WO 01/90892 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 November 2001 (29.11.2001)

PCT

(10) International Publication Number

WO 01/90892 Al

(51) International Patent Classification”: GO6F 9/445, 1/00

[US/US]; 1663 Fulton, San Francisco, CA 94117 (US).

(21) International Application Number:

(22) International Filing Date:

(25) Filing Language:

(26) Publication Language:

(30) Priority Data:

09/580,931

(71) Applicant (for all designated States except US): EVER-

PCT/US01/15720

English

English

25 May 2000 (25.05.2000)

RIVE, Russell [CA/US]; 2433 Greer Road, Palo Alto, CA
94303 (US).

14 May 2001 (14052001) (74) Agents: MALLIE, Michael, J. et al.; Blakely, Sokoloff,

Taylor & Zafman LLP, 7th Floor, 12400 Wilshire Boule-
vard, Los Angeles, CA 90025 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
us LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, S, SK,
SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA,

DREAM, INC. [US/US]; 6591 Dumbarton Circle, Fre- 7ZW.
mont, CA 94555 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MCCALEB, Jed

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

[Continued on next page]

(54) Title: INTELLIGENT PATCH CHECKER

Start

Request for updates

Send current configuration

210
Receive updates
215
Install updates
220

|

(57) Abstract: A method for remotely updating software in a plurality of
computer systems is disclosed. In one embodiment, a request for an up-
grade is sent to a server system connected in a network. The upgrade is for
a software application installed in a client connected in the network. The
request is sent from the client system. The request comprises a unique
identification associated with the client system. The unique identification
is recognized by the server system as belonging to the client system. At
least one instruction is received from the server system in response to the
request for the upgrade. The at least one instruction directs the client sys-
tem to collect application information about the software application in-
stalled on the client system. The application information about the soft-
ware application is sent to the server system. The server system performs a
comparison between the application information about the software appli-
cation and the most-updated upgrade package for the software application.
The most-updated upgrade package for the software application is received
by the client system automatically when the comparison indicates that the
most-updated upgrade package has not been installed on the client system.

WO 01/90892

A1 TN OO O

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

— before the expiration of the time limit for amending the

claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 01/90892 PCT/US01/15720

INTELLIGENT PATCH CHECKER

FIELD OF THE INVENTION

The present invention relates generally to field of remote support for
computer systems. More specifically, the present invention is directed to a
method and an apparatus for updating software in a plurality of computer

systems.
BACKGROUND

Personal computers have become an important part of the information
age. The use of the personal computers has expanded beyond the traditional
university campus and large office environments. Today, many small
businesses and residences have at least one personal computer running a wide
range of applications sold by many different software vendors.

As the applications become easier to use, the personal computers are no
longer considered the tool for only the technical users. The user community
has expanded and the personal computers are being viewed more as the tools
to run the applications. Most users are interested in dealing with the
applications and usually have no clue when something goes wrong with their
personal computers. When the user is unable to use the application on the
user’s personal computer, the usual action is to take the personal computer to a
local personal computer repair shop.

Since there are many different brands of personal computers such as, for
example, IBM, Compagq, Gateway, Dell, etc., it is usually the case that each
personal computer from a different brand may have a different set up. For
example, the IBM personal computer may use a different video adapter from
the Dell personal computer, among others. As such, to have a problem
corrected, the user usually has to bring the personal computer into the repair

shop so that the technician can isolate the problem.

1

WO 01/90892 PCT/US01/15720

One of the most common problems of application failure is
incompatibility. The incompatibility may be related to the hardware or to the
other applications in the same personal computer system. For example, the
user may have installed a new application that is incompatible with the
existing application when running together. The user may have installed a
new hardware adapter that is incompatible with the existing application
without installing a necessary update. Often the identification of the
incompatibility occurs at a most unfortunate time such as, for example, prior to
the user having an opportunity to save the work in progress. This experience

is frustrating, time consuming and can be costly for the user.

SUMMARY OF THE INVENTION

A method for remotely updating software in a plurality of computer
systems is disclosed. In one embodiment, a request for an upgrade is sent to a
server system connected in a network. The upgrade is for a software
application installed in a client system connected in the network. The request
is sent from the client system. The request comprises a unique identification
associated with the client system. The unique identification is recognized by
the server system as belonging to the client system. At least one instruction is
received from the server system in response to the request for the upgrade.
The server system has knowledge of the software application installed on the
client system. The at least one instruction directs the client system to collect
application information about the software application installed on the client
system. The server system has no knowledge whether most-updated upgrade
packages available for the software application have been installed on the client
system. The application information about the software application is sent to
the server system. The server system performs a comparison between the
application information about the software application and the most-updated

upgrade package for the software application. The most-updated upgrade

2

WO 01/90892 PCT/US01/15720

package for the software application is stored in a part database. The most-
updated upgrade package for the software application is received by the client
system automatically when the comparison indicates that the most-updated

upgrade package has not been installed on the client system.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example in the following
drawings in which like references indicate similar elements. The following
drawings disclose various embodiments of the present invention for purposes

of illustration only and are not intended to limit the scope of the invention.

Figure 1is a network diagram illustrating one embodiment of
components connected in a network that can be used with the method of the
present invention.

Figure 2 is a flow diagram illustrating one embodiment of an update
process.

Figure 3 is another flow diagram illustrating one embodiment of the
update process.

Figure 4 is an exemplary tool bar that can be used with one method of

the
present invention.

Figure 5 is an exemplary diagram illustrating a relationship between a
server connéction point, a customer data base and a part data base.

Figure 6 is an exemplary diagram illustrating a communication protocol
between a client system and the server through the Internet network

Figure 7 illustrates one embodiment of a computer-readable medium
containing various sets of instructions, code sequences, configuration

information, and other data used by a computer or other processing device.

WO 01/90892 PCT/US01/15720

DETAILED DESCRIPTION

A method and apparatus for remotely updating software in a plurality
of computer systems is disclosed. In the following description, for purposes of
explanation, specific nomenclature is set forth to provide a thorough
understanding of the present invention. However, it will be apparent to one
skilled in the art that these specific details are not required in order to practice
the present invention.

Some portions of the detailed descriptions that follow are presented in
terms of algorithms and symbolic representations of operations on data bits
within a computer memory. These algorithmic descriptions and
representations are the means used by those skilled in the data processing arts
to most effectively convey the substance of their work to others skilled in the
art. An algorithm is here, and generally, conceived to be a self-consistent
sequence of operations leading to a desired result. The operations are those
requiring physical manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared, and otherwise
manipulated. It has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values, elements, symbols,
characters, terms, numbers, or the like.

It should be borne in mind, however, that all of these and similar terms
are to be associated with the appropriate physical quantities and are merely
convenient labels applied to these quantities. Unless specifically stated
otherwise as apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such as "processing” or
"computing” or "calculating” or "determining" or "displaying" or the like, refer
to the action and processes of a computer system, or similar electronic
computing device, that manipulates and transforms data represented as
physical (electronic) quantities within the computer system's registers and

memories into other data similarly represented as physical quantities within

4

WO 01/90892 PCT/US01/15720

the computer system memories or registers or other such information storage,
transmission or display devices.

The present invention also relates to apparatus for performing the
operations herein. This apparatus may be specially constructed for the
required purposes, or it may comprise a general-purpose computer selectively
activated or reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer readable storage
medium, such as, but is not limited to, any type of disk including floppy disks,
optical disks, CD-ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or
optical cards, or any type of media suitable for storing electronic instructions,
and each coupled to a compﬁter system bus.

The algorithms and displays presented herein are not inherently related
to any particular computer or other apparatus. Various general-purpose
systems may be used with programs in accordance with the teachings herein,
or it may prove convenient to construct more specialized apparatus to perform
the required method operations. The required structure for a variety of these
systems will appear from the description below. In addition, the present
invention is not described with reference to any particular programming
language. It will be appreciated that a variety of programming languages may
be used to implement the teachings of the invention as described herein.

In one embodiment, the method disclosed in the present invention
allows for better remote support of users of client systems in the network. A
server provides update information to multiple client systems connected in a
network. When necessary, the updates are retrieved from a central depository,

' sent to the appropriate client systems and automatically update the
applications. In one embodiment, the client systems are IBM-compatible
personal computers running in the Window environment such as, for example,
Windows 98, Windows 2000, etc. The server and the client systems are
connected in a network such as, for example, the Internet. By keeping the

client systems updated, remote support can be efficiently performed to

5

WO 01/90892 PCT/US01/15720

minimize the down time of the client systems. Each client system comprises of
multiple installed software packages. The software packages may have been
previously installed on the client system prior to delivery to a user. The
software may include, for example, application software, device drivers, etc.

Figure 1 illustrates an exemplary embodiment of the update network. A
server 105 maintains a client database 125 to keep track of the client systems
110, 115. For example, whenever a client system 110 or 115 communicates with
the server 105, the server 105 already knows about the installed software on
that client system 110, 115. The server 105 also maintains a part database 120
containing software patches and software updates to help keeping the client
systems 110 and 115 up to date. The client database 125 allows the server 105
to know about the configuration of the client systems 110 and 115. The client
database 125 and the part database 120 may be in the same database server or
in separate database servers connected in the network 130. Alternatively, the
client database 125 and the part database 120 fnay be in the same system as the
server 105. In one embodiment, the server 105 serves as a central point for
receiving update requests from the client systems 110 and 115 and for
retrieving information from the databases 125 and 120 to satisfy the update
requests.

Figure 2 is a flow diagram 200 illustrating one embodiment of an update
method. Atblock 205, an update request is generated by the client system 110,
115 and sent to the server 105. The update is performed on a periodic basis,
such as, for example, every 24 hours. Alternatively, the update may be
performed at any time by the user sending an update request to the server 105
on the network. The server 105 knows each client system 110, 115 by a unique
identification associated with the client system 110, 115.

In one embodiment, the server 105 accesses a client database 125
containing information about the client system 110, 115. The client database
125 may include information, such as, for example, installed software packages
on the client system 110, 115, the operating system installed on the client

system 110, 115, etc. However, what the server 105 may not know is whether

6

WO 01/90892 PCT/US01/15720

these installed software packages are up to date. For example, the user of the
client system 110, 115 may have changed the configuration parameters of the
software packages, or the user may not have requested for an update for an
extended length of time due to the client system 110, 115 not being connected
to the network 130.

In one embodiment, the client system 110, 115 may need to do a self-
check and send its current software configuration to the server 105. A self-
check may be done by the server 105 directing the client system 110, 115
specifically what to check for and the information to be collected from the client

- system 110,115. This information is the sent to the server 105, as shown in
block 210. Based on this information, the server 105 checks its part database
120 and determines the updates that the client system 110, 115 needs. The
updates are sent from the server 105 to the client system 110, 115, as shown in
block 215. The updates may be sent with instructions from the server 105 that
tells the client system 110, 115what to do to have the updates installed, as
shown in block 220.

Figure 3 is another flow diagram illustrating one embodiment of an
update method 300. In one embodiment, a utility program executed by the
client system 110, 115 communicates with the server 105 for information to
check on the client system 110, 115. The execution of this utility program may
be initiated by the user or it may be automatic. The utility program is herein
referred to as a patch checker. The patch checker initiates the request to have
the applications verified for any necessary updates. The request is sent to the
server 105 along with the unique identification number of the client system 110,
115. The server 105 uses the client identification number to check against the
client database 125 for authentication. In one embodiment, the database
contains configuration information about the client system 110, 115. The server
105 retrieves the configuration information for the client system 110, 115,
generates a script file and sends the script file to the client system 110, 115, as
shown in block 305. In one embodiment, the script file contains commands that

tell the client system 110, 115 the functions to perform. For example, the

7

WO 01/90892 PCT/US01/15720

commands may direct the client system 110, 115 to perform self-check
functions. The self-check functions may have the following parameters:

e ‘v:filename’ get the file’s version

e ‘m: filename’ get the file’s modified date

e ‘d: driveletter’ get amount of free disk space

e ‘r:keyname’ get the value of the specified registry key

e ’s:filename’ get the size of the file.
In one embodiment, the commands are executed by the client system 110, 115
to collect information pertinent to the applications currently installed on the
client system 110, 115.

The script file may contain a list of parts that the server 105 thinks the
client system 110, 115 has and that the server 105 wants the client system 110,
115 to check. The parts may be the names of the applications and the server
105 may want the client system 110, 115 to collect the current version
information about the applications. In one embodiment, in order to keep the
information in the client database 125 accurate, the user may not want to alter
the configuration of the applications that are to be supported remotely by the
server 105. Keeping the client system 110, 115 and the information in the client
database 125 synchronized may help making the update process by the server
105 more efficient.

In block 310, using the script information sent by the server 105, the
patch checker parses the server’s commands to check the software parts on the
client system 110, 115. The appropriate information about these software parts
is collected. In one embodiment, the version of each software part is collected
and sent to the server 105, as shown in block 315. The server 105 uses the
information collected from the client system 110, 115 and compares it with a
part database 120. For example, the server 105 may check the version number
collected from the client system 110, 115 with the version of the same software
part in the part database 120. In one embodiment, the server 105 may want to

get the most updated version distributed to the client system 110, 115.

WO 01/90892 PCT/US01/15720

When the version information collected from the client system 110, 115
is not at the same level with the version of the same software part in the part
database 120, the most updated version is retrieved from the part database 120.
When the version information from the client system 110, 115 is already up to
date, there is nothing to download. In block 320, the patch checker asks the
server 105 for the files associated with the updated versions of the software to
download. The files are downloaded from the server 105 to the client system
110, 115 in block 325. In one embodiment, each download file is associated
with an uniform resource locator (URL). The server 105 replies to the update
request by sending the patch URL.

There may be one or more download files for each software to be
updated, and there may be more than one software that needs to be updated,
the server 105 may send several down load files to the client system 110, 115.
The download files may be stored in a predefined directory such as, for
example, the download directory. Each download file is processed
individually, as shown in block 330. In one embodiment, the download files
are received from the server 105 in a compressed format, such as, the zip
format, and need to be uncompressed or expanded, as shown in block 335.
Each download file is expanded into an executable program and multiple
related data files. One of the data files is a text file or an instruction file
containing a set of instructions or commands that can be parsed by the
executable program to perform the update process, as shown in block 340. For
example, the instruction may be one of the following commands:

¢ Delete a file

o ShellExecute

» ShellExecute with wait

* Registry Change

* Add message to a tool bar
e Kill a particular process

e Ask for reboot

e Force reboot

WO 01/90892 PCT/US01/15720

e Ask user to install now or later
e Askuser to close all programs

When all of the download files have been expanded and copied into the
appropriate directories, the update process is completed. At that time, the user
may be given an option of rebooting the client system 110, 115 to activate the
updated version. Alternatively, the user may continue working with the
currently installed version and reboot the client system 110, 115 at a later time.

Figure 4 illustrates an exemplary tool bar that can be used with the
present invention. In one embodiment, the tool bar is a list of dynamic link
libraries (DLL) and is always running. Additional functions can be added to
the tool bar by adding DLL files. For example, the patch checker can be added
to the tool bar 400 by adding a patcher.dll to the tool bar 400, and a patch
checker icon can be displayed. By selecting the patch checker icon, the user can
initiate the update process at any time. In one embodiment, the tool bar 400 is
also used to display update related messages to the user.

Figure 5 is an exemplary diagram illustrating a relationship between a
connection point, a customer data base and a part data base. In one
embodiment, the server provides a connection point 505 that connects to a
customer database 510. The customer database 510 maintains the state of every
client system in the network. The state includes information concerning
relevant hardware and software as currently installed on the client system.
This information includes, for example, the versions of the installed software
applications, the versions of the installed hardware drivers, etc. Additionally,
the connection point 505 is also connected to a part database 515. The part
database 515 may contain the different versions of the application software, the
DLLs, the hardware drivers, and any other software modules that may be
installed on the client system. The server uses the part database 515 to keep the
client system up to date. For example, when the client system is identified to
have a hardware driver that is not current, the most up-to-date hardware

driver is retrieved from the part database 515.

10

WO 01/90892 PCT/US01/15720

In one embodiment, a client part database is maintained in the client
system. The client part database contains the versions of the software that are
installed on the client system. As additional software is installed on the client
system, the client part database is updated accordingly. In one embodiment,
when the server wants to know the versions of the software installed on the
client system, the patch checker retrieves the version information from the
client part database.

Figure 6 is an exemplary diagram illustrating a communication protocol
between a client system 600 and a server 650 through the Internet network. In
one embodiment, the client system 600 has a message queue 605 to store
messages that certain application 610, such as, for example, the patch checker
(patcher.dll), wants to send to the server 650. The user selects the patch
checker icon on the tool bar 400 displayed by the tool bar program 620
(dreambar.exe) to execute the patch checker 610. The message queue 605 is
processed periodically, such as, for.example, every thirty minutes, while the
user is connected to the Internet 690. When the user is not connected to the
Internet 690, the messages from the patch checker (applications) 610 are stored
in the message queue 605. In one embodiment, the patch checker 610 connects
to the server 650 through a message handler 615 (ConPoint.dll). The message
handler 615 handles the messages generated by the patch checker 610
including, for example, the request for an update. The message handler 615
sends the message to the server 650. In another embodiment, the message
queue 605 is implemented as a text file located in a message queue directory.

In one embodiment, the server 650 is implemented with multiple java
servlets. A master servlet 655 (AnnexServlet) is used to route all the messages
received from the client systems 600 to the other servlets 665, 670 on the server
650. Each of the servlets 660, 665, 670 handles different type of messages. In
one embodiment, as each servlet starts up, the servlet tells the master servlet
which type of messages the servlet 660, 665, 670 handles. The master servlet
655 may be used as the connection point on the server 650. Each of the servlets

660, 665, 670 may be used as a worker. For example, the serverlet 660 is the

11

WO 01/90892 PCT/US01/15720

patch worker handling the update messages from the patch checker 610. The
patch worker 660 sends the script file to the patch checker 610. The script file is
used by the patch checker 610 to check the client system 600. When the patch
checker 610 requests for the download, the patch worker 660 accesses the part
database 665 to retrieve the necessary software versions for the client system
600. It will be apparent to one skilled in the art that there may be other
workers (servlets) on the server 650, such as, for example, a buildworker to add
a new client system to the client database, a viewworker to view contents of the
client database 680 and the part database 675, a dataworker to store data, and a
messageworker to get the messages to be displayed on the tool bar 400.

In one embodiment, each client system 600 is associated with a unique
identification number known to the server 650. As a new client system 600 is
inserted into the network, the client database 680 is updated with the
identification number of that new client system 600. Similarly, when the client
system 600 is removed from the network, the client database 680 is updated
accordingly. In one embodiment, the server 650 generates a report listing all
the identification number of those client systems 600 that have not
communicated with the server 650 for over a predetermined length of time.
The report can then be used to investigate status of these client systems.

Figure 7 illustrates an embodiment of a computer-readable medium 700
containing various sets of instructions, code sequences, configuration
information, and other data used by a computer or other processing device.
The embodiment illustrated in Figure 7 is suitable for use with the software
update method described above. The various information stored on medium
700 is used to perform various data processing operations. Computer-readable
medium 700 is also referred to as a processor-readable medium. Computer-
readable medium 700 can be any type of magnetic, optical, or electrical storage
medium including a diskette, magnetic tape, CD-ROM, memory device, or
other storage medium.

Computer-readable medium 700 includes interface code 705 that

controls the flow of information between various devices or components in the

12

WO 01/90892 PCT/US01/15720

computer system. Interface code 705 may control the transfer of information
within a device (e.g., between the processor and a memory device), or between
an input/output port and a storage device. Additionally, interface code 705
may control the transfer of information from one device to another or from one
network component to another.

Computer-readable medium 700 also includes the patch checker
program 710 that is used to request and receive software patches or updates
from the server. Other codes stored on the computer-readable medium 700
may include the tool bar program 715 to display the patch checker icon, the
message queue handler program 720 to receive the messages generated by the
patch checker and send the messages to the server. The computer-readable
medium 700 may also contain programs run on the server. These programs
may include the patch worker 725 that communicates with the patch checker
710 from the server side, and the database access program 730 that allows the
server to view the client database and the part database.

From the above description and drawings, it will be understood by
those of ordinary skill in the art that the particular embodiments shown and
described are for purposes of illustration only and are not intended to limit the
scope of the invention. Those of ordinary skill in the art will recognize that the
invention may be embodied in other specific forms without departing from its
spirit or essential characteristics. References to details of particular

embodiments are not intended to limit the scope of the claims.

13

WO 01/90892 PCT/US01/15720

CLAIMS

What is claimed is:

1. A method comprising:

sending a request for an upgrade to a server system connected in a
network, the upgrade being for a plurality of software applications
installed in a client system connected in the network, the request sent
from the client system, the request comprising a unique identification
associated with the client system, the unique identification

recognized by the server system as belonging to the client system;

receiving at least one instruction from the server system in response to the
request for the upgrade, the server system having a knowledge of the
software applications installed on the client system, the at least one
instruction directing the client system to collect application
information about the software applications installed on the client
system, the server system having no knowledge whether most-
updated upgrade packages available for the software applications

have been installed on the client system;

sending the application information about the software applications to the
server system, wherein the server system performs a comparison
between the application information about the software applications
and the most-updated upgrade packages for the software
applications, wherein the most-updated upgrade packages for the

software applications are stored in a part database; and

receiving the most-updated upgrade packages for the software
applications at the client system automatically when the comparison
indicates that the most-updated upgrade packages have not been

installed on the client system.

14

WO 01/90892 PCT/US01/15720

2. The method of claim 1, wherein the unique identification for the client
system is stored in a registry in the client system, wherein the unique
identification is recognized by the server system as belonging to the
client system when the unique identification is found in a plurality of
unique identifications stored in a client database, wherein when the

unique identification is not found, the client system is not authenticated.

3. The method of claim 2, wherein the client database comprises a
configuration file for each client system connected in the network, the
configuration file providing the server system the knowledge of the
software applications installed on the client system, wherein the server

system uses the configuration file to generate the at least one instruction.

4. The method of claim 3, wherein the knowledge of the software
applications installed on the client system comprises names of the

software applications installed on the client system.

- 5. The method of claim 3, wherein the client database is in a first database
server connected to the network, and wherein the part databaseisin a

second database server connected to the network.

6. The method of claim 5, wherein the network is an Internet.

7. The method of claim 5, wherein functions associated with the first
database server and functions associated with the second database

server are implemented in the server system.

8. The method of claim 5, wherein the client database is in the server system.

15

WO 01/90892 PCT/US01/15720

9.

10.

11.

12.

13.

14.

15.

16.

The method of claim 1, wherein the application information about the
software applications comprises version information of the software
applications, and wherein the application information about the

software applications is stored in a database in the client system.

The method of claim 1, wherein the request for the upgrade is sent
automatically from the client system to the server system at a

predetermined time interval.

The method of claim 10, wherein the predetermined time interval is 24

hours.

The method of claim 1, wherein the request is sent at any time by a user

using the client system.

The method of claim 1, wherein the at least one instruction received from
the server system comprises get a version information for a file, get a
modified date for the file, get a size of the file, get an amount of free disk

space for a storage drive, and get a value of a registry key.

The method of claim 1, wherein receiving the most-updated upgrade
packages for the software applications from the server system comprises

receiving a plurality of download files.

The method of claim 14, wherein the plurality of download files are in a

compressed format.

The method of claim 15, wherein each download file comprises an

upgrade utility, a text file and a plurality of data files, wherein the text

16

WO 01/90892 PCT/US01/15720

file provides commands to the upgrade utility to install the plurality of
data files in the client system.

17. The method of claim 16, wherein the commands comprise copy a file,
delete a file, registry change, ask for reboot, force reboot, ask the user to

install now or later, and ask the user to close all programs.

18. The method of claim 16, wherein each down load file is associated with a
uniform resource locator (URL), and wherein each down load file is

retrieved by accessing the URL.

19. A machine-readable medium providing instructions, which when
executed by a set of one or more processors, cause said set of processors

to perform the following:

sending a request for an upgrade to a server system connected in a
network, the upgrade being for a plurality of software applications
installed in a client system connected in the network, the request sent
from the client system, the request comprising a unique identification
associated with the client system, the unique identification

recognized by the server system as belonging to the client system;

receiving at least one instruction from the server system in response to the
request for the upgrade, the server system having a knowledge of the
software applications installed on the client system, the at least one
instruction directing the client system to collect information about
the software applications installed on the client system, the server
system having no knowledge whether most-updated upgrade
packages available for the software applications have been installed

on the client system;

sending the information about the software applications to the server

system, wherein the server system performs a comparison between
17

WO 01/90892 PCT/US01/15720

20.

21.

22,

the information about the software applications and the most-
updated upgrade packages for the software applications, wherein the
most-updated upgrade packages for the software applications are

stored in a part database; and

receiving the most-updated upgrade packages for the software
applications to the client system automatically when the comparison
indicates that the most-updated upgrade packages have not been

installed on the client system.

The machine-readable medium of claim 19, wherein the unique
identification for the client system is stored in a registry in the client
system, wherein the unique identification is recognized by the server
system as belonging to the client system when the unique identification
is found in a plurality of unique identifications stored in a client
database, wherein when the unique identification is not found, the client

system is not authenticated.

The machine-readable medium of claim 20, wherein the client database
comprises a configuration file for each client system connected in the
network, the configuration file providing the server system the
knowledge of the software applications installed on the client system,
wherein the server system uses the configuration file to generate the at

least one instruction.
The machine-readable medium of claim 21, wherein the knowledge of

the software applications installed on the client system comprises names

of the software applications installed on the client system.

18

WO 01/90892 PCT/US01/15720

23.

24.

25.

26.

27.

28.

29.

30.

The machine-readable medium of claim 21, wherein the client database is
in a first database server connected to the network, and wherein the part

database is in a second database server connected to the network.

The machine-readable medium of claim 23, wherein the network is an

Internet.

The machine-readable medium of claim 23, wherein functions associated
with the first database server and functions associated with the second

database server are implemented in the server system.

The machine-readable medium of claim 23, wherein the client database is

in the server system.

The machine-readable medium of claim 19, wherein the information about
the software applications comprises version information of the software
applications, and wherein the information about the software

applications is stored in a database in the client system.

The machine-readable medium of claim 19, wherein the request for the
upgrade is sent automatically from the client system to the server

system at a predetermined time interval.

The machine-readable medium of claim 28, wherein the predetermined

time interval is 24 hours.

The machine-readable medium of claim 19, wherein the request is sent at

any time by a user using the client system.

19

WO 01/90892 PCT/US01/15720

31.

32.

33.

34.

35.

36.

37.

The machine-readable medium of claim 19, wherein the at least one
instruction received from the server system comprises get a version
information for a file, get a modified date for the file, get a size of the
file, get an amount of free disk space for a storage drive, and get a value

of a registry key.

The machine-readable medium of claim 19, wherein receiving the most-
updated upgrade packages for the software applications from the server

system comprises receiving a plurality of download files.

The machine-readable medium of claim 32, wherein the plurality of

download files are in a compressed format.

The machine-readable medium of claim 33, wherein each download file
comprises an upgrade utility, a text file and a plurality of data files,
wherein the text file provides commands to the upgrade utility to install

the plurality of data files in the client system.

The machine-readable medium of claim 34, wherein the commands
comprise copy a file, delete a file, registry change, ask for reboot, force
reboot, ask the user to install now or later, and ask the user to close all

programs.

The machine-readable medium of claim 34, wherein each down load file is
associated with a uniform resource locator (URL), and wherein each

down load file is retrieved by accessing the URL.

In an arrangement comprising at least one computer network, the
network connecting at least one server computer to at least one client
computer, a data processing system for providing software upgrades to

the client computer, comprising:
20

WO 01/90892 PCT/US01/15720

means for generating a request for a software upgrade, the software

upgrade being for an application on the client computer;
means for processing the request for the software upgrade comprising:

means for retrieving current information about the application on the

client computer;

means for comparing the current information about the application
on the client computer with information about an updated
package for the application, the updated package stored in a

part database accessible by the server computer; and

means for sending the updated package from the part database to the
client computer when the current information about the
application on the client computer and the information about

the updated package are not the same.

38. The data processing system of claim 37 further comprising means for
verifying a unique identification associated with the client system
against a client database accessible by the server computer, the client
database comprising the unique identification associated with the client
computer, the client computer previously registered with the server

computer.

39. The data processing system of claim 37, wherein the current information
about the application on the client computer and the information about

the updated package comprise version information.

40. The data processing system of claim 37, wherein the request for the
software upgrade is generated automatically at a predetermined time

interval.

21

WO 01/90892 PCT/US01/15720

41. In anarrangement comprising at least one computer network, the
network connecting at least one server computer to at least one client
computer, a data processing system for providing software upgrades to

the client computer, comprising:

a first logic in the client computer to generate a request for a software
upgrade, the software upgrade being for an application installed on

the client computer; and

a second logic in the server computer to process the request for the
software upgrade received from the first logic, the second logic

comprising;:

logic to extract current information about the application installed on

the client computer;

logic to compare the current information about the application
installed on the client computer with information about a most
updated upgrade package for the application installed on the
client computer, the most updafed upgrade package stored in a

first database; and

logic to send the most updated upgrade package for the application
to the client computer when the current information about the
application installed on the client computer does not match the
information about the most updated upgrade package for the

application.

42. The data processing system of claim 41 further comprising a third logic on
the server computer to verify an identification associated with the client
computer against a set of valid identifications stored in a client database,
wherein the identification associated with the client computer is added
to the set of valid identifications when the client computer is registered

with the server computer.

22

WO 01/90892 PCT/US01/15720

43. The data processing system of claim 41, wherein the current information
about the application installed on the client computer comprises version

numbers of the applications.

44. The data processing system of claim 41, wherein the request for software
upgrade is automatically generated by the client computer at a

predetermined time interval.

45. The data processing system of claim 41, wherein the request for software

upgrade is generated at any time by a user.

46. A method comprising:

receiving a request for an upgrade from a client system connected in a
network, the upgrade being for a software application installed in a
client system, the request received at a server system connected to
the network, the request comprising a unique identification
associated with the client system, the unique identification

recognized by the server system as belonging to the client system;

sending at least one instruction from the server system to the client system
in response to the request for the upgrade, the server system having
a knowledge of the software application installed on the client
system, the at least one instruction directing the client system to
collect information about the software application installed on the
client system, the server system having no knowledge whether most-
updated upgrade package available for the software application have

been installed on the client system;

receiving the information about the software application from the client
system, wherein the server system performs a comparison between
the information about the software application and the most-updated

~upgrade package for the software application, wherein the most-
23

WO 01/90892 PCT/US01/15720

updated upgrade package for the software application is stored in a

database; and

sending the most-updated upgrade package for the software application
to the client system automatically when the comparison indicates
that the most-updated upgrade package have not been installed on

the client system.

47. The method of claim 46, wherein the unique identification for the client
system is stored in a registry in the client system, wherein the unique
identification is recognized by the server system as belonging to the
client system when the unique identification is found in a plurality of
unique identifications stored in a client database, wherein when the

unique identification is not found, the client system is not authenticated.

48. The method of claim 47, wherein the client database compriseé a
configuration file for each client system connected in the network, the
configuration file providing the server system the knowledge of the
software application installed on the client system, wherein the server

system uses the configuration file to generate the at least one instruction.

49. The method of claim 48, wherein the knowledge of the software
application installed on the client system comprises name of the

software application installed on the client system.

50. The method of claim 48, wherein the client database is in a first database
server connected to the network, and wherein the part database is in a

second database server connected to the network.

51. The method of claim 50, wherein the network is an Internet.

24

WO 01/90892 PCT/US01/15720

52.

53.

54.

55.

56.

57.

58.

The method of claim 50, wherein functions associated with the first
database server and functions associated with the second database

server are implemented in the server system.

The method of claim 50, wherein the client database is in the server

system.

The method of claim 46, wherein the information about the software
application comprises version information of the software application,
and wherein the information about the software application is stored in

a database in the client system.

The method of claim 46, wherein the request for the upgrade is sent
automatically from the client system to the server system at a

predetermined time interval.

The method of claim 46, wherein the request is sent at any time by a user

using the client system.

The method of claim 46, wherein the at least one instruction received from
the server system comprises get a version information for a file, get a
modified date for the file, get a size of the file, get an amount of free disk

space for a storage drive, and get a value of a registry key.

The method of claim 46, wherein receiving the most-updated upgrade
package for the software application from the server system comprises

at lest one download file.

25

WO 01/90892 PCT/US01/15720

59. The method of claim 58, wherein the at least one download file is
associated with a uniform resource locator (URL), and wherein the at

least one down load file is retrieved by accessing the URL.

26

WO 01/90892 PCT/US01/15720

1/7

Server Client System 1
105 110

Client Client System 2
Database

125 115

Part Database

120

Fig. 1

SUBSTITUTE SHEET (RULE 26)

WO 01/90892 PCT/US01/15720

2/7

200 Start
Y
Request for updates
205
Send current configuration
210
Receive updates
215
Install updates
220
End

Fig. 2

SUBSTITUTE SHEET (RULE 26)

WO 01/90892 PCT/US01/15720

Get Check scripts T
from the server 305

3/7

(8]
<o

Y

Check all the parts
told to by the server

W
[E—
)

A 4

Tell the server the
version of all this
computer’s parts

(O8]
ok
(V)]

v

Ask the server for
files to download

(O8]
O

A4

Download the files

(o8
[\
W

|

Are there files
in the download directory?

330

) Parse the
Unzip instructions

file 335 340

y

Yes—»,

No

» Fig. 3

SUBSTITUTE SHEET (RULE 26)

PCT/US01/15720

WO 01/90892

v 31

4/7

Ruenzig

‘oiydelb sippiw 8y} uo Yolj-jybu
*Jequiealp JnoA ezijeuosiod

Joulalu| sy} aiojdxe
0]0d 02Jej\

00t

| BED a

dieH

SUBSTITUTE SHEET (RULE 26)

WO 01/90892 PCT/US01/15720

5/7

Connection
Point

305

Main
Customer
Database
510

Part
Database

51

Fig. 5

SUBSTITUTE SHEET (RULE 26)

PCT/US01/15720

WO 01/90892

6/7

9 314

009
U
— <00
029 onang)
9X9" IBqUIRAI(] 93ussaIN
019 <19
P" yored | puioguo)

069

JoUI)U]

089

oseqele(y
D

059
JOAIOS

999
TOAISS

Jajselr uo

19[AI0S
XOUuy

SL9
oseqere(]

Io[puey
19]AIS

A4

099
IONIOM Yored

<99
o[puey

19]AI0S

SUBSTITUTE SHEET (RULE 26)

PCT/US01/15720

WO 01/90892

777

L 'S

——

00L
0€L
$S900Y
oseqere(q
SIL
Ieq 100],

CCL L
Jo[pueH
anong)
IOIOM UorRd o3essoN
0IL SOL
190U yojed weidord 9ovIouy

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Internation ication No

PCT/US UL1/15720

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 G06F9/445 GO6F1/00

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

IPC 7 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5 845 077 A (FAWCETT PHILIP E) 1-59
1 December 1998 (1998-12-01)
column 4, Tine 60 —column 9, line 27
A EP 0 809 182 A (NIPPON ELECTRIC CO) 1,2,19,
26 November 1997 (1997-11-26) 20,37,
38,41,
42,46,47
column 4, 1ine 3 —column 5, 1ine B3
A US 5 752 042 A (PRITKO STEVEN MICHAEL ET 1-59
AL) 12 May 1998 (1998-05-12)
column 3, line 7 —column 6, Tine 60
A US 6 006 034 A (PORT GRAEME ET AL) 1-69
21 December 1999 (1999-12-21)
column 4, 1ine 59 -column 6, last line

D Further documents are listed in the continuation of box C.

Patent family members are listed in annex,

° Special categories of cited documents :

A document defining the general staie of the art which is not
considered to be of parlicular relevance

'E* earlier document but published on or after the international
filing date

'L* document which may throw doubts on priorily claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

0 document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the inlernational filing date but
later than the priority date claimed

T later document published after ihe international filing dale
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

'X* document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

*&' document member of the same patent family

Date of the actual completion of the international search

26 October 2001

Date of mailing of the international search report

06/11/2001

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Bijn, K

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Internation:

PCT/US 01/15720

cation No

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 5845077 A 01-12-1998 US 6073214 A 06-06-2000

EP 0809182 A 26-11-1997 JP 9305675 A 28~11-1997
AU 2348897 A 27-11-1997
CA 2204317 Al 20~-11-1997
EP 0809182 Al 26~-11-1997

Us 5752042 A 12-05-1998 US 6074434 A 13-06-2000

US 6006034 A 21-12-1999 NONE

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

