

Sept. 7, 1965

H. DREYFUSS
SEWING MACHINERY

3,204,594

Filed March 13, 1963

6 Sheets-Sheet 1

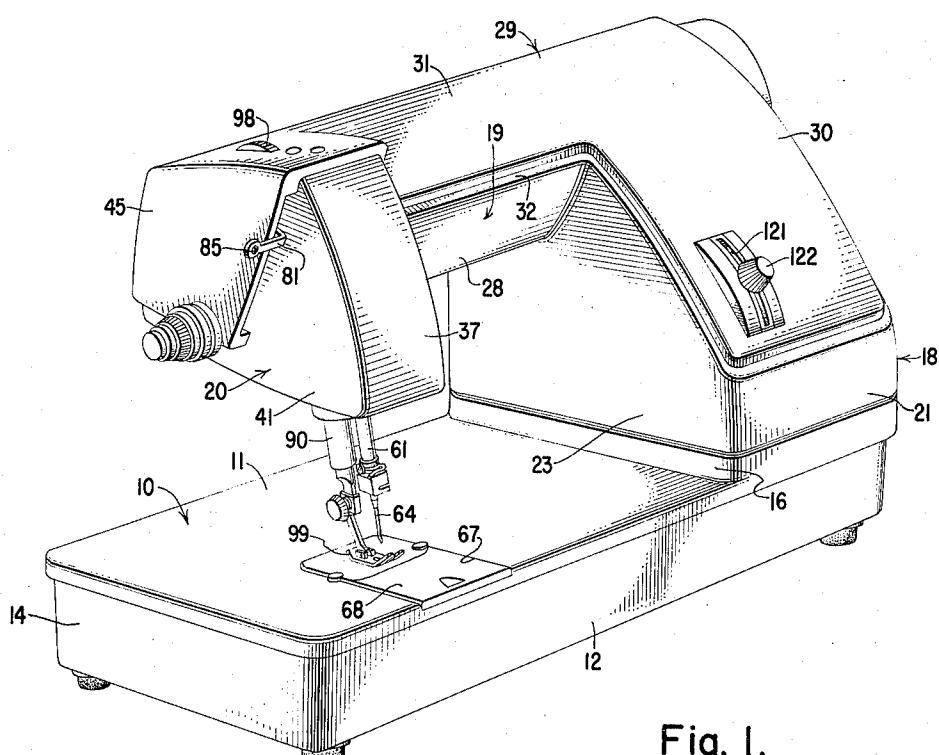


Fig. 1.

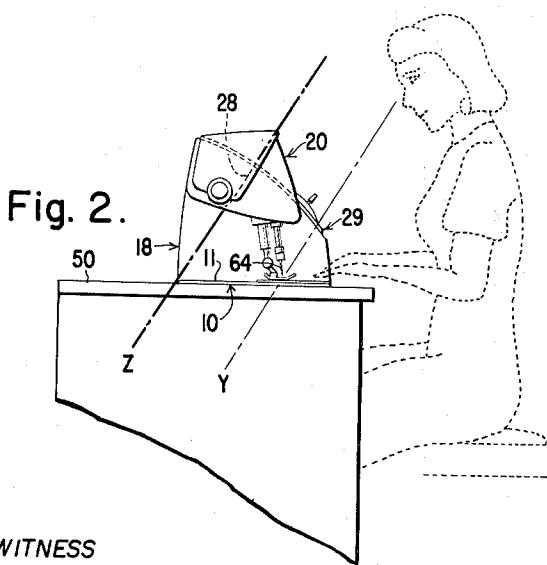


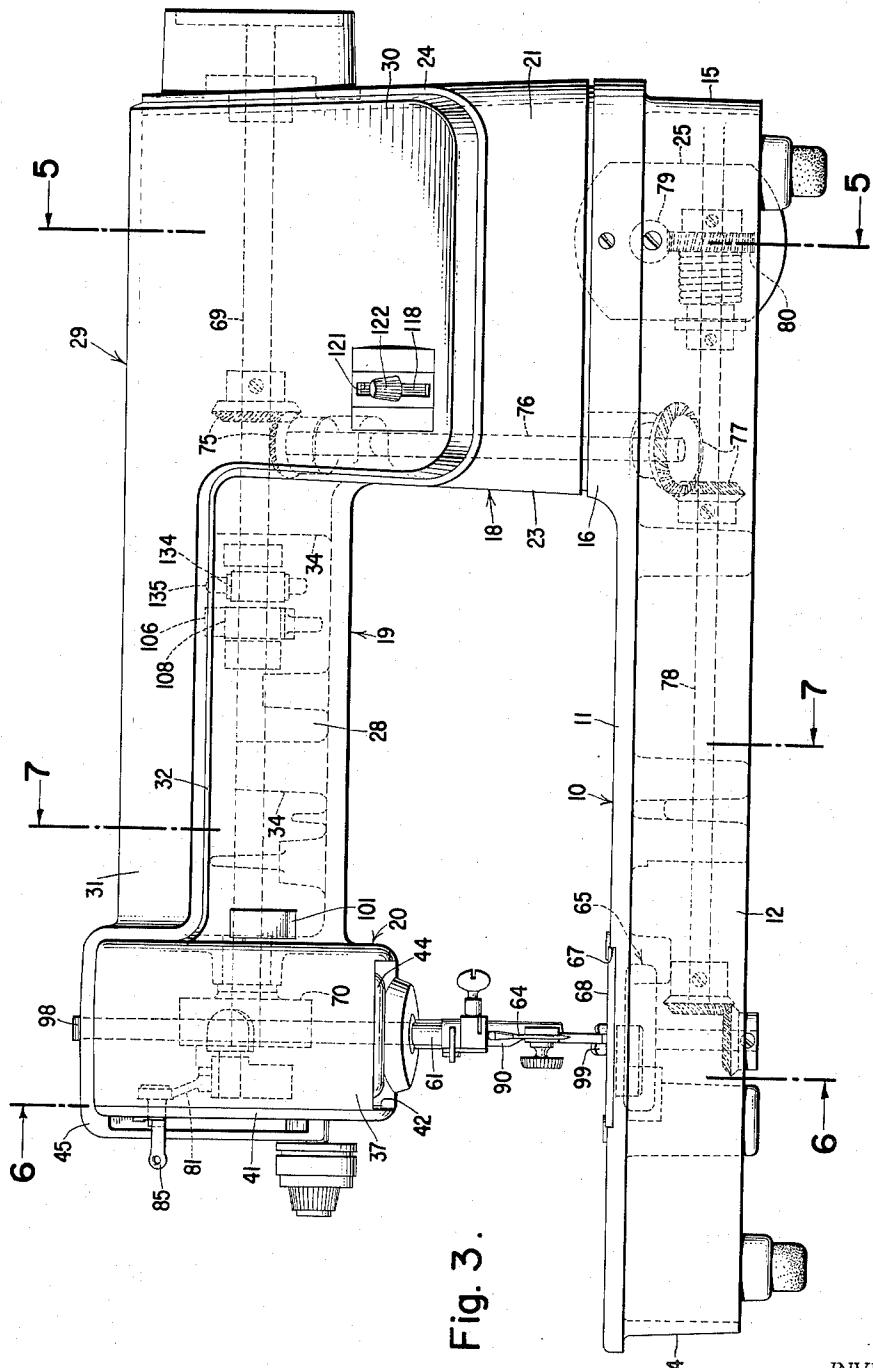
Fig. 2.

WITNESS

William Martin Jr.

INVENTOR
Henry Dreyfuss
BY
Marshall J. Breen
ATTORNEY

Sept. 7, 1965


H. DREYFUSS

3,204,594

SEWING MACHINES

Filed March 13, 1963

6 Sheets-Sheet 2

Sept. 7, 1965

H. DREYFUSS

3,204,594

SEWING MACHINES

Filed March 13, 1963

6 Sheets-Sheet 3

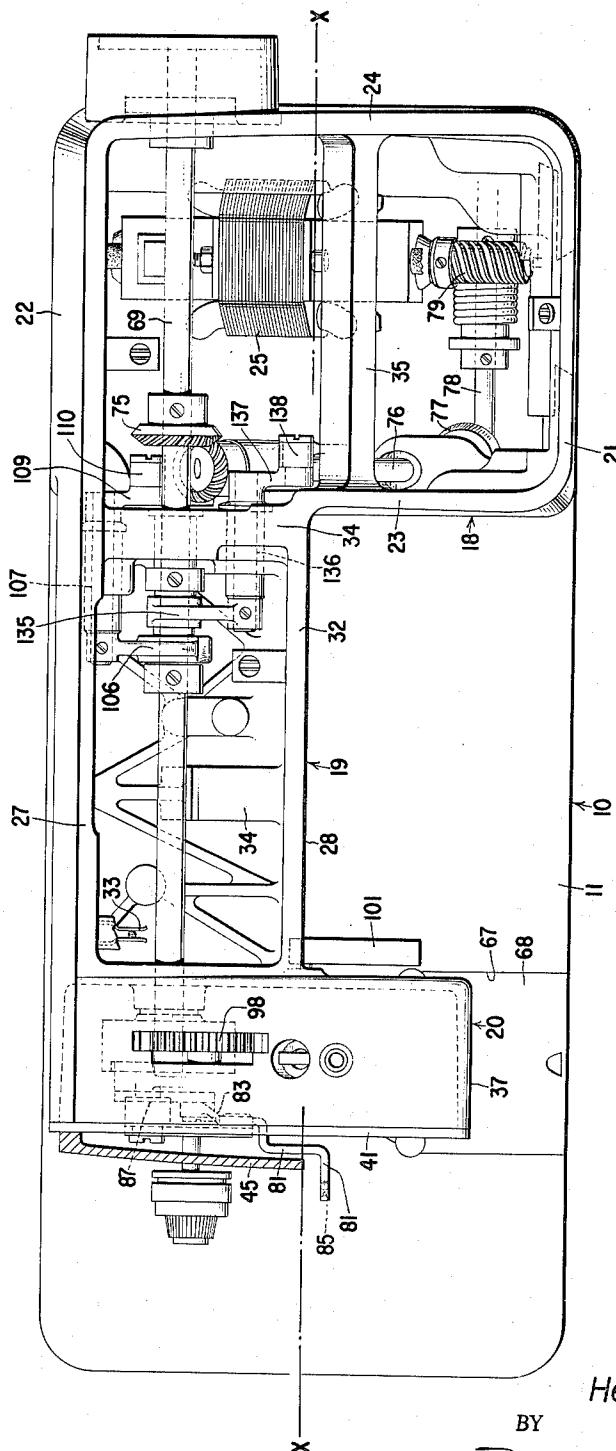


Fig. 4.

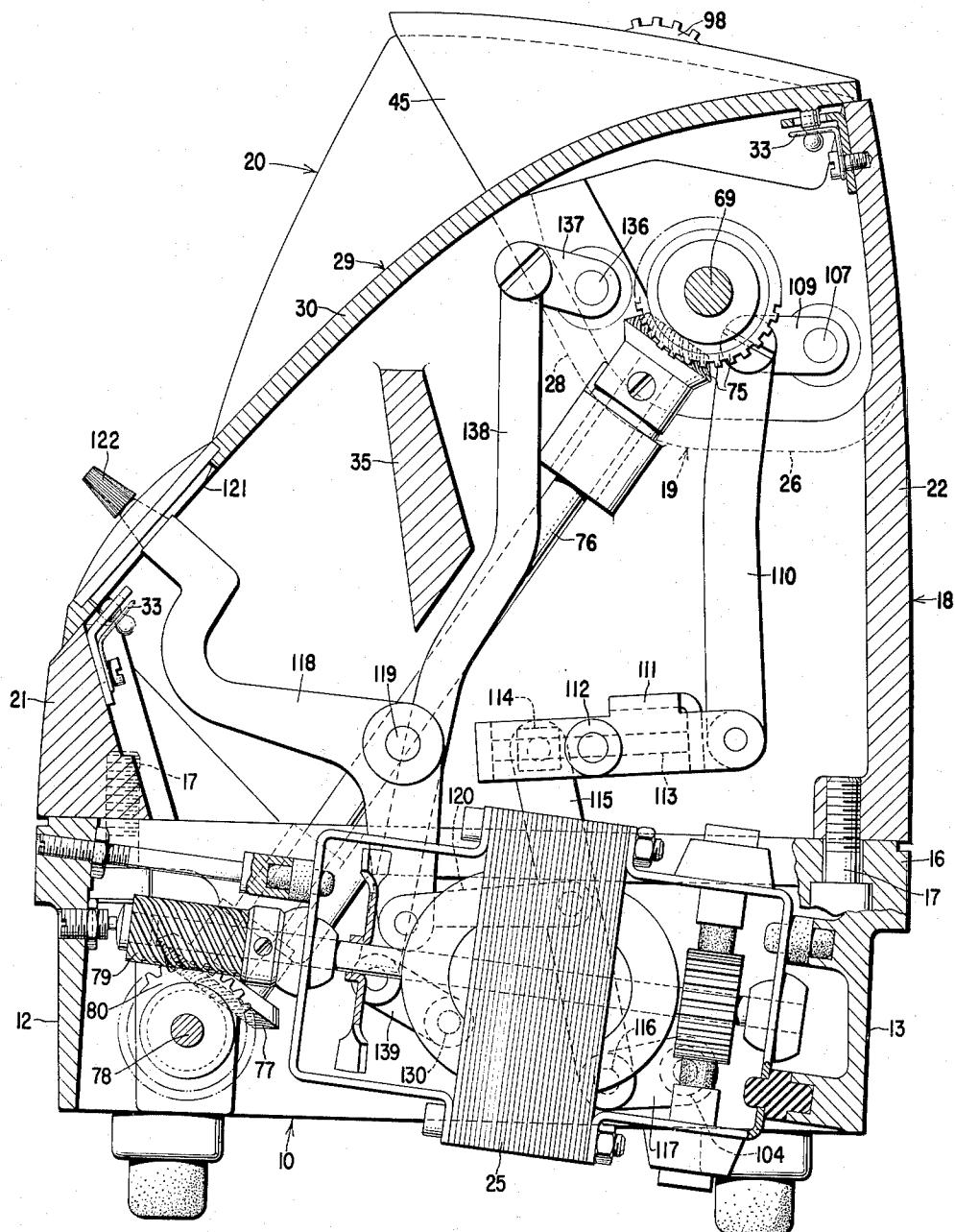
INVENTOR.
Henry Dreyfuss

WITNESS

William Martin Jr.

Marshall J. Breen
ATTORNEY

Sept. 7, 1965


H. DREYFUSS

3,204,594

SEWING MACHINES

Filed March 13, 1963

6 Sheets-Sheet 4

WITNESS

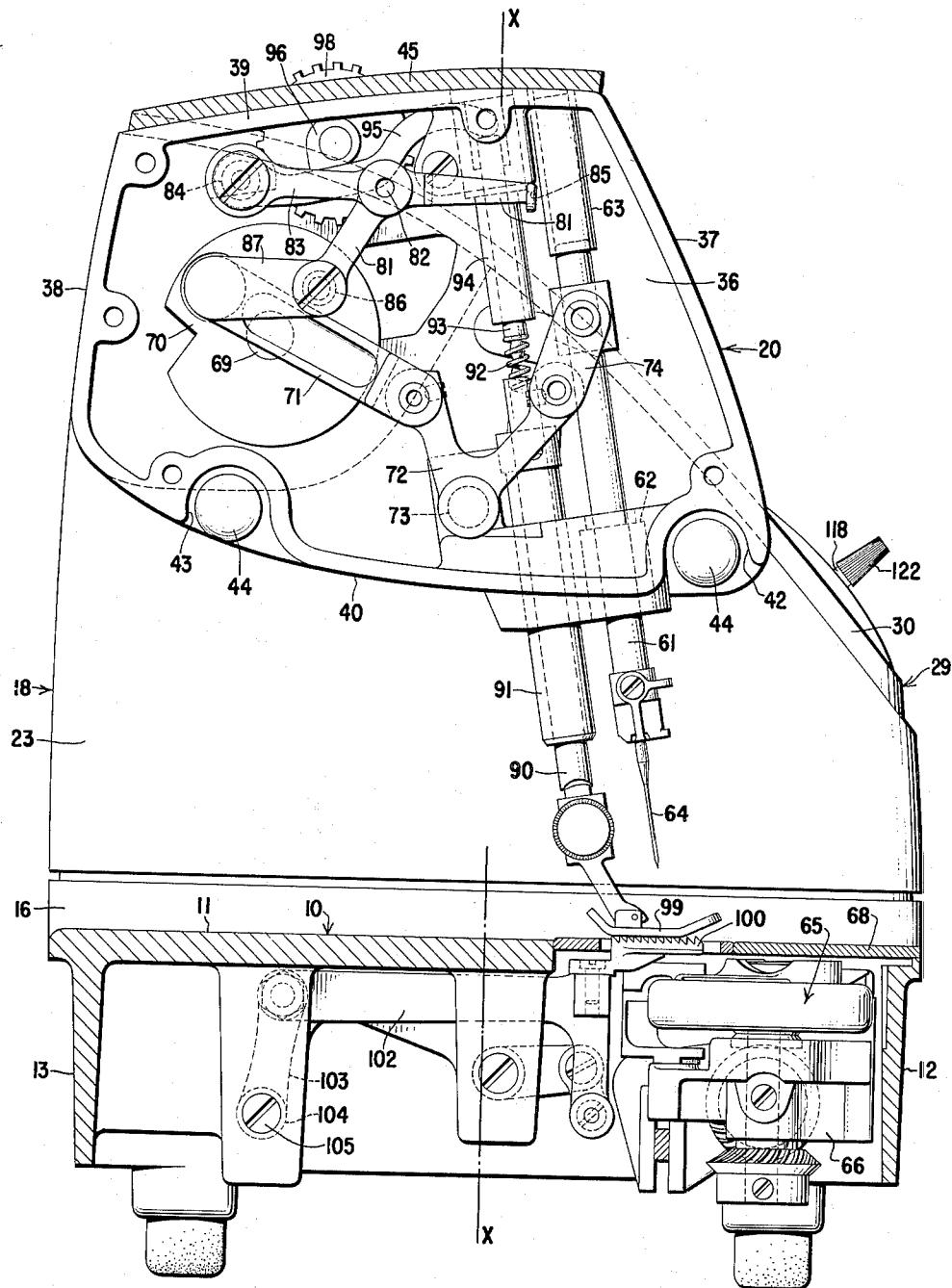
William Martin Jr.

Fig. 5

INVENTOR.
Henry Dreyfuss
BY

Marshall J. Green
ATTORNEY

Sept. 7, 1965


H. DREYFUSS

3,204,594

SEWING MACHINES

Filed March 13, 1963

6 Sheets-Sheet 5

WITNESS

William Martin Jr.

Fig. 6

BY

Marshall J. Bean
ATTORNEY

INVENTOR.

Henry Dreyfuss

Sept. 7, 1965

H. DREYFUSS

3,204,594

SEWING MACHINES

Filed March 13, 1963

6 Sheets-Sheet 6

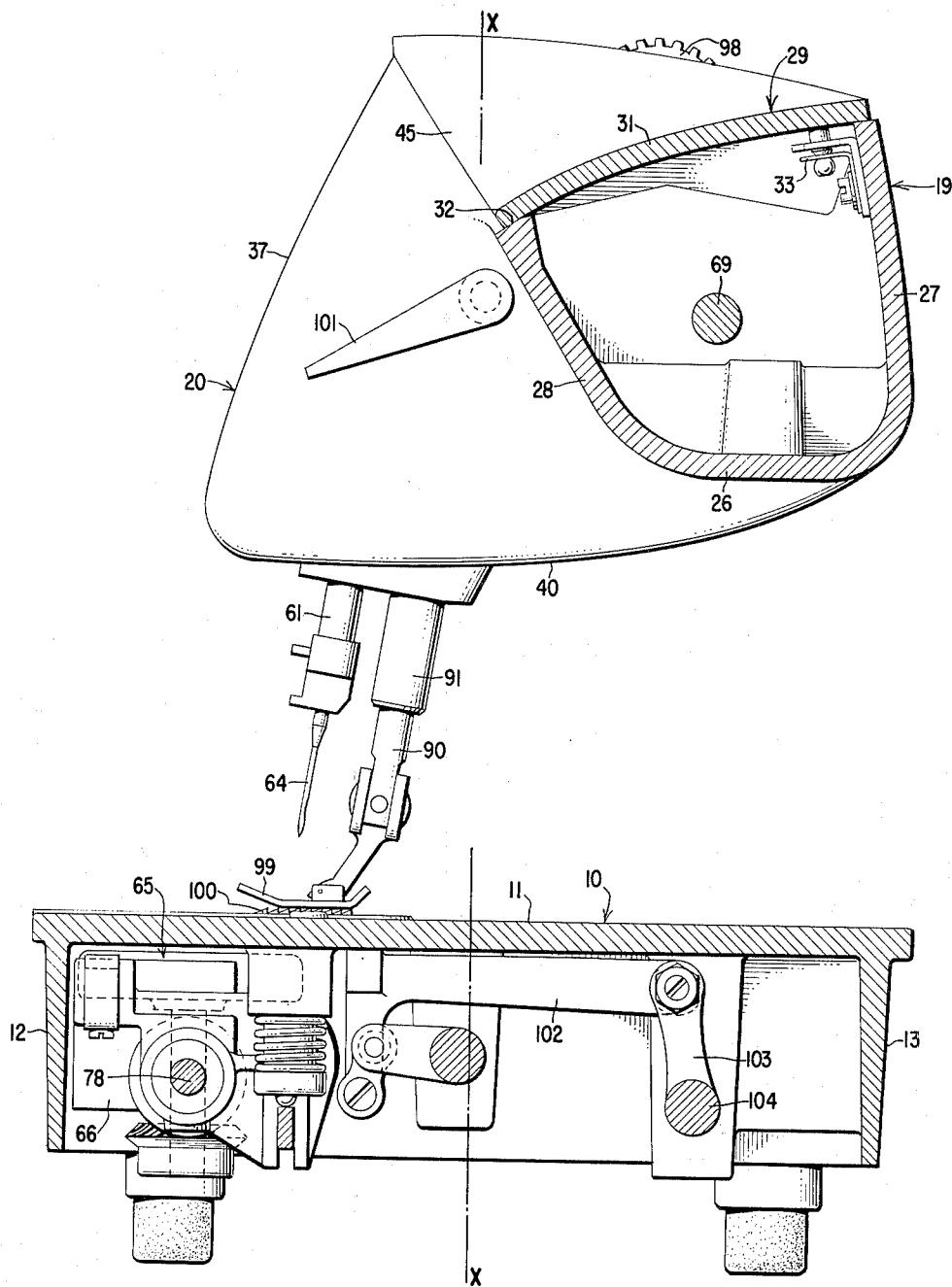


Fig. 7

WITNESS

William Martin Jr.

INVENTOR.

Henry Dreyfuss

BY

Marshall J. Breen
ATTORNEY

United States Patent Office

3,204,594

Patented Sept. 7, 1965

1

3,204,594 SEWING MACHINES

Henry Dreyfuss, South Pasadena, Calif., assignor to The Singer Company, a corporation of New Jersey
Filed Mar. 13, 1963, Ser. No. 264,869
12 Claims. (Cl. 112—258)

This invention relates to sewing machines, more particularly of the household type, and has for its primary object to provide a machine of this type having an improved form of machine frame which affords the machine operator a clear and unobstructed view not only of the stitching point but also of a wide area of the work fabrics on all sides of the needle.

It is an object of this invention to provide a sewing machine frame construction in which the sewing head portion carrying the needle projects forwardly toward the operator, thus presenting the stitching area to view directly in front of an operator, and in which the bracket arm supporting the sewing head is arranged to expose the entire work supporting surface of the sewing machine bed to the view of an operator seated in normal fashion before the sewing machine.

Another object of this invention is to provide a sewing machine frame construction in which the upper surface of the bracket arm and standard are inclined upwardly and backwardly in substantially perpendicular relation to the line of sight of an operator looking at the stitching area from a normal machine operating position before the sewing machine so that controls for the sewing machine when mounted on the upper surface of either the bracket arm or standard will present a full top plan view to the operator for optimum visibility and accessibility.

An additional object of this invention is to provide a sewing machine frame having the novel and advantageous characteristics outlined above which can nonetheless accommodate proven conventional operating mechanisms such as the main drive mechanism or the work feeding mechanism.

It is also an object of this invention to provide a rigid sewing machine frame affording generous housing area within which to locate operating mechanisms without detracting from optimum visibility and accessibility of the work fabrics being stitched.

With the above and other objects in view as will hereinafter appear, the invention comprises the combinations and arrangement of parts and devices hereinafter set forth and illustrated in the accompanying drawings of a preferred embodiment of the invention, from which the several features of the invention and the advantages attained thereby will be readily understood by those skilled in the art.

In the accompanying drawings:

FIG. 1 is a front perspective view of a sewing machine embodying this invention.

FIG. 2 is a head end elevational view of the sewing machine of FIG. 1 at reduced size together with a representation of an operator occupying the normal position for operating the sewing machine and illustrating the line of sight of the operator relatively to the stitching point, and the relation of the operator's line of sight to the front wall of the bracket arm and to the upper surface of the bracket arm and standard.

FIG. 3 is a front elevational view of the sewing machine of FIG. 1.

FIG. 4 is a top plan view of the sewing machine shown in FIG. 3 with the top cover removed and the face plate of the sewing head illustrated in section to expose the mechanisms within the frame.

FIG. 5 is a vertical cross-sectional view taken substantially along the line 5—5 of FIG. 3.

2

FIG. 6 is a vertical cross sectional view taken substantially along the line 6—6 of FIG. 3 and

FIG. 7 is a vertical cross sectional view taken substantially along the line 7—7 FIG. 3.

Referring now to the drawings, the machine frame includes a bed 10 having a flat work supporting surface 11, depending front and rear walls 12 and 13 and left and right end walls 14 and 15. At its right hand end portion the bed is provided with a raised platform 16 on which is fastened by screws 17, FIG. 5, a standard 18 of a bracket arm 19 terminating in a head 20. The standard 18, at its junction with the base platform 16, is rectangular in cross section and is sized so that its front and rear walls 21 and 22 are in substantial vertical register with the front and rear side walls 12 and 13, respectively, of the bed 10. The left and right side walls 23 and 24, respectively, of the standard are spaced apart substantially as can be seen in FIGS. 3 and 4. The resultant relatively large base of the standard 18 contributes to a rigid machine frame and also affords an appreciable housing area within which to locate certain of the mechanisms of the machine. In addition, the standard cooperates with the bed 10 to house an electric driving motor 25.

The bracket arm 19 is integral with and extends longitudinally from the rear portion of the standard 18 with a bottom wall 26 of the bracket arm disposed above and substantially parallel to the work supporting surface of the bed. A rear wall 27 of the bracket arm is arranged in substantially vertical register with the rear wall 13 of the bed 10. The front wall 28 of the bracket arm 19 is upwardly and forwardly inclined as illustrated in FIGS. 2 and 7, while the upper edges of the left and right side walls 23 and 24 of the standard rise at an inclination upwardly and rearwardly, the left side wall 23 merging into the bottom and front walls of the bracket arm and the right side wall 24 merging into the rear wall 27 of the bracket arm. The integral standard and bracket arm define, in effect, an open topped box-like structure which is adapted to be closed by a removable cover 29. That portion 30 of the cover 29 closing the open top of the standard rests at its upper rear edge on the top edge of the rear wall 22 of the standard and is inclined downwardly and forwardly to rest on the upper edge of the lower front wall 21 of the standard, as best shown in FIGS. 1, 3 and 5. That portion 31 of the cover 29 closing the bracket arm 19 rests at its upper rear edge on the top edge of the rear wall 27 of the bracket arm and is inclined downwardly and forwardly to rest on the upper edge 32 of the front wall 28 of the bracket arm. The cover 29 provides a surface in which various controls for the mechanisms of the machine can be advantageously mounted. The cover 29 is preferably removably held in position by means of spring catches 33 and thus can be easily detached to expose the mechanisms within the bracket arm and standard. As will be seen in FIGS. 1 and 3, the cover 29 has appreciable surface area and this has the advantage that the coloring of the machine can be easily changed by having in inventory different colored covers and selecting the color desired by the purchaser of the machine. The machine frame is preferably made rigid by means of the reinforcing ribs 34 in the bracket arm 18 and the cross rib or strut 35 in the standard 18. These reinforcing members effectively rigidize the machine frame to the extent that the cover plate 29 is not needed additionally to strengthen the machine frame and, consequently, the cover plate can be made of plastic or the like.

The bracket arm 19, at its left end, terminates into the forwardly extending head 20. The head includes a substantially vertically arranged right sidewall 36 merging into the bottom and front and rear walls of the bracket

70

arm. Extending to the left from the right sidewall 36 are the front and rear walls 37 and 38 and the top and bottom walls 39 and 40 of the head together defining a cavity opening to the left and adapted to be closed by a face plate 41. The bottom wall 40 of the head is formed with a pair of spaced recesses 42 and 43 into which electric light bulbs 44 may be accommodated to flood the work supporting surface with illumination.

As illustrated in FIGS. 1 and 3 the cover 29 may include an integral hood portion 45 extending from that portion 31 which closes the bracket arm. The hood portion 45 which shrouds the top and rearward portions of the sewing head and may cover access openings in these portions of the sewing head, preferably extends upwardly and forwardly relatively to the plane of the work supporting surface 11 of the bed.

In FIGS. 4, 6 and 7 the phantom lines X—X denote a vertical plane, containing the longitudinal medial line of the work supporting surface 11 of the bed. The plane X—X intersects the upper edge 32 of the front wall of the bracket arm so that the bracket arm 19 lies entirely rearwardly of the medial vertical plane X—X, and as illustrated in FIG. 4 the sewing head 20 extends well forward of the plane X—X. The forward location of the front of the head 20 relatively to the bracket arm 19 permits stitching to be accomplished at a point within easy vision of the operator and at the same time permits a location of the bracket arm 19 vertically above the rear of the work-support so as to provide clearance in the vicinity of the front of the work support for the operator, permitting convenient manipulation of the work. This clearance can be seen in FIGS. 1 and 4. While the head 20 is relatively narrow it does have appreciable depth, as can be seen in FIG. 6, and this is advantageous in that sufficient space is provided within the head to allow for the generous design of the necessary mechanisms usually located in a sewing machine head.

FIG. 2 illustrates the above described sewing machine supported at table height on a cabinet 50 and addressed by an operator seated before the sewing machine as is the normal mode of using a household sewing machine. In FIG. 2 the line Y closely approximates the line of sight of an operator looking at the sewing machine stitching point. The line Z in FIG. 2 coincident with the front wall 28 of the bracket arm is substantially parallel to the operator's line of sight Y and since the line Z intersects the rear edge of the work supporting surface 11 the bracket arm 19 will not detract from the operator's view of work fabrics on the work supporting surface. FIG. 2 also indicate graphically that the portions 30 and 31 of the cover 29 are arranged substantially perpendicular to the operator's line of sight Y. The inclination of the cover is particularly advantageous in that the entire surface of portions 30 and 31 thereof are within easy vision of the operator in her normal position in front of the machine and any controls on or extending through the cover 29 will be presented in full plan view to the operator and are likewise easily visible and readily accessible for manipulation.

The mechanisms in the head 20 comprise the needle-bar mechanism, the presser-bar mechanism and the needle-thread take-up mechanism. In the machine illustrated, the needle-bar mechanism comprises an endwise reciprocating needle-bar 61 journaled in bearings 62 and 63 arranged in the head 20 so that the needle-bar is inclined rearwardly with its lower end extending toward the front of the work supporting surface 11. Carried in the lower end of the needle-bar is a thread carrying needle 64. Cooperating with the needle 64 in the formation of lock stitches is a circularly moving or rotary loop taker 65 journaled in a bearing 66 located within the bed 10 forwardly of the path of needle reciprocation and beneath an access opening 67 formed in the work supporting surface 11 adapted to be closed by a retractable slide-plate 68 which can be withdrawn to expose the loop taker. The

needle-bar is endwise reciprocated from a rotary arm shaft 69 by means of a counterbalanced crank 70, FIG. 6, connected by a link 71 to one limb of a bell-crank lever 72 fulcrumed at 73 in the head 20 and having its other limb connected by a link 74 to the needle-bar 61. The arm shaft 69 is connected by gearing 75 to the upper end of a shaft 76 journaled in the standard 18 and connected at its lower end by gearing 77 to a rotary bed shaft 78 journaled lengthwise in the bed 10 forwardly of the path of needle reciprocation. The bed shaft 78 is preferably powered by the electric motor 25 through a worm 79 and worm-wheel 80 connection.

The needle thread take up mechanism includes a bell crank lever 81 pivotally connected as at 82 to an anchor link 83 fulcrumed on a stud 84 in the sewing head. The free arm of the bell crank lever 81 is curved outwardly around the cover hood portion 45 and formed with a thread eyelet 85. The opposite arm of the bell crank lever 81 embraces an auxiliary crank pin 86 on an arm 87 extending from the needle bar driving crank 70.

The presser-bar mechanism includes a presser-bar 90 endwise slidable in a long bearing bushing 91 fixed in the bottom wall 40 of the head 20. At its upper end the presser-bar 90 is engaged by a coil spring 92 abutting the lower end of a rod 93 slidable in a bushing 94 in the top wall 39 of the head. Pressure exerted by the coil spring 92 is regulated by means of a lever 95 bearing at its free end on the upper end of the rod 93 and pivoted at its other end on the stud 84. Engaging the lever intermediate its ends is a pressure regulating cam 96 turnable on a bearing 97 under the influence of a thumb disc 98 extending upwardly through a slot in the hook portion 45 of the cover 39 for convenient access by the operator. At its lower end the presser-bar 90 carries a conventional presser-foot 99 which is adapted yieldingly to hold the work or material being sewn in contact with the usual feed-dog 100 of the work feeding mechanism hereinafter to be described. Lever means, indicated generally at 101, is provided whereby the presser-foot 99 can be manually raised so that work fabrics may be introduced under the presser-foot and also removed after the stitching has been completed.

The feed-dog 101 cooperating with the presser-foot 99 to advance work through the machine is associated with a four-motion work feeding mechanism, a major portion of which is located within the bed 10. As shown in FIG. 6, the feed-dog is attached to a feed-bar 102 connected at its rearward end to a feed rocker 103 fast on one end of the usual feed-advance rock-shaft 104. The feed-advance rock-shaft is journaled on pintles in the bed one of which is shown at 105 FIG. 3 and is adapted to be oscillated on its pintles to impart feed-advance and -return movements to the feed-dog 101 by connections actuated from the rotary arm-shaft 69. These connections include a forked member 106 carried on a short rock-shaft 107 (FIG. 2) journaled in the web 34 of the bracket arm 19 and embracing a feed advance eccentric 108 on the arm-shaft. A rock arm 109 secured on the rock-shaft 107 is connected by means of a link 110 to a frame 111 journaled at 112 in the standard. A slide rod 113 fixed on the frame is embraced by a slide block 114 carried on a link 115 pivoted as at 116 to a rock arm 117 on the feed advance rock-shaft 104.

A feed regulating bell crank lever 118 fulcrumed at 119 within the standard has one arm connected by a link 120 to the link 115 while the other arm protrudes through a slot 121 in the cover 29 and is provided with a finger grip 122 providing a control whereby the operator may regulate the length and direction of stitches formed by the sewing machine.

Rising and falling motion is imparted to the feed-dog by means of a feed lift rock-shaft 130 journaled on pintles 131 on the bed. A rock arm 132 on the feed lift rock-shaft is connected by a link 133 to the feed-bar 102. The feed lift rock-shaft is oscillated from a feed lift eccentric

134 on the arm-shaft by means of a forked member 135 carried on a short rock-shaft 136 journaled in the rib 34 of the bracket arm 19. A rock arm 137 received on the rock-shaft 136 is connected by means of a link 138 to a rock arm 139 fast on the feed lift rock-shaft.

Having thus set forth the nature of the invention, what is claimed herein is:

1. A sewing machine having, in combination, a frame including a bed provided with a horizontal work supporting surface and front and rear walls depending therefrom, a standard mounted upon said bed adjacent to one end thereof and having a front wall, a rear wall, and right and left sidewalls, said standard front and rear walls joining said bed substantially in registry with the front and rear walls respectively of said bed, a bracket arm having a bottom wall and front and rear walls extending upwardly from said bottom wall, said bracket arm being integral with and extending longitudinally from the standard rearwardly of a vertical plane containing the longitudinal medial line of said work supporting surface and vertically spaced above the level of the work supporting surface of the bed, a head elongate laterally of said vertically plane, said head being integral with said bracket arm and including a forward portion extending towards the front wall of said bed and on the opposite side of said vertical plane containing the longitudinal medial line of said work supporting surface from that occupied by said bracket arm, a needle-bar journaled for endwise reciprocation in the forward portion of said head, a thread-carrying needle, means securing said needle in the lower end of said needle-bar for reciprocation in a path extending through said work supporting surface thus defining a stitch-forming point on said work supporting surface, a circularly moving loop-taker cooperating with said thread-carrying needle in the formation of stitches, said loop-taker being located within said bed on an axis disposed between said front wall of said bed and said path of needle reciprocation, a work feeding means for advancing work past said stitching point and including a feed-dog adapted to contact the work in the vicinity of said stitching point, needle-bar actuating mechanism in said bracket arm, loop-taker and feed-dog actuating mechanisms in said bed, and operating connections in said standard between said needle-bar actuating mechanism and said loop-taker and feed-dog actuating mechanisms so that they operate in timed relation with one another.

2. A sewing machine having, in combination, a frame including a bed provided with front and rear walls extending longitudinally of said bed and a flat horizontal work-supporting surface having an opening therein, a slide-plate closing said opening, a standard mounted upon said bed adjacent to one end thereof and having its rear wall in substantial vertical register with the rear side wall of said bed, a bracket arm integral with and extending longitudinally from the upper portion of said standard above the level of said work supporting surface of the bed and rearwardly of a vertical plane containing the longitudinal medial line of said work supporting surface, a rear wall of the bracket arm in substantial vertical register with the rear wall of said bed and an upper edge of a front wall of the bracket arm located substantially in said vertical plane containing the longitudinal medial line of said work supporting surface, a hollow head integral with the free end of said bracket arm and including a forward portion extending forwardly of said vertical plane, said head in top plan being relatively narrow, a reciprocating thread-carrying needle mounted in the forward portion of said head reciprocating in a path forwardly of said vertical medial plane, a circularly moving loop-taker, bearing means journaling said loop-taker in said bed and located between the path of needle reciprocation and the front wall of said bed, said loop-taker being accessible through the opening in said work-supporting surface, an upper rotary shaft journaled hor-

izontally in said bracket arm rearwardly of the path of needle reciprocation and drivingly connected to reciprocate said thread carrying needle, a lower rotary shaft journaled longitudinally in said bed forwardly of the path of needle reciprocation, means drivingly connecting said loop-taker to said lower rotary shaft, and an inclined shaft in said standard having gear connections with said upper and lower rotary shafts connecting said shafts to rotate in timed relation with one another.

3. A sewing machine having, in combination, a frame including a bed provided with front and rear walls extending longitudinally of said bed and a flat horizontal work-supporting surface having an opening therein, a slide-plate closing said opening, a standard mounted upon said bed adjacent to one end thereof and having right and left walls and front and rear walls in substantial vertical register respectfully with the front and rear walls of said bed, said rear wall of said standard extending the full height of said standard and said front wall being relatively low in height compared to the height of said rear wall, a bracket arm integral with and extending longitudinally from the upper portion of said standard so as to be arranged vertically spaced above the bed with the rear wall of the bracket arm substantially co-planar with the rear wall of said bed, said standard and bracket arm forming an open topped box-like structure of which the upper edges of both the bracket arm and standard are upwardly and rearwardly inclined at a substantially uniform slope, a head integral with the free end of said bracket arm, an endwise reciprocating thread carrying needle mounted in said head, an upper rotary shaft journaled horizontally in said bracket arm and drivingly connected to reciprocate said thread carrying needle, a lower rotary shaft journaled longitudinally in said bed on an axis disposed forwardly of the path of reciprocation of said needle, means in said standard connecting said shafts to rotate in timed relation with one another, a circularly moving loop-taker drivingly connected to said lower rotary shaft and located in the bed between the path of needle reciprocation and the front wall of said bed, said loop-taker arranged to be accessible through the opening in said work-supporting surface, a continuous top cover secured on said open topped box-like standard and bracket arm, and a hood formed on said top cover and extending over said head.

4. In a sewing machine having a frame including a bed having a work supporting surface, a bracket arm, means for supporting said bracket arm from said bed above the level of said work supporting surface, a sewing head projecting from said bracket arm, a needle bar reciprocable endwise in said sewing head, a needle secured in said needle-bar for endwise reciprocation through said work supporting surface at a stitching point thereon, a loop-taker moving circularly about an axis in said bed for cooperation with said needle in the formation of stitches, and a work feeding mechanism in said frame providing for transport of work fabrics on said work supporting surface along a line of feed through said stitching point, said bracket arm and the axis of said circularly moving loop-taker each being disposed on completely opposite sides of a plane containing the longitudinal axis of the needle-bar and extending lengthwise of said bed.

5. In a sewing machine as set forth in claim 4 in which said work supporting surface is a flat, horizontal surface and in which said plane containing the longitudinal axis of the needle-bar is inclined upwardly and rearwardly from said work supporting surface.

6. A frame for a sewing machine including a bed having a work supporting surface adapted to be supported horizontally at table height and used by an operator seated in front of the machine, means on said frame defining a stitching point on said work supporting surface, front and rear walls formed on said bed, a standard rising from said bed and formed with front and rear walls disposed in registry with the front and rear walls of said

bed, an upper surface provided on said standard extending from the front to the rear walls thereof, said standard upper surface having a major portion thereof and disposed substantially perpendicular to a plane extending longitudinally of said work supporting surface, intersecting said stitching point, and inclined upwardly and forwardly at an angle of approximately 60° from said work supporting surface so as to contain the approximate line of sight of an operator seated in front of the machine and looking at the stitching point of the sewing machine, a bracket arm extending longitudinally from said standard and supporting a sewing head overhanging said bed, said bracket arm being provided with an upper surface having a major portion thereof disposed substantially perpendicular to said line of sight of an operator seated in front of the machine, and said bracket arm being provided with a front wall disposed substantially parallel to said line of sight.

7. A frame for a sewing machine including a bed having a work supporting surface adapted to be supported at table height and used by an operator seated in front of the machine, means on said frame defining a stitching point on said work supporting surface, said frame having a standard rising from said bed and formed with an upper surface, said standard upper surface having a major portion thereof disposed substantially perpendicular to a plane extending longitudinally of said work supporting surface, intersecting said stitching point, and inclined upwardly and forwardly at an angle of approximately 60° from said work supporting surface so as to contain the approximate line of sight of an operator seated in front of the machine and looking at the stitching point of the sewing machine, a bracket arm extending longitudinally from said standard and supporting a sewing head overhanging said bed, said bracket arm being provided with an upper surface, said bracket arm upper surface having a major portion thereof disposed substantially perpendicular to said line of sight of an operator seated in front of the machine, and control instrumentalities for said sewing machine carried on said upper surfaces.

8. A frame for a sewing machine including a bed having a flat working supporting surface with substantially parallel front and rear edges and adapted to be supported at table height and used by an operator seated in front of the machine, means on said frame defining a stitching point on said work supporting surface a standard rising from one side of said bed, a bracket arm extending from said standard substantially parallel to said bed and a sewing head carried at the free extremity of said bracket arm, said bracket arm being formed with a substantially planar front wall facing the front edge of said work supporting bed, a major portion of said bracket arm front wall being disposed in a plane substantially parallel to a plane extending longitudinally of said work supporting surface, intersecting said stitching point, and inclined upwardly and forwardly at an angle of approximately 60° from said work supporting surface so as to contain the approximate line of sight of an operator seated in front of the machine and looking at the sewing machine stitching point and said plane intersecting the rear edge of the working supporting surface of said bed.

9. A frame for a sewing machine including a bed having a flat work supporting surface with substantially parallel front and rear edges and adapted to be supported at table height and used by an operator seated in front of the machine, means on said frame defining a stitching point on said work supporting surface, a standard rising from one side of said bed, a bracket arm extending from said standard above the level of said work supporting surface and a sewing head carried at the free extremity of said bracket arm, said bracket arm being formed with a substantially planar front wall facing the front edge of said work supporting bed, a major portion of said bracket arm front wall being disposed in a plane substantially parallel to a plane extending longi-

tudinally of said work supporting surface, intersecting said stitching point, and inclined upwardly and forwardly at an angle of approximately 60° from said work supporting surface so as to contain the approximate line of sight of an operator seated in front of the machine and looking at the sewing machine stitching point, that plane containing said bracket arm front wall intersecting the rear edge of said work supporting bed, and a needle-bar supported in said sewing head for endwise reciprocation in a path entirely forwardly of the plane containing the front wall of said bracket arm.

10. A sewing machine having a frame including a bed having a planar work supporting surface with a front and a rear edge, a standard rising from said work supporting surface, an upper surface forming a part of said standard and having a major portion sloping upwardly above said work supporting surface and rearwardly relating to said front edge at an angle of approximately 45° degrees with respect to the plane of said work supporting surface, a cantilever arm extending from said standard and overhanging said work supporting surface, an upper surface forming part of said arm and having a major portion sloping at substantially the same angle as said upper surface of said standard with respect to the plane of said work supporting surface, and sewing machine control instrumentalities mounted on at least one of said upper surfaces.

11. A sewing machine having a frame including a bed having a planar work supporting surface with a front and a rear edge, a standard rising from said work supporting surface, a cantilever bracket arm extending from said standard above the level of said work supporting surface, said standard and bracket arm being formed with an upwardly open box-like structure, an integral top cover member closing said standard and bracket arm, a major portion of said integral top cover sloping upwardly and rearwardly at an angle of approximately 45° degrees with respect to the plane of said work supporting surface, and sewing machine control instrumentalities mounted on said top cover.

12. A sewing machine having a frame including a bed having a planar work supporting surface with a front and a rear edge, a standard rising from said work supporting surface, a cantilever bracket arm extending from said standard above the level of said work supporting surface, said standard and bracket arm being formed with an upwardly open box-like structure of which the upper edge is inclined upwardly and rearwardly in a substantially uniform slope with respect to the plane of the work supporting surface, a sewing head carried at the free extremity of said bracket arm, and an integral top cover member secured in place over said standard and bracket arm and including a portion providing a hood extending over said sewing head, said integral top cover sloping upwardly and rearwardly with respect to the plane of the work supporting surface over a major portion of said standard and bracket arm, and the top of said hood extending upwardly and forwardly over said sewing head.

References Cited by the Examiner			
UNITED STATES PATENTS			
D. 164,943	10/51	Park	112—258 X
1,300,532	4/19	Weis	112—258 X
1,934,259	11/33	Clayton	112—63
2,168,740	8/39	Mueller	112—176
2,394,510	2/46	Clayton	112—258
2,688,295	9/54	Neukirch	112—258
2,762,324	9/56	Hess	112—256
2,918,027	12/59	Johnson	112—258
3,007,426	11/61	Leslie	112—258
3,108,553	10/63	Beasley	112—79

FOREIGN PATENTS

874,240	4/53	Germany.
75	JORDAN FRANKLIN	Primary Examiner.