DEMANDE DE BREVET D'INVENTION

Date de dépôt : 24.10.12.
Priorité :

Date de mise à la disposition du public de la demande : 25.04.14 Bulletin 14/17.

Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule.

Références à d'autres documents nationaux apparentés :

Demandeur(s) : TEOXANE — CH.

Inventeur(s) : CHARTON EMELINE et MEUNIER STEPHANE.

Titulaire(s) : TEOXANE.

Mandataire(s) : CABINET NONY.

PROCEDE DE PREPARATION D'UN GEL RETICULE.

La présente invention a pour objet un procédé de préparation d'un gel réticulé d'au moins un polysaccharide ou un de ses sels, comprenant au moins les étapes consistant à :

a) disposer d'un gel aqueux comprenant au moins le(s) polysaccharide(s) sous une forme non réticulée associé(s) à au moins un agent réticulant ;

b) réticuler le mélange obtenu à l'issue de l'étape a) et, le cas échéant ;

c) récupérer ledit gel réticulé formé.

caractérisé en ce que l'étape b) de réticulation est réalisée dans un milieu supplémenté avec au moins un sel d'halogénure alcalin présent dans une teneur comprise entre 0,5 % et 20 % en poids par rapport au poids total du gel aqueux de l'étape a).
La présente invention vise à proposer un procédé de préparation d’hydrogels à base d’un polysaccharide réticulé, et de préférence d’acide hyaluronique ou de l’un de ses sels.

Naturellement présent dans la peau, l’acide hyaluronique est connu pour ses propriétés viscoélastiques ainsi que sa très grande propension à absorber l’eau. Ses propriétés contribuent en grande partie à l’élasticité de la peau.

C’est précisément au regard de ces propriétés que ce composé est mis à profit depuis désormais plus de 10 ans dans de nombreuses applications relevant des domaines médicaux et cosmétiques, voire de la chirurgie esthétique.

Ainsi, l’acide hyaluronique est notamment utilisé pour le comblement des rides et pour amoindrir, voire effacer, un affaissement local de la structure du derme qu’est une ride, généralement via injection directe dans le derme, au niveau de la ride considérée.

En fait, l’acide hyaluronique est mis en œuvre pour l’essentiel sous la forme d’un gel réticulé compte-tenu de la résistance accrue à la dégradation et à la chaleur, et donc à la stérilisation, de cette forme particulière.

Ces gels réticulés d’acide hyaluronique peuvent être obtenus par différents procédés de préparation. D’une manière générale, ces procédés requièrent deux étapes principales, la première consistant à hydrater l’acide hyaluronique pour le transformer en un gel aqueux et la seconde visant à réticuler ledit gel aqueux en présence d’un agent apte à induire sa réticulation (également appelé « agent réticulant »).

Pour des raisons évidentes, l’amélioration des propriétés mécaniques des hydrogels, objectif susceptible de passer par l’amélioration des procédés de préparation de ces hydrogels, relève d’un objectif constant.

La présente invention vise précisément à proposer un procédé permettant l’obtention de gels réticulés présentant des propriétés mécaniques particulièrement avantageuses.

Contre toute attente, les inventeurs ont constaté que la réalisation de la réticulation d’un polysaccharide, à l’image notamment de l’acide hyaluronique, en présence d’un composé particulier, permet d’accéder à un gel réticulé particulièrement
avantageux en termes de propriétés mécaniques comparativement aux gels obtenus via les procédés conventionnels.

Ainsi, la présente invention concerne, selon un premier de ses aspects, un procédé de préparation d’un gel réticulé d’au moins un polysaccharide ou un de ses sels, comprenant au moins les étapes consistant à :

a) disposer d’un gel aqueux comprenant au moins l’édit/lesdits polysaccharide(s) sous une forme non réticulée associé(s) à au moins un agent réticulant ;

b) réticuler le mélange obtenu à l’issue de l’étape a) et, le cas échéant ;

c) récupérer l’édit gel réticulé formé,

caractérisé en ce que l’étape b) de réticulation est réalisée dans un milieu supplémenté avec au moins un sel d’halogénure alcalin présent dans une teneur comprise entre 0,5 % et 20 % en poids par rapport au poids total du gel aqueux de l’étape a).

Plus précisément, et comme il ressort des exemples ci-après, l’invention résulte de l’observation inattendue par les inventeurs que la présence d’un sel d’halogénure alcalin lors de la réalisation de la réaction de réticulation permet d’améliorer significativement les propriétés rhéologiques du gel réticulé.

De cette observation, il en découle qu’un procédé conforme à l’invention est en outre avantageux en ce qu’il permet d’accéder à un gel réticulé en utilisant une petite quantité d’agent réticulant mais en revanche doté de propriétés rhéologiques équivalentes à celles manifestées par un gel réticulé obtenu avec un procédé de réticulation classique mettant en œuvre une quantité plus importante d’agent réticulant.

Un procédé conforme à l’invention permet ainsi de limiter la quantité d’agent réticulant à introduire dans la réaction de réticulation, donc de limiter la quantité d’agent réticulant résiduel après la réaction de réticulation dont l’homme du métier cherche au maximum à s’affranchir, notamment au moyen d’étapes ultérieures de purification.

Contre toute attente, le sel d’halogénure alcalin requis selon l’invention agirait donc comme un actif stimulant la réaction de réticulation.

Au sens de la présente invention, le terme « peau » englobe la peau du visage, du cou, du décolleté, des mains, du cuir chevelu, de l’abdomen et/ou des jambes mais également les lèvres.
Selon un mode de réalisation particulier, un procédé de l’invention peut en outre comprendre une étape d) d’arrêt de la réticulation consistant à exposer le gel réticulé à des conditions propices à l’arrêt de sa réticulation, cette étape pouvant être réalisée antérieurement, conjointement ou postérieurement à l’étape de récupération c).

Selon une variante de réalisation préférée, l’étape d) est réalisée antérieurement à l’étape c).

Avantageusement, le gel réticulé obtenu à l’issue de la mise en œuvre d’un procédé conforme à l’invention est un gel monophasique et plus particulièrement un gel viscoélastique majoritairement élastique, c’est-à-dire diminué, voire dénué, de la faculté de s’écouler en l’absence de contraintes autres que son propre poids.

Polysaccharide

Par « polysaccharide », on entend tout polymère constitué de plusieurs oses liés entre eux par des liaisons O-ositiques et ayant pour formule générale : -[C x(H2O)y]n-.

Par « non réticulé », au sens de la présente invention, on entend désigner un gel aqueux de polysaccharides non réticulé ou non transformé, c’est-à-dire une solution de polysaccharides dont les chaînes du ou des polymère(s) ne sont pas connectées entre elles par des liaisons fortes ou covalentes.

Un polysaccharide conforme à l’invention est plus particulièrement sélectionné au regard des propriétés que l’on souhaite voir manifester par le gel réticulé obtenu selon l’invention. Plus particulièrement, un tel polysaccharide doit présenter une bonne biocompatibilité.

Ainsi, un polysaccharide ou sel de polysaccharide physiologiquement acceptable peut être d’origine naturelle ou synthétique.

Les polysaccharides convenant à l’invention peuvent notamment être choisis parmi le sulfate de chondroïtine, le kératane, le sulfate de kératane, l’héparine, le sulfate d’héparine, le xanthane, la carraghénine, l’acide hyaluronique, le chitosane, la cellulose et ses dérivés, l’alginate, l’amidon, le dextrane, le pullulane, le galactomannane et leurs sels biologiquement acceptables.

Les sels de polysaccharides conformes à l’invention sont plus particulièrement choisis parmi les sels physiologiquement acceptables, tels que le sel de sodium, le sel de potassium, le sel de zinc, le sel d’argent, et leur mélange, de préférence le sel de sodium.
De préférence, un polysaccharide ou sel de polysaccharide selon l’invention présente un haut poids moléculaire, de préférence un poids moléculaire moyen supérieur ou égal à 50 000 Da, voire même supérieur à 3 MDa selon l’application considérée.

Avantageusement, l’acide hyaluronique mis en œuvre pour l’obtention d’une composition selon l’invention peut présenter un poids moléculaire moyen allant de 50 000 à 10 000 000 Daltons, de préférence de 500 000 à 4 000 000 Daltons.

Un polysaccharide particulièrement préféré est l’acide hyaluronique (HA) ou l’un de ses sels, de préférence le hyaluronate de sodium (NaHA).

Avantageusement, le/les polysaccharide(s) peut/peuvent être mis en œuvre dans un procédé selon l’invention dans une teneur comprise entre 0,5 % et 20 % en poids, par rapport au poids total du gel aqueux de l’étape a).

Avantageusement, notamment dans le cas où l’acide hyaluronique est réticulé avec du BDDE, la teneur en acide hyaluronique, de préférence sous forme d’un sel de sodium, est comprise entre 5 et 15 % en poids par rapport au poids total du gel aqueux de l’étape a).

Agent réticulant

Par « agent réticulant », on entend tout composé capable d’induire une réticulation entre les différentes chaînes de polysaccharide.

Le choix de cet agent réticulant au regard du polysaccharide à réticuler relève clairement des compétences de l’homme de l’art.

Un agent réticulant conforme à l’invention est choisi parmi les agents réticulants, notamment les agents réticulants époxydiques bi- ou multi-fonctionnel, tels que le butanediol diglycidyl éther (BDDE), le diépoxy-octane ou le 1,2-bis-(2,3-époxypropyl)-2,3-éthylène, et les agents réticulant de type polyamines, tels que l’hexaméthylênediamine ou le 1,6-diaminohexane-1,6-hexanediame (HMDA), les polyamines endogènes telles que la spermine, la spermidine ou la putrescine, et leurs mélanges.

De préférence, un agent réticulant conforme à l’invention est le butanediol diglycidyl éther (BDDE).

L’ajustement de la quantité en agent réticulant pour la réalisation de la réaction de réticulation relève également des compétences de l’homme du métier.
Avantageusement, l'/les agent(s) réticulant peut/peuvent être mis en œuvre dans un procédé selon l'invention dans une teneur comprise entre 0,1 % et 30 % en moles, de préférence comprise entre 0,5 % et 20 % en moles, par rapport au nombre total de moles d'unité disaccharidiques formant le monomère de l'acide hyaluronique présent dans le gel aqueux de l'étape a).

Sel d'halogénure alcalin

Comme il ressort de ce qui précède, l'invention découle de l'observation par les inventeurs qu'un sel d'halogénure alcalin peut être mis en œuvre lors de l'étape de réticulation d'un polysaccharide à titre d'actif stimulant cette réaction de réticulation.

Par « sel d'halogénure alcalin », on entend désigner, au sens de la présente invention, un sel ionique assemblant deux types d'ions, l'un métallique alcalin, l'autre non-métallique, figurant nécessairement un atome d'halogène.

Avantageusement, l'atome d'halogène peut être choisi parmi le fluor, le chlore, le brome et l'iode, de préférence est figuré par le chlore.

De manière préférée, un sel d'halogénure alcalin selon l'invention peut être choisi parmi les sels de sodium, les sels de potassium, les sels de lithium, les sels de césium, et leur mélange, et mieux est figuré par un sel de sodium.

De manière encore plus préférée, un sel d'halogénure alcalin selon l'invention peut être le NaCl.

L'ajustement de la quantité en sel d'halogénure alcalin dans un procédé de réticulation selon l'invention relève également des compétences de l'homme du métier.

Avantageusement, le/les sel(s) d'halogénure(s) alcalin(s) peut/peuvent être mis en œuvre dans un procédé selon l'invention dans une teneur minimale supérieure ou égale à 0,5 % en poids, de préférence supérieure ou égale à 1 % en poids, par rapport au poids total du gel aqueux de l'étape a).

Avantageusement, le/les sel(s) d'halogénure(s) alcalin(s) peut/peuvent être mis en œuvre dans un procédé selon l'invention dans une teneur maximale inférieure ou égale à 20 % en poids, de préférence inférieure ou égale à 15 % en poids, par rapport au poids total du gel aqueux de l'étape a).
Comme indiqué précédemment, le/les sel(s) d’halogénure(s) alcalin(s) sont mis en œuvre dans un procédé selon l’invention dans une teneur comprise entre 0,5 % et 20 % en poids par rapport au poids total du gel aqueux de l’étape a).

Avantageusement, le/les sel(s) d’halogénure(s) alcalin(s) peut/peuvent être mis en œuvre dans un procédé selon l’invention dans une teneur comprise entre 1 % et 15 % en poids par rapport au poids total du gel aqueux de l’étape a).

Procédé selon l’invention

Un procédé de l’invention requiert, dans un premier temps, de disposer préalablement à l’étape de réticulation, d’un gel aqueux comprenant au moins un polysaccharide sous une forme non réticulée associé à au moins un agent réticulant et au moins un sel d’halogénure alcalin.

Plus précisément, le gel aqueux considéré en étape a) peut être au préalable obtenu par mise en présence, au sein d’un réceptacle approprié :

(i) d’un milieu aqueux;

(ii) d’au moins un polysaccharide, ou un de ses sels, sous une forme non réticulée;

(iii) d’au moins un agent réticulant;

(iv) le cas échéant, d’au moins un sel d’halogénure alcalin ; et

au moins une homogénéisation du mélange ainsi obtenu, l’ordre d’ajout dans le réceptacle desdits composés (i), (ii) et (iii), le cas échéant (iv), étant indifférent.

Préliminairement à sa réticulation, le polysaccharide à l’état non réticulé est donc formulé en milieu aqueux à l’état de gel.

Par « milieu aqueux », au sens de la présente invention, on entend tout milieu liquide contenant de l’eau et qui a la propriété de dissoudre un polysaccharide ou un de ses sels.

La nature du milieu aqueux est plus particulièrement conditionnée au regard du type de réticulation envisagée mais également du type de polymère utilisé.

A ce titre, un milieu aqueux susceptible de convenir peut être soit acide, soit basique.
Par exemple, dans le cas de la mise en œuvre du BDDE à titre d’agent réticulant, le milieu aqueux particulièrement préféré peut être un milieu alcalin, de préférence l’hydroxyde de sodium (NaOH), plus particulièrement une solution d’hydroxyde de sodium à pH supérieur à 12.

Quelque soit le mode de réalisation considéré, la formation d’un gel aqueux tel que considéré en étape a) implique au moins une homogénéisation, comme indiqué ci-dessus.

Cette opération, réalisée ou non en présence de l’agent réticulant et/ou du sel d’halogénure alcalin, a plus particulièrement pour but d’hydrater et d’homogénéiser parfaitement le polysaccharide dans le milieu aqueux et, le cas échéant, l’agent réticulant et/ou le sel d’halogénure alcalin, et ainsi de contribuer à l’optimisation des qualités du gel réticulé attendu.

L’homogénéisation est considérée comme satisfaisante lorsque la solution obtenue présente une coloration homogène, sans agglomérat et une viscosité uniforme. Elle peut avantageusement être réalisée dans des conditions opératoires douces pour prévenir une dégradation des chaînes du polysaccharide.

Cette étape est d’autant plus importante lorsque le polysaccharide présente un haut poids moléculaire. L’hydratation d’un tel composé a alors en effet tendance à engendrer la formation d’une solution de haute viscosité au sein de laquelle l’apparition d’agglomérats est couramment observée.

La durée de cette étape d’homogénéisation dépend de la nature du polysaccharide, et plus particulièrement de son poids moléculaire, de sa concentration, des conditions opératoires au sein du milieu aqueux ainsi que du dispositif d’homogénéisation utilisé.

L’ajustement de la durée d’homogénéisation adéquate pour obtenir un gel aqueux de polysaccharide suffisamment homogène relève des connaissances générales de l’homme du métier.

De préférence, une étape d’homogénéisation selon la présente invention peut se dérouler sur une durée inférieure à 200 minutes, de préférence inférieure à 150 minutes, voire comprise entre 5 et 100 minutes.
Selon une première variante de réalisation, ce gel aqueux peut être formé par introduction au sein du réceptacle, du milieu aqueux, du polysaccharide et, le cas échéant, du sel d’halogénéure alcalin, avec homogénéisation simultanée et/ou consécutive du mélange ainsi formé, puis ajout de l’agent réticulant avec homogénéisation simultanée et/ou consécutive.

Selon une seconde variante de réalisation, ce gel aqueux peut être obtenu par introduction, au sein du réceptacle, du milieu aqueux, du polysaccharide, de l’agent réticulant et, le cas échéant, du sel d’halogénéure alcalin, avec homogénéisation simultanée et/ou consécutive du mélange ainsi formé.

Cette seconde variante de réalisation est avantageuse en ce qu’une seule étape d’homogénéisation est mise en œuvre.

Avantageusement, cette étape de formation du gel aqueux peut être réalisée à une température inférieure à 35 °C, de préférence à une température allant de 15 à 25 °C, et mieux à une température ambiante.

Le gel aqueux de l’étape a) est ensuite soumis à des conditions appropriées pour la réaction de réticulation.

Cette étape est illustrée par l’étape b) du procédé de l’invention.

La réticulation a pour but la création de ponts entre les chaînes de polysaccharides, et notamment d’acide hyaluronique, permettant l’obtention d’un réseau tridimensionnel solide et dense à partir d’une solution visqueuse.

Selon un premier mode de réalisation, et comme indiqué précédemment, le sel d’halogénéure alcalin peut être présent dans le gel aqueux de l’étape a).

Selon un autre mode de réalisation, le procédé selon l’invention peut en outre comprendre une étape e), intermédiaire aux étapes a) et b), consistant à ajouter au gel aqueux obtenu en étape a) l’édit sel d’halogénéure alcalin avec homogénéisation simultanée et/ou consécutive.

Avantageusement, cette étape e) d’ajout dudit sel d’halogénéure alcalin peut également être réalisée à une température inférieure à 35 °C, de préférence à une température allant de 15 à 25 °C, et mieux à une température ambiante.
Selon encore un autre mode de réalisation, le sel d’halogénure alcalin peut être ajouté au gel aqueux de l’étape a) concomitamment à l’étape b) de réticulation, avec homogénéisation simultanée et/ou consécutive.

En ce qui concerne la réticulation, elle requiert la présence d’au moins un agent réticulant, notamment tel que défini ci-dessus.

Les conditions particulières à retenir pour induire la réaction de réticulation peuvent dépendre de la nature du polysaccharide, de son poids moléculaire, du milieu aqueux et de la nature de l’agent réticulant.

D’une manière générale, cette stimulation peut être acquise par mise en présence du mélange obtenu à l’issue de l’étape a) avec un élément déclenchant, ou encore stimulant, tel que par exemple le chauffage, l’exposition sous UV, voire la mise en contact dudit mélange avec un matériau de type catalyseur.

Le choix d’un tel élément déclenchant relève des connaissances générales de l’homme du métier.

Ainsi, un élément déclenchant peut être réalisé par :
- immersion du réceptacle comprenant le mélange obtenu à l’issue de l’étape a) dans un bain contenant un fluide chaud ;
- exposition de celui-ci à des rayonnements de certaines longueurs d’ondes de type UV, par exemple, à des rayonnements micro-ondes ou encore à infrarouge ;
- l’irradiation au moyen de rayons ionisants, à l’image du procédé décrit dans le document US 2008/0139796 ; et
- la réticulation enzymatique ; et
- ajout d’un catalyseur et/ou d’un intermédiaire de réaction.

Comme exposé précédemment, l’arrêt de la réticulation (étape d)) peut intervenir antérieurement, conjointement ou postérieurement à l’étape de récupération du gel c).

Une telle étape, selon un procédé conforme à l’invention, requiert d’exposer le gel réticulé ou en cours de réticulation, voire le réceptacle le contenant, à des conditions
propices à l’arrêt de celle-ci, ou encore à des conditions capables de stopper la formation de liaisons entre les différentes chaînes de polysaccharides.

Selon une variante de réalisation préférée, l’étape d) est réalisée antérieurement à l’étape c).

Par exemple, dans l’hypothèse où la variante de réalisation considérant l’application de conditions thermiques pour stimuler le processus de réticulation, l’arrêt de la réticulation peut être réalisé :

- par simple retrait du réceptacle du bain thermostaté, puis par refroidissement jusqu’à un retour à température ambiante;
- en plaçant le réceptacle dans un bain d’eau froide, de préférence à une température inférieure à la température ambiante, jusqu’à ce que la température à l’intérieur dudit réceptacle soit proche de la température ambiante ; voire
 - en extrayant le gel dudit réceptacle.

Dans le cas d’une réticulation par rayonnement, celle-ci est stoppée via l’arrêt de l’exposition dudit gel aux rayonnements.

Selon un mode de réalisation particulièrement préféré, le procédé selon l’invention met en œuvre (i) du hyaluronate de sodium à titre de polysaccharide en un milieu alcalin, (ii) du butanediol diglycidyl éther (BDDE) à titre d’agent réticulant et (iii) du NaCl à titre de sel d’halogénure alcalin dans une teneur comprise entre 0,5 % et 20 % en poids par rapport au poids total dudit gel aqueux de l’étape a).

Comme indiqué ci-dessus, et selon un mode de réalisation particulier, l’effet avantageux attaché à la présence du sel d’halogénure alcalin autorise la mise en œuvre de quantité réduite en agent réticulant, comparativement aux procédés conventionnels, tout en maintenant des propriétés mécaniques satisfaisantes des gels réticulés obtenus à l’issu de la mise en œuvre du procédé selon l’invention.

Ainsi, selon ce mode de réalisation particulier, un gel réticulé obtenu par mise en œuvre d’un procédé selon l’invention peut présenter un taux de modification résultant compris entre 0,1 % et 15 %, de préférence entre 0,1 % et 10 %, tout en demeurant satisfaisant sur le plan des propriétés mécaniques.
Au sens de la présente invention, par « taux de modification », on entend désigner le rapport entre le nombre de moles d’agent réticulant fixées sur l’acide hyaluronique et le nombre de moles d’acide hyaluronique formant ledit gel réticulé. Cette grandeur peut notamment être mesurée par une analyse en RMN 1H 1D du gel réticulé.

Par « nombre de moles d’acide hyaluronique », on entend le nombre de moles de motifs disaccharides répétitifs de l’acide hyaluronique, le motif disaccharide étant composé d’acide D-glucuronique et de D-N-acétylglucosamine liés entre eux par des liaisons glycosidiques alternées beta-1,4 et beta-1,3.

Selon encore un autre mode de réalisation particulier, un procédé de l’invention peut être réalisé au moins en partie au sein d’un réceptacle spécifique à paroi deformable, tel que par exemple une poche, notamment celle définie dans le document FR 2 945 293.

Le gel réticulé obtenu à l’issu du procédé de l’invention tel que décrit précédemment peut ne pas être directement injectable, au regard notamment de sa trop forte concentration en polysaccharide et/ou de la présence éventuelle de résidus d’agent réticulant, ou encore de ses conditions physiologiques et/ou de pH incompatibles avec une utilisation dans les domaines d’applications considérés ci-dessus.

En outre, le gel obtenu à l’issue du procédé de l’invention peut notamment présenter une rigidité trop élevée pour être injecté en l’état chez un patient.

Par conséquent, plusieurs étapes additionnelles, connues de l’homme du métier, sont susceptibles d’être mises en œuvre pour l’obtention d’un hydrogel injectable.

Plus particulièrement, une étape de neutralisation et de dilution de ce gel est requise pour lui conférer ses qualités d’implant. Les chaînes du réseau de polysaccharide sont alors étirées, hydratées, tandis que le pH est ramené à celui du derme.

Une étape d’addition d’acide hyaluronique non réticulé est également susceptible d’être réalisée afin d’améliorer encore les qualités de l’implant, selon le savoir-faire de l’homme de l’art. Le gel doit être formulé physiologiquement grâce à la présence de sels en quantités équivalentes à celles du milieu injecté.

Pour une pureté encore améliorée, une étape de purification peut être réalisée pour ramener le gel à une concentration en sels d’halogénures alcalins physiologiquement
acceptable et/ou pour éliminer l’agent réticulant non fixé au polysaccharide ainsi que tout intermédiaire ou auxiliaire de réaction.

Avantageusement, cette étape de purification peut-être réalisée par un ou plusieurs bains de dialyse.

Au final, l’hydrogel ainsi obtenu peut être rempli en seringues dans des conditions d’atmosphère contrôlées, lesdites seringues pouvant ensuite subir une étape de stérilisation, de préférence par voie thermique.

Dans toute la description, y compris les revendications, l’expression « comportant un » doit être comprise comme étant synonyme de « comportant au moins un », sauf si le contraire est spécifié.

Les expressions « compris entre… et … » et « allant de … à … » doivent se comprendre bornes incluses, sauf si le contraire est spécifié.

Les exemples qui suivent sont présentés à titre illustratif et non limitatif de l’invention.

Exemple 1 : Effet de la concentration en NaCl, à pourcentage massique d’agent réticulant constant

Quatre gels d’acide hyaluronique réticulé A, B, C et D, comprenant l’utilisation de concentrations différentes en NaCl, sont préparés selon le protocole suivant.

Pour chacun des échantillons, 10 g de NaHA sont dissous dans une solution de soude 0,25N de façon à obtenir une solution à 12 % en NaHA. A cette solution est introduit du NaCl à la concentration précisée dans le tableau 1.

La dissolution du NaHA est considérée totale une fois l’intégralité du NaHA hydraté et la solution parfaitement homogène (absence d’agglomérat et couleur uniforme).

Une solution de BDDE diluée au 1/5° dans une solution de soude à 1 % est ajoutée à chaque solution de NaHA homogène obtenue à l’issue de l’étape précédente à la quantité précisée en tableau 1.
Tableau 1

<table>
<thead>
<tr>
<th>Gels</th>
<th>Agent réticulant</th>
<th>τ (%) 1</th>
<th>Concentration NaCl 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BDDE</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>BDDE</td>
<td>19</td>
<td>4,2 %</td>
</tr>
<tr>
<td>C</td>
<td>BDDE</td>
<td>19</td>
<td>8,3 %</td>
</tr>
<tr>
<td>D</td>
<td>BDDE</td>
<td>19</td>
<td>16,6 %</td>
</tr>
</tbody>
</table>

1 Pourcentage en mole d’agent réticulant, défini selon la formule :

$$\tau = \left(\frac{n_{BDDE}}{n_{NaHA}} \right) \times 100$$

2 Concentration massique en sel d’halogénure alcalin par rapport au poids total du gel aqueux avant réalisation de l’étape de réticulation.

L’homogénéisation du milieu réactionnel de chaque échantillon est ensuite effectuée mécaniquement et chacun des échantillons est ensuite placé au bain-marie pendant 3 heures, à une température de 52 °C pour réaliser la réticulation.

Une fois la réaction de réticulation terminée, les réceptacles sont retirés du bain thermostaté et placés dans un récipient contenant de l’eau stérile réfrigérée jusqu’à ce que la température ait refroidi à 25 °C (température ambiante).

Les solides respectivement obtenus à l’issue de cette étape d’incubation (solutions d’acide hyaluronique réticulé) sont alors neutralisés, mis à gonfler dans une solution de Tampon Phosphate pH 7,3 de façon à obtenir un hydrogel à 25 mg/g en acide hyaluronique.

Afin de faciliter les forces d’extrusion pour le passage du gel à travers une aiguille, de l’acide hyaluronique non réticulé est alors incorporé et homogénéisé au gel obtenu. Ces derniers sont ensuite purifiés par dialyse et conditionnés en seringues.

La stérilisation est effectuée en autoclave (chaleur humide) à $T^° \geq 121^°C$, de manière à obtenir un F0 > 15 (valeur stérilisatrice).

Exemple 2 : Caractérisation des gels obtenus en exemple 1

Les mesures des propriétés viscoélastiques des gels A, B, C et D sont réalisés à l’aide d’un rhéomètre (Haake RS6000) équipé d’une géométrie cône/plateau (1°/diamètre 35mm). Un balayage en contrainte est effectué, le module élastique $G’$ (en Pa) et l’angle de déphasage δ (°) sont mesurés à 1Hz pour une contrainte de 5 Pa.
Le tableau 2 ci-après représente les valeurs des modules élastiques G' (en Pa). A titre indicatif, la valeur de l’angle de déphasage δ (°) y est également indiquée.

<table>
<thead>
<tr>
<th>Gels</th>
<th>Agent réticulant</th>
<th>G' (Pa)</th>
<th>δ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BDDE</td>
<td>155</td>
<td>19,9</td>
</tr>
<tr>
<td>B</td>
<td>BDDE</td>
<td>255</td>
<td>14,6</td>
</tr>
<tr>
<td>C</td>
<td>BDDE</td>
<td>324</td>
<td>14,9</td>
</tr>
<tr>
<td>D</td>
<td>BDDE</td>
<td>363</td>
<td>11,9</td>
</tr>
</tbody>
</table>

Au vu des résultats figurant dans le tableau 2, il ressort que la présence de NaCl dans un procédé selon l’invention permet effectivement d’améliorer significativement les propriétés rhéologiques d’un gel réticulé pour un même pourcentage massique d’agent réticulant.

Exemple 3 : Effet de la concentration en NaCl, avec une diminution du pourcentage massique d’agent réticulant

Quatre gels réticulés d’acide hyaluronique A, E, F et G comprenant des concentrations différentes en NaCl et pour lesquels les conditions de réticulation ont variées au travers d’une modification de la quantité en agent réticulant (voir tableau 3 ci-après), sont préparés selon le protocole tel que défini en exemple 1.

Les propriétés mécaniques inhérentes à chacun des gels réticulés préparés sont présentées dans le tableau 3, ci-après.

<table>
<thead>
<tr>
<th>Gels</th>
<th>τ (%)</th>
<th>Concentration NaCl</th>
<th>G' (Pa)</th>
<th>δ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>19</td>
<td>0</td>
<td>155</td>
<td>19,9</td>
</tr>
<tr>
<td>E</td>
<td>14,5</td>
<td>8,3 %</td>
<td>185</td>
<td>18,0</td>
</tr>
<tr>
<td>F</td>
<td>21</td>
<td>0</td>
<td>224</td>
<td>9,6</td>
</tr>
<tr>
<td>G</td>
<td>16,5</td>
<td>6,6 %</td>
<td>217</td>
<td>9,4</td>
</tr>
</tbody>
</table>

1 et 2 tels que définis en exemple 1
Il peut être noté que la présence de NaCl permet de conserver les propriétés rhéologiques d'un gel réticulé avec un taux de réticulation inférieur.

Exemple 4 : Influence de la nature du sel d’halogénure alcalin

Six gels d’acide hyaluronique C, I, K, A, L et X comprenant ou non un sel d’halogénure alcalin, sont préparés selon le protocole défini en exemple 1 ci-dessus.

Les propriétés mécaniques de chacun des gels réticulés préparés sont présentées dans le tableau 4 ci-après qui rend notamment compte des propriétés mécaniques de trois gels témoin A, L et X réticulés respectivement en absence de sel (A) et en présence de Na₂CO₃ (L) ou de CaCl₂ (X) en guise de sels non conformes à l’invention.

<table>
<thead>
<tr>
<th>Gels</th>
<th>Agent réticulant</th>
<th>(\tau (%))¹</th>
<th>Concentration et nature du sel²</th>
<th>G’ (Pa)</th>
<th>δ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>BDDE</td>
<td>19</td>
<td>8,3 % NaCl</td>
<td>324</td>
<td>14,9</td>
</tr>
<tr>
<td>I</td>
<td>BDDE</td>
<td>19</td>
<td>8,3 % KCl</td>
<td>272</td>
<td>13,4</td>
</tr>
<tr>
<td>K</td>
<td>BDDE</td>
<td>19</td>
<td>8,3 % NaBr</td>
<td>224</td>
<td>17,3</td>
</tr>
<tr>
<td>A</td>
<td>BDDE</td>
<td>19</td>
<td>/</td>
<td>155</td>
<td>19,9</td>
</tr>
<tr>
<td>L</td>
<td>BDDE</td>
<td>19</td>
<td>8,3 % Na₂CO₃</td>
<td>44</td>
<td>23,6</td>
</tr>
<tr>
<td>X</td>
<td>BDDE</td>
<td>19</td>
<td>8,3 % CaCl₂</td>
<td>Non mesuré</td>
<td>Non mesuré</td>
</tr>
</tbody>
</table>

¹ et ² tels que définis en exemple 1

De ce qui précède, il apparaît que seuls les sels d’halogénures alcalins, à savoir NaCl, KCl et NaBr, permettent d’améliorer significativement les propriétés rhéologiques d’un gel réticulé pour un même taux de réticulation, cette amélioration étant particulièrement significative avec NaCl.

En effet, Na₂CO₃ réduit l’efficacité de la réaction de réticulation. Quant à CaCl₂, un effet de dégradation de l’acide hyaluronique est également observé. La réaction de réticulation n’a pas eu lieu et le gel obtenu avant stérilisation présente un aspect visqueux, voire coulant, filant, ce qui est généralement indicateur d’une dégradation des chaînes d’acide hyaluronique.
Exemple 5 : Influence de la nature de l’agent réticulant

Protocole de préparation d’un gel d’acide hyaluronique réticulé avec de l’HMDA à titre d’agent réticulant.

De l’acide hyaluronique est dissout à une concentration de 3 % (en poids) dans de l’eau supplémentée en NaCl. Après obtention d’une solution homogène, une solution contenant l’HMDA, de l’EDC à titre d’activateur (N-(3-Diméthylaminopropyl)-N’-éthylcarbodiimide chlorhydrate) et de l’HOBr à titre d’auxiliaire de couplage (1-Hydroxybenzotriazole hydrate) est ajoutée à la solution d’acide hyaluronique. Le volume de cette solution est défini de façon à obtenir un mélange global à 2,3 % en acide hyaluronique.

Le pH de cette solution est ajusté de façon à obtenir un pH du mélange global compris entre 5,5 et 6,5 avant réaction.

Les quantités de réactifs sont ajustées de manière à obtenir les stœchiométries suivantes :

0,2 mol./mol. d’unités répétitives d’acide hyaluronique pour la polyamine, et 1 mol./mol. d’unités répétitives d’acide hyaluronique pour l’activateur et l’auxiliaire de couplage impliqués dans la réaction de couplage. Pour la réticulation, le gel aqueux est exposé 15 heures à 25°C.

Après réticulation, le gel obtenu est purifié par plusieurs bains de dialyse sur une durée de 48 heures et, si nécessaire, ajusté à pH physiologique.

Le gel aqueux obtenu après lavage comporte une concentration proche de 20mg/g.

La stérilisation est effectuée en autoclave (chaleur humide) à T° ≥ 121°C, de manière à obtenir un F0 > 15 (valeur stérilisatrice).

Les propriétés mécaniques de chacun des gels réticulés préparés sont présentées dans le tableau 5, ci-après.
Tableau 5

<table>
<thead>
<tr>
<th>Gels</th>
<th>Agent réticulant</th>
<th>(\tau (%))(^1)</th>
<th>Concentration NaCl(^2)</th>
<th>G' (Pa)</th>
<th>(\delta (°))</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>HMDA</td>
<td>20 %</td>
<td>/</td>
<td>63</td>
<td>46</td>
</tr>
<tr>
<td>W</td>
<td>HMDA</td>
<td>20 %</td>
<td>10,8 %</td>
<td>91</td>
<td>27,9</td>
</tr>
</tbody>
</table>

\(^1\) Pourcentage en mole d’agent réticulant, défini selon la formule :
\[
\tau = \left(\frac{n_{\text{HMDA}}}{n_{\text{NaHA}}} \right) \times 100
\]

\(^2\) voir exemple 1.

L’amélioration des propriétés rhéologiques des gels en présence de NaCl est également vérifiée lorsque HMDA est utilisé comme agent réticulant.
REVENDICATIONS

1. Procédé de préparation d’un gel réticulé d’au moins un polysaccharide ou un de ses sels, comprenant au moins les étapes consistant à :
 a) disposer d’un gel aqueux comprenant au moins ledit/lesdits polysaccharide(s) sous une forme non réticulée associé(s) à au moins un agent réticulant ;
 b) réticuler le mélange obtenu à l’issu de l’étape a) et, le cas échéant ;
 c) récupérer ledit gel réticulé formé,

 caractérisé en ce que l’étape b) de rétication est réalisée dans un milieu supplémenté avec au moins un sel d’halogénure alcalin présent dans une teneur comprise entre 0,5 % et 20 % en poids par rapport au poids total du gel aqueux de l’étape a).

2. Procédé selon la revendication précédente, caractérisé en ce que ledit procédé comprend en outre une étape d) d’arrêt de la réticulation consistant à exposer le gel réticulé à des conditions propices à l’arrêt de sa réticulation, cette étape pouvant être réalisée antérieurement, conjointement ou postérieurement à l’étape de récupération c).

3. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que l’atome d’halogène du sel d’halogénure alcalin est choisi parmi le fluor, le chlore, le brome ou l’iode de préférence est figuré par le chlore.

4. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le sel d’halogénure alcalin est choisi parmi les sels de sodium, les sels de potassium, les sels de lithium, les sels de césium, et leur mélange, de préférence est figuré par un sel de sodium, et mieux est le NaCl.

5. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le(s) sel(s) d’halogénure(s) alcalin(s) est/sont présent(s) dans une teneur comprise entre 1 % et 15 % en poids par rapport au poids total du gel aqueux de l’étape a).

6. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le polysaccharide est l’acide hyaluronique ou l’un de ses sels.

7. Procédé selon la revendication précédente, caractérisé en ce que le sel d’acide hyaluronique est choisi parmi le sel de sodium, le sel de potassium, le sel de zinc, le sel d’argent, et leur mélange, de préférence est le sel de sodium.

8. Procédé selon l’une quelconque des revendications précédentes, caractérisé en ce que le(s) polysaccharide(s) ou un de ses sels est/sont présent(s) dans une teneur comprise entre 0,5 % et 20 % en poids par rapport au poids total du gel aqueux de l’étape a).
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'agent réticulant est choisi parmi les agents réticulants époxydiques bi- ou multifonctionnel, de préférence le butanediol diglycidyl éther (BDDE), le diépoxy-octane ou le 1,2-bis-(2,3-époxypropyl)-2,3-éthylène, les agents réticulant de type polyamines, tels que l'hexaméthylénédiamine ou le 1,6-diaminohexane-1,6-hexanediame (HMDA), les polyamines endogènes telles que la spermine, la spermidine ou la putrescine, et leurs mélanges, et mieux est le butanediol diglycidyl éther (BDDE).

10. Procédé selon l'une quelconque des revendications 6 à 7, caractérisé en ce que l'/les agent(s) réticulant est/sont mis en œuvre dans une teneur comprise entre 0,1 % et 30 % en moles, de préférence entre 0,5 % et 20 % en moles, par rapport au nombre total de moles d'unité disaccharidiques formant le monomère de l'acide hyaluronique présent dans le gel aqueux de l'étape a).

11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il met en œuvre (i) du hyaluronate de sodium à titre de polysaccharide en un milieu alcalin, (ii) du butanediol diglycidyl éther (BDDE) à titre d'agent réticulant et (iii) du NaCl à titre de sel d'halogénure alcalin dans une teneur comprise entre 0,5 % et 20 % en poids par rapport au poids total du gel aqueux de l'étape a).

12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape a) est réalisée à une température inférieure à 35°C, de préférence allant de 15 à 25°C, et mieux à température ambiante.
RAPPORT DE RECHERCHE PRÉLIMINAIRE
établi sur la base des dernières revendications déposées avant le commencement de la recherche

DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 00/46252 A1 (FERMENTECH MED LTD [GB]; ZHAO XIAOBIN [GB]; ALEXANDER CATHERINE [GB];) 10 août 2000 (2000-08-10) * exemple 5 *</td>
<td>1-6,8-10</td>
<td>C08B37/08</td>
</tr>
<tr>
<td>X</td>
<td>WO 2011/023355 A2 (FIDIA FARMACEUTICI [IT]; D ESTE MATTEO [IT]; RENIER DAVIDE [IT]) 3 mars 2011 (2011-03-03) * page 10, ligne 11 - page 11, ligne 3 * * page 3, ligne 8-17 *</td>
<td>1-12</td>
<td>A61Q19/08</td>
</tr>
<tr>
<td>A</td>
<td>WO 86/00079 A1 (PHARMACIA AB [SE]) 3 janvier 1986 (1986-01-03) * De la page 4, deux dernières lignes à la page 5, ligne 12 *</td>
<td>9,11</td>
<td>C08B C08J C08L</td>
</tr>
</tbody>
</table>

DOMAINES TECHNIQUES RECHERCHÉS (IPC)

- C08B
- C08J
- C08L

Date d'achèvement de la recherche: 18 juillet 2013
Examinateur: Lartigue, M
La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.
Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 18-07-2013.
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française.

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 773628 B2</td>
<td>27-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2307200 A</td>
<td>25-08-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0007985 A</td>
<td>06-11-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2362233 A1</td>
<td>10-08-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1342170 A</td>
<td>27-03-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 1163274 T1</td>
<td>14-11-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60029761 T2</td>
<td>02-08-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1163274 T3</td>
<td>04-12-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1163274 A1</td>
<td>19-12-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2181607 T1</td>
<td>01-03-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002536465 A</td>
<td>29-10-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA01007877 A</td>
<td>04-06-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 512994 A</td>
<td>28-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 1163274 E</td>
<td>30-11-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004127699 A1</td>
<td>01-07-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0046252 A1</td>
<td>10-08-2000</td>
</tr>
<tr>
<td>US 2007036745 A1</td>
<td>15-02-2007</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td>WO 2011023355 A2</td>
<td>03-03-2011</td>
<td>AU 2010288937 A1</td>
<td>15-03-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2772142 A1</td>
<td>03-03-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102548590 A</td>
<td>04-07-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2470230 A2</td>
<td>04-07-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013502941 A</td>
<td>31-01-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20120107455 A</td>
<td>02-10-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012190644 A1</td>
<td>26-07-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011023355 A2</td>
<td>03-03-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3565107 D1</td>
<td>27-10-1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H0669481 B2</td>
<td>07-09-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP S61502310 A</td>
<td>16-10-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 442820 B</td>
<td>03-02-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 8403090 A</td>
<td>09-12-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4716154 A</td>
<td>29-12-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 8600079 A1</td>
<td>03-01-1986</td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82