-y

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4.

GOGF 9/44 Al

(11) International Publication Number:

(43) International Publication Date:

WO 88/ 07718

6 October 1988 (06.10.88)

(21) International Application Number: ~ PCT/GB87/00202

(22) International Filing Date: 24 March 1987 (24.03.87)

(71) Applicant (for all designated States except US): INSIG-
NIA SOLUTIONS LIMITED [GB/GB]; Victoria
House, 28-38 Desborough Street, High Wycombe,
Buckinghamshire HP11 2NF (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only) : MACGREGOR, Rod-
erick [GB/GB); 155 Kingsmead -Road, Loudwater,
High Wycombe, Buckinghamshire (GB).

(74) Agent: GARRATT, Peter, Douglas; Mathys & Squire,
10 Fleet Street, London EC4Y 1AY (GB).

(81) Designated States: AT (European patent), BE (Euro-

pean patent), CH (European patent), DE (European {

patent), FR (European patent), GB (European pa-
tent), IT (European patent), JP, LU (European pa-
tent), NL (European patent), SE (European patent),
Us.

Published
With international search report.
With amended claims.

(54) Title: ARRANGEMENT FOR SOFTWARE EMULATION

(57) Abstract

A data processing means (10) is adapted to be
controlled by sequential instructions (14), a substan-
tial number of which comprise an operation code se-
lected from a set of n such codes and a qualifying
code selected from a set of m such codes. A store (18)
having approximately n times m locations holds a

8088

COOE u
MEMORY L/
SEGMENT

series of instructions (20, 26) corresponding to a con-
sistent combination of operating code and qualifying
code. The qualifying code may be the addressing
mode and a jump table (18) of 256 x 256 entries may
be employed to access the instruction series (20, 26).

This arrangement can be used to emulate the Intel
8088 microprocessor instruction set on a Motorola
68020 chip.

NEXT
‘/MS‘?'RUC)‘ION d
OINTER
| —~/5
TABLE
POINTER
\oeoza CODE MEMORY SEGMENT
20 .
- 22
MAIN \\iﬂ d L/
e ||
/8\ TABLE \EI
L
{
g 26
exceprion
JUmMP
TABLE

FOR THE PURPOSES OF INFORMATION ONLY

Codesused to identify States party to the PCT on the front pages of pamphlets publishing international appli-
cations under the PCT. .

AT Austria FR France ML Mali

AU Australia GA Gabon MR Mauritania
BB Barbados GB United Kingdom MW Malawi

BE Belgium HU Hungary NL Netherlands
BG Bulgaria IT Italy NO Norway

BJ Benin JP Japan RO Romania

BR Brazil KP Democratic People’s Republic SD Sudan

CF Central African Republic ’ of Korea SE Sweden

CG Congo KR Republic of Korea SN Senegal

CH Switzerland LI Liechtenstein SU Soviet Union
CM Cameroon LK SriLanka TD Chad

DE Germany, Federal Republic of LU Luxembourg TG Togo

DK Denmark ' MC Monaco US United States of America
FI Finland MG Madagascar

g

»

e]

PCT/GB87/00202

WO 88/07718

Arrangement for software emulation
“l

This invention relates to data processing.

There exists a variety of commercially available processors which
are capable of providing the central processing unit of a computer.
Each processor can perform arithmetic, logical and control
instructions and is adapted to cooperate with = particular
organisation of memory and input and output devices. T& a laréé
extent, the instructions and the manner of addressing data held in the
processor or stored in memory, are characteristics of a particular
processor or family of processors. As a result, computer programs
written for one computer - or range of computers based on a like
processor - are frequently unsuitable for use with computers based on
a different processor.

It is the case that a large body of commercially available
software is based on a common operating system which can run only on
particular processors. Computers which are based upon an incompatible
pProcessor are not capable of using such software even though the
processor may in certain technical respects be superior to the
processor for which the software is written. This pfoblem.of
incompatibility has been recognised and attempts have been made to
deal with the problem in two different ways. First, it has been
suggested to provide in a computer based on a selected first
processor, a second‘processor serving as a co-processor to provide the
necessary compatability. This obviously involves cost penalties.
Second, it has been proposed to provide software by which the existing

first processor is caused to emulate a different second processor. To

WO 88/07718 PCT/GB87/00202

be of practical utility; the emulation must not involve a significant
drop in effective processing speéd,and this presents enormous
-difficulties, even where the processor being used is inherently faster
than that being emulated so that the additional processing required by
the emulation is to some extent offset by faster processing. It will
be recognized that speed is important not only because g user ﬁEy
- demand a fast response time, but also because a particular effectlve
: proce351ng speed or minimum processing speed is essential for the
~correct functioning of certain programs.

. This invention focuses on the software emulation approach and for
clarity hereafter the term "host" will be used to mean the procesor
which is through soft&are caused to emulate a different processor (the
emulated processor). |

In what follows, particular attention will be paid to

- microprocessors though it should be understood that either or both of
the host and emulated processors might take other forms.

To take a specific example, consider emglation of the
microprocessor ﬁénufactured by Intel'Corporation and referred to as
8088. This has an instruction set whose instructions are defined by
some number of 8&-bit bytes the first of which is an operating code
(op-code). The instruction set comprises approximately 230 6p-codes
(not all possible instruction labels being used). Most instructions
require one or more operands and the second byte of those instructions
may be regarded as definlng the mode of addressing the operand. This

may recite specific memories or registers and may occasionally include

/4

WO 88/07718 PCT/GB87/00202

-3-

data. In other microprocessors, it may be a byte other than the second
byte of the instruction which performs a function comparable to that
of the 8088 addressing mode

If it is desired to emulate the operation of the 8088
microprocessor, several characteristics of that processor must be
emulated. Chiefly, the instruction set of the 8088 must’ be mapséd on
to that of the host microprocessor. -Inevitably, there will not be a
one to one mapping. In addition it will be necessary to recreate,
using the facilities of the host microprocessor, the many permutations
of addressing modes provided by the 8088. To interpret instructions
using prior art techniques would require for each operating code (that
is to say the first byte of each instruction) a routine which was
capable of analysing the second and subsequent bytes of the
instruction and providing an appropriate series of instructions in the
instruction set of the host microprocessor. Having regard to the
facts that there would inevitably be no direct mapping of operations
between the emulated microprocessor and the host microprocessor and
that there are likely to be differences in registers and memory
addressing, the subroutine corresponding to each 8088 operating code
would be complex and would typically involve a number of conditional
statements serving to distinguish between different addressing modes.
Running such a complex subroutine for every instruction, inevitably
slows down processing. Further complications will arise in dealing
with the flags (such as auxiliary carry and parity) which are provided

by the 8088 but not by the host, and in handling interrupts.

WO 88/07718 PCT/GB87/00202

It is one object of this invention to provide for the emulation
of a microprocessor without a significant loss of effective speed. It
is recognised that emulation will inevitably involve additicnal
processing but its significance must be judged in terms of the
processing speed of the host microprocessor. It is anticipated that
the host micropfocessor will have a faster processing speed thaﬂ\the
microprocessor it is.desired to emulate (perhaps by an order of
magnitude) and the additional processing associated with the emulation
will not result in a significant loss of éffective speed provided that
the amount of additional processing is of the same order or less than
the incfease’in processing speed of the host.

Accordingly, the present invention consists, in one aspect,in
data processing means adapted to bercontrolled by sequential
instructions, & substantial number of which comprise an operation code
selected from a set ofrn such codes and a qualifying code selected
from a set of m such codes, the data processing means comprising a
store having épproximately n.timés m locations with each location
corresponding to a consistent combination of operating code and
éualifying,code and holding a series of inétructions corresponding to
the said operating code and qualifying code.

By "qualifying code" is meanf the next most significant byte ér
other discrete element in the instruction, after the instruction
code.

In another aspect, the present invention consists in a process

 for controlling the operation of a data processing unit in accordance

with a received series of instructions, where at least some

"

WO 88/07718 PCT/GB87/00202

instructions each comprise an operator and an operand addressor, -there
being a finite number of permissible combinations. of operator and
operand addressor, the process comprising the steps of holding a
plurality of instruction strings, one for each said permissible
combination of operator and operand addressor, and inputting to the
data processing unit for each received instruction, the instrucEion
string corresponding with said operator and operand addressor
combination.

In a still further aspect, the present invention consists in a
computer including processing means; first store means for storing a
series of instructions, a substantial number of which instructions
comprise an operator and an addressing modé; second stofe means having
a plurality of locations corresponding respectively with permissible
combinations of said operator and said addressing mode, and being
adapted to hold at each said location an instruction string; and
control means adapted to input in sequence to said processing means
instruction strings from locations in said second store means
corresponding respectively with instructions from said first store
means.

Preferably, the computer further comprises table means having
entries corresponding with respective said locations, each entry

comprising the address in said second store means of the said

instruction string.

WO 88/07718 PCT/GB87/00202

Advantageously.reach,instruction string is arranged to provide
said control means with information relating to the address in said
store means of the next instructiop.

This invention will be described by way of example, with
refepence to the accompanying drawings in which:-

Figure 1 is a diagrammatic representation of aspects of tﬁé
inventioen, : -

Figures 2A, 2B and 2C are listings of certain code strings in the
language of the host microprocessor;

Figure 3 is a listing illustrating means for generating the code
7 strings exémplified by the extracts of Figﬁres 2A,2B and 2C;

Figures 4,5,6 and 7 are flow‘charts illustrating the opération
of said generator means; |

Figure 8 is an extract from the listing of the general generator
Program as shown in Figure 4;

Figure 9 is an ektréct from the listing of the pseudo commands
shown in Figupe 5,
| Figure 10 is an excerpt from the listing of the macro library
shown in Figure 6 and

Figures 11A énd 11B illustrate in diagrammatic form an interrupt’
techniquevaccofding‘to the prior aft and to the present invention

respectively.

4

»

PCT/GB87/00202

WO 88/07718

-.7_.

This description will continue to take as an example of a
microprocessor whose operation is to be emulated, the 8088 chip
manufactured by Intel Corporation, and will take as an example of a
host microprocessor the MC68020 chip manufactured by Motorolé
Corporation. Before proceeding to a detailed description of the
invention, it would be helgful to outline certain relevant aspécts of
the 8088 chip.

Two extremely important characteristics of the 8088, as with any
other microprocessor, are the instruction set and the manner in which
the addressing of data is handled. The instruction set includes
arithmetic, logical and control instructions and takes the machine
code form of a single byte op-code. There are, for example, six op-
codes corresponding to the arithmetic assembly instruction ADD; the
op-codes distinguishing between byte and word operation and between,
for example, memory and register operands. The operand itself is
defined in the second and - if necessary - succeeding bytes of the
instruction string, it being recognised that certain op-codes demand
no operand.

Data which is to be operated upon can be addressed in a variety
of addressing modes. The data itself could for ex;mple form part of
the instruction or be located in a processor register named in the
instruction. Alternatively, the instruction could contain the add;éss
in memory at which the data 1is located or might state the register

containing the address or the registers which require to be summed to

O 88/07718 PCT/GB87/00202
W

obtain the memory address. The skilled man will be aware of still
further addressing modes.

As outlined above, attempts have hitherto been made to emulate
the 8088 using each op-code in the instruction string as the address
in a single byte look up tabie which, for each op-code, point to
necessary codlng (1n the machine language of the host mlcroprocessor)
to enable analysing of the addressing mode and other information
contained in succeeding bytesdof the-instruction stream and to execute
the decoded instruction. _The difficulty with this approach is that
the very flexibility in addressing modes which contributes to the
power of the 8088 microprocessor results in coding strings of
significant length and complexity for many of the op-code
possibilities.- As will be recognised, thig means that the emulation
Tuns at a slower effective speed than the microprocessor that is being
emulated unless the host microprocessor has a con31derably faster
processing speed.

According to this invention, a look up or jump table isg provided
which is addressed by each op-code and the immediately succeeding byte
in the instruction stream. With nominally 256 possibilities for both
the op-code and the next suceedlng'byte the table accordingly has
(nomlnally) 64K entries. From the very nature of the jump table - in
which every consistent combination of op-code and addressing mode is
represented a jump to any one location "implieg" the addressing mode
which is employed, without the need for decodlng as such. Each entry
in the jump table contains the address in memory of an instruction

string in MC68020 code whlch will perform the equivalent function to

WO 88/07718 PCT/GB87/00202

the 8088 instruction. The 68020 coding which is required is
straightforward (as compared with prior software emulations) since no
decoding of the addressing mode is required. The need for conditional
statements in the emulation coding 1is substantially avoided.

By way of further explanation, reference is directed to Figure 1
which is in diagrammatib form. The microprocessor 10 provides a mnext
instruction pointer " 12 whose function is to point to the next 8088
instruction held in code memory segment 14. In the 8088, the base or
datum point of the instruction list is held in a code segment
register. The address relative to the base address of the next .
instruction in the instruction stream (which may be regarded as the
logical address) is held in a separate register referred to as the
instruction pointer. This is in the most usual case incremented by an
amount corresponding to the length of the last instruction although
jumps can also be provided for. The physical memory address,which is
20 bits in the 8088, is constructed by adding the 16 bit content of
the instruction pointer (logical address) to the 16 bit content of the
code segment register (base.address) with four low order zero's
appended. In the present arrangement, the 68020 register a5 is used
to hold the sum of the base address, the logical address and the base
of the pseudo 8088 code memory segment. This makes the content of a5
a "physical" 32 bit 68020 memory address. This avoids the need for
repeated add functions. If necessary (because of a jump or segment
relocation, for example) the logical address can be reconstituted from

a5 by subtraction.

WO 88/07718 ' PCT/GB87/00202
- 10 -

In accordance yith this invention, the fétched ins;ruction is not
executed directly by the processor, but the first two bytes are used
in table pointer 16 to point to the appropriate entry in the 64K jump
table 18. For a reason which will be described hereafter, the table
pointer 16 includes a base table éointer (in 68020 register al{) acting
as a base to the jump table addresses. Each jump table entry provides
tﬁe 32 bit start address of an instruction string 20 in 68020 code
memory segment 22. These instructions are then executed.

Reference is now directed to Figure 2A which is a listing of a
number of 68020 instruction strings relating to the POP op-code which
is teken as an examplerof an 8088 op-code. As wiil be understood, the

- POP command transfers the word at the current top ofrthe stack to the
destination operand. Aécording to the addressing mode, the
destipation operand may be a register or may be a memory location
pointed to by a particular register or combination of registers, with
or without a displacement defined in the third or subsequent
instructioﬁ.bytes. The instruction strings are referred to by the
label OXXAYY where XX is in hexadecimal the op-code and YY the
addressing que. In a typical situation, the addressing mode takes
the form MOD 000 R/M where MOD represents the first two bits and
states whether the thfee bit R/M element is to be regarded as defining
the &estination operand aé a register or as a pointer in register to
the deétination operand in memory, with or without a,displacement.
Taking examples in turn from Figure 2A, label O8FAQO represents, in
decoded form, 6p-code 10001111 ‘binaﬁy) and addressing mode code 00

000 000 where the addressing mode code has been broken up to identify

WO 88/07718 PCT/GB87/00202
- 11 -

the MOD and R/M components. In the first example, the destination
operand is pointed to by the sum of registers BX (general register)
and SI (source index), this being the meaning assigned to the R/M
value 000 with an MOD value of 00. The 68020 coding at this location
performs the POP function using essentially ADD and MOVE instructions.
A detailed analysis of the coding is not believed to be ﬁecessa5§ for
an understanding of the invention but it can be identified that the
destination address is first decoded from registers BX and SI, a word
moved from the stack to that address and the stack pointer incremented
by two so as to point to the next word in the stack.

Comparing the coding at the next location which corresponds to
addressing mode 01 000 000, it would be seen that the coding is very
gimilar but includes in the address computation a displacement. This
is a single byte displacement as signified by an MOD value of 0l. The
next following location has a two byte displacement as signified by
the MOD value 10.

With an op-code requring both source and destination operand, the
addressing mode may take the form MOD REG R/M where REG identifies the
word, byte and segment registers. For such an op-code, there are of
course a greater number of permissible addressing modes and
accordingly a greater number of entries in the jump table and
corresponding 68020 code strings. Still other op-codes may take an
addressing mode of further modified form.

If two contiguous op-codes are both of a kind requiring no

operand, the address in the jump table can be of a string of 68020

WO 88/07718 PCT/GB87/00202
- 12 -

code performing both instructions. This gives a net increase in
speed. |

By the way of further explanation,'reference is drawn to Figure
2A and particularly to the entries under labels 05bA00 and 05bASS8.

The 8088 op-cédes 58 to 5f (hexadecimal) are instructions which
require no separate operands;'theﬂoperand being implied within Ehe
op-code. Thus op-code 5b pops a word to register BX.V Turning to
Figure 2A it will bé seen that ghe code string under label 05ba00
performs that function. If the sécond byte ofrthe 8088 instruction is
a further command of the same type (e.g. 58) the processor will by
executing the code string shown under label 05bA58 execute both POP
instructions, that is to say POP to BX,followéd by POP to AX. This
optimisation procedure covers, in the present example, those.register
and segment variants of the POP and PUSH commands.

If the second byte of the instruction sﬁream is not a POP or PUSH
command, the jump table points in each case to the code string shown
(in this example) under label 0%bA00, the op-code poointer in a5 is
incremented by onexonly and the second byte is treated as the first
byte of the next instruction.

It will be recognised that in aniemulation, means has to be
provided for updating the information pointer analogue. According to
a preferred feature of the present invention the coding which performs
this task is contained at the end of substantially each 68020 code
string. That is to say each code string provides for incrementing of
the register a5 (analogous to the 8088 information pointer) by an

amount equal to the length of the corresponding 8088 instruction.

WO 88/07718 PCT/GB87/00202
- 13 -

Referring again to the code strings shown in Figure 2, it will be
noted that an add instruction of the form addql#x,a5 is included at
every location. This is consistent throughout the entire array of
68020 code strings.

This increments the op-code pointer in register a5 by the number
x of bytes occupied by the current instruction. Thus it will b;'seen
that the coding for location 08FAQO includes the instrﬁction of addql

#2,a5, the 8088 instruction being & 2 byte instruction. As explained
above that the following code string refers to the same op—code with
an addressing mode that includes a displacement which (in MOD 01) is
an 8-bit displacement extended to 16 bits. The operand accordingly
requires 2 bytes, the entire instruction occupies 3 bytes and the
coding is provided for incrementing by 3 the op-code pointer in
register a5. In the next string, a 16-bit displacement is employed,
the instruction requires 4 bytes and coding is provided to add 4 to
the op-code pointer.

In addition to incrementing the op~code pointer, the code string
serves through move and jump commands (in particular:-
move a5@,dd; jra alP(di4:1:4) to take the processor directly to the
68020 code string whose address is contained in the jump table entry

_pointed to by the next 8088 instruction. It will be noted that the
jump is made with respect to a base table pointer held in register alt,
as noted above.

The penalty in memory space paid for adding this extra coding to

every string is negligible, but the ability to move directly to the

WO 88/07718 PCT/GB87/00202
- 14 -

68020 instruction string corresponding to the next 8088 instruction
does provide a significant advantage in processing time.

It,wili be well known to the skilled man that under certain
"situations it is necessary to depart from the strict sequenée of
"fetch, execute, fetch, ..." instructions described sbove. This will
usually involve the use of so-called interrupts. These may be déed to
enable the microprocessér to interact with input or output devices
operating at different speeds. The interrupt mechanism can also be
used to divert control from the microp;ocessor to & special routine
held in memory. |

It has been mentioned above that a particular difficulty in
emulation arises with providing an interrupt handling capability. In
the normal case, asynchronous interrupt requests that are supplied to
the 8088 will only take effect at the end of the current instruction.
With the emuiation, however, it cannot be guaranteed that an interrupt
will not occur part way through a 68020 code string, possibly causing
a crash. In accordance with a preferred feature of this invention, an
asynchronous interrupt is caused to alter the jump table base point in
at. This has no immediate effect but at the end of the current 68020
instruction string, the instruction jra ali@(d4:1:4) causes a jump to
be made not to the main jump table as previously described but to an
exception jump table. This is illustrated in Figure 1 at 24. This
exception jump table again has 64K entries but each points to a commoﬁ
piece of coding 26 in the 68020 code memory segment which processes

the interrupt. A similar techniqe is used to deal with segment

override.

WO 88/07718 PCT/GB87/00202

- 15 -

It has been mentioned that the 8088 maintains a series of flags,
these comprising three control flags and six status flags. Many of
the arithmetical op-codes affect the status flagézin particular and it
is an essential requirement of a workable emulation of the 8088
processor that the information embodied in the flags be available for
immediate access. In one approach, the coding at each location of the
jump table corresponding with an op-code known to affect flags would
update analogous flags held in one or more registers of the host
microprocessor. In accordance with a preferred feature of this
invention, however, an alternative approach is adopted and no attempt
is made to keep all flags continuously updated. Rather, the necessary
information is held to enable generation of the flags immediately a
request is received for access to the flags. Taking into account the
expected frequency of operations which, on the one hand affect flags
and on the other are dependent upon flag information, the approach
preferred in this invention represents a significant saving in
processing time.

By way of further explanation, the 8088 processor uses bit 2 of
the status word as a parity flag. This is arranged to hold at all
times the parity of the last byte result and is used, for example, in
instructions such as "Jump on the parity". It happens that the 68020
processor does not automatically maintain a parity flag. According to
the preferred feature of the present invention, any 68020 code string
which performs the function of an 8088 instruction affecting parity,
is arrangéd to leave the last result byte in register d2. Reference

is drawn, for example, to Figure 2B which is the 68020 code string for

WO 88/07718 ' PCT/GB87/00202
- 16 -

the label 001A00, being one of the ADD instructions. It will be seen
from line 5 that the result of thé "add word" instruction is put in
register d2. In line 6 this result is moved to register d4, rotated
(taking into account the differing conventions on high and low bytes
between the 8088 and the 68020) and moved to the address previously
set up in register a0. The result however remains in register EZQ

Turning to Figure 2C, there is shown the 68020 code string for
the label 07=2A00 which is a "jump on even parity" instruction. It
will be seen from line 1 that the result byte from d2 is moved to
register d4, which has previously been zeroced. A look up is then
performed in a parity table "PF table", which hold for each 256 values
of the byte result, the appropriate parity value O or 1. This parity
value is plaCed in_register d4 and, in line 2, a byte test operation
is performed to provide the subject for the jump in line 3.

A gimilar problem'aiises with the auxiliary carry flag which is
not provided in the 68020 processor. This is handled in a manner
Vahalogous to that described above for the parity flag.

Even taking into consideration the fact that there are slightly
less than 256 op-codes and the fact that not every addressing mode is
appfopriafe for each op-code, the creation of the 68020 code strings
as described abpve is a major undertaking. With knowledge of the
amount of goding typically required at a single location, it is
thought that approximately 300,000 lines of coding are involved. To
write, and perhaps more importantly fo debug this amount of code
probably would be regarded as impractical for a commercial product.

According to a further aspect of this invention, however, a method is

WO 88/07718 PCT/GB87/00202
- 17 -

provided for the automatic generation of the necessary coding. This
will now be described in detail.

A separate code generator is provided for each 8088 op-code or
each category of op-codes. Continuing with the example of the POP
instructions, a "make POP" generator is provided and a specific
example of this is shown -in the listing which is Figure 3. Reféiring
to the diagram which is Figure 4, it will be seen that a primitive
preprocessing stage takes a generalised generator program such as that
exemplified in the listing of Figure 8 to produce a specific generator
program for the host microprocessor. In this preprocessing stage,
information is taken from a register mapﬁing table which maps the 8088
registers on to the registers available on the host. It is, if
necessary, possible to map an 8088 register onto a memory address.

The primitive preprocessing stage also makes reference to a hex
look-up table, which provides hexadecimal equivalents.

The specific generator program, as illustrated in Figure 5, is
then driven by op-code selectors to produce so-called pseudo-host code
fragments, an example of which appears in Figure 9. These refer
extensively to macros. As illustrated in Figure 6, a macro processing
stage then converts the pseudo-code fragments into the required code
string by referring to a macro library. There is contained in Figure
10 an excerpt from the macro library containing those macros referred
to in the pseudo-host code fragments of Figure 9. The output of this
macro processing stage is the code string 08fa00 as shown in Figure 2

which is, in a final assembly process illustrated in Figure 7,

wO 88/07718 : PCT/GB87/00202
- 18 -

converted into object code.

It will be well known to the skilled man that certain
microcomputers based on the 8088 chip transfer processing control,
undér certain circumstances, to selected portions of 8088 code held in
ROM. These code portions may represent sérvice routines for
communicating with input and output devices, for example. The éérvice
routines can also be called by applicatidn programs, providing a
étandard interface.

According to a preferred form of this invention, provision is
made for service routines which are in 68020 code and can thus be
executed by the host processor in "native" mode, that is to say
without reference to the,jump'table. The service routines can be
written in a high level language such as "C" and then compiled. This
is a considerable advantage for programmers.

The 8088 command transfers control to aimemory location which -
instead of marking the beginning of a sequence of 8088 commands,
terminating with IRET - contains a pseudo~8088 command. By
"pseudo-command” is meant an op-code which is not given a definition
in the 8088 -instruction set. Depending upon the operand of the
pseudo-command, a program call is made to an indexed high levél
language routine. By this ingenious means it is possiblertorqall a
high level language routine in a manner which is transparent to
softwaré running on the emulation. This use of a pseudo=-command can
be better understood by reference to Figures 11A and 11B which

illustrate in diagrammatic form the use of a software interrupt

WO 88/07718 PCT/GB87/00202

- 19 -

respectively in conventional form and in accordance with a preferred
feature of this invention. Referring to Figure 11A, the instruction
INT n in the program which is running causes control to be passed from
the CPU to a service routine defined by the Interrupt Vector Table
(IVT) and the INT operand n. The service routine comprises a series
of 8088 instructions terminated by the IRET instruction. Turning now
to Figure 11B, the instruction INT n results in control being
transferred to a location defined again thréugh the IVT. At that
location, there is the pseudo-command BOP n causing a program call to
be made at location n in a high level language program store. The
service routine may typically be written in C. The service routine
returns control to the BOP instruction string and the emulation
process continues as previously described. Typically the next

instruction.following the BOP command will be the 8088 instruction

2

IRET.

In addition to providing for fast running of fixed service
routines, this technique enables the host processor to communi;ate
effectively with input and output devices. It should be understood
that this invention has been described by way of example only and
whilst those examples have been confined to emulation of the Intel
8088 on a Motorola microprocessor, the invention should not be
regarded as restricted in any sense to this application.

In the described example, the jump table is accessed using the

first two bytes of the 8088 instruction which in a typical case

WO 88/07718 o PCT/GB87/00202
- 20 -

comprise the theroperation and addressing mode respectively. This
second byte may in most cases be regarded as the operand addressor
since it points to or ﬁontains the operand. As has been explained the
second byte may occasionaliy represent a second instruction and there
may still be advantage in dealing with both bytes together. In some
other caées, the value of the second byte is redundant to the j;mp
process. in other emulations the operation code. and suéh functioﬁs as
the operand addreésor may nét form the first two bytes. In some cases
it will be appropriate to use the operation code and the next moét
significant element in therinstruction stream, for the purposes of
accéssing the hoét code strings.

Whilst a jump table is the preferred manner of accessing the host
instruction strings, other methods may be employed. Thus, with
appropriate indexing, control might be passed directly to the start of
the host instruction string.

The described method of generating the host instruction strings
is felt to héve considerable advantages but alternatives within the
scope of this invention will exist.

The feature by which each location contains coding for addressing
the next instruction; the manner in which interrupts are handled and
the manner in which flags are dealt with are believed to represent

further and séparately novel advances.

WO 88/07718 PCT/GB87/00202

=21~
CLAIMS
1. Data processing means adapted to be controlled by sequential

instructions, & substantial number of which comprise an operation code
gelected from a set of n such codes and a qualifying code sglected
from & set of m such codes, the data processing means cdhprisinéia
store having approximately n times m locations with each location
corresponding to a consistent combination of operating code and

qualifying code and holding a series of instructions corresponding to

the said operating code and qualifying code.

2. A process for controlling the operation of a data processing unit
in accordance with a received series of instructions, where at least
some instructions each comprise an operator and an operand éddressor,
there being a finite number of permissible combinations of operator
and operand addressor, the process comprising the steps of holding a
plurality of instruction strings, one for each said permissible
combination of operator and operand addressor, and inputting to the
data processing unit for each received instruction, the instruction
string corresponding with said operator and operand addressor

combination.

WO 88/07718 | PCT/GB87/00202

-22-

3. A computer including processing means; first store means for
storing a series of instructions, a substantial number of which
instructions cdmprise an operator and an addressing mode; second store
means having a plurality of locations corresponding respectively with
permissible combinations of said operator and said addressing mgﬁe,
and being adapted to hold at each said location an instruction string;
and control means adapted to input in sequence to said processing
means instruction strings from locations in said second store means

corresponding respectively with instructions from said first store

means.

4, A computer as claimed in Claim 3, further comprising table means
having entries corresponding with respective said locations, each
entry comprising the address in said second store means of the said

instruction string.

5. A computer as claimed in claim 3, wherein each instruction string
is arranged to provide said control means with information relating to

the address in said store means of the next instruction.

WO 88/07718 23 PCT/GB87/00202

AMENDED CLAIMS
[received by the International Bureau on 25 July 1988 (25.07.88)-
Additional claims 6-12 added (2 pages)]

6. A computer including processing means adapted to operate in
response to instructions selected from a host instruction set; first
store means for storing a series of instructions each selected from
an emulated instruction set, a substantial number of instructions in
said emulated instruction set comprising an operator and an
addressing mode; second store means having a plurality of locations
corresponding respectively with permissible combinations of said
operator and said addressing mode and being adapted to.hold at each
said location a string of instructions selected from said host
instruction set; and control means adapted to input in sequence to
said processing means, instruction strings from locations in said
second store means, said control means including jump table means
having for substantially each permissible combination of said
operator and said addressing mode an entry comprising the address of

the corresponding location in said second store means.

7. A computer according to Claim 6, wherein the last
instruction in the string of instructions held at each location in
-the second store means comprises a jump instruction with reference
to the entry in said jump table appropriate to the next instruction

in said series of instructions stored in said first store means.

8. A computer according to Claim 6 or Claim 7, wherein said
control means is adapted to reference the jump table means via a
base point and is further adapted to alter said base point on
receipt by the computer of an interrupt signal, all entries in the
jump table means corresponding to said altered base point containing
the same address of a location in said second store means, said
location in said second store means holding a string of instructions
selected from said host instruction set and adapted to respond to

said interrupt.

WO 88/07718 S ' PCT/GB87/00202

24

g. A computer according to any one of Claims 6 to 8, wherein
‘'said control means maintains an instruction pointer containing the
address in said first store means of the next instruction in said
series of emulated instructions and wherein the string of host
instructions held at each location in said second store means

includes an instruction to update the said instruction pointer.

10. A computer according to any one of. Claims 6 to 9, wherein
said jump table means contains entries corresponding to pairs of
certain operators which require no addressing mode, the location in
said second store means corresponding to each of said jump table
entries containing a host instruction string emulating both of the

said operators.

11. A computer according to any one of Claims 6 to 10, wherein
for a flag function such as parity, the control means is adapted to
store at least part of the result of each operation affecting the
flag function, the host instruction string held at each location in
the second store means corresponding to a combination of operator
and addressing mode logically dependent upon said flag function
ihcludihg one or more host instructions adapted to derive the
current value of said flag function from said stored result or part

result.

12. A computer éccording to any one of Claims 6 to 11, wherein
certain instructions stored in said first store means at locations
to which jumps are made in response to interrupt instructions from
said set of emulated instructions, comprise pseudo emulated
instructions the entry corresponding to which in said jump table
means comprises the address in said second store means of a host

- instruction string adapted to perform the interrupt function.

WO 88/07718

/18

PCT/GB87/00202

8088
CODLE

MEMORY |/

SEGMENT

68020 CODE MEMORY SEGMENT

7
;

/

20

O

\

22

/

/’%0
NEXT 72
INSTRUCTIONY
POINTER
///6
TABLE |
POINTER
MAIN
/8 JUMP
\ 7ABLE
EXCEPTION
/__/G 7 JUMP
: TABLE

SURSTITUTE SHEET

WO 88/07718 7) PCT/GB87/00202

2/18
Pop Word ea(m@/rm@)

.globl _08fA¢Q
_(@8FAPPT movw d6,dd; addw _SI,d4| BX+SI
movl a6,af; addl d4,ap | add seg offset to ea

movl al,d5; movw a2@(d5:1),a¢@ | pop a word on the stack
addgw #2,d5; movl d5,al l increment the stack pointer
addql #2,a5] inc opcode and return

cmpl_gvi_low_regen,a¢; bgel video_word_routine
. movw a5@,dl; jra al@(d4:1:4)@

Pop Word ea(ml/rm@)

.globl _08fAlLgQ
_08fAlL@: movb a5@(2),dl; extw d4; addw d6,dl4; addw SI,d4 --BX+SI
movl a6,a@; addl d4,ap | add seg offset to ea
movl al,d5; movw a2@(d5:1),a@ | pop a word on the stack
addgw #2,d5; movl d5,al [increment the stack pointer
addql #3,85 | inc opcode and return
cmpl _gvi_low_regen, a@; bgel video_word_routine
. movw a5@,dl; jra al@(dl:1:4)@

Pop Word ea(m2/rm@)

.globl _0BFA8Y
_08fA8¢: movw a5@(2),d4; rolw #8.al4 ; addw d6,d4; addw _SI,dl | BX+SI
movl a6,a@; addl d4,ap | add seg offset to ea
movl al,d5; movw a2@(d5:1), ap@ | pop a word on the stack
addqw #2,d5; movl d5,al | increment the stack pointer
addql #4,a5 | inc opcode and return
cmpl _gvi_low_regen,a@; bgel video_word routine
smovw a5@,dl4; jra al@(dh:1:4)@

Pop Word reg (BX)

.globl _05bA@®
_05bA@Q:

movl al,d5; movw a2@(d5:1),d6 | pop a word on the stack
rolw #8,d6 | flip the bytes
addqw #2,d5; movl d5,al | increment the stack pointer
addql #1,85 | inc opcode and return
: movw a5@,dl4; jra all@(d4:1:4)e

Pop Word reg (BX) Fi [2A

.globl _05bA53
_05bA58:
movl al,d5; movw a2@(ds5:1),d6 | pop a word on the stack
rolw #8,d6 | flip the bytes
addaw #2,d5 | increment the stack pointer
movw a2@(d5:1),d7 | pop a word on the stack
rolw #8,d7 | flip the bytes
addqw #2,d5; movl d5,al | increment the stack pointer
addgw #2,a5] inc opcode and return
: movw a5@,dl; jra ali@(dl:1:4)e@

e e caman zwere N I PEEEP

WO 88/07718

PCT/GB87/00202

3/18

.globl _O@1ApQ
_0p1A@@: movw d6,d4 addw _SI,dh | BX+SI
Zovw d7,dp | get word from register
movl a6,af; addl di,ap | add seg offset to ea
movw a@@,dl; rolw #38,dl | get word from memory
movw dl,d2; addw d@,d2; movw cc,d3 | ADD
novw d2,dlt; rolw #8,dl; movw dk,age | store word in memory
addql #2,a5 | inc opcode and return
cmpl _gvi_low_regen,a¢; bgel video_word_routine
; movw a5@,dl; jra ali@(dls:1:4)@

Fic 25
*#*GENERATED by gen jump2***
.globl _07aA@d
_072A0@:
Jp,JPE
moveq #@,dl; movb d2,dl4; movl # pf_table,ap; movb a@@(dl:w),dl
btst #@,d4
bne 10$
addql #2,85 | inc opcode and return
; movw a5@,dl; jra al@(dl:1:4)e
103:
movb a5@(1),d4
extbl di | d4 = sign extended disp
addl dli,a5 | compute new opcode pointer
moveq #@,d4 | we must keep top half clear.
addql #2,a5 | inc opcode and return
. movw a5@,dl; jra ali@(a4:1:4)@ Fiq 2C
%% %
#**GENERATED by gen_add w**¥
#include "mac_reg"
#include "mac_util2"
#include "mac_addr"
#include "mac_util"”
#include "mac_add"
.globl _O0P1AQP
_0Q1AQQ: nPrm@
get_op_wr(dg,d7)
segmentds
get _op_wm(dl,ap@)
doit(dl,d¢,movw,addw)
put_wn
end2
video_word FiG CR
end@

PRSP R P Y B § e st g

WO 88/07718 PCT/GB87/00202

/78

GENERAL GENERATOR

PROGRAM
Y REGISTER
MAPPING
PRIMITIVE
PRE-PROCESSING,
HEX
CONVERSION
SPECIFIC GENERATOR
PROGRAM /L_/G 4
0P - CODE
SELECTORS

SPECIFIC
CENERATOR
/E/G 5 PROGRAM

Y
PSEUDO HOST
COMMANDS

SUBSTITUTE SHFET

PCT/GB87/00202

WO 88/07718

5/18

¢ b4

s°JT uOT10B
s*)1 uoryoe
S*J@ uorioe
s /@ uotr3os

s*JG uor3om
§°*9G uoTloe
s°*pg uoTloB

§°0G uoT}OB

s*qG uorjoe
,§°8G UOT30R®
s°*6G UuOTlOB

$°Q4 uoOTlIO8

AAANAN

$$°J1/dma/
$$°L1/dm/
$$° 3¢ /dua/
$$° Lp/dma/

‘I-
“I-
“I-
“I-

ml

#/dmy /ua
ddo/qrt/
ddo/qrt/
ddo/qr1/
ddo/qrT/

usg/dwy/ j- yme | ¢$-@i/dwi/ 3ed
$$°@ga1/dm/ << $$.AId, OUdd

$$°@3/dma/ ¢ ,HIY HAS AJAL, OYOS

di/¢$./, ©- u- pes
di/s./. e~ u- pes
di/$./. - u- pes
di/$./, o~ u- pes
$$°dod
<, dj/$./, - u- pss
<, di/$./, ®- u- pss
¢<,di/$./, ©- u- pos
<,di/$./, ©- u- pss
<.di/$./, - u- pes
<,dj/$./. ®- u- pes
<,di/$./, ®- u- pes
<., di/$./, ©~ u- pss

$$°3G/dumy/
ww.mm\mau\
$$°pG/dua/
$$°0G/duy/
$$°qG/duy/
$¢$ 8G/dua/
$$°6G/dua/
$$°gG/dma/

,QH.I.
‘1-
‘1-
‘-
Reil
I-
‘-
1-

#
ddo/qr1/
ddo/qr1/
dda/qrt/
ddo/qr1/
ddo/qr1/
ddo/qr1/
ddo/qrt/
dd>/qTT1/

¢¢°dod ueS/dmy/ 3- >me | $$°¢3/dui/3e0
$$°@g1/dwr/ << $$,AId, OYo?
$$°@1/dmr /¢ o34 AJAL, OYO®

s*jg uotaoe ¢ ,dj /¢./, ®- u- pas | ‘I~ d- ddo/qri/ | $¢-d

#

od ued/dmy/ 3- M _ VA 43dAL, OUod

¢¢‘dod ued/dwy / ¢ dd | dod usag 380

#

-pa1 uorantog BIUSEsur aystakdop 9g/4z/2T h°2 dod exew(#)p = AISOOS #

#

A" ys/urq/ | #

"

WO 88/07718 PCT/GB87/00202

6/78

PSEUDO HOST
COMMANDS

1 MACRQO
' LIBRARY

MACRO
PROCESSING

FI6.0

HOST CODE
FRAGMENTS

HOST CODE
FRAGMENTS

ASSEMBLER | - /C—/ G 7

v

O0BJECT CODE

QIIRQTITIITE AL

WO 88/07718
+/18 PCT/GB87/00202

#
ScesID = @(#)gen_pop 2.7 12.24/86 Copyright Insignia Solutions Ltd.

#

BEGIN {
11

inst type =
pld = nn

}
JTYPE/ { inst_type = $2 }
/PID/ { pid = $2 }

END {
#I hex
#I reg
table [p] = 88 . - ~ T
table [1] =89 o)
table [2] = 90
table [3] = 91
table [4] = 92
table [5] = 93
table [6] = 94
table [7] = 95
table [8] = 7
table [9] = 23
table [1g] = 31
table [11]1 = @
#
constants
#
sp = & # the stack pointer reg code (3 bit)
cs =1 # the code segment register
if (inst_type == "") {
print "TYPE must be given"
exit
}
if (inst_type == "EA") {

print "#include\"mac_reg\""
print "#include\"mac_addr\""
print n#include\"mac_util\""
print "#include\"mac_pop\""

for (irm = @; irm < 8; irm++) {
for (imode =@; imode < 3; imode++) {

Fla 8.0

WO 88/07718

PCT/GB87/00202
8/18
#print out header comment
print non
print n|n
print "| Pop Word ea ("mod[imode] "/ rm[irm] ")"
print i

#print out label and the addressing macro

j = 64 * imode + irm

print ".globl 0" hex [1437 "A" hex[j]

print "_O" hex [143] "A" hex[j] ": " mod[imode] rofirm]

gprint out the segment offset macro
if (irm == | | irm == | | (imode ! = @ && irm == 6))
print "segmentss"

else
print "segmentds"

#pop the word on the stack
print "pop_word (" DEST ")"

#increment the stack pointer
print “inc_stack_pointer"

#test for the special case of a disp only so
#that we get the jmmediate data from the correct place
if (imode == @ && irm == 6)

print "endi"

else
print finish[imode]

#print out the regen check macro
print "yideo_word"

print "end®"

Fia %

WO 88/07718
f PCT/GB87/00202

9/18

mode 3 addressing ,

4 direct reference to registers
imode = 3

for (irm = @; irm < 8: irm ++) {

print out a header comment

print 1o
print
print "| Pop Word ea ("mod[imode] "/" ro[irm] ")"
print 1in

1"n

print out label and the addressing macro
j = 64 * imode = irm -

print ".globl _O" hex[143] "A" hex [i]
print "_O" hex[143] "A" hex [j3 "

pop a word
print "pop_word(" EADDR "y
print "swap_word(" EADDR nyn

the stack pointer is a special case
if(irm == sp) {
print "put_sp(" EADDR myn

else {
increment the stack pointer

print "inc_stack pointer”
print "move_word(" EADDR v v peglirm])"

}

print out the finish macro
print "end2"
print "end®"

! Fi¢g 8.2

exit
if (inst_type == "REG") {

#cyle round for the 3 bit register field
for (i=@; i<8; i++) {

calculate the first byte value for
PbP1P1Pxxx => ¢x58 + (3 bit from i)
val = 88+ 1

set the output filename
filename = "/tmp/" hex[val] "." pid

print "#include /"mac_reg\""> filename

print "#include /"mac_addr\"" > filename
print "#include /"mac_util\"" >> filename
print "#include /"mac_pop\"" >> filename
print "#include /"mac_seg\"" >> filename
print "#include /"mac_int\"" >> filename

R L=

/GB87/00202

P

(o]
-
—
o
-—

WO 88/07718

(.OE.&G@Hﬁ,w << u *w MHG\wH”_%@E wVau HH(Q&%MN@.Q :&l: uﬁﬂhﬂ
smeuaTT] << [Teaflxey v, [Tealxeu @ *1qo18*, 3urad

19981 943l ano -qutad #

oweUdTEI << u|w FUTId

omeuaTTd << n(u [T]80amod)30 pIoy dod |. jutad
. QWBUSTTI << u|w IUTId
owBUSTLJ << w o 2UTAd

pcmaaooumﬁmmsm&zo aaﬂna&
SWEUSTTS < wu\IUT 08W, \ OpDTOUTH, Jurad
owBUSTTS << wu\FOS OBW,\ OPNTOUTH, jutad
oWBUSTTI << wn\dod OBW,\ SPNTOUTH, 3JuTad
oWBUSTT] << uu\TTAT OBW,\ opnyoury, 3jurad
oWBUSTE] << wu\dPPE 0BW,\ epnidoury, jurad
SWBUSTT] << wa\§04 O8W,\ OpNTOUTH, IUTAd

pTd 4w —”Hwbﬁ_ xaYy :\QE&\: = OWBUSTTJ
swsuaTTJ andino syl 398 #

£ + gg = TBal

. .w.....wwﬂ.ﬂﬁ\/

(T woagy 319 €) + 8G¥@ <~ xxx@TRTPAB#
aoj onyea 934q 38ITF SUYI 238TNOTBY #

} (++F g OF M&uﬂv JI0J

pPIOTJ Ie3stdax 11q € 9y3z J03 punog aThAoH
} (+#+f tg > [g = [) 303
{

oweueTTJ << ufpud, 3urad

owBUSTT] << ,TPUd, 3Iurad

oaowum YSTULJ 9yl Ino qutad

{

'S

niH

aweRUITTF << :umuCﬂoalxomumlo:ﬂz jutad
aojutod 3}oB3S 9yl JUSWSIOUT #

owguaTTy << ulw [T1802 ,°, ”AAVE »)paos eaowm, jurad

SWBUSTT] << (s HAQAVE .)pIos deams, jurad

oWBUATTI << u(s HAAVE ,)PIOM dod, qutad
} osi®
_ _ {
smBUSTT] << ,I93urod 3}oB3s JUT, qutad
gojurod 3j0B3S OY} JUSWIJIOUT #
oweuaTEd << ul(u [T]32a =Vﬁnolem3m:,pcﬂua
omeuaTTd << ulw [F1801 ,)paom dod, jutad
} (.®3®p, == [T]8eamadAy) JT 9ST®
s191sTHea B3BpP BTOJIOJO| JOF 9S8BI 1et1oeds #
{

. owBUSTTJ << u(. HAQVE) ds_3nd, aurad
owBUSTTS << {w HAAVH ,)PIoM dBms, jurad
oweus Ty << u(« ¥AAVE .)PIOM dod,, qutad

} (ds == T)3T

ospo TBID9dS ® ST asjurod ov3S 9yl #

oWBUSTTS << u :PPV. [Teslxeu @ , utad
oweUSTT] << wP@Vae [TBAIXOU ¢ TqOT3°, Aurad
1ege1 @yl Ino qutady

owBUSTTY << u|w 3uTId
owBUSTTI < (s [T]89qmod ,)3oa pIoM dod fu gurad
SWBUSTTY << u|w FuTId

QWBUBTTEY << u u jurad
quUammod JI9pROY ¥ N0 qurad ¥

J..quqqrnrrt:53}4EEE?T

WO 88/07718
f PCT/GB87/00202

11/18

the stack pointer is a special case
if (i== sp) {
print "pop_word(" SCRATCH_1) ")" » filename
print "swap_word (" SCRATCH_1) ")" > filename
if(i 1= J) {
print "put_sp("SCRATCH_1 #)r >> filename
}

else if(i 1= j) {
Special case for Motorola data registers
if (typewreg[i] == "data") {
print "pop_word(" reg[i] ")" >> filename
print "swap_word(" reg[i] ")" >> filename

increment the stack pointer
print "inc_stack_pointer_no_store" >> filename

else {
print "pop_word(" EADDR ")" >> filename
print ngwap_word (" EADDR ")y >> filename
print "move_word(" EADDR w o peg[i] ")" >> filename
increment the stack pointer
print "inc_stack_pointer_no_store" >> filename

}
else {

print "just_sp" > filename

increment the stack pointer
print "inc_stack_pointer_no_store" >> filename

4 At this point the stack pointer is in mc68@2¢ reg " SCRATCH_ 1 "

the stack pointer is a special case

if (j == sp) {
print "pop_yord_no_get(" EADDR ")" >> filename
print "swap_word(" EADDR ")y* >> filename
print "put_sp(" EADDR "y" 5> filename

Special case for Motorola data registers

elge if (typewregli] == "data") {
print "pop_word no_get(" reg[j] ")" >> filename

print "swap_word(" reg[j] ")" >> filename

4 increment the stack pointer - I:IQ ?4
print "inc_stack_pointer" »> filename
}
else{
print "pop_word_no_get(" EADDR ")" >> filename
print "swap_word(" EADDR ")" >> filename
print "move_word(" EADDR m.m preg(j] ")" >> filename
increment the stack pointer
print "inc_stack_pointer" >> filename
}

print out the finish macro
print "end2" >> filename
print "end@" >> filename

WO 88/07718
12/13 PCT/GB87/002
for (j =013 ¢ lroj+a)d /00202

4 cyle round for the 3 bit register field
for (i=@; 1<8; i++) {

calculate the first byte value for
#0bP1P1Pxxx -> ¢x58 + (3 bit from 1))
val = 88 + 1

jval=7+3*8

set the output filename
filename = v /tmp/" hex[vall "." pid

print nginclude \"mac_reg\"" 3 filename
print v#include \"mac_addr\"" y> filename
print n#include \"mac_util\"" 5> filename
print n#include \"mac_pop\“"“>> filename
print v#include \"mac_seg\""')) filename ,
print n#include \“mac_int\"" > filename -~ .
" # print out a header comment F ‘Q gg
print " n 5> filename

print " n 3> filename

print "| Pop Word reg(" comregli] ")" 7 filename
print " n 5> filename

print out the label
print v globl _@" hex[val] "A" hex[jvall > filename
print " Q" hex[val] "A" hex[jval]l ": n %% filename

the stack pointer is & special case

if(i == sp) {
print "pop_word(" SCRATCH_ 1 ")" 3y filename
print "swap_word(" SCRATCH 1 ")" 33 filename
print rput_sp(" SCRATCH_ 1 ")" >? filename

Special case for Motorola data registers
else if (typewreg[i] == "data") {
print "pop_word(" reglil M)" »? filename
print "swap_word(" reg[i] ")" >? filename

4 increment the gtack pointer
print "inc_stack pointerﬂpo_store“ »> filename

else {
print "pop_word(" EADDR ")" >> filename
print ngwap_word (" EADDR myr >> filneame
print "move_word(" EADDR "," regfil " 3% filename
increment the stack pointer
print "inc_stack_pointer_po_store" >> filename
}
pop 2 word

print "pop_word_no_get(" EADDR ")" >> filename
print “swap_word(" EADDR ")" >> filename

put the segment register
print "put_" sregli] "(" EADDR ")" >> filename
if we modify the code segment set & fictitious
interrupt to reset the program counter. .
if(j == cs) {
1 print "set_pc_interrupt" 5> filename

L a1 T Qur::f

WO 88/07718

}

exit

PCT/GB87/00202
13/18

increment the stack pointer
print "inc_stack_pointer" >> filename

print "end2" >> filename

print "reset_seg_defaults" >> filename
print "route_it" >> filename

£ (inst_type == "SEG_REG") {

cyle round for the 2 bit register field
for (i=@; 1<4; i++) {

4 calculate the first byte value for
ObPPPxxill => Px@7 + 8 * (2 bit from i)

val =

set

7+41*

the output filename

filename = "/tmp/" hex[val] "." pid

print
print
print
print
print
print

"#include \mac_reg\"" >> filename
"#include \mac_addr\"" >> filename
"#include \mac_util\"" >> filename
"#include \mac_pop\"" >> filename
v#include \mac_seg\"" >> filename
n#include \mac_int\"" >> filename

print out a header comment

print
print
print
print

w1t 5> filename
"i* >> filename
"| Pop segment reg(" somreg[i] ")" >> filename
min 5> filename

print out the label

print
print

pop
print
print

get
print

" globl O" hex[val] "A@@" >> filename

' 0" hex[val] "A@@: " >> filename

-

a word

"pop_word (" EADDR "y* 5> filename
"swap_word (" EADDR My 35> filename
the segment register

"put_" sreg[i] "(" EADDR ")" >> filename

4 if we modify the code segment set-a fictitious
interrupt to reset the program counter.
if(i == cs) {

print "set pc_interrupt" >> filename

Fig 8.6

‘ WO 88/07718 PCT/GB87/00202
14/18

increment the stack pointer
print "inc_stack_pointer" >> filename

print out the finish macro
print "endl" >> filename

print "reset_seg_defaults" >> filename
print "route_it" >> filename

for (j = @: 3 <45 g++) {

cyle round for the 2 bit register field
for i=@; i<h; i++) {

calculate the first byte value for

Pbgggxx11l => @x@7 +-8 *:(2 bit from i)
val =7 + i * .

jval =7 + 3 *8

set the output filename
filename = "/tmp/" hex[val] "." pid

print "#include \"mac_reg\"" >> filename
print "#include \"mac_addr\"" >> filename
print "#include \"mac_util\"" >> filename
print "#include \"mac_pop\"" >> filename
print "#include \"mac_seg\"" >> filename
print "#include \"mac_int\"" >> filename

print out a header comment
print "" >> filename

print "|" >> filename
print "| Pop segment reg(" somreg[i] ")" >> filename
print "|" >> filename

print out the label
print ".globl _O" hex[val] "A" hex[jval] >> filename
print "_O" hex[val] "A" hex[jval] ": " >> filename

if(di 1= §) {
pop a word
print "pop_word(" EADDR "y* >> filename
print "swap_word(" EADDR "y >> filename

get the segment register
print "put " sreg[i] "(" EADDR "y* >> filename

if we modify the code segment set a fictitious
interrupt to reset the program counter.

: if(i == cs) {
print "set_pc_interrupt" >> filename
}

Fia 87

SUBSTITUTE SHEET

}

for (J

WO 88/07718

15,19 PCT/GB87/00202

else {

}
increment the stack pointer
print "inc_stack_pointer_po_store” »> filename

print "just_sp" > filename

pop a word
print "pop_word_no_get (" EADDR ")" >> filename
print "gwap_word (" EADDR ")" >> filename

get the segment register
print "put_" sreg[j] "(" EADDR v)* >> filename

if we modify the code segment set a fictitious
interrupt to reset the program counter.. -

if(j == cs) {
print "set_pc_interrupt" »> filename - -
}

4 increment the stack pointer
print "inc_stack;pointer" »> filename

print out the finish macro
print "tend2" >> filename

print "reset_seg_defaults" »> filename
print "route_it" »> filename

g § < 8) {

cyle round for the 2 bit register field
for (i=@; i<l; i++) {

calculate the first byte value for

QbpPPxx1ll -> gxg7 + 8 * (2 bit from i)
val =7 + i % .
jval = 88 + J

get the output filename
£ilename = "/tmp/" hex[val] "." pid

print "#include \"mac_reg\"" >> filename
print "#include \"mac_addr\"" >? filename
print "#include \"mac_util\"" >> filename
print "#include \"mac_pop\"" > filename
print "#include \"mac_int\"" >> filename
print "#include \"mac_seg\"" > filename

Fia 8.8

ENS ITDEINYIT=E 1P~ ™7 1™ P

WO 88/07718 PCT/GB87/00202

16/18
print out a header comment
print " " >> filename
print "|" >> filename
print "| pop segment reg(" somreg[i] ")" >> filename
print "|" >)> filename

print out the label
print ".globl _O" hex[val] "A" hex[jval] >> filename
print "_O" hex[val] "A" hex[jval]l": " >> filename

pop a word
print "pop_word(" EADDR ")" >> filename
print "swap_word(" EADDR ")" >> filename

‘#get the segment register o
print "put" sreg[i] "(" EADDR ")" >> filename

if we modify the code segment set a fictitious
interrupt to reset the program counter.
if(i == cs) {
print "set _pc_interrupt" >> filename
} .

increment the stack pointer
print "inc_stack pointer_no_store" >> filename

the stack pointer is a special case

if(j == sp) {
print "pop_word_no_get(" EADDR ")" >> filename
print "swop_word(" EADDR ")" >> filename
print "put_sp(" EADDR ")" >> filename

}

Special case for Motorola data registers

else if (typewreg[j] == "data") {
print "pop_word_no_get(" reg[j]")" >> filename
print "swap_word(" reg[j] ")" >> filename
increment the stack pointer
print "inc_stack_pointer" >> filename

}

else {
print "pop_word no_get(" EADDR ")" >> filename
print "swap_word(" EADDR ")" >> filename
print "move word(" EADDR "," reg[j] ")" >> filename
increment the stack pointer
print "inc_stack pointer" >> filename

}

print out the finish macro
print "end2" >> filename
print "end@" >> filename

Fia 89

SUBSTITUTE SHEET

WO 88/07718 PCT/GB87/00202
17/18

#define AX_REG d7
#define BX REG db
#define CS_REG _CX
#define DX_REG _DX

#define SP_REG al

#define BP_REG _BP
#define SI_REG _SI
#define DI _REG _DI

#define AH_REG d7
#define BH_REG d6
#define CH_REG _C N

#define DH_REG _D

#define AL_REG d7
#define BL_REG d6
#define CL_REG _C+1
#define DL_REG _D+1

#define SS_REG a2

#define DS_REG ab

#define DS_OVR _M_DS Fie (O
#define CS_REG _M_CS

#define ES_REG M ES

#define DEST_ADDR af
#define JUMPT al
#define PC a5
#define SS_OVR a3

#define OP1 4@
#define OP2 41
#define RESULT d2
#define CODES d3
#define EADDR d4
#define SCRATCH_1 d5

#define m@rm@ movw BX_REG,EADDR; addw SI_REG,EADDR | BX+SI
/* video check code */
#define video_word\
cmpl gvi_low_regen,DEST ADDR;\
bgel video_word_routine
#define segmentds movl DS_REG,DEST_ADDR; addl EADDR,DEST ADDR | add s
#define endf check_mac; movw PC@,EADDR; jra JUMPT@ (EADDR:1:4)@
#define end2 addql #2,PC l inc opcode and return
#define pop_word(src))\
get_sp(SCRATCH_1); movw SS_REG@(SCRATCH_1:1), src | pop a word on the
#define inc_stack_pointer\
addqw #2,SCRATCH_1; put_sp(SCRATCH_1) | increment the stack pointer

SUBSTITUTESHEE'T

PCT/GB87/00202

WO 88/07718

78//8

(9] 914

_
_
_
_
_

I
|
_
|
_

VELY,] __
to=x k= | v J0g _
c =X |
| 172 §a§$_ . “ Inr A |
_ | e _
] : I INILnoY | _
INILROY | O LR0% AXVINUINY

/7 |

(0)}/ 01

L3/

L.

U NOILY20T LV INILNOS 8808

LAl DA

WV IILS NOILINILSNI &80

u N/

_

|

|

_ U LN/
|
_

|

!

WVIdLS NOILINILISNI 8808

® e —

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT
International Application No PCT/GB 87/00202

I. CLASSIFICATION OF SUBJECT MATTER (it several classification symbols apply, indicate all) §
According to International Patent Classification (IPC) or to both National Classification and IPC

e, G 06 F 9/44

il. FIELDS SEARCHED

Minimum Documentation Searched 7
Classification Symbols

" Classification System |

4

IPC G 06 F 9/00

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included In the Fieids Searched ¢

Ill. DOCUMENTS CONSIDERED TO BE RELEVANT®
Citation of Document, '* with indication, where appropriate, of the relevant passages 12

Category * | Relevant to Claim No. 13

X Communications of the ACM, vol. 15, no.

8, August 1972, ACM (New York, US)

R. Rosin et al.: "An environment for
research in microprogramming and
emulation'", pages 748-760, see page
750, left-hand column, lines 32-57;
page 751, right-hand column, lines
16-28; page 752, right-hand column,
line 44 - page 753, left-hand column,
line 6 _

1-3,5

A2, 0025952 (SIEMENS AG) 1 April 1981
see page 4, lines 31-33; page 5, 4
lines 11-28; figure 1

A EP, A3, 0109567 (IBM) 30 May 1984

A | Elektronik, vol. 34, no. 25, 13 December
1985 (Berlin, DE) G. Hildebrandt

et al.: "z80-software lduft auf
68000-Systemen' , pages 91-92

® Special categories of citad documents: 10

uA" document defining the general state of the art which is not
considered to be of particular relevance

“E™ parlier d t but published on or after the international
flling date

“L" document which may throw- doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

“O" document referring to an oral disciosure, use, exhibition or
other means

“p* document published prior to the international filing date but
later than the prionty date claimed

“T" |ater document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

“X"* d t of particular relevance; the claimed invention

cannot be considered novel or cannot be considered to
involve an inventive step

uy" document of particular relevance; the claimed invention
cannot be considered to invoive an inventive step when the
document is combined with one or more other such docu-
{nstr;ltl. l':ch combination being obvious to a person skilled
n the art.

"'A" document membaer of the same patent family

IV. CERTIFICATION

Date of the Actual Compietion of the international Search

15th October 1987

Date of Mailing of this International Search Report

- 6 NOV 1987

International Searching Authority

EUROPEAN PATENT OFFICE

Signature of Authorized Omﬁ

M. YAN MOL
e »

Form PCT/ISA/210 (second sheet) {January 1985)

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON

16630)

INTERNATIONAL APPLICATION NO PCT/GB 87,/00202 (SA
This Annex lists the patent family members relating to the
patent documents cited in the above-mentioned international)
search report. The members are as contained in the European L
Patent Office EDP file on 28/10/87 -
The European Patent Office is in no way liable for these f
particulars which are merely given for the purpose of
information.
Patent document Publication Patent family Publication
cited in search date member(s) date '
report '
EP-A- 0025952 | 01/04/81' DE-A- 2938570 23/04/81
o JP-A=- 56054551 14/05/81
AT-B~- E10°981 15/01/85
DE-A- 2942025 30/04/81
JP-A~ 56065249 02/06/81
EP-A~ 0109567 30/05/84 WO-A- 8401635 26/04/84
EP-A- 0124517 14/11/84
UsS-A- 4587612 06/05/86

For more details about this annex :

see Official Journal of the European Patent Office, No.

12/82

	Abstract
	Bibliographic
	Description
	Claims
	Amendment
	Drawings
	Search_Report

