(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 14. Oktober 2004 (14.10.2004)

PCT

(10) Internationale Veröffentlichungsnummer $WO\ 2004/088353\ A1$

(51) Internationale Patentklassifikation⁷: G01S 13/02, 13/93

(21) Internationales Aktenzeichen: PCT/EP2004/001440

(22) Internationales Anmeldedatum:

16. Februar 2004 (16.02.2004)

(25) Einreichungssprache:

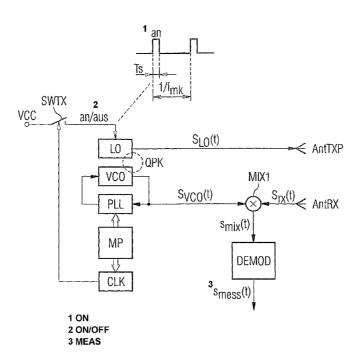
Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

103 14 558.3 31. März 2003 (31.03.2003) DE


(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, 80333 München (DE).

- (71) Anmelder und
- (72) Erfinder: NALEZINSKI, Martin [DE/DE]; Aurbacherstr. 6, 81541 München (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): VOSSIEK, Martin [DE/DE]; Theodor-Bötel-Weg 23, 31139 Hildesheim (DE).
- (74) Gemeinsamer Vertreter: SIEMENS AKTIENGE-SELLSCHAFT; Postfach 22 16 34, 80506 München (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,

[Fortsetzung auf der nächsten Seite]

(54) Title: RADAR COMPRISING A TRANSMITTING OSCILLATOR THAT CAN BE EXCITED BY AN EVALUATION OSCILLATOR IN A QUASI-PHASE COHERENT MANNER

(54) Bezeichnung: RADAR MIT EINEM DURCH EINEN AUSWERTUNGSOSZILLATOR QUASIPHASENKOHÄRENT ANREGBAREN SENDEOSZILLATOR

(57) Abstract: A radar is provided with transmitting means for transmitting a signal and with receiving means for receiving a reflection of the transmitted signal. The inventive radar is characterized in that the transmitting means is provided with a transmitting oscillator and the receiving means is provided with an evaluation oscillator. The transmitting oscillator is excited by the evaluation oscillator and/or the evaluation oscillator is excited by the transmitting oscillator in a quasi-phase coherent manner.

WO 2004/088353 A1

MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT,

RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Beschreibung

Radar mit einem durch einen Auswertungsoszillator quasiphasenkohärent anregbaren Sendeoszillator

5

10

15

20

25

Radarsensoren für den Einsatz in Industrie und Verkehr sind in vielfältiger Form bekannt. Ausgeführt werden Radarsensoren als Puls-Radare, wie in US 3,117,317, US 4,132,991 und US 4,521,778 dargestellt, oder als so genannte Dauerstrich- oder CW-Radare (CW = continuous wave). Pulsradare bestimmen die Entfernung zwischen einem Objekt und dem Radar dadurch, dass die Laufzeit eines kurzen Pulses vom Radar zum Objekt und zurück gemessen wird. CW-Radare hingegen werten den Phasenunterschied zwischen dem gesendeten und dem reflektiert empfangenen Signal aus. Zur Bestimmung eines zuverlässigen Messwertes in einem größeren Messbereich werden CW-Radare in aller Regel über einen möglichst großen Frequenzbereich durchgestimmt. Das bekannteste und am weitesten verbreitete Radar diesen Typs ist das FMCW-Radar (FMCW = frequency modulated continuous wave).

Vor allem in Freiraumanwendungen ist es wünschenswert, die Sendeleistung eines Radarsensors gezielt absenken zu können, da es die Funk-Zulassungsvorschriften häufig erfordern, dass die abgestrahlte Sendeleistung und insbesondere die mit dem Sendevorgang verbundenen Störaussendungen unterhalb eines gewissen Pegels bleiben.

In EP 1 051 639 B1 wird ein gepulstes FMCW-Radar vorgestellt,
dass sich dadurch auszeichnet, dass es durch Wahl einer
Pulsfolge, mit der das Sendesignal getaktet wird, in seiner
Hochfrequenz-Ausgangsleistung beeinflussbar ist.

Eine Schaltungsvariante nach dem Stand der Technik als

Verbesserung des in EP 1 051 639 B1 offenbarten Radars zeigt

Figur 1. Das hier dargestellte Radar umfasst wie ein

gewöhnliches FMCW-Radar einen spannungsgesteuerten Oszillator

2

VCO, einen Richtkoppler RK, eine Antenne ANT und einen Mischer MIX1. Ebenso, wie in EP 1 051 639 B1 dargestellt, umfasst das Radar ferner eine Taktlogik CLK, mit der das Sendesignal über einen Schalter SWTX periodisch ein- und ausgeschaltet wird. Schließt man beispielsweise den Schalter mit einer Wiederholrate von 1 MHz für jeweils für nur 1 ns, so sinkt die mittlere Sendeleistung um 60 dB gegenüber dem Dauerbetrieb ab. Durch Änderung des Puls- zu Pausenverhältnis können in weitem Rahmen auch beliebige andere Werte eingestellt werden.

5

10

15

20

25

30

35

Darüber hinaus weist die Schaltungsvariante einen zweiten Mischer MIX2 auf. Das über die Antenne ANT empfangene Signal ist mit der durch die im Sendepfad befindliche Taktlogik CLK getastet bzw. amplitudenmoduliert und besitzt das in Figur 6 (links) dargestellte Spektrum. Durch das Mischen des Empfangssignals mit $s_{\text{CLK}}(t)$ in MIX2, wird genau diese Modulation beseitigt bzw. das Messsignal s1(t) in das Signal s2(t) im Basisband, also in den Frequenzbereich um die Frequenz 0, umgesetzt.

Nach der Filterung mit dem Tiefpassfilter TPNF, das höhere Mischprodukte unterdrückt, ergibt sich somit ein Messsignal wie bei gewöhnlichen, nicht getaktet betriebenen, FMCW-Radaren.

Vorteilhaft ist bei einem Konzept nach Figur 1, dass die Taktrate der Taktlogik CLK in weiten Bereichen variiert werden kann. Die Breite des Variationsbereichs wird nur durch die Bandbreite von BPZF und BPC begrenzt. Somit kann auch die Höhe der mittleren Sendeleistung in einem weiten Bereich eingestellt werden, ohne dass das Messsignal in der Form bzw. in seiner Frequenzlage geändert wird. Lediglich das Signalzu-Rausch-Verhältnis des Messsignals ändert sich.

Nachteilig bei der Ausführung nach Figur 1 ist, dass hier der Schalter SWTX ein Hochfrequenzschalter sein muss.

3

Hochfrequenzschalter sind zum einen sehr aufwändig, zum anderen ist es nur schwer möglich einen hohen Schaltkontrast zu realisieren. Folglich wird mit der Schaltung nach Figur 1 die Leistungsabsenkung praktisch oft nur im eingeschränkten Rahmen gelingen.

5

Eine bzgl. des Schaltungsaufwandes deutlich vereinfachte
Variante nach dem Stand der Technik, die dieses Problem löst,
zeigt Figur 2. Bei dieser wird durch den Schalter SWTX der

10 Oszillator selbst ein- und ausgeschaltet wird. Dies kann z.B.
durch Weg- und Zuschalten der Versorgungsspannungsspannung
erfolgen. Schwingt der Oszillator nicht, erzeugt er keine
Signalleistung und der Schaltkontrast wird maximal. Ferner
wird zur Vereinfachung der Schaltung anstatt des

15 Richtkopplers ein so genannter Transmissionsmischer TRMIX
verwendet.

Nachteilig ist an der Schaltung nach Figur 2 jedoch, dass entweder der maximale Messbereich oder die minimal 20 ausgesendete mittlere Leistung oder die minimale Messgeschwindigkeit des Radars durch diese Art zu schalten beschränkt wird. Einerseits muss nämlich der Schalter SWTX hier auf jeden Fall so lange geschlossen bleiben, bis alle Signalanteile, also auch die aus der maximal zu erwartenden bzw. der maximal vorgegebenen Entfernung, wieder empfangen 25 worden sind. Die Pulsdauer, also die Zeit während der der Schalter geschlossen bzw. der Oszillator eingeschaltet ist, sollte also deutlich größer sein als die maximale Signallaufzeit. Bei einem Messbereich von beispielsweise 15 m 30 wäre die maximale Signallaufzeit 70 ns und somit sind hier sinnvolle Messwerte erst ab Pulsdauern von mehr als 100 ns zu erwarten. Um andererseits eine gewünschte Absenkung der mittleren Leistung durch das Tastverhältnis zu erzielen, sind entsprechend lange Pausen zwischen den Einschaltmomenten zu 35 gewährleisten, die unter Umständen dem Abtasttheorem widersprechen. Jede Einschaltperiode des Radars entspricht nämlich der Erzeugung eines Abtastwertes, der dem Abtasten

des Messsignals eines kontinuierlich betriebenen FMCW-Radars entspricht. Damit können bei zu großen Pausen keine hohen Frequenzen ausgewertet werden. Damit darf die Entfernung eines Messobjekts, zu der die Messsignalfrequenz proportional ist, bei vorgegebener Durchstimmrate der Frequenzrampe einen bestimmten Abstand nicht überschreiten. Soll der Messbereich dennoch über dieses Maß hinaus vergrößert werden, muss die Durchstimmrate verringert und damit die Messdauer einer Messung vergrößert werden.

Aufgabe der vorliegenden Erfindung ist es, Systeme aufzuzeigen, die die Aufgabe der beschriebenen Vorrichtungen in anderer und verbesserter Form erfüllen und deren Abstrahl- und Betriebsverhalten sich zudem besonders vorteilhaft steuern lassen.

Diese Aufgabe wird durch die in den unabhängigen Ansprüchen angegebenen Erfindungen gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.

Dementsprechend verfügt eine Anordnung oder Vorrichtung über Sendemittel zum Erzeugen und Senden eines elektromagnetischen Signals, und über Empfangsmittel zum Empfangen einer Reflexion des gesendeten elektromagnetischen Signals. Dabei weisen die Sendemittel einen Sendeoszillator zum Erzeugen des elektromagnetischen Signals auf und die Empfangsmittel weisen einen Auswertungsoszillator zum Erzeugen eines elektromagnetischen Auswertungssignals auf, das mit der empfangenen Reflexion des gesendeten elektromagnetischen Signals zu vergleichen, insbesondere zu mischen ist. Der Sendeoszillator und der Auswertungsoszillator sind dabei so geschaltet und/oder angeordnet, dass der Sendeoszillator durch elektromagnetische Wechselwirkung mit dem oszillierenden Auswertungsoszillator quasiphasenkohärent anregbar bzw. quasiphasenkohärent verkoppelt ist.

5

Dadurch braucht der Sendeoszillator nur bei Bedarf eingeschaltet zu werden, wodurch Energieverbrauch und mittlere Sendeleistung wie gewünscht reduziert werden.

Andererseits ist durch die quasiphasenkohärente Anregung bzw. Verkopplung aber auch immer eine hinreichende Phasenkohärenz zwischen Sendeoszillator und Auswertungsoszillator bzw. dem vom Sendeoszillator generierten elektromagnetischen Signal sowie seiner Reflexion und dem vom Auswertungsoszillator generierten Auswertungssignal gewährleistet.

10

Alternativ oder ergänzend kann zu anderen Zwecken auch der Auswertungsoszillator durch den Sendeoszillator quasiphasenkohärent anregbar sein.

Quasiphasenkohärent heißt dabei, dass durch die erfindungsgemäße Anordnungen dafür Sorge getragen wird, dass die Phasendifferenz zwischen den Signalen von Sendeoszillator und Auswertungsoszillator klein ist, aber nicht zwangsweise verschwindet, wie bei einer echter Kohärenz. Der Begriff der kleinen Phasendifferenz ist dabei in Bezug zur beabsichtigten Kommunikations- bzw. Messaufgabe zu sehen. Als Grenze für eine kleine Phasenabweichung wird zum Beispiel häufig der Wert π/10, also ca. 20° verwendet. Solche Signale mit nur kleinen Phasenabweichungen werden im Folgenden als quasiphasenkohärent bezeichnet und die Zeitspanne, in der diese Kohärenz besteht, als Kohärenzzeitlänge.

17721

30

35

Eine Grundidee zur Realisierung der Quasiphasenkohärenz ist in DE 100 32 822 A1 beschrieben und besteht darin, dass ein Oszillator sich nach dem Einschalten zunächst in einem labilen Gleichgewicht befindet, und durch eine wie auch immer geartete Fremdenergiezufuhr erst zum Schwingen angeregt werden muss. Erst nach diesem initialen Anstoßen klingt über die Rückkopplung eine Schwingung an. Üblicherweise liefert zum Beispiel das thermische Rauschen diesen initialen Anstoß. Das heißt, dass ein Oszillator mit einer zufälligen Phase und Amplitude anschwingt und bei der durch seinen Resonanzkreis

б

vorgegebenen Frequenz schwingt. Wird in den Oszillator beim Einschalten jedoch ein externes Anregungssignal injiziert, so schwingt der Oszillator nicht zufällig, sondern deterministisch zu der Phase des injizierten Signals an. Solange die Phasendifferenz zwischen dem injizierten Signal und dem Oszillatorsignal weniger als ca. 20° beträgt, sind die beiden Signale quasiphasenkohärent.

5

Die Eigenschaft, dass ein Oszillator in der Einschaltphase
versucht dem Phasenverlauf eines stimulierenden Signals zu
folgen, ist eine grundlegenden physikalische Eigenschaft
eines jeden Oszillators, die hier jedoch erfindungsgemäß dazu
genutzt wird zwei Oszillatoren quasikohärent miteinander zu
verkoppeln bzw. den Sendeoszillator quasikohärent zum

Auswerteoszillator bzw. alternativ auch den
Auswerteoszillator quasikohärent zum Sendeoszillator zu
betreiben.

Für die quasiphasenkohärente Anregbarkeit sind die

Oszillatoren so elektromagnetisch miteinander gekoppelt, dass der Sendeoszillator durch den Auswertungsoszillator und/oder der Auswertungsoszillator durch den Sendeoszillator quasiphasenkohärent anregbar ist. Dies kann dadurch der Fall sein, dass die Oszillatoren durch Leitungsmittel miteinander verbunden sind. Andererseits reicht in der Regel das Übersprechen von einem Oszillator zum anderen, wenn die Oszillatoren nah beieinander angeordnet und insbesondere nicht gegeneinander abgeschirmt sind.

Vorzugsweise wird der quasiphasenkohärent anregbare
Oszillator immer wieder in den quasiphasenkohärent anregbaren
Zustand versetzt, indem er durch Mittel zum zyklischen
Schalten des quasiphasenkohärent anregbaren Oszillators mit
einer Taktrate aus- und wieder angeschaltet wird.

35 Allgemein sollte die Taktfolge so gewählt sein, dass die Einschaltdauer des quasiphasenkohärent anregbaren Oszillators kürzer oder gleich der Zeitdauer ist, in der die

7

Quasiphasenkohärenz zwischen dem quasiphasenkohärent anregenden Oszillator und dem quasiphasenkohärent anregenden Oszillator besteht. Die Wiederholrate des Taktes, mit dem der quasiphasenkohärent anregbare Oszillator geschaltet wird, ist insbesondere deutlich größer als die maximal zu erwartenden Frequenz des Messsignals ist, insbesondere mehr als fünfmal so groß.

Die Einschaltdauer des quasiphasenkohärent anregbaren

Oszillators ist dabei in der Größenordnung des Kehrwerts oder kleiner als der Kehrwert der maximal zu erwartenden Differenz zwischen den Frequenzen der beiden quasiphasenkohärent verkoppelten Oszillatoren im eingeschwungenen Zustand.

- Der Sendeoszillator und/oder der Auswertungsoszillator kann in seiner Frequenz veränderbar sein. Dann kann die Anordnung als frequenzmoduliertes Pulsradar bzw. gepulstes FMCW-Radar betrieben werden.
- 20 Eine ganz besonders für den Nahbereich geeignete Variante ergibt sich, wenn der eine Oszillator in seiner Frequenz veränderbar ist, während der jeweils andere Oszillator ein Festfrequenzoszillator ist.
- Die Anordnung ist insbesondere eine Anordnung zur Abstandsmessung und/oder ein Radar, insbesondere ein im Frequenzbereich durchstimmbarer Radar und/oder ein in zwei Schaltzuständen zwischen einem Nahbereichsradar und einem Fernbereichsradar umschaltbarer Radar.

30

5

In einem Messverfahren, insbesondere zur Abstandsmessung, wird

- ein Sendeoszillator durch einen Auswertungsoszillator und/oder ein Auswertungsoszillator durch einen
- 35 Sendeoszillator quasiphasenkohärent angeregt,
 - mit einem Sendeoszillator ein zu sendendes Signal erzeugt,
 - das Signal gesendet,

WO 2004/088353

20

PCT/EP2004/001440

8

- eine Reflexion des gesendeten Signals empfangen,

- mit dem Auswertungsoszillator ein Auswertungssignal erzeugt.
- Die Reflexion des gesendeten Signals wird dann, insbesondere unter Berücksichtigung des Auswertungssignals, in der Messung ausgewertet. Das Auswertungssignal wird dabei vorzugsweise mit der Reflexion des gesendeten Signals gemischt.
- Weiter bevorzugt wird der Sendeoszillator durch den Auswertungsoszillator und/oder der Auswertungsoszillator durch den Sendeoszillator zyklisch immer wieder quasiphasenkohärent angeregt, wozu der quasiphasenkohärent angeregte Oszillator mit einer Taktrate beispielsweise durch
- 15 Aus- und Einschalten aus- und wieder quasiphasenkohärent anregbar geschaltet wird.

Andere vorteilhafte Ausgestaltungen des Verfahrens ergeben sich analog zu den vorteilhaften Ausgestaltungen der Anordnung.

Weitere Vorteile und Merkmale der Erfindung ergeben sich aus der Beschreibung von Ausführungsbeispielen. Dabei zeigt:

- 25 Figur 1 Ein Radar nach dem Stand der Technik;
 - Figur 2 ein zweites Radar nach dem Stand der Technik;
 - Figur 3 eine Anordnung mit Sendemitteln und Empfangsmitteln;
- Figur 4 eine alternative Anordnung mit Sendemitteln und 30 Empfangsmitteln;
 - Figur 5 eine weitere Anordnung mit Sendemitteln und Empfangsmitteln;
 - Figur 6 Spektren eines Messsignals an verschiedenen Stufen des Messsignalzweigs;
- 35 Figur 7 noch eine weitere Anordnung mit Sendemitteln und Empfangsmitteln;
 - Figur 8 einen Demodulator;

9

- Figur 9 einen alternativen Demodulator;
- Figur 10 schematische Messspektren der Anordnung nach Figur 7 und eines herkömmlichen Abstandsradars im Vergleich;
- 5 Figur 11 Messergebnisse der Anordnung nach Figur 7 und eines herkömmlichen Abstandsradars im Vergleich.
 - Figur 12 Ausführungsformen eines Umsetzers
 - Figur 13 Varianten der verkoppelten Signalquellen.
- Die für Figur 2 aufgeführten Probleme löst die Schaltung nach Figur 3. Diese Schaltung enthält neben dem nunmehr als Auswertungsoszillator dienenden Oszillator VCO einen weiteren Oszillator, den Sendeoszillator LO, der zur Erzeugung des Sendesignals dient. Entscheidend ist, dass der
- Auswertungsoszillator VCO und der Sendeoszillator LO über die Kopplung QPK quasiphasenstarr oder quasiphasenkohärent miteinander verkoppelt sind. Schaltet man den Sendeoszillator LO zyklisch ein, während das Signal von VCO auf diesen überkoppelt, so schwingt der Sendeoszillator LO immer wieder
- 20 mit einer durch den Auswertungsoszillator VCO vorgegebenen Phase an.

Zur Gewährleistung dieser Verkopplung QPK kann eine lose mit beiden Oszillatoren verkoppelte Verbindungsleitung vorgesehen 25 werden. In aller Regel ist es aber aufgrund von stets vorhandener Abstrahlung von Oszillatorleistung nicht notwendig, spezielle schaltungstechnische Vorrichtungen vorzusehen um die Oszillatoren miteinander zu verkoppeln, sofern die Oszillatoren gegeneinander unabgeschirmt, also z.B. ohne jeweils eigene elektrisch geschlossenen metallische 30 Deckel ausgeführt sind. Eine Überkopplung vom Auswertungsoszillator VCO auf den Sendeoszillator LO geschieht natürlich ebenso über die Masse- oder Versorgungsleitungen. Auch bei der Auswahl der Oszillatoren sind keine speziellen Anforderungen zu beachten. Es sind 35 übliche Hochfrequenzoszillatoren einsetzbar, wobei jedoch

einer der beiden Oszillatoren erfindungsgemäß mit einer

10

geeigneten Taktfolge zyklisch ein- und ausgeschaltet werden muss, um so wie beschrieben die quasiphasenkohärente Verkopplung der beiden Oszillatoren zu gewährleisten. Sorge ist vorzugsweise dafür zu tragen, dass nicht von außen ein drittes noch deutlich stärkeres Signal auf den geschalteten Sendeoszillator LO einwirkt und dieser kohärent zu diesem dritten Signal statt zu dem vom Auswertungsoszillator VCO anschwingt.

Sind die Frequenzen der Oszillatoren LO und VCO gleich, so ergibt sich s3(t) zu einer Gleichspannung, die die definitionsgemäß geringe Differenzphase zwischen den beiden quasikohärenten Ausgangssignalen repräsentiert. Schaltet man den Sendeoszillator LO zyklisch für jeweils eine sehr kurze Zeit ein, bleibt die Quasiphasenkohärenz zwischen den beiden Oszillatoren über alle Einschaltperioden bestehen. Das heißt, das Signal s3(t) am Mischer MIX2 ist nahezu identisch mit dem Signal, das sich ergeben würde, wenn man das Signal vom Oszillator mit einem Schalter im selben Takt austasten würde.

20

25

30

5

Neben dem Sendeoszillator LO kann, wie in Figur 13 dargestellt, zusätzlich auch der Auswertungsoszillator VCO geschaltet werden. Dabei muss dessen Einschwingen in dem Moment, in dem der Sendeoszillator LO eingeschaltet wird weitgehend abgeschlossen sein, und er darf erst wieder abgeschaltet werden, wenn die Reflexionen aus dem maximal zu erfassenden Abstandsbereich am Sensor eingetroffen sind. Durch das Schalten des Auswertungsoszillators VCO wird die Phasenbedingungen zwischen dem Sende- und Empfangssignal gegenüber einer Messung mit dauerhaft eingeschaltetem Auswertungsoszillator VCO nicht verändert. Aus Gründen des Energieverbrauchs ist diese Betriebsart dagegen vorteilhaft.

Es ist bei der Anordnung in Figur 3 nicht relevant, dass die Sendeantenne ANTTXP und die Empfangsantenne ANTRX getrennt ausgeführt sind. Ebenso könnte eine einzelne Sende-Empfangsantenne über einen Richtkoppler oder Zirkulator

11

gespeist werden. Auch nicht entscheidend ist die Verwendung eines PLL-Synthesizers bzw. einer PLL zur Steuerung des VCO (PLL = Phase lock loop). Es soll hier lediglich die Möglichkeit der kompletten Steuerung des Sensors durch einen Mikroprozessor MP angedeutet werden.

5

Wenn der Oszillator LO ein Festfrequenzoszillator und VCO ein Festfrequenzoszillator sind, ergibt sich zum einen ein konstanter Frequenzversatz und eine sin(x)/x

10 Amplitudengewichtung des Messsignals s3(t). Beide Effekte können jedoch rechnerisch einfach in der Messsignalauswertung berücksichtigt werden.

Die gleichen Messsignale wie die Schaltung aus Figur 1

liefert die Schaltung nach Figur 4. Hier ist der
frequenzvariable Sendeoszillator VCO2 möglichst identisch zum
frequenzvariablen Auswertungsoszillator VCO1 ausgeführt und
die beiden Steuereingänge der Oszillatoren sind miteinander
verbunden. Ebenso sind, wie in Figur 3, Sendeoszillator VCO1

und Auswertungsoszillator VCO2 über eine quasiphasenstarre
bzw. quasiphasenkohärente Kopplung QPK miteinander
verkoppelt.

Sind Sendeoszillator VCO1 und Auswertungsoszillator VCO2

gleicher Bauform, so stimmen die Frequenzen der beiden
Oszillatoren VCO2 und VCO1 über den gesamten

Durchstimmbereich, d.h. zu jedem Einschaltzeitpunkt,
praktisch genau überein. Da nun beide Oszillatoren über den
gesamten Durchstimmbereich quasikohärent mit der gleichen

Frequenz schwingen, ergibt sich ein Signal s4(t) wie bei
einem kontinuierlich betriebenen FMCW-Radar, wobei lediglich
der Signal/Rauschabstand verringert ist.

Auch hier ist es wiederum möglich gemäß Figur 13 den

35 Auswerteoszillator ebenfalls schaltbar auszuführen, um eine
niedrigere Energieaufnahme des Sensors zu erzielen.

12

Eine geeignete Parametrierung könnte wie folgt aussehen: Die Mittenfrequenz der Oszillatoren könnte z.B. in der Nähe von 6 GHz oder 26 GHz liegen. Der Oszillator VCO1 wird z.B. innerhalb von 1-10 ms über eine Bandbreite von etwa 1 GHz (oder auch mehr) verstimmt. Die Taktrate von CLK kann dann z.B. vorzugsweise im Bereich von 1-10 MHz liegen. Die Pulsdauer liegt vorzugsweise im Bereich von 100 ps bis 10 ns.

5

Des Weiteren bleibt die erfindungsgemäße Funktion des Sensors nach Figur 3 oder 4 bestehen, wenn, wie gestrichelt 10 gekennzeichnet, ein Frequenzumsetzer UMSET mit Ausführungsformen gemäß Figur 12, in den Sensor eingefügt wird. Der Umsetzer besitzt, wie in Figur 12 links dargestellt, einen Festfrequenzoszillator HFO, je einen Mischer und gegebenenfalls ein Bandpassfilter im Sende- und 15 Empfangszweig. Das Bandpassfilter wird gegebenenfalls aus zulassungstechnischen Gründen zur Unterdrückung unerwünschter Mischprodukte benötigt. Der Festfrequenzoszillator HFO kann wiederum aus energetischen Gründen schaltbar ausgeführt sein, wobei der Oszillator weitgehend eingeschwungen sein muss, 20 wenn die Oszillatoren LO bzw. VCO1 eingeschaltet werden und darf erst ausgeschaltet werden, wenn die Reflexionen aus dem maximal zu erfassenden Abstandsbereich am Sensor eingetroffen sind. Alternativ kann die Umsetzung auch, wie in Figur 12 rechts dargestellt, mit zwei getrennten Oszillatoren HFO1 und 25 HFO2 erfolgen, die miteinander quasikohärent verkoppelt sind. Dabei kannadie Anschaltzeit wiederum im Sinne der Kohärenz und des Energieverbrauchs optimiert werden.

30 Eine weitergehende Ausgestaltung der Schaltung als
Multifunktionsradar zeigt Figur 5. Beispielsweise über ein
Schaltsignal SW-P/CW vom Mikroprozessor MP ist es hier
möglich, das Radar in zwei Betriebszustände zu versetzen. Im
Schaltzustand 1 arbeitet das Radar als gewöhnliches FMCW

35 Radar mit voller Ausgangsleistung und dementsprechend großer
Reichweite und großer Empfindlichkeit. In dieser Betriebsart
ist über die Mikroprozessor-Steuerung dafür zu sorgen dass:

13

a) der Schalter SWTX offen ist, also der Oszillator VCO2 kein Signal erzeugt, und b) dass der Oszillator VCO1 nur Signale im Frequenzbereich erzeugt die konform zu den Zulassungsbestimmungen sind, also z.B. gemäß FCC 15 im ISM Band von 24 GHz bis 24.25 GHz mit einer abgestrahlten Feldstärke < 250 mV/m.

5

Im Schaltzustand 2 arbeitet der Sensor als Ultrawideband-Pulsed-FM-Radar nach den erweiterten Zulassungsbestimmungen 10 FCC Part 15 "Ultra-Wideband Transmission System". Vorzugsweise werden für die unterschiedlichen Betriebsarten auch unterschiedliche Antennen verwendet. Im Ausführungsbeispiel weist die Antennen ANTTXP einen deutlich größeren Öffnungswinkel als die Antenne ANTTXFM auf. Dies ist deswegen sinnvoll, da im Betriebszustand 2 sich das System 15 vorzugsweise als Nahdistanzradar eignet im Schaltzustand 1 jedoch vorzugsweise dazu, um größere Entfernungen abzudecken. Die Antenne ANTRX kann auch zwischen diesen beiden Richtverhalten umschaltbar ausgeführt sein oder der Einfachheit halber so ausgeführt sein, wie die Antenne mit 20 dem größeren Öffnungswinkel (also wie ANTTXP). Die Antennen können getrennt, gemeinsam bzw. umschaltbar ausgeführt werden, es können in Gruppenantennen Teilgruppen zu- oder weggeschaltet werden. Wie derartige Antennenlösungen und 25 Schalter zu realisieren sind ist dem Experten üblicherweise bekannt und daher nicht Gegenstand der Ausführungen.

Ganz hervorragend eignet sich das Radar nach Figur 5 als KfzRadar. Im Betriebszustand 2 deckt es den Nahbereich ab

30 beispielsweise zum Zweck einer Einparkhilfe. Im
Betriebszustand 1 kann der Radarsensor zwar bei
verschlechterter Auflösung signifikant weiter z.B. bis
typischerweise 100 m messen und daher gut zum Zweck einer
Geschwindigkeitsregelung und Kollisionsvermeidung (z.B. als

35 so genanntes Stop & Go Radar) verwendet werden. Die
Umschaltung der Betriebszustände könnte z.B. an die
Gangschaltung gekoppelt sein; Rückwärts- und Erster- Gang

14

bewirkt Betriebszustand 2, alle anderen Gänge Betriebszustand 1. Ebenso wäre auch eine Kopplung an die Fahrgeschwindigkeit oder ein stetig wechselnder Betrieb denkbar.

5

Alle dargestellten Radare sind natürlich nicht auf bestimmte Applikationen limitiert, sondern können in allen Gebieten eingesetzt werden, wo auch sonst Puls- oder CW-Radare zum Einsatz kommen.

10

15

Im Weiteren wird nun noch ein Verfahren zum Betrieb des Sensors nach Figur 3 und das Verfahren zur Auswertung von dessen Messsignalen dargestellt. Die Signale der übrigen Anordnungen können so wie zuvor im Text beschrieben bzw. wie bei normalen Radarsensoren üblich ausgewertet werden. Beim dem Radarsensor nach Figur 3 ergeben sich jedoch einige Besonderheiten die besonders vorteilhafte Möglichkeiten ergeben.

20 Den grundlegenden Aufbau des Sensors und die Bezeichnungen der Signale zeigt noch einmal Figur 7.

Die Funktion des vorteilhaften Verfahrens zur Entfernungsmessung lässt sich wie folgt herleiten:

25 Als Signal des Oszillators VCO svco(t) wird zunächst ein monofrequentes Signal der Form

$$s_{VCO}(t) = \sin((\omega_c + \omega_{sw}) \cdot t + \phi_o)$$

30 angenommen, wobei ω_c die Mittenfrequenz, ω_{sw} eine zunächst feste Modulationsfrequenz, t die Zeit und $\phi_{\,\mathrm{0}}$ einen beliebigen Phasenoffset darstellen. Wie oben dargestellt ist,

wird der Sendeoszillator LO zyklisch ein- und ausgeschaltet. Die Frequenz, mit der der Oszillator LO angeschaltet bzw. ausgeschaltet wird, wird im Folgenden mit f_{mk} bezeichnet, die

35 Zeitdauer die der Oszillator jeweils eingeschaltet ist Ts. 15

Bei jedem Einschaltvorgang schwingt der Oszillator LO bei bevorzugter Anordnung exakt mit der aktuellen Phase von s $_{VCO}(t)$ jedoch auf seiner eigenen Schwingfrequenz ω_{LO} an. Wird der Oszillator z.B. zum Zeitpunkt t = $-\tau$ eingeschaltet, so schwingt er mit der Phase

$$\phi_i = \arg\{s_{vco}(-\tau)\} = (\omega_c + \omega_{sw}) \cdot (-\tau) + \phi_o$$

an und das Oszillatorsignal $s_{\text{LO}}(t)$ entspricht demzufolge:

 $s_{LO}(t) = \sin(\omega_{LO} \cdot t - (\omega_c + \omega_{sw}) \cdot \tau + \phi_o)$

Dieses Signal wird vom Radargerät zum jeweiligen Reflektor gesendet, an diesem reflektiert und trifft um die Laufzeit τ , mit τ = 2*dist/c, mit dist als Entfernung zwischen Radar und Reflektor und c als Lichtgeschwindigkeit, verzögert beim Radargerät als Empfangssignal $s_{rx}(t) = s_{LO}(t-\tau)$ ein.

$$s_{rx}(t) = s_{LO}(t-\tau) = \sin(\omega_{LO} \cdot (t-\tau) - (\omega_c + \omega_{sw}) \cdot \tau + \phi_o)$$

20

25

10

Dieses Empfangssignal $s_{rx}(t)$ wird im Mischer mit dem aktuellen VCO-Signal $s_{VCO}(t)$ gemischt. Vernachlässigt man die hochfrequenten Mischprodukte und geht man vereinfacht davon aus, dass $\omega_{LO}=\omega_c$ ist, was bei geeigneter Wahl von ω_{sw} ohne Einschränkung der Allgemeinheit möglich ist, so ergibt sich für das Mischsignal $s_{mix}(t)$

$$S_{mix}(t) = \cos(t \cdot \omega_{sw} + \tau \cdot (\omega_c + \omega_{sw}))$$

- Im Folgenden wird nun davon ausgegangen, dass hinter dem Empfangsmischer MIX1 elektronische Komponenten/Mittel DEMOD vorgesehen sind, die dazu führen, dass die zeitliche Änderung der Spannung im Zeitintervall zwischen Ein- und Ausschalten, also von 0..Ts, im Sinne einer Mittelung zu eliminieren ist.
- Ein einfacher Hüllkurven-Demodulator nach dem Stand der Technik, bei dem das Signal gleichgerichtet und anschließend tiefpassgefiltert wird, würde z.B. in diesem Sinn arbeiten.

16

Eine Ausführung eines solchen einfachen Demodulators DEMOD mit einem Gleichrichter GR und dem Tiefpassfilter TP zeigt Figur 8.

Eine vorteilhaftere, in Figur 9 skizzierte Variante eines Demodulators DEMOD besteht darin, das Misch-Signal vorzugsweise mit einer Frequenz in der Nähe oder wie zu Figur 1 dargestellt gleich der zyklischen Frequenz f_{mk} der Taktsteuerung CLK/Sw auf eine niedrige Frequenz

10 herunterzumischen und anschließend mit einem Filter TP, das zumindest ein Tiefpass-Verhalten aufweist, zu filtern. Eine mögliche Ausführung dieser Variante weist einen Lokaloszillator LOZF, einen Mischer ZFMIX und einen Tiefpass TP auf. Im Prinzip entspricht nun das Gesamtsystem der

15 Schaltung nach Figur 3. Wird die Frequenz des Lokaloszillators LOZF so ausgelegt, dass negative Mischfrequenzen entstehen können, so ist der Mischer ZFMIX als komplexwertiger, d.h. IQ-Mischer nach dem Stand der Technik (IQ: <u>I</u>n-Phase und <u>Q</u>uadratur-Phase, d.h. 90°

phasenverschoben), auszulegen. Anstelle des Tiefpassfilters TP ist z.B. auch ein Bandpassfilter einsetzbar.

Im Zeitintervall 0 bis TS betrachtet, bewirken die dargestellten Mittel, dass quasi der Effektivwert der Spannung vom Mischsignal $s_{mix}(t)$ bestimmt wird. Dieser Effektivwert bildet dann im Folgenden das eigentliche Messsignal $s_{mess}(t)$. Konstante Amplitudenfaktoren werden bei der folgenden Darstellung vernachlässigt. Der Effektivwert von $s_{mix}(t)$ im Zeitintervall 0 bis TS, also $s_{mess}(t)$, berechnet sich wie folgt:

$$\mathbf{s}_{mess}(t) = \int_{0}^{Ts} \mathbf{s}_{mix}(t) = \text{const.} \cdot \frac{\cos\left(\omega_{c} \cdot \tau + \omega_{sw} \cdot \tau + \frac{1}{2} \cdot T_{s} \cdot \omega_{sw}\right) \cdot \sin\left(\frac{1}{2}T_{s} \cdot \omega_{sw}\right)}{\omega_{sw}}$$

Da das Messsystem vorzugsweise frequenzmoduliert betrieben 35 wird, wird nachfolgend der Fall betrachtet, bei dem die 17

Modulationsfrequenz ω_{sw} zeitabhängig moduliert wird. Wird ω_{sw} während einer Zeitdauer von T linear von -B/2 bis +B/2 über die Bandbreite B verstimmt, gilt also

$$\omega_{\rm sw} = \frac{2 \cdot \pi \cdot \mathbf{B} \cdot \mathbf{t}}{\mathbf{T}}$$

so ergibt sich aus $s_{\text{mess}}(t)$ für das resultierende FMCW-Messsignal $s_{\text{messfmcw}}(t):$

$$s_{\text{mess}_{\text{fincw}}}(t) = \cos\left(\omega_{\text{c}} \cdot \tau + \frac{2 \cdot \pi \cdot B \cdot t \cdot \tau}{T} + \frac{\pi \cdot B \cdot t \cdot T_{\text{s}}}{T}\right) \cdot \frac{\sin\left(\frac{\pi \cdot B \cdot t \cdot T_{\text{s}}}{T}\right)}{\left(\frac{\pi \cdot B \cdot t}{T}\right)}$$

10

5

Wie zuvor dargestellt wurde, wird in der Herleitung mit dem Signal $s_{\text{messfmcw}}(t)$ lediglich das Signal während einer Einschaltperiode exakt wiedergegeben. Dadurch, dass dieses Signal zusätzlich durch die periodische Modulation im Transponder moduliert wird, entsteht eine Frequenzverschiebung von $s_{\text{messfmcw}}(t)$ um f_{mk} bzw. zusätzlich Spektralkomponenten höherer Ordnung, wie auch schon in Figur 6 angedeutet wurde. Da dieser Effekt einer

- 20 Amplitudenmodulation allgemein bekannt ist, wird im Folgenden nur eine einzelne Spektralkomponenten exemplarisch betrachtet, bzw. das Signal $s_{messfmcw}(t)$, zunächst so, als sei es nicht zyklisch moduliert worden.
- Dieses Messsignal $s_{\text{messfmcw}}(t)$ weist nun zwei entscheidende und sehr vorteilhafte Unterschiede zu Signalen von Standard FMCW-Radaren auf.

Zum einen ist die Messfrequenz f_{mess} , die der Ableitung der 30 Phase des cos-Argumentes, also

$$f_{mess} = dist \cdot \frac{2 \cdot B}{T \cdot c} + \frac{B \cdot T_s}{2 \cdot T} = f_{beat} + \Delta b$$

entspricht, um den Frequenzanteil $\Delta b = B \cdot Ts$ / (2 T) verschoben. Die Frequenz f_{beat} entspricht der normalen FMCW-Messfrequenz und beinhaltet die eigentliche Messinformation, nämlich die Entfernung zwischen Radar und Reflektor mit $\tau = 2$ dist /c. Zum anderen ist das Signal $s_{messfmcw}(t)$ mit einer trigonometrischen, insbesondere Si-Funktion (Si(x) = $\sin(x)/x$) amplitudengewichtet. Die Fouriertransformierte, also das Spektrum dieses amplitudengewichteten Signals ergibt eine Rechteckfunktion, wobei die Breite Δp des Rechtecks

$$\Delta p = \frac{B \cdot T_s}{T}$$

5

10

beträgt. Da die Mittenfrequenz f_{mess} des Rechteckes wegen der dargestellten Frequenzverschiebung bei f_{beat} + Δb = f_{beat} + 0,5
Δp liegt, ergibt sich die günstige Eigenschaft, dass der im positiven und im negativen Frequenzbereich liegende Spektralanteil der cos-Funktion auch bei verschwindender
Entfernung sich nicht überlappen. Das heißt, dass mit einem auf diesem erfindungsgemäßen Radarsystem, im Prinzip unabhängig von der Bandbreite, bis zur Entfernung 0 gemessen werden kann. Folglich besitzt dieses System nicht das Nahbereichsproblem vergleichbarer bekannter Radare mit
reellwertiger Auswertung, deren prinzipielles Spektrum in Figur 10 dargestellt ist.

Unterstützt wird diese günstige Eigenschaft dadurch, dass sich als Spektral-Hüllkurve, wie in Figur 10 oben

30 dargestellt, eine Rechteckfunktion ergibt. Folglich kann die Beat-Frequenz f_{beat} und somit die Entfernung anhand des Abstandes zwischen den äußeren Kanten des linken und rechten Seitenbandes bestimmt werden.

Figur 10 dient zur allgemeinen Verdeutlichung und stellt das Frequenzspektrum der Echosignale dar, die vom Radar als

19

Messsignale (Echosignale) empfangen werden. Die Hüllkurve aller Amplituden â der Echosignale über dem gesamten Frequenzbereich oder auch nur über einem Ausschnitt daraus wird als Echoprofil bezeichnet, welches auszuwerten ist. Es werden also Amplituden â, Phasen ϕ und Frequenzen f der Echosignale gemessen und in einer Recheneinheit weiterverarbeitet.

Parametriert wird das System vorzugsweise wie folgt: Die Einschaltdauer Ts wird vorzugsweise so gewählt, das sie dem halben Kehrwert der Modulationsbandbreite B entspricht also Ts = 2/B. Die Wahl der Modulationsfrequenz f_{mk} richtet sich nach der gewünschten effektiven Sendeleistung. Eine geeignete praktische Parametrierung könnte wie folgt aussehen.

15 B = 1 GHz, Ts = 2ns und f_{mk} = 2 MHz.

Besonders vorteilhaft kann das erfindungsgemäße System als Nahbereichsradar eingesetzt werden. Bei einem Nahbereichsradar ist die dargestellte Möglichkeit die äußere 20 Kante der Rechteckfunktion zur Bestimmung der Beatfrequenz bzw. der Entfernung heranzuziehen insbesondere auch deswegen sehr vorteilhaft, da bei solchen Sensoren häufig die kürzeste Entfernung bzw. das am nächsten gelegene Objekt besonders interessant ist z.B., wenn der Sensor zum Zweck einer 25 Kollisionsvermeidung verwendet wird. Die bei Systemen nach dem Stand der Technik üblichen Messgenauigkeits-Probleme, die durch Echo-Überlagerungen entstehen, treten bei dem erfindungsgemäßen System idealerweise nicht auf, wenn wie vorgeschlagen, die inneren Kanten der Rechteckfunktion zur 30 Auswertung herangezogen werden. Die Probleme durch Überlagerung von Spektralkomponenten bei üblichen Systemen und der Vorteil des erfindungsgemäßen Systems sind in Figur 11 anschaulich dargestellt. Man sieht bei der dargestellten Überlagerung von 6 Signalkomponenten (1, 2, ..., 6), dass im 35 normalen Fall (Figur 11 oben) der bestimmte Messwert, also das Maximum des Spektrum, nicht der tatsächlichen zur

Entfernung proportionalen Frequenz (hier = 100) entspricht.

20

Demgegenüber liegt beim erfindungsgemäßen System (Figur 11 unten) die linke Kante auch bei Überlagerung der Signalkomponenten an der richtigen Position, d.h. es wird ein korrekter Entfernungswert bestimmt.

5

10

Um die Kanten, also insbesondere die erste innerste Kante exakt zu bestimmen, ist es vorteilhaft das Betragsspektrum zu differenzieren, da die steilen Flanken des Rechtecks dann ausgeprägte Peaks ergeben. Die Lagen der Maxima der Peaks entsprechen dann der Position der Kanten bzw. den Wendpunkten der Kantenfunktion. Durch diese Form der Auswertung wird mit einfachen Mitteln vermieden, dass die Amplitude des Signals einen Einfluss auf die Lage der bestimmten Position hat, wie dies bei einfachen Schwellenwertauswertungen der Fall wäre.

- Da die Messsignale und Spektren zumeist nur in zeitdiskretisierter Form vorliegen, ist es ferner vorteilhaft die Lagebestimmung der Maxima des differenzierten Spektrums mit Hilfe einer Interpolationsrechnung weiter zu verbessern. Eine günstige Interpolation kann z.B. mit einem gängigen
- Polynomfit erfolgen. Vorzugsweise werden hierzu einige der diskreten Spektralpunkte in der direkten Umgebung des Maximums (z.B. 3 Punkte, d.h. das Maximum und sein rechter und linker Nachbar) und ein Polynom gerader Ordnung verwendet (z.B. Ordnung 2 d.h. eine Parabel). Andere Interpolatoren wie
- etwa Spline-Verfahren oder solchen Verfahren die zu erwartenden Kurvenformen mittels Least-Squares-Verfahren an die gemessene Kurve anpassen sind selbstverständlich ebenso zu verwenden.
- Alle genannten Verfahren können natürlich auch einzeln angewendet oder in anderen Kombinationen die erfindungsgemäßen Vorzüge entwickeln und auch mit anderen bei FMCW-Radaren bekannten Verfahren kombiniert werden.

21

Patentansprüche

- Anordnung mit Sendemitteln zum Senden eines Signals und mit Empfangsmitteln zum Empfangen einer Reflexion des
 gesendeten Signals, wobei die Sendemittel einen Sendeoszillator aufweisen, dadurch gekennzeichnet, dass die Empfangsmittel einen Auswertungsoszillator aufweisen und dass der Sendeoszillator durch den Auswertungsoszillator
 und/oder der Auswertungsoszillator durch den Sendeoszillator quasiphasenkohärent anregbar ist.
 - Anordnung nach Anspruch 1, dadurch gekennzeichnet,
- dass die Oszillatoren so durch Leitungsmittel miteinander verbunden sind, dass der Sendeoszillator durch den Auswertungsoszillator und/oder der Auswertungsoszillator durch den Sendeoszillator quasiphasenkohärent anregbar ist.
- 3. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Oszillatoren so beieinander angeordnet sind, dass der Sendeoszillator durch den Auswertungsoszillator und/oder der Auswertungsoszillator durch den Sendeoszillator quasiphasenkohärent anregbar ist.
- 4. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Oszillatoren so gegeneinander unabgeschirmt sind, dass der Sendeoszillator durch den Auswertungsoszillator und/oder der Auswertungsoszillator durch den Sendeoszillator quasiphasenkohärent anregbar ist.

22

5. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anordnung Mittel zum zyklischen Schalten des quasiphasenkohärent anregbaren Oszillators mit einer Taktrate aufweist.

6. Anordnung nach Anspruch 5,
 dadurch gekennzeichnet,
 dass die Einschaltdauer des quasiphasenkohärent anregbaren
 10 Oszillators in der Größenordnung des Kehrwerts oder kleiner als der Kehrwert der Differenz zwischen den Frequenzen der beiden Oszillatoren im eingeschwungenen Zustand ist.

5

20

25

7. Anordnung nach Anspruch 5 oder 6,
15 dadurch gekennzeichnet,
dass die Wiederholrate des Taktes, mit dem der
quasiphasenkohärent anregbare Oszillator geschaltet wird,
deutlich größer als die Frequenz des Messsignals ist,
insbesondere mehr als fünfmal so groß.

8. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Sendeoszillator und/oder der Auswertungsoszillator in ihrer Frequenz veränderbar sind.

9. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass der Sendeoszillator oder der Auswertungsoszillator in seiner Frequenz veränderbar ist, während der

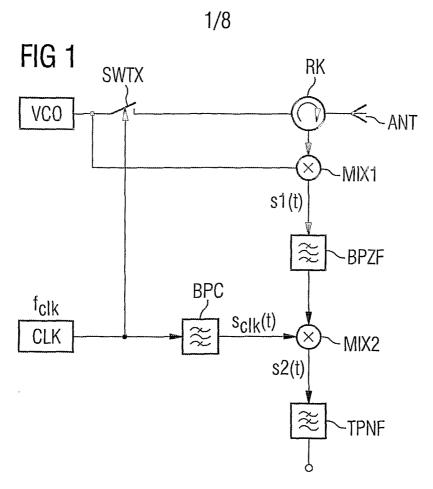
- 30 Auswertungsoszillator oder der Sendeoszillator ein Festfrequenzoszillator ist.
 - 10. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
- 35 dass die Anordnung eine Anordnung zur Abstandsmessung ist.

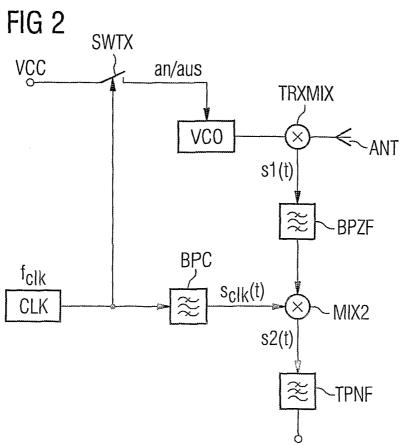
23

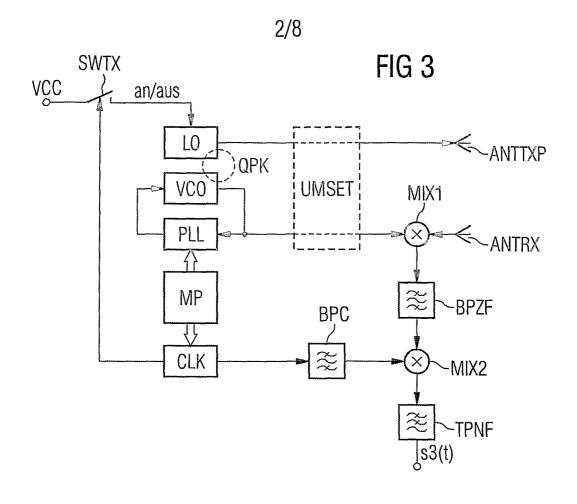
11. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,

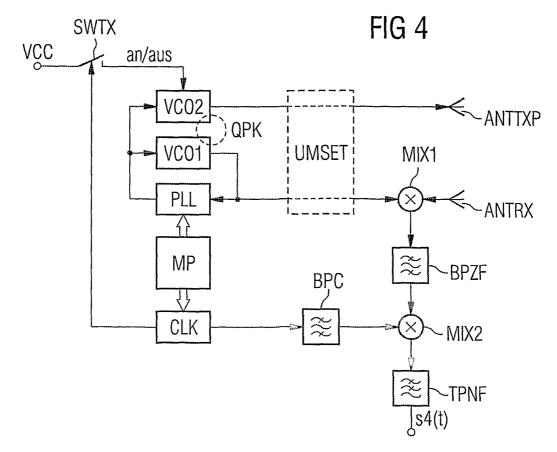
dass die Anordnung ein Radar ist, insbesondere ein im Frequenzbereich durchstimmbarer Radar und/oder ein in zwei Schaltzuständen zwischen einem Nahbereichsradar und einem Fernbereichsradar umschaltbarer Radar.

12. Fahrzeug, Gebäude oder Industrieanlage aufweisend eine Anordnung nach einem der vorhergehenden Ansprüche.

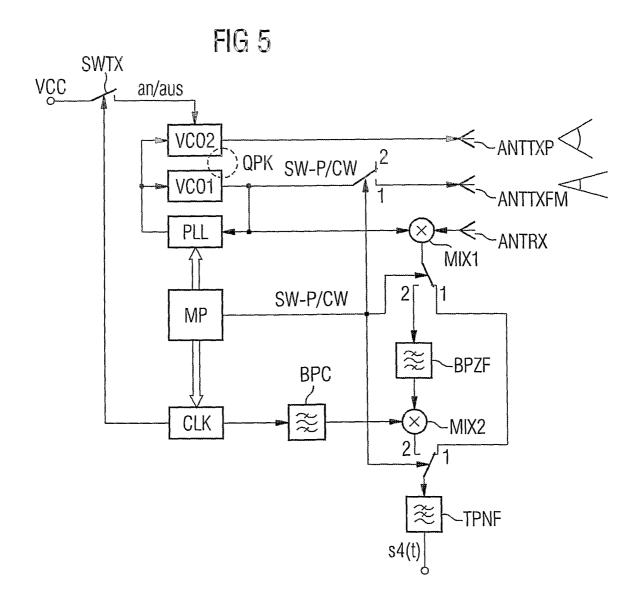

10

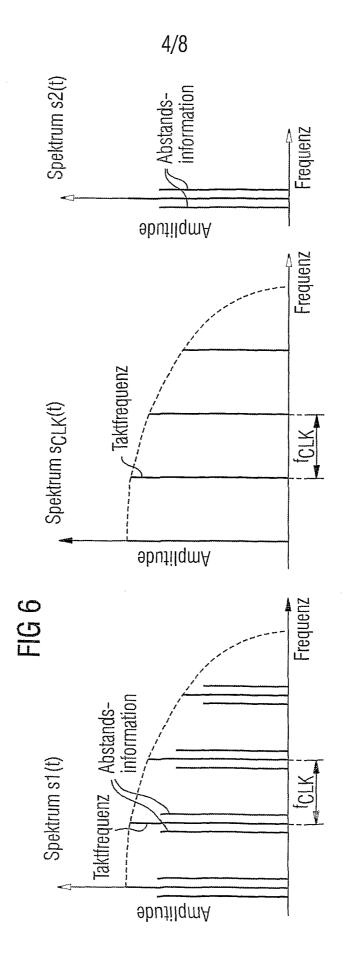

- 13. Verfahren, insbesondere zur Abstandsmessung, bei dem
- ein Sendeoszillator durch einen Auswertungsoszillator und/oder ein Auswertungsoszillator durch einen Sendeoszillator quasiphasenkohärent angeregt wird,
- 15 mit einem Sendeoszillator ein zu sendendes Signal erzeugt wird,
 - das Signal gesendet wird,
 - eine Reflexion des gesendeten Signals empfangen wird,
 - mit dem Auswertungsoszillator ein Auswertungssignal erzeugt wird.
 - 14. Verfahren nach Anspruch 13, bei dem das Auswertungssignal mit der Reflexion des gesendeten Signals gemischt wird.

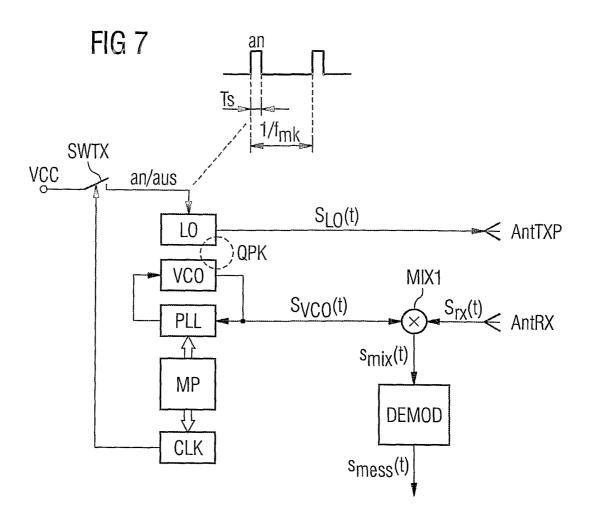

25

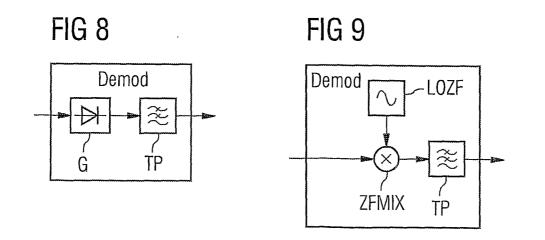

20

15. Verfahren nach Anspruch 13 oder 14, bei dem der Sendeoszillator durch den Auswertungsoszillator und/oder der Auswertungsoszillator durch den Sendeoszillator zyklisch immer wieder quasiphasenkohärent angeregt wird.

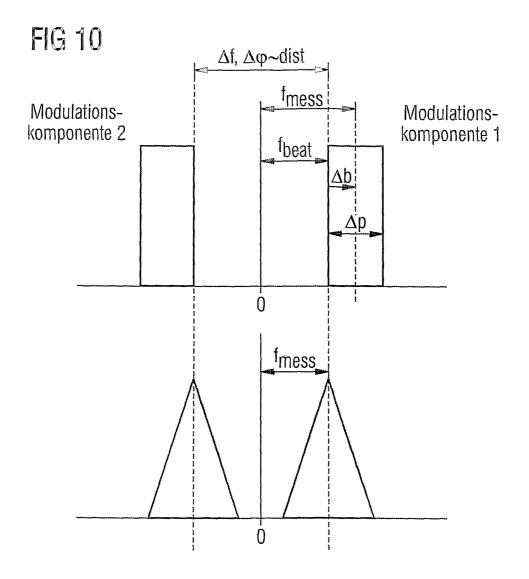
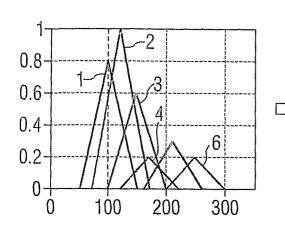
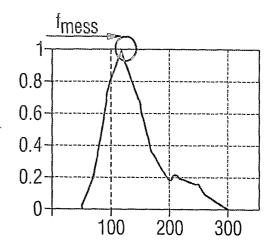
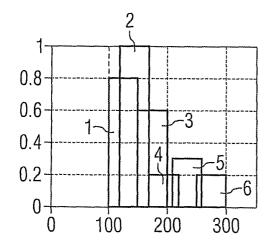
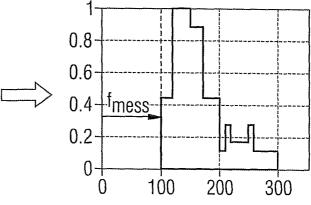


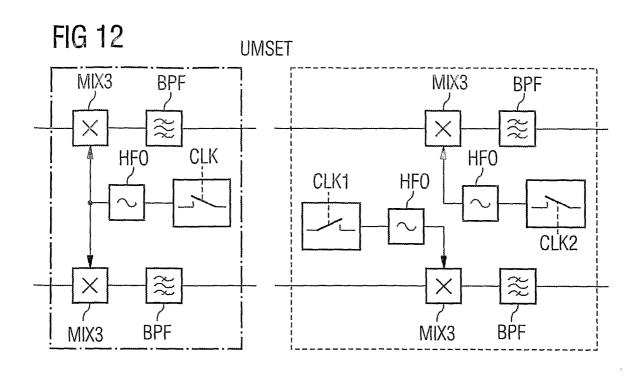






3/8


FIG 11

CLK1

CLK1

CLK1

VCO1

VCO2

CLK2

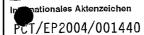
CLK2

CLK2

INTERNATIONAL SEARCH REPORT

in pational Application No

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 G01S13/02 G01S13/93					
According to	o International Patent Classification (IPC) or to both national classification	tion and IPC			
	SEARCHED		***		
Minimum do IPC 7	commentation searched (classification system followed by classificatio $G01S - H03D$	n symbols)			
	ion searched other than minimum documentation to the extent that su				
Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data					
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT				
Category °	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.		
A	EP 0 795 761 A (FUJITSU LTD ;FUJI LTD (JP)) 17 September 1997 (1997 column 7, line 56 -column 10, lin figures 8,9,11	1-15			
А	EP 1 051 639 A (SIEMENS AG) 15 November 2000 (2000-11-15) cited in the application paragraphs '0019!-'0021!,'0032!- figures 1,5	1–15			
А	DE 100 32 822 A (SIEMENS AG) 24 January 2002 (2002-01-24) cited in the application paragraphs '0015!-'0017!,'0038!- figures 1,2	1~15			
Furti	her documents are listed in the continuation of box C.	X Patent family members are	e listed in annex.		
"A" docume	ategories of cited documents : ent defining the general state of the art which is not dered to be of particular relevance	 "T" later document published after or priority date and not in conficited to understand the princip invention 	lict with the application but		
"E" earlier of filing d	document but published on or after the international date ent which may throw doubts on priority claim(s) or	X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone			
citation "O" docume other r	n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means	'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.			
		& document member of the same patent family			
Date of the actual completion of the international search 18 May 2004 Date of mailing of the international search report 03/06/2004					
	8 May 2004				
ivaine and i	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NI - 2280 BV Bitswilk	Authorized officer			
	NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Mercier, F			


INTERNATIONAL SEARCH REPORT

Information on patent family members

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 0795761	A	17-09-1997	JP JP EP EP US	3347571 B2 9243738 A 1326089 A2 0795761 A2 5973636 A	20-11-2002 19-09-1997 09-07-2003 17-09-1997 26-10-1999
EP 1051639	A	15-11-2000	DE DE EP JP US WO ES	19803660 A1 59900220 D1 1051639 A1 2002502042 T 6404381 B1 9939220 A1 2165230 T3	12-08-1999 04-10-2001 15-11-2000 22-01-2002 11-06-2002 05-08-1999 01-03-2002
DE 10032822	A	24-01-2002	DE CN WO EP JP	10032822 A1 1440510 T 0203096 A1 1297357 A1 2004502943 T	24-01-2002 03-09-2003 10-01-2002 02-04-2003 29-01-2004

INTERNATIONALER RECHERCHENBERICHT

A. KLASSIFIZIERUNG DEŞ ANMELDUNGSGEGENSTANDES						
1PK /	G01S13/02 G01S13/93					
Nach der Int	ernationalen Patentklassifikation (IPK) oder nach der nationalen Klass	sifikation und der IPK				
	RCHIERTE GEBIETE					
Recherchier IPK 7	ter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbol G01S H03D	e)				
2110	acto mosp					
Pacharchian	te aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, sow	vait diese unter die recherchierten Gehiete i	allen			
nechelomer	te abel mont zum mindestpruiston genorende veronenniondingen, sow	est diese differ die redicionierten Gebiete	allon			
			11 100			
	r internationalen Recherche konsultierte elektronische Datenbank (Na	ame der Datenbank und evil. Verwendete S	ucribegnine)			
ELO-IU.	ternal, WPI Data					
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN					
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe	der in Betracht kommenden Teile	Betr. Anspruch Nr.			
_		TOUL TEN	7 15			
Α	EP 0 795 761 A (FUJITSU LTD ;FUJI LTD (JP)) 17. September 1997 (199	ISU IEN 7-00-17)	1-15			
	Spalte 7, Zeile 56 -Spalte 10, Ze					
	Abbildungen 8,9,11	,				
۸			1-15			
A	EP 1 051 639 A (SIEMENS AG) 15. November 2000 (2000-11-15)		1-10			
	in der Anmeldung erwähnt					
	Absätze '0019!-'0021!,'0032!-'00	34!;				
	Abbildungen 1,5					
Α	DE 100 32 822 A (SIEMENS AG)		1-15			
	24. Januar 2002 (2002-01-24)					
	in der Anmeldung erwähnt	401.				
	Absätze '0015!-'0017!,'0038!-'00 Abbildungen 1,2	48!;				
Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen						
		T° Spätere Veröffentlichung, die nach dem oder dem Prioritätsdatum veröffentlicht	internationalen Anmeldedatum			
"A" Veröffe aber n	ntlichung, die den allgemeinen Stand der Technik definiert, icht als besonders bedeutsam anzusehen ist	Anmeldung nicht kollidiert, sondern nur Erfindung zugrundeliegenden Prinzips	zum Verständnis des der			
E ätleres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist **E* ätleres Dokument, das jedoch erst am oder nach dem internationalen Theorie angegeben ist **Theorie angegeben ist **X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung						
"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit herubend betrachtet werden						
anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet						
ausgeführt) werden, wenn die Veröffentlichung mit einer oder mehreren anderen "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und						
eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht diese Verbindung für einen Fachmann naheilegend ist PVeröffentlichung, die vor dem internationalen Anmeldedatum, aber nach						
dem beansprüchten Prioritätsdatum veröffentlicht worden ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts						
18. Mai 2004 03/06/2004						
Name und I						
	Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk					
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Mercier, F				

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffenung gen, die zur selben Patentfamilie gehören

li cationales Aktenzeichen PCT/EP2004/001440

Im Recherchenbericht angeführtes Patentdokumer	t	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0795761	A	17-09-1997	JP JP EP EP US	3347571 B2 9243738 A 1326089 A2 0795761 A2 5973636 A	20-11-2002 19-09-1997 09-07-2003 17-09-1997 26-10-1999
EP 1051639	A	15-11-2000	DE DE EP JP US WO ES	19803660 A1 59900220 D1 1051639 A1 2002502042 T 6404381 B1 9939220 A1 2165230 T3	12-08-1999 04-10-2001 15-11-2000 22-01-2002 11-06-2002 05-08-1999 01-03-2002
DE 10032822	A	24-01-2002	DE CN WO EP JP	10032822 A1 1440510 T 0203096 A1 1297357 A1 2004502943 T	24-01-2002 03-09-2003 10-01-2002 02-04-2003 29-01-2004