl, alkene, or alkyl aromatic functional groups having a free reactive hydrogen available for condensation with hydrophilic alkylene oxide, polyethylene oxide, propylene oxide, butylene oxide, polyethylene oxide or polyethylene glycol. Particularly effective are the condensation products of octylphenol with ~7 to ~13 moles of ethylene oxide, sold by the Rohm & Haas Company under their trademark TRITON 100® series products.

Other ingredients such as, fragrances, stabilizing agents, dyes, antimicrobial agents, antibacterial agents, antiagglomerates, ultraviolet radiation absorbers, and the
like are also included in the composition of the present invention which is formulated for use on hair.

A conditioner agent stable to acid hydrolysis, such as a silicone compound having at least one quaternary ammonium moiety along with an ethoxylated monoquat is preferably also utilized in order to stabilize and optionally thicken the composition of the present invention which is formulated for use on hair.

An optional thickener also can be included to improve composition esthetics and facilitate application of the composition to the hair. Exemplary thickeners are methylcellulose, hydroxybutyl methylcellulose, hydroxypropylcellulose, hydroxypropyl methylcellulose, hydroxyethyl ethylcellulose and hydroxyethylcellulose, di (hydrogenated tallow) phthalic acid amide, crosslinked maleic anhydride-methyl vinyl ether copolymer, guar gum, xanthan gum and gum arabic.

The carrier of the conditioning composition is predominantly water, but organic solvents also can be included in order to facilitate manufacturing of the composition or to provide esthetic properties, such as viscosity control. Suitable solvents include the lower alcohols like ethyl alcohol and isopropyl alcohol; glycol ethers, like 2-butoxyethanol, ethylene glycol monoethyl ether, propylene glycol and diethylene glycol monoethyl ether or monomethyl ether and mixtures thereof. Non-limiting conditioning agents which may be used in opaque conditioners include: stearyltrimethylammonium chloride; behenethtrimethylammonium chloride; cetrimonium bromide; soytrimonium chloride; tallowtrimonium chloride; dihydrogenatedtallowdimethylammonium chloride; behentrimonium methosulfate; Peg-2 Oleammonium chloride; dihydrogenatedtallowdimethylammonium bromide; dihydrogenatedtallowdimethylammonium methosulfate; palmityltrimethylammonium chloride; hydrogenated tallowtrimethylammonium chloride; hydrogenated tallowtrimethylammonium bromide; dicetyldimethylammonium chloride; distearyldimethylammonium chloride; dipalmityldimethylammonium chloride; hydrogenated tallowtrimethylammonium methosulfate; cetrimonium tosylate; eicosyltrimethylammonium chloride and ditallowdimethylammonium chloride.

Shampoo formulations are sometimes advantageous for treating scalp skin conditions (e.g. lesions, psoriasis).
The hair shampoo composition of the present invention may be provided in any form selected from liquid, powder, gel and granule as needed. A liquid composition using water or a lower alcohol as a solvent is preferred, with a liquid composition using water being especially preferred. Shampoo compositions which may be used according to the teachings of the present invention are further described in U.S. Pat. No. 6194363 and U.S. Pat. No. 6007802.

It will be appreciated that the procollagen of the present invention may be incorporated into biocompatible and/or biodegradable polymer-based matrices, including sheets, films, membranes sponges and gels.

Procollagen can be absorbed or encapsulated into biocompatible polymer-based matrices or alternatively, actively crosslinked to such constructs by exposure to ultraviolet radiation, dehydrothermal (DHT) techniques or via chemical reagents such as the zero-length 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) crosslinker (Cornwell KG, et al., Biomed Mater Res A. 2007 Feb; 80(2):362-71).

Detailed protocols of how the procollagen of the present invention may be incorporated into collagen matrices are provided in Example 2, herein below.

The procollagen of the invention may be included in biodegradable acellular matrix components. An acellular matrix component generally fulfills a structural role. For example, it may fill in a defect, hole, space or cavity in tissue and provide an environment in which injected or implanted cells can adhere to the matrix or surrounding tissue and grow and produce other factors (e.g., chemotactic factors) resulting from the growth of new tissue. In many instances, the gap-filling function of the matrix is temporary and only lasts until the implanted and/or host cells migrate into the area and form new tissue. Preferably, the acellular matrix is biodegradable. The matrix is preferably a solid or semi-solid substance that is insoluble under physiological conditions. Such compositions are suitable for injection or implantation into a subject to repair tissue that has degenerated.

The term "biodegradable" as used herein refers to a composition that is not biologically harmful and can be chemically degraded or decomposed by natural effectors (e.g., weather, soil bacteria, plants, or animals). Examples of matrices that can be used in the present invention include, without limitation, acellular matrices containing autologous and non-autologous proteins, and acellular matrices containing
biodegradable polymers.

The procollagen of the present invention may be incorporated into any of a number of biodegradable acellular matrices containing non-autologous proteins. Examples of biodegradable acellular matrices include matrices containing any type of collagen (e.g., bovine, porcine, human, or bio-engineered collagen), or any type of collagen with glycosaminoglycans (GAG) cross-linked with, for example, glutaraldehyde. Matrices containing collagen include, without limitation, absorbable collagen sponges, collagen membranes and bone spongiosa. Useful types of collagen include, for example, bovine collagen, porcine collagen, marine collagen, human cadaver collagen bioengineered collagen, and autologous human collagen.

Absorbable collagen sponges can be purchased from, for example, Sulzer Calcitek, Inc. (Carlsbad, Calif.). These collagen sponge dressings, sold under the names COLLATAPE™, COLLACOTE™ and COLLAPLUG™ are made from cross-linked collagen extracted from bovine deep flexor (Achilles) tendon, and GAG. These products are soft, pliable, nonfriable, and non-pyrogenic. Greater than 90% of a collagen sponge typically consists of open pores.

The biodegradable acellular matrices to which procollagen may be incorporated may contain collagen (e.g., bovine or porcine collagen type I) formed into, for example, a thin membrane. One such membrane is manufactured by Sulzer Calcitek and is marketed as BIOMEND™. Another such membranous matrix is marketed as BIO-GIDE™ by Geistlich Sohne AG (Wolhusen, Switzerland), and is made of porcine type I and type III collagen. BIO-GIDE™ has a bilayer structure, with one surface that is porous and allows the ingrowth of cells, and a second surface that is dense and prevents the ingrowth of fibrous tissue.

Other suitable matrices containing collagen to which the procollagen of the present invention may be incorporated include COLLAGRAFT™ manufactured by NeuCell, Inc. (Campbell, Calif.), and OSTEOSET™ calcium sulfate alpha hemihydrate pellets sold by Wright Medical Technology (Arlington, Tenn.).

Biodegradable acellular matrices to which the procollagen of the present invention may be incorporated also can be made from bone spongiosa formed into granules or blocks. This material consists of animal (e.g., human, non-human primate, bovine, sheep, pig, or goat) bone from which substantially all organic material (e.g.,
proteins, lipids, nucleic acids, carbohydrates, and small organic molecules such as vitamins and non-protein hormones) has been removed. This type of matrix is referred to herein as an "anorganic matrix". One such matrix, which is marketed as BIO-OSS™ spongiosa granules and BIO-OSS™ blocks, is manufactured by Geistlich Sohne AG. This company also manufactures a block-type matrix (BIO-OSS™ collagen) that contains anorganic bone and additionally contains approximately 10% collagen fibers by weight.

Demineralized bone can be combined with the procollagen of the present invention to produce a matrix in the form of a sponge, block, or membrane. An exemplary matrix made from demineralized human bone, for example, is formed into small blocks and marketed as DYNAGRAFT™ by GenSci Regeneration Laboratories, Inc. (Toronto, Ontario, Canada), TUTOPLAST™ by Tutogen Medical, Inc. (Clifton, N.J.), or GRAFTON™ Demineralized Bone Matrix by Osteotech, Inc. (Eatontown, N.J.). Other useful biodegradable acellular matrices to which the procollagen may be incorporated are those which contain gelatin, cat gut, anorganic bone, coral, glycosaminoglycans such as mucopolysaccharide or hyaluronic acid or hydroxyapatite, or mixtures of these substances.

In addition, synthetic polymers made from one or more monomers can be used to make biodegradable acellular matrices to which the procollagen of the present invention may be incorporated. Such synthetic polymers include, for example poly(glycolic acid), poly(lactic acid), and poly(glycolic acid)-poly(lactic acid). Synthetic polymers also can be combined with any of the above-mentioned substances to form matrices. Different polymers forming a single matrix can be in separate compartments or layers. For example, W. L. Gore & Associates, Inc. (Flagstaff, Ariz.) manufactures a porous biodegradable acellular matrix (GORE RESOLUT XT Regenerative Material). This matrix is composed of a synthetic bioabsorbable glycolide and trimethylene carbonate copolymer fiber into which cells can migrate, attached to an occlusive membrane that is composed of a synthetic bioabsorbable glycolide and lactide copolymer that does not permit ingrowth of cells. Other examples of suitable biodegradable matrices can be found in U.S. Pat. No. 5,885,829, for example.

It will be appreciated that the matrices to which the procollagen of the present invention is incorporated may be coated with one or more attachment molecule known
in the art so as to enhance the ability of cells to attach to the biodegradable acellular matrices. These attachment molecules include natural molecules (e.g., extracellular matrix factors such as laminin and fibronectin) and synthetic molecules (e.g., peptides containing the binding sites of fibronectin and/or laminin). Example of useful agents are, without limitation, basement membrane components, gelatin, gum Arabic, collagen types I XII, fibronectin, laminin, thrombospondin, entactin, proteoglycans, glycosaminoglycans, and mixtures thereof. Other appropriate attachment molecules include simple carbohydrates, complex carbohydrates, asialoglycoproteins, lectins, growth factors, low density lipoproteins, heparin, poly-lysine, poly-ornithine, thrombin, vitronectin, and fibrinogen. Use of attachment molecules and methods for linking them to biodegradable acellular matrices are described in U.S. Pat. No. 6,095,148.

The procollagen of the invention may also be included in biodegradable acellular filler materials (i.e., bulking agents). Such compositions may be suitable for injection into a subject in order to repair tissue that has degenerated. A filler material generally fulfills a structural function. For example, it may fill in a defect, hole, space or cavity in tissue and provide an environment in which injected cells can adhere to the surrounding tissue and grow and produce other factors (e.g., chemotactic factors) resulting from the growth of new tissue. In many instances, the gap-filling function of the filler is temporary and only lasts until the implanted and/or host cells migrate into the area and form new tissue. Preferably the filler is biodegradable. Fillers are typically provided and used as a viscous solution or suspension.

According to one embodiment, the filler to which the procollagen is incorporated is a dermal filler.

As used herein, the term "dermal filler" refers to a type of tissue augmentation material which is generally used in the dermis area, such as below the epidermis or above the hypodermis, and as such may be injected subcutaneously, hypodermically or intradermally, or some combination.

Numerous types of biodegradable, acellular injectable fillers can be used together with the procollagen of the present invention. The filler can consist of autologous proteins, including any type of collagen obtained from a subject. An example of such a filler is AUTOLOGEN™, formerly produced by Collagenesis Corp. (Beverly, Mass.). AUTOLOGEN™ is a dispersion of autologous dermal collagen fibers
from a subject, and therefore does not elicit even a minimal immune response when readministered to the subject. In order to obtain AUTOLOGEN™, a specimen of tissue (e.g., dermis, placenta, or umbilical cord) is obtained from a subject and forwarded to Collagenesis Corp., where it is processed into a collagen-rich dispersion. Approximately one and a half square inches of dermal tissue can yield one cubic centimeter (cc) of AUTOLOGEN™. The concentration of AUTOLOGEN™ can be adjusted depending upon the amount required to correct defects or augment tissue within the subject. The concentration of AUTOLOGEN™ in the dispersion can be, for example, at least about 25 mg/L (e.g., at least about 30 mg/L, at least about 40 mg/L, at least about 50 mg/L, or at least about 100 mg/L).

An acellular injectable filler material can also contain non-autologous proteins, including any type of collagen, such as those described herein below.

An exemplary dermal filler matrix to which the procollagen may be incorporated is that manufactured by Johnson & Johnson (EVOLENCE™) which includes a porcine-derived collagen, as disclosed in U.S. Pat. No. 6,682,760.

Other exemplary dermal filler matrices to which the procollagen may be incorporated are those manufactured by Allergan Medical. These include the dermal fillers named ZYDERM™ (Collagen Corp., Palo Alto, California) and ZYPLAST™ which are injectable formulations of bovine collagen and Cosmoderm and Cosmoplast, which are composed of human collagen. ZYDERM™ is prepared from bovine skin and is composed of reconstituted atelopeptide collagen in saline with a small amount of local anesthetic. ZYDERM™ is described in U.S. Patent No. 3,949,073. ZYPLAST™ is a lightly crosslinked preparation of bovine collagen and is processed by cross-linking with 0.25 % glutaraldehyde, followed by filtration and mechanical shearing through fine mesh. The methodologies involved in the preparation and clinical utilization of this material are disclosed in U.S. Pat. No. 4,582,640 and U.S. Pat. No. 4,642,117.

COSMODERM™ and COSMOPLAST™ are dermal fillers approved for the correction of facial wrinkles, acne scars and other soft tissue contour deficiencies, as well as for the restoration of the lip border. The collagen in COSMODERM™ and COSMOPLAST™ is purified from human dermal tissue that is grown under controlled conditions.
The present invention also conceives incorporating the procollagen of the present invention to microsphere-based dermal fillers such as ARTEFILL™. ARTEFILL™ is a unique combination of precision filtered synthetic microspheres (20%) evenly suspended in Ultra-Purified Collagen™ (80%). After ARTEFILL™ is injected, the microscopic spheres stimulate the body's own natural collagen production to replace the purified collagen. The microsphere-based technology of this product is disclosed in U.S. Patent No. 5,344,452.

ISOLAGEN™ is another dermal filler product to which it may be useful to incorporate the procollagen of the present invention. ISOLAGEN™ (manufactured by Isolagen Inc.) comprises cultured autologous fibroblasts. This dermal filler is disclosed in U.S. Patent No. 5,591,444 and 6,432,710.

HUMALLAGEN™, manufactured by Albiorex International is a human collagen derived from the placenta for dermal fill injections to correct facial wrinkles. This dermal filler is disclosed in U.S. Patent. No. 5,002,071.

The procollagen of the present invention may also be incorporated into DERMALOGEN™ (Angiotech Pharmaceuticals). This product is an injectable collagen matrix derived from human skin after removal of the non-collagenous proteins and is used as an off-the-shelf allogeneic implant material.

The procollagen of the present invention may also be incorporated into FASCIAN™ (Fascian Biosystems). This is an injectable human implant material made from fascia.

Other examples of useful filler materials to which the procollagen of the present invention may be incorporated include, but are not limited to, solubilized gelatin, polyglycolic acid (e.g., solubilized polyglycolic acid or particles of polyglycolic acid), or cat gut sutures. A particular gelatin matrix implant, for example, is sold under the mark FIBRIL™. This filler contains equal volumes of (1) a mixture of porcine gelatin powder and o-aminocaproic acid dispersed in a 0.9% (by volume) sodium chloride solution, and (2) an aliquot of plasma from the subject. Other substances useful as fillers include hyaluron, hyaluronic acid, restalyn, and parleane.

According to another embodiment, the procollagen of the present invention can be incorporated into a matrix for use in a spinal fusion procedure. Spinal fusion
procedures are indicated in the management of spinal degenerative disc disease, a common cause of low back pain.

Thus, for example the procollagen of the present invention may be incorporated into a sponge such as INFUSE™ (a sponge made from bovine Type 1 collagen), manufactured by Medtronic. For the spinal fusion procedure, the sponges are soaked in recombinant human Bone Morphogenetic Protein (rhBMP-2) and then inserted into cage devices (INTER FIX and/or INTER FIX RP Threaded Fusion Devices), prior to implantation between the vertebrae.

Another scaffold used for spinal fusion procedures to which the procollagen of the present invention may be incorporated is that named OP-1™, manufactured by Stryker. This scaffold consists of rh-BMP-7 and bovine collagen, which is reconstituted with saline to form a paste.

Other matrices for spinal fusion to which the procollagen of the present invention may be incorporated are those taught in U.S. Pat. Nos. 5645084, 5776193, 5910315, 6187047, 6425920, 6613091, 7041309 and U.S. Pat. Application Nos. 2004/0192658, 2002/0082697 and 2005/0037978.

According to yet another embodiment, the procollagen of the present invention may be incorporated into a collagen-comprising matrix for use in bone grafts. Accordingly, the procollagen of the present invention can be incorporated into matrices disclosed in U.S. Pat. 4789663, 5171574, 5866113, 6077988, 6166184, 6630153, 7172629 and U.S. Pat. Appl. Nos. 2002/0082694, 2007/0254042 and 2006/0233853.

The matrix may be embedded with ceramic granules such as MASTERGRAFT™ Matrix and MASTERGRAFT™ putty, both manufactured by Medtronics, and COLLAGRAFT™ (manufactured by Angiotech Pharmaceuticals and distributed by Zimmer). This latter product essentially consists of a mixture of porous beads composed of 60% hydroxyapatite and 40% tricalcium phosphate ceramic and fibrillar collagen. Another porous scaffold contemplated for incorporation with procollagen is the Integra OSTM scaffold which is made of highly purified type-I collagen and tricalcium phosphate. A similar product is BI-OSTETIC FOAM™ manufactured by Berkeley Advanced Biomaterials. It is a sterile bone graft composed of highly purified fibrillar Type I bovine collagen and BI-OSTETIC™ resorbable 60% hydroxyapatite and 40% tricalcium phosphate granules.
The matrix may be malleable or non-malleable. U.S. Pat. Appl. 20070178130 teaches an exemplary malleable matrix to which the procollagen of the present invention may be incorporated.

Examples of malleable matrices to which the procollagen of the present invention may be incorporated for bone grafting include the MASTERGRAFTTM putty, mentioned herein above; MOZAICTM putty, manufactured by Integra; Integra OSTM putty, manufactured by Integra, DBXTM bone putty manufactured by Synthes and GENEXTM putty, manufactured by Biocomposites and GENEXTM paste, manufactured by Biocomposites. GENEXTM is a resorbable bone graft material manufactured through a proprietary process that confers the product with a reproducible negative surface charge. Another paste contemplated by the present invention is BIOSETTM RT Allograft Paste. This is a mouldable demineralized bone matrix paste mixed with uniformly sized cortical bone chips, manufactured by RTI biologics.

According to one embodiment, the collagen matrix for use in bone grafts to which the procollagen may be incorporated is in the form of flexible strips, such as MOZAICTM strips, manufactured by Integra, HEALOSTM, manufactured by Johnson and Johnson and VITOSSTM manufactured by Orthovita.

It will be appreciated that the collagen matrix for use in bone grafts may also be moulded into blocks and other shapes such as some of the VITOSSTM products manufactured by Orthovita. The VITOSSTM products are covered by U.S. Patent No. 5,939,039.

The present invention also contemplates adding procollagen to the scaffolds of Osteotech including for example MAGNIFUSETM. MAGNIFUSETM is a combination of allograft bone within a polymer mesh that provides targeted and contained delivery. The polymer mesh is made from a biodegradable suture material and is designed for effective cellular in-growth and complete resorption within three to six months, while not interfering with bone regeneration.

In addition, the present invention contemplates adding procollagen to the scaffolds of Pioneer Surgical such as FORTROSSTM, which is a combination of NANOSTM hydroxyapatite and a bone growth promotion of E-MATRIXTM scaffold and the Bioset RTITM.
According to yet another embodiment, the procollagen of the present invention may be incorporated into bone cements such as those manufactured by Biomet.

A number of collagen-based and non-collagen products are commercially available for skin replacement to which the procollagen of the present invention may be incorporated. For example, the procollagen of the present invention may be incorporated into artificial skin coverings. Artificial skin coverings can be used as a temporary covering in third degree burn patients, avoiding the risk of infectious disease associated with human cadaver allografts (HCA). Accordingly, the present invention contemplates incorporation of the procollagen of the present invention into skin products taught in U.S. Pat Nos. 4882162, 5273900, 5460939, 6040493, 4837379, 5830507, 5536656, 4060081, 5032508, 5443950, 5837278, 5256418, 6497875, 5266480, 5591444, 586398, 5,489,304, 5660850, 6855860 and International Patent No. WO/1997/006837.

One example of an artificial skin covering is TRANSCYTE™, also known as DERMAGRAFT™. This is a synthetic epidermal layer that is biocompatible and protects the wound surface from infection. It is semi-permeable, allowing fluid and gas exchange. The inner layer of TRANSCYTE™ is created by culturing human newborn foreskin-derived fibroblasts onto a silicon and nylon net. Freezing procedures destroy the fibroblasts leaving a solid product of growth factors behind, including essential human structural and provisional matrix proteins, glycosaminoglycans and growth factors known to facilitate healing. The inner layer, containing the dermal components known to promote healing of the burn, adheres quickly to the wound surface. The patient’s epithelial cells proliferate and migrate across the wound resulting in rapid wound healing.

BIOBRANE™ (Smith and Nephew, Netherlands) is a biosynthetic bandaging product consisting of nylon fabric partially embedded in silicon film. Collagen is chemically bound to the complex three-dimensional structure of the tri-filament thread. Blood or sera clots in the nylon matrix, which adheres the dressing to the wound until epithelialization occurs or until autografting is possible.

INTEGRA™ (Integra Artificial Skin Dermal Regeneration Template; Integra LifeSciences Corp, New Jersey, USA) is a two-layer membrane consisting of a synthetic polysiloxane epidermal layer and a dermal layer consisting of a porous lattice
of cross-linked collagen fibres. The dermal layer is a biodegradable template where blood and lymph vessels, fibroblasts and other cells migrate into the lattice from surrounding healthy tissue. The fibroblasts degrade the template and recreate a collagen matrix. Seven to fourteen days after the artificial skin has been applied, the synthetic epidermal layer is removed and skin can be grafted over the wound.

ALLODERM™ manufactured by BioHorizons is a nonliving, immunologically inert allogeneic acellular dermal matrix with an intact basement membrane complex. It prepares the wound bed for grafting, allowing improved cultured allograft 'take' and provides an intact basement membrane.

Another living skin equivalent, composite cultured skin (ORCEL™, Ortec), consists of allogeneic fibroblasts and keratinocytes seeded on opposite sides of bilayered matrix of bovine collagen.

The present invention also contemplates incorporation of the procollagen of the present invention into dressing material derived from pigs: porcine small intestinal submucosa acellular collagen matrix (OASIS™) and an acellular xenogeneic collagen matrix (E-Z-DERM™).

Tissue Sciences (Covington, Ga.) markets a product known as PERMACOL™, which is comprised of cross-linked porcine dermis. DePuy (Warsaw, Ind.) markets the RESTORE PATCH™ which is fabricated from porcine small intestine submucosa. Biomet (Warsaw, Ind.) markets a product known as CUFFPATCH™ another porcine small intestine product. The CUFFPATCH™ and the RESTORE PATCH™ products provide biocompatible scaffolds for wound repair and may also be incorporated with the procollagen of the present invention. Fabrication of such patches from porcine small intestine submucosa is described in U.S. Pat. No. 4,902,508 Badyak et al. and U.S. Pat. No. 5,573,784 Badyak et al.

To repair large tears of the skin or chronic skin wounds (e.g. the feet of diabetics), it is desirable to use a scaffold or graft material to help support the damaged tissue and guide its repair.

Accordingly, the present invention envisages incorporation of the procollagen of the present invention into scaffolds such as those taught in U.S. Patent Nos. 5,336,616; 5,024,830; 4,865,871.
Several types of materials have been used for such procedures. Wright Medical (Memphis, Tenn.) markets a product known as GRAFTJACKET™, which is manufactured by Lifecell Corporation (Branchburg, N.J.) from human cadaver skin. The skin undergoes a process that removes the epidermis and dermal cells. This process allows the body to accept the matrix and reduces the rejection response. The processing steps that yield the GRAFTJACKET™ Matrix sufficiently preserve the human dermal tissue, including its native protein, collagen structure, blood vessel channels and essential biochemical composition, to allow cellular repopulation and revascularization through the body’s natural healing process.

After implantation, the body’s natural repair process revascularizes and repopulates the GRAFTJACKET™ Matrix with cells and allows the body to convert the GRAFTJACKET™ Matrix into living tissue, e.g., skin. This means that the body can use GRAFTJACKET® Matrix as it repairs itself. Accordingly, the present invention envisages incorporating the procollagen of the present invention into the GRAFTJACKET™ scaffold.

Another matrix for treatment of deep wounds to which the procollagen of the present invention may be incorporated is the INTEGRA Flowable Wound Matrix™, produced by Integra Lifesciences, which is an advanced wound care matrix comprised of a granulated cross-linked bovine tendon collagen and glycosaminoglycan. The granulated collagen-glycosaminoglycan is hydrated with saline and applied in difficult to access wound sites and tunneled wounds. It provides a scaffold for cellular invasion and capillary growth.

The present invention also contemplates incorporating the procollagen of the present invention into collagen-comprising hemostasis sealant products such as those disclosed in U.S. Pat. Nos. 4016877, 4578067, 4606910, 5951583, 6096309, 6596304 and U.S. Patent Application Nos. 2004/0076647.

VITAGEL™ Surgical Hemostat, produced by Orthovita is a sprayable liquid hemostatic product composed of bovine thrombin and bovine collagen that is mixed with autologous blood-derived plasma. Vitagel works by combining the thrombin/collagen suspension with the patient's own plasma to form a fibrin/collagen clot. Joined syringes, one holding plasma (human) from the patient, and the other an aqueous mixture of bovine thrombin and collagen, mix these components for spraying
onto bleeding wounds.

AVITENE Ultrafoam™ collagen sponge, produced by Bard, is another collagen hemostat indicated to stop bleeding during surgical procedures by accelerating blood clot formation.

INSTAT™ Collagen Absorbable Hemostat, from Johnson & Johnson is another exemplary hemostat that may be incorporated with the procollagen of the present invention. It is available in pad as well as in powder form. INSTAT™ Collagen Absorbable Hemostat is made of a purified and lyophilized bovine dermal collagen. The material, when prepared as a sponge-like pad, is lightly cross-linked, sterile, non-pyrogenic, and absorbable.

Urethral bulking to treat urinary incontinence involves injecting material around the urethra. This may be done to close a hole in the urethra through which urine leaks out or to build up the thickness of the wall of the urethra so it seals tightly when you hold back urine. Most bulking materials are injected around the urethra just outside the muscle of the urethra at the bladder outlet. Injecting the bulking material may be done through the skin, through the urethra or, in women, through the vagina. Needle placement is guided by the use of a cystoscope inserted into the urethra. Materials used for urethral bulking typically include polytetrafluoroethylene (PTFE), bovine collagen (glutaraldehyde cross-linked bovine collagen) and duraspHERE. Accordingly, the present invention contemplates incorporating the procollagen of the present invention into the collagen matrix used for urethral bulking.

Thus, the procollagen of the present invention may be incorporated into the the collagen implant named Contigen™Bard™ manufactured by Bard or the implants disclosed in U.S. Pat. No. 4773393, 5385561, 5989180 and 6328687.

Large open wounds offer a point of entry for Hospital Acquired Infection (HAI). Wounds become infected not only as a result of medical procedures but also from circulating hospital air and from skin microbes. The wounds need to be kept clean and free from bacterial contamination, or the bacterial population within a wound should be reduced by application of appropriate antiseptics. Various types of dressings attempt to address the needs of bioburden reduction. They include dry dressings, moist dressings, alginate dressings, hydrocolloid and hydrogel dressings as well as collagen-based
dressings and gauze dressings. Such dressings may be incorporated with the procollagen of the present invention.

Exemplary collagen comprising wound dressings that may be incorporated with the procollagen of the present invention include those disclosed in U.S. Pat. Nos. 4950699, 5196185, 5676967, 5735812, 5,836,970, 5888987, 6087549, 7041868 and U.S. Pat. Applications 20040001878, 20050260251, 20060188486, 20070250177, 20070255192, 20070154530 and 20080213344.

Thus, for instance, the procollagen of the present invention can be incorporated into the wound dressings of Integra, including HELISTAT™ and HELITENE™. HELISTAT™ is made from an absorbable collagen hemostatic sponge whereas HELITENE™ is made from a fibrillar form of absorbable collagen. In both products the collagen is processed from bovine deep flexor tendon.

INTEGRA Bilayer Matrix Wound Dressing™ is an advanced wound care device comprised of a porous matrix of cross-linked bovine tendon collagen and glycosaminoglycan and a semi-permeable polysiloxane (silicone) layer. The semi-permeable silicone membrane controls water vapor loss, provides a flexible adherent covering for the wound surface and adds increased tear strength to the device. The collagen-glycosaminoglycan biodegradable matrix provides a scaffold for cellular invasion and capillary growth.

Johnson and Johnson produce a number of wound dressings, all of which are contemplated for the present invention. Exemplary wound dressings include NU-GEL™, FIBRACOLL PLUS™, Instat™ and PROMOGRAIN MATRIX™.

NU-GEL™ is a sterile hydrogel formulation of preserved polyvinyl pyrrolidone in water. The gel is supported by a fusible fiber fabric scrim and protected on both sides by polyethylene film. NU-GEL™ dressing promotes natural autolysis by rehydrating and softening necrotic tissue while providing a moist wound environment. It protects against dehydration, bacterial contamination and absorbs exudates from the wound.

It will be appreciated that the wound dressing may be comprised of a composite material such as cellulose and collagen or alginate and collagen.

PROMOGRAIN MATRIX™ is an exemplary dressing that combines oxidized regenerated cellulose and collagen.
FIBRACOLL PLUS™ is a dressing made up of 90% collagen and 10% alginate. This combination maintains a moist wound environment which is conducive to granulation tissue formation and epithelialization that enables healing to proceed optimally.

Organogenesis also produces a variety of wound dressings which are contemplated for incorporation by the present invention.

Thus, for example, the present invention contemplates incorporation of procollagen into FORTADERM™. This wound dressing consists of a single-layer of fenestrated sheet of porcine intestinal collagen.

ColActive™ and ColActive Ag™ are collagen-based wound dressings produced by Covalon Technologies. ColActive™ is produced from USP grade denatured porcine collagen. ColActive™ can also be impregnated with silver salts to create an antiseptic collagen-based wound dressing - ColActive Ag™.

BioCore Medical Technologies produces wound dressings such as MEDIFIL™, SKINTEMP™ and COLLATEK™. MEDIFIL™ particles comprise bovine type I collagen and are for draining, undermined, tunneled, infected or contaminated deep cavity wounds. MEDIFIL™ pads are for deep cavity draining wounds. SKINTEMP™ is comprised of porous collagen sheets attached to a nonadherent backing and is indicated for dry, superficial draining wounds. COLLATEK™ comprises type I bovine collagen.

Southwest Technologies produces a product named STIMULEN™ which is a sterile primary single-use dressing comprised of a soluble modified bovine collagen base. The STIMULEN™ collagen is soluble in the wound fluid and supplied as a powder or gel or sheet.

Healthpoint offers a sterile wound covering named OASIS™ to support tissue regeneration in partial thickness wounds. It provides a tissue-engineered collagen matrix derived from porcine small intestine submucosa (SIS). OASIS™ has a one-year shelf life and is available in single thickness, fenestrated sheets.

PURACOL™, produced by Medline is yet another collagen-based wound dressing to which the procollagen of the present invention may be incorporated. This product comprises 100% pure bovine-derived collagen in its native, triple-helix form.
TENOGLIDE™ Tendon Protector Sheet from Integra is an absorbable implant (device) that provides a non-constricting, protective encasement for injured tendons. Such a product is also envisaged to be incorporated with the procollagen of the present invention. TENOGLIDE™ is comprised of a porous matrix of cross-linked bovine Type I collagen and glycosaminoglycan (GAG). TenoGlide Tendon Protector is designed to serve as an interface between the tendon and the surrounding tissues. TenoGlide Tendon Protector is an easy to handle, conformable, porous collagen-GAG sheet designed for easy placement under, around or over an injured tendon.

GRAFTJACKET™ regenerative tissue matrix may also be used to protect tendons. This product has been described herein above.

Surgical closure of the dura, or duraplasty, is an essential part of any open neurosurgical procedure. Traumatic injuries to the head and spine often result in dural tears and lacerations that require surgical repair. The dura is a tough fibrous connective tissue sheet that forms the outer protective membrane encasing the brain and spinal cord. The dura is the first tissue of the brain encountered in any neurosurgical procedure. The neurosurgeon has to cut through the dura to allow access to the brain. At the end of a neurosurgical procedure a "water tight" repair of the dura must be achieved to prevent loss of the supporting cerebrospinal fluid (CSF) from the tissues of the brain and spinal cord. Accordingly, the present invention contemplates incorporating the procollagen of the present invention into the matrices used for duraplasty.

Such collagen-based matrices for duraplasty are disclosed in U.S. Pat. Application No. US 20070161109 and 20030204270. An exemplary product that may be incorporated with the procollagen of the present invention is DURAGEN™ by Integra Lifesciences which comprises a Type I collagen matrix.

As a result of the high incidence of neurological injuries, nerve regeneration and repair, a subfield of neural tissue engineering, is a rapidly growing field dedicated to the discovery of new ways to recover nerve functionality after injury. The present invention envisages incorporation of the procollagen of the present invention into collagen-based matrices designed to aid in the regeneration of nerves.

Nerve wraps are disclosed in U.S. Pat. Application Nos. 2004/0048796, and 2003/0072749.
Collagen Matrix Inc. produces a nerve wrap named Collagen Nerve Wrap™, which is a resorbable collagen matrix that provides a non-constricting encasement for injured peripheral nerves for protection of the neural environment, and is designed to be an interface between the nerve and the surrounding tissue.

NeuraWrap™ produced by Integra is another nerve protector, which is an absorbable collagen implant that provides a non-constricting encasement for injured peripheral nerves for protection of the neural environment. The wall of the conduit has a longitudinal slit that allows NeuraWrap™ to be spread open for easy placement over the injured nerve. The resilience of the collagen conduit allows NeuraWrap to recover and maintain closure once the device is placed around the nerve.

It is expected that during the life of a patent maturing from this application many relevant compositions, matrices and carriers will be developed and the scope of the terms provided herein is intended to include all such new technologies a priori.

As used herein the term "about" refers to ± 10%.

The terms "comprises", "comprising", "includes", "including", "having" and their conjugates mean "including but not limited to". This term encompasses the terms "consisting of" and "consisting essentially of".

The phrase "consisting essentially of" means that the composition or method may include additional ingredients and/or steps, but only if the additional ingredients and/or steps do not materially alter the basic and novel characteristics of the claimed composition or method.

As used herein, the singular form "a", "an" and "the" include plural references unless the context clearly dictates otherwise. For example, the term "a compound" or "at least one compound" may include a plurality of compounds, including mixtures thereof.

Throughout this application, various embodiments of this invention may be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges
such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.

Whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range. The phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.

As used herein the term "method" refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.

It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.

Various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below find experimental support in the following examples.

EXAMPLES

Reference is now made to the following examples, which together with the above descriptions, illustrate some embodiments of the invention in a non-limiting fashion.

Generally, the nomenclature used herein and the laboratory procedures utilized in the present invention include molecular, biochemical, microbiological and
EXAMPLE 1

Expression of procollagen in Tobacco plants

Constructs - All of the coding sequences were optimized for expression in the tobacco plant. Figures 1A-D shows the synthetic genes coding for Col1(human collagen type I α1 chain, accession number P02452, ER signal deleted; Figure 1A), Col2 (human collagen type I α2 chain, accession number P08123, ER signal deleted; Figure 1B), P4Hα (human prolyl 4-hydroxylase alpha subunit, accession number P13674, ER signal deleted; Figure 1C), P4Hβ (human prolyl 4-hydroxylase beta subunit, accession number P07237, ER signal and C' terminal KDEL signal deleted) and LH3 (human lysyl hydroxylase isoform 3, accession number O60568, ER signal deleted; Figure 1D). All the genes were N' terminally fused to a vacuolar transit signal MAHARVLLLALAVLATAAVAVASSSFADSNPVRPVTDAASTLA (SEQ ID NO: 14). This sequence originates from the targeting signal within the sequence encoding a plant vacuolar thiol protease (accession number P05167, GI:113603). Vacuolar-signal-fused collagen type I α1 chain and collagen type I α2 chain were cloned in expression cassettes composed of a Chrysanthemum rbcS1 promoter and 5' UTR together with a Chrysanthemum rbcS1 3'UTR and terminator (Ouchkourov et al., 2003). The complete expression cassettes were cloned in a multiple cloning site of the pBINPLUS plant transformation vector (van Engelen et al., 1995, Transgenic Res. 4: 288–290). The synthetic genes coding for human P4Hβ and human P4Hα fused to the vacuole-targeting signal were cloned in expression cassettes composed of the CaMV 35S promoter, TMV omega sequence and Agrobacterium Nopaline synthetase (NOS) terminator carried by the vector pJD330 (Galili et al., 1987, Nucleic Acids Res 15: 3257–3273). The complete expression cassettes were cloned in a multiple cloning site of the pBINPLUS. The synthetic gene coding for LH3 with flanking Strawberry vein banding virus (SVBV) promoter (NCBI accession AF331666 REGION: 623..950 version AF331666.1 GI: 13345788) and terminated by the Agrobacterium octopin synthase (OCS) terminator (NCBI accession Z37515 REGION: 1344..1538 version Z37515.1 GI: 886843) fused to the vacuole-targeting signal was cloned in a multiple cloning site of the pBINPLUS vector carrying the P4Hβ expression cassettes.

Transformations - All four expression constructs were transformed to Agrobacterium tumefaciens (EHA 105) by electroporation. Col1- and Col2-containing
Agrobacterium were used to coinoculate a Samsun NN Nicotiana tabacum plant strain, thereby creating a Col1/Col2 parent line. In parallel, Agrobacterium containing P4Hα and P4Hβ + LH3 expression cassettes were used to coinoculate a separate line of the Samsun NN tobacco plant strain, thereby generating a P4Hα/P4Hβ+LH3 parent line. PCR and western blot analyses were used to validate gene insertion and protein expression in the two parent lines. The parent plants were then crossed by positioning the anthers of Col1/Col2 on the stigma of P4Hα/P4Hβ+LH3 flowers following removal anthers of the latter plants. The progenitors of this breeding process were screened by PCR-based validation of genome-integrated genes using gene-specific primers. In addition, Southern blot analyses of the parent plants and a progenitor plant containing all genes were performed to define copy number of each gene (See Table 1 below). LH3 copy number was assumed to be identical to that of P4Hβ, as they were expressed under a single promoter. Lastly, western blot analyses were carried out to verify and quantify protein expression.

Table 1

Southern blot analysis of parental lines 2-372, 20-279 and the breeding progenitor plants A3-29 and C2-15

<table>
<thead>
<tr>
<th></th>
<th>A3-29</th>
<th>C2-15</th>
<th>2-372</th>
<th>20-279</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4Hα</td>
<td>2 insertions</td>
<td>3 insertions</td>
<td>3 insertions</td>
<td></td>
</tr>
<tr>
<td>P4Hβ</td>
<td>2 insertions</td>
<td>2 insertions</td>
<td>2 insertions</td>
<td></td>
</tr>
<tr>
<td>COL1</td>
<td>3 insertions</td>
<td>3 insertions</td>
<td>3 insertions</td>
<td></td>
</tr>
<tr>
<td>COL2</td>
<td>2 insertions</td>
<td>2 insertions</td>
<td>2 insertions</td>
<td></td>
</tr>
</tbody>
</table>

Western Blots - Plants were screened for Col1 and Col2 expression using AB745 (rabbit polyclonal, anti-human placenta type I Collagen, Millipore) and goat anti-rabbit alkaline phosphatase (polyclonal, AP132A, Millipore) as primary and secondary antibodies, respectively. Plants were screened for P4Hα expression using an anti-human P4Hα antibody (#63-163 from ICN Biomedicals Inc.) and for P4Hβ expression with anti-human P4Hβ antibody (#MAB2701 from Millipore). Alkaline phosphatase-conjugated goat anti-mouse antibodies (#A3688 from Sigma) were used as secondary antibodies for both P4Hα and P4Hβ detection.
Plantlets were produced by tissue culture or by cuttings from the parent line. The plants were grown in a controlled environment in a greenhouse.

Extraction and purification of procollagen from transgenic plants - Grinding of transgenic tobacco leaves was performed with an inline IKA Labor Pilot homogenizer. Briefly, 4 L of cold extraction buffer were placed in the homogenizer reservoir which was then operated at about 8000 rpm for approximately 1 minute. Crushed leaves (1 kg) were added to the reservoir. Homogenizer speed was then increased to 13789 rpm for about 2 minutes and then reduced to about 8000 rpm. The lower valve was opened to remove the solution from the reservoir. The extract was centrifuged at 3800 g, at 5 °C, for 20 minutes. Finally, the supernatant was filtered through 4 layers of cotton gauze (Sample A, Figures 2A-B).

For further concentration, 6.68 g charcoal and 16.67 g of polyvinylpyrrolidone (PVPP) were added to the extract while stirring for 20 minutes (5 °C, 50 % scraper speed or alternatively, stirred with an overhead stirrer set at 1200 rpm (5 °C, 20 minutes). The solution was then saturated to 15 % ammonium sulfate (AMS) (w/v) with stirring for 1 hour at 5 °C. This was followed by centrifugation at 6880 rpm - 8000g (5 °C, 20 minutes) or alternatively, centrifugation with a Cepa Z41 centrifuge at 26000 rpm (4 °C, 20 L/h). The supernatant (Sample B, Figures 2A-B) was then further saturated to 25 % AMS (w/v) and stirred for 1 hour (5 °C). The solution was then recentrifuged at 6880 rpm, 5 °C, 30 minutes) or alternatively, centrifuged (26000 rpm, 20 L/h, 4 °C) with a Cepa Z41 centrifuge (Sample C, Figures 2A-B).

All subsequent steps were done in an ice-cold environment with pre-cooled solutions. The pellet thus formed was resuspended in buffer (100 mM sodium phosphate pH 7.65) at a ratio of 20 ml buffer per gr AMS-saturated pellet. The resuspended pellets were centrifuged (13000 rpm, 10 minutes, 5 °C) and the procollagen-containing supernatants were collected and filtered through a 12 layer gauze to eliminate large particle debris. Thereafter, the gauze-filtered supernatant was diluted five fold with 25 mM sodium phosphate (pH 7.65) and loaded onto an anion exchange column (KK 26/20 GE Healthcare) containing 20 ml of CaptoQ resin (GE Healthcare), and later eluted with an NaCl gradient (20 column volumes, 0-50 % NaCl, flow rate 20 ml/min). Procollagen eluted primarily in the 170-250 mM NaCl fractions. The eluted procollagen-containing fractions (Figures 3A-B, fractions 14-20) were
pooled and then further purified via one of the two techniques described below. The pooled anion exchange fractions were concentrated with a 100 kDa cut-off centricone (Vivaspin, Vivascience). The concentrate was loaded thereafter onto a Supredex 200 GL 10/300 gel filtration column (GE healthcare). Procollagen was eluted between 8.4-9.6 ml (Figures 4 - 6A-B), while the remaining proteins eluted later (Figure 4). In this manner the intact procollagen was isolated with a high degree of purity as is evident from Figures 7A-B. Alternatively, the pooled anion exchange fractions were precipitated with 25% ammonium sulfate and centrifuged (8000 g, 30 minutes, 5 °C). The pellet was resuspended in 100 mM sodium phosphate (pH 7.65) to 1/15 of the volume of the precentrifugation pooled fraction volume. This solution was then diluted 10 times with 100% precooled ethanol and incubated (-20 °C, 3 hours). Following centrifugation (14000 g, 30 minutes 5 °C), the pellet was resuspended in 100 mM sodium phosphate (pH 7.65) to 1/15 the volume of the precentrifugation pooled fraction volume, dialyzed against the same buffer, centrifuged (20200 g, 10 minutes, 5 °C) and filtered through a 0.2 μm filter (Figure 8).

RESULTS

Expression of procollagen is demonstrated in CP A3-29 plant lines (lot #CP C-18) by the presence of two prominent bands at molecular weights >170 kDa and approximately 150 kDa, as detected with anti-human placenta type I collagen antibodies (arrows in Figures 2A-B). Similar bands were evident in the crude extract (Figure 2, lanes A) and supernatant post-centrifugation in 15% AMS (Figure 2, lanes B), but were not detected in supernatants post-centrifugation in 25% AMS (Figure 2, lanes C). Procollagen enrichment was clearly achieved in precipitates of the 25% AMS treatment (Figure 2, lanes D), as further confirmed by SDS PAGE Instant Blue staining. Increased corresponding band intensity was demonstrated, as well as a reduction of the noncollagen, native tobacco-related bands especially those with molecular weights below 105 kDa. Thus, this added AMS-based precipitation step enriches procollagen sample purity.

Anion exchange chromatography showed that the bulk of procollagen eluted in fractions 14-24 (Figures 3A-B), equivalent to 170-250 mM NaCl, as measured by sample conductivity. The procollagen-containing fractions were pooled and
concentrated in a 100 kDa cut-off centricone (Vivaspin, Vivasceience) and loaded onto a
gel filtration column. The gel filtration chromatogram (Figure 4) showed a resolution-
defined peak eluting between 7.5-9.1 ml, before elution of the remainder of the proteins
(elution peaks: 10-18 ml). Silver staining (Figures 5A-B) and Western blot analyses
(Figure 6A-B) demonstrated significant procollagen elution in fractions 3 and 4. The <
1 ml discrepancy in definition of the elution volume at which the procollagen peaked, as
determined by the absorbance curves vs. gel analysis, is a standard result of the tubing
volume between the detector and collecting tube. Fractions 3 and 4 were then
concentrated 10-fold in a 30 kDa cut-off centricone (Vivaspin, Vivasceience) and
analyzed by SDS-PAGE, which clearly confirmed procollagen isolation at a high degree
of purity (Figures 7A-B).

Figure 8 illustrates an AMS-based precipitation of anion exchange eluate-pooled
fractions as an alternative method of procollagen purification, as described in detail
above. The ethanol precipitation step in this protocol enables the removal of green
pigmentation from the sample. The resulting protein is stable and soluble following
incubation in 4 °C, freeze and thaw cycles and lyophilization, as determined by SDS
PAGE analysis (Figure 8).

EXAMPLE 2

Incorporation of procollagen into collagen-based matrices

Collagen is often the material of choice to act as a depot for the release of
therapeutically active compounds such as bone morphogenic proteins, growth factors,
antibiotics etc. [Meaney Murray M., Rice K., Wright RJ, Spector M. The effect of
selected growth factors on human anterior cruciate ligament cell interactions with a
collagen scaffold combined with OP-1 for bone formation induction in vivo. J Biomed
Mater Res B Appl Biomater Epub., Adhirajan N., Shanmugasundaram N.,
modified gelatin microspheres impregnated collagen scaffold as novel wound dressing
to attenuate the proteases and bacterial growth]. Collagen may be formed into sheets,
films, membranes, sponges and gels, all of which can be used to release the active
compound at the wound site to broaden its therapeutic application capacities and its pharmokinetic release profiles.

Procollagen can be passively absorbed into collagen matrices or alternatively, actively crosslinked to such constructs by exposure to ultraviolet radiation, dehydrothermal (DHT) techniques or via chemical reagents such as the zero-length 1-ethyl-3-(3-dimethylaninopropyl) carbodiimide hydrochloride (EDC) crosslinker (Cornwell KG, Lei P, Andreadis ST, Pins GD. J Crosslinking of discrete self-assembled collagen threads: Effects on mechanical strength and cell-matrix interactions. Biomed Mater Res A. 2007 Feb;80(2):362-71).

The present example describes three protocols that may be used to incorporate procollagen into a collagen matrix.

Protocol No.1

Soluble recombinant or animal-derived collagen suspended in 10 mM HCl is assembled to fibrils by mixing it (9:1 v/v) with 200 mM Na₂HPO₄, pH 11.2, followed by incubation (4-16 hr, 25-37 °C). The formed hydrogel is concentrated to 10-20 mg/ml by centrifugation and cast into an aluminum mold. The mold is incubated (2 hr, -30 °C) and transferred to -80 °C for an additional 30 minutes, followed by a 24 hour lyophilization step. The collagen matrix is then immersed (2-6 hr, 28 °C) in a crosslinking solution containing 10-50 mM EDC prepared in 90 % ethanol. Unbound EDC is washed away three times with DDW. Access to single-bound EDC molecules is quenched with a 10 mM aspartic acid solution. Following extensive washings, the sample is incubated (2 hr, -30 °C) and then transferred to -80 °C for an additional 30 minutes, followed by a 24 hour lyophilization step. The collagen matrix is sterilized by ethylene oxide (ETO) or gamma irradiation. Half an hour prior to matrix implantation, the matrix is immersed in a recombinant procollagen solution to allow for its absorption into the matrix. The procollagen-enriched matrix is then affixed to the wound site.

Protocol No.2

A fibrillar matrix is assembled by mixing soluble recombinant or animal-derived collagen suspended in 10 mM HCl with recombinant procollagen at ratios (w/w) ranging from 95:5 to 80:20 and incubation (4-16 hrs, 25-37 °C, pH 7.4). The formed hydrogel is concentrated to 10-20 mg/ml by centrifugation and cast into an aluminum mold. The mold is incubated (2 hrs, -30 °C) and transferred to -80 °C for an additional
30 minutes, followed by a 24 hour lyophilization step. The procollagen-containing collagen matrix is then immersed in a crosslinking solution containing 10-50 mM EDC prepared in 90% ethanol (2-6 hrs, 28 °C). Unbound EDC is washed away three times with DDW. Access of single-bound EDC molecules are quenched with a 10 mM aspartic acid solution. Following extensive washing, the sample is incubated (2 hrs, -30 °C) and transferred to -80 °C for an additional 30 minutes, followed by a 24 hour lyophilization step. The resultant procollagen-collagen hybrid matrix is sterilized by ETO or gamma irradiation.

Protocol No.3

Soluble recombinant or animal-derived collagen suspended in 10 mM HCl is assembled to fibrils by mixing it (9:1, v/v) with 200 mM Na₂HPO₄ pH 11.2, followed by incubation (4-16 hours, 25-37 °C). The formed hydrogel is concentrated to 10-20 mg/ml by centrifugation and cast into an aluminum mold. The mold is incubated (2 hrs, -30 °C), and then transferred to -80 °C for an additional 30 minutes followed by a 24 hour lyophilization step. The powdered matrix is then immersed in a recombinant procollagen-containing solution to allow for its absorption into the matrix, which is then allowed to dry at room temperature. The procollagen-collagen matrix is then immersed in a crosslinking solution of 10-50 mM EDC prepared in 90% ethanol (2-6 hours, 28 °C). Unbound EDC is washed away three times with DDW. Excess of single-bound EDC molecules are quenched with a 10 mM aspartic acid solution. Following extensive washings, the sample is incubated (2 hours, -30 °C) and transferred to -80 °C for an additional 30 minutes, followed by a 24 hour lyophilization step. The procollagen-collagen hybrid matrix is then sterilized by ETO or gamma irradiation.

Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art.
Citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting.
WHAT IS CLAIMED IS:

1. Use of a human procollagen for promoting wound healing, the human procollagen comprising:
 (i) two collagen type I α1 chains, each comprising the sequence as set forth in SEQ ID NO: 1; and
 (ii) one collagen type I α2 chain comprising the sequence as set forth in SEQ ID NO: 2.

2. The use of claim 1, wherein said procollagen is produced in plant cells.

3. The use of claim 1 or claim 2, wherein said procollagen is degradable by collagenase.

4. The use of any one of claims 1 to 3, wherein said procollagen comprises monomeric procollagen.

5. The use of any one of claims 1 to 4, wherein said wound is an acute wound.

6. The use of any one of claims 1 to 4, wherein said wound is a chronic wound.

7. The use of any one of claims 1 to 4, wherein said wound is inflicted by diabetes.

8. The use of any one of claims 1 to 4, wherein said wound comprises an ulcer.

9. The use of any one of claims 1 to 4, wherein said wound comprises a burn.

10. The use of any one of claims 1 to 4, wherein said wound comprises a surgical wound.
11. An article of manufacture comprising a packaging material which packages human procollagen and an antibacterial agent, wherein the human procollagen comprises:
 (i) two collagen type I α1 chains each comprising the sequence as set forth in SEQ ID NO: 1; and
 (ii) one collagen type I α2 chain comprising the sequence as set forth in SEQ ID NO: 2.

12. The article of manufacture of claim 11, wherein said packaging material comprises at least two separate containers separately packaging said human procollagen and said antibacterial agent.

13. The article of manufacture of claim 11 or claim 12, further comprising instructions for use in promoting wound healing.

14. The article of manufacture of any one of claims 11 to 13, wherein said procollagen is produced in plant cells.

15. The article of manufacture of any one of the claims 11 to 14, wherein said procollagen is degradable by collagenase.

16. The article of manufacture of any one of the claims 11 to 15, wherein said procollagen comprises monomeric procollagen.
FIG. 2A FIG. 2B

Coomassie Staining Western Blot analysis
End purification protein following ethanol precipitation, dialysis against 100mM sodium phosphate pH 7.5 and spin down.

Additional treatments:
- +0.2u filtration
- 1 day, 4°C
- 3 day, 4°C

All samples were 0.2u filtrated before loading.

Two cycles of freeze and thaw.

Lyophilized and resuspended in DDW.

FIG. 8