Office de la Proprieté Canadian CA 2582064 C 2013/07/23

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 582 064
Findustrie Canada Industry Canada 12 BREVET CANADIEN
CANADIAN PATENT
13) C
(22) Date de depot/Filing Date: 2007/03/16 (51) ClLInt./Int.Cl. HO4W 80/72 (2009.01),

o . : . HO4L 12/76 (2006.01), HO4L 29/02(2006.01),
(41) Mise a la disp. pub./Open to Public Insp.: 2007/11/02 HO4L 29/08 (2006.01)

(45) Date de délivrance/lssue Date: 2013/07/23 _
(72) Inventeurs/Inventors:

(30) Priorité/Priority: 2006/05/02 (EPO6 113 384.9) SHENFIELD, MICHAEL, CA;
SMITH, CHRISTOPHER, CA

(73) Proprietaire/Owner:
RESEARCH IN MOTION LIMITED, CA

(74) Agent: MOFFAT & CO.

(54) Titre : SYSTEME ET METHODE DYNAMIQUES DE REMISE DE CONTENU GROUPE
(54) Title: DYNAMIC SYNDICATED CONTENT DELIVERY SYSTEM AND METHOD

ﬂ;5o 110
G m e e e ol , /
Client : 140 (e mm e #120._. 1| Content
Application |} [. , " '| Provider
——— 1 | Push Client WirelessZ__ | ! Push Proxy | |
| network E 129 E E
i = .
! 130 : Lo
f Service Provider |
| l.. __________________ } |
i Push Framework .
= 100
(57) Abrégée/Abstract:

A dynamic syndicated content delivery system and method, the system having: a push proxy, the push proxy having: a deferrea
retrieval message store, the deferred retrieval message store adapted to storing deferred content for future delivery; a push agent,
the push agent adapted to push content; and a push scheduler, the push schedule adapted to communicate with the push agent
to schedule the pushing of content and further adapted to monitor a wireless network for network conditions; a push client, the
push client having: a client push agent, the client push agent adapted to communicate with the push agent of the push proxy; a
content pull broker, the content pull broker adapted to communicate with the deferred retrieval message store of the push proxy; a
deferred retrieval manager, the deferred retrieval manager adapted to communicate with the content pull broker and the client push
agent to pull content, the deferred retrieval manager further adapted to monitor a network and instruct the content pull broker to
pull the content If the network conditions are favorable for receiving the deferred content; and a network status monitor adapted to
monitor the status of the network; and the wireless network.

R N
RO TR S o
N "'c‘-‘-.u:-:{\: . N7
S
N

» . _
‘ l an a dH http:/opic.ge.ca + Ottawa/Gatineau K1A 0C9 - hmp./cipo.ge.ca o p1C
OPIC - CIPO 191

10

15

CA 02582064 2007-03-16

ABSTRACT

A dynamic syndicated content delivery system and method, the system having: a push
proxy, the push proxy having: a deferred retrieval message store, the deferred retrieval
message store adapted to storing deferred content for future delivery; a push agent, the
push agent adapted to push content, and a push scheduler, the push schedule adapted
to communicate with the push agent to schedule the pushing of content and further
adapted to monitor a wireless network for network conditions; a push client, the push
client having: a client push agent, the client push agent adapted to communicate with the
push agent of the push proxy; a content pull broker, the content pull broker adapted to
communicate with the deferred retrieval message store of the push proxy; a deferred
retrieval manager, the deferred retrieval manager adapted to communicate with the
content pull broker and the client push agent to pull content, the deferred retrieval
manager further adapted to monitor a network and instruct the content pull broker to pult
the content if the network conditions are favorable for receiving the deferred content; and

a network status monitor adapted to monitor the status of the network; and the wireless
network.

10

15

20

25

30

35

CA 02582064 2007-03-16

1

DYNAMIC SYNDICATED CONTENT DELIVERY SYSTEM AND METHOD

[0001] The present method and system relate to dynamic content delivery in a mobile
environment, and in particular to a generic dynamic content delivery architecture in which
applications and content providers can be added without changing the architecture.
[0002] Users of mobile devices or mobile user equipment (UE) are increasingly becoming
more sophisticated in terms of the functionality that they require from their mobile devices
and the way that they access data from the mobile devices.

[0003] Dynamic content delivery allows users to have information or data pushed to them
rather than having to go and seek out the data. Examples of data could include stock
quotes, weather updates, traffic updates, dynamic wallpaper, ads, applications or other
data desirable to a user.

[0004] Current technologies for mobile devices such as wireless application protocol
(WAP) have the ability to push content; however, WAP requires websites to be rewritten
to satisfy the wireless application protocol and provide users with a uniform site that does
not change to accommodate a user's capabilities to view a site.

[0005] Other alternatives include SMS based push and broadcast or cell broadcast. In
the broadcast case, delivery cannot be customized to the needs of a particular user or the
capabilities of a particular device. These systems therefore have no intelligence
associated with them. A better solution Is required for mobile devices.

[0006] The present system and method preferably provide for a dynamic content delivery
architecture and system that aliows generic applications and content providers to be
added to the system without the necessity to modify the architecture. Specifically, the
present system and method allows for a mobile device to become a dynamic application

platform in which applications can be added and content provided to the mobile device,

where the architecture of the dynamic content delivery system does not limit the type of

application that can be installed on the device nor the type of content that the device

receives.

[0007] In one aspect of the present application, metadata is preferably provided and

associated with the content to add intelligence to the content for various processing
elements within the dynamic content delivery architecture. This architecture includes
logical components that provide for content provision, service provision including push
proxies, a wireless network, push client and client applications.

[0008] In a further aspect of the present application, metadata is preferably provided in a
layered “enveloped” model for push content metadata. Content is wrapped with
metadata that can be used for processing at each element within a push framework. The

metadata for each successive element is layered, thereby allowing the processing

10

15

20

25

30

35

CA 02582064 2007-03-16

2

element to extract only the metadata for that element. For example, a content package
that includes metadata directed to a push proxy and a client application can include the
content with a first level of metadata for the client application, and a second layer of
metadata for the push proxy. Thereby, when the envelope reaches the push proxy, the
metadata for the push proxy is extracted and applied to the content, and the modified
content and metadata for the client application is passed to further processing element.
[0009] In another aspect of the present application, the metadata can be split into static
metadata (also referred to herein as channel metadata) and dynamic metadata (also
referred to herein as content metadata). Static metadata is established preferably at the
time of registration of both the application and the content provider. However, the
channel metadata can be established at a later time. The channel metadata specifies
processing rules that are specific to the type of content that is being delivered and the
application requirements for content type.

[0010] Dynamic metadata is conversely associated with the specific content being
passed.

[0011] In another aspect of the present application, a plug-in registration model is
preferably presented within the push framework. A generic push client and a push proxy
are identified, each having various processing blocks or modules that allow these
elements to process both content and metadata. These blocks can be directed to
process either the content being passed, the metadata being passed or both the content
and the metadata being passed.

[0012] Plug-in registration further preferably provides for the passing of service manifests
and application manifests to allow the establishment of channel metadata between a

content provider and an application. Specifically, service manifests can be used for
registering a content provider with the push framework, and an application manifest can
be used for registering an application with the push framework.

[0013] In another aspect of the present application, a method for pushing syndicated
content Is preferably provided which allows for the handling of data based on its priority
and based on network factors including the cost for sending data, the type of network

connected to or the users’ preferences. An optional mixed push/pull model for syndicated
content allows for either a push proxy to push content when network conditions become
favorable or for a client to pull content when network conditions become favorable or
when the user requires the content.

[0014] In order to accommodate various mobile devices, a further aspect of the present
application preferably provides for content fragmentation for content, including non-linear

content fragmentation. Non-linear content fragmentation includes augmenting the

10

15

20

235

30

35

CA 02582064 2007-03-16

3

content with metadata allowing the data to be recomposed once it has been passed to
the client.

[0015] These and other aspects will be identified in more detail with respect to the
drawings.

[0016] The present application therefore preferably provides a dynamic syndicated
content delivery system comprising: a push proxy, said push proxy having: a deferred
retrieval message store, said deferred retrieval message store adapted to storing
deferred content for future delivery; a push agent, said push agent adapted to push
content; and a push scheduler, said push schedule adapted to communicate with the
push agent to schedule the pushing of content and further adapted to monitor a wireless
network for network conditions; a push client, said push client having: a client push agent,
the client push agent adapted to communicate with the push agent of the push proxy; a
content pull broker, said content pull broker adapted to communicate with the deferred
retrieval message store of the push proxy; a deferred retrieval manager, said deferred
retrieval manager adapted to communicate with said content pull broker and said client
push agent to pull content, said deferred retrieval manager further adapted to monitor a
network and instruct said content pull broker to pull said content if said network
conditions are favorable for receiving said deferred content; and a network status monitor
adapted to monitor the status of the network; and the wireless network.

[0017] The present application further preferably provides a method for retrieving content
from a push proxy by a push client, said content being deferred until network conditions
are more favorable for delivery, said method comprising the steps of: monitoring a
wireless network to determine whether conditions are favorable for retrieving said

deferred content; pulling said deferred content to said push client when said network
conditions are favorable.

[0018] The present application still further preferably provides a method for delaying
content delivery from a push proxy to a push client until more favorable network
conditions exist, the method comprising the steps of: storing at a push proxy deferred
content for future delivery; monitoring a wireless network at said push proxy to determine
It conditions are favorable for delivery; and if conditions are favorable for said delivery,

delivering said deferred content.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] The present application will be better understood with reference to the drawings,
In which:

Figure 1 is a block diagram of a basic architecture for a dynamic content delivery

10

15

20

25

30

35

CA 02582064 2007-03-16

system;

Figure 2 is a block diagram showing alternative architectures of the dynamic
content delivery system of Figure 1,

Figure 3 is the block diagram of Figure 1 showing content and metadata flow;
Figure 4 is a block diagram showing a push proxy that can be used in association
with the present system and method;

Figure 5 Is a block diagram showing a push client that can be used in association
with the present system and method;

Figure 6 is a block diagram showing a multilayer envelope model of content and
metadata;

Figure 7 is the block diagram of Figure 6, showing processing steps dynamic
metadata for each envelope;

Figure 8 is the block diagram of Figure 6, additionally showing processing using
static and dynamic metadata;

Figure 9 is a block diagram showing a registration process for an application to a
single shared push client;

Figure 10 is a block diagram showing a registration process of an application to a
push container managing a pool of push clients;

Figure 11 is a block diagram showing an application registering to a content

processor and socket listener;

Figure 12 is a block diagram showing a content provider registering with a single
shared push proxy;

Figure 13 is a block diagram showing a content provider registering with a push
container managing a pool of push proxies;

Figure 14 is a flow diagram showing registration messages between a content
provider and client application;

Figure 15 is a block diagram showing interaction during registration between a

push client and push proxy;

Figure 16 is a block diagram showing interaction during registration between a
push proxy and a content provider;

Figure 17 is a flow diagram showing the flow of content and metadata between a
content provider and processing elements;

Figure 18 is block diagram showing an exemplary transform application for
content,

Figure 19 is a block diagram of a content syndication model;

Figure 20 Is a block diagram of a linear fragmentation process:;

10

15

20

235

30

35

CA 02582064 2007-03-16

D

Figure 21 is a block diagram of a non-linear fragmentation process; and
Figure 22 is a block diagram of an exemplary mobile device that could be used in

association with the present method and system.

DESCRIPTION OF PREFERRED EMBODIEMNTS

[0020] Reference is now made to Figure 1. A generic push system for delivering
dynamic content to a client application is illustrated. A system of Figure 1 is a simplified
system and shows logical components that need to be in a dynamic content delivery
architecture; however, one skilled in the art will appreciate that other components could

exist or that various components could be grouped together.

[0021] Architecture 100 includes a content provider 110. Content provider 110 is
arranged to provide dynamic content to users that are subscribed with content provider
110. Examples can include, for example, a website selling books. A user may register
with content provider 110 to obtain a list of newly released books within specified genres.
Other examples could include news sites which might provide headlines to users on a
periodic basis, traffic sites which might provide up-to-date traffic information to users
during certain periods of the day, stock market sites which could provide updated stock

quotes or currency exchange rates to users, among others.

[0022] As will be described in more detail below, content provider 110 registers with a
service provider 120 in order to allow clients of the service provider to receive content
from content provider 110. Service provider 120 includes a push proxy 122 that acts as a

proxy for a client or a client application and provides a destination for content provider

110 to send content.

[0023] Service provider 120 communicates over wireless network 130 with a push client
140 that is located on a mobile device. Push client 140 will be described in more detail

below. Push client 140 receives the content that is being delivered from content provider
110 and can communicate the content with a client application 150, which ultimately

consumes the content.

[0024] Within the present specification, reference to content provider 110, service
provider 120, push proxy 122, wireless network 130, push client 140 or client application

150 is a reference back to the architecture of Figure 1.

10

15

20

25

30

35

CA 02582064 2007-03-16

6

[0025] Referring to Figure 2, it will be appreciated by those skilled in the art that the
components of Figure 1 are merely logical components and are not necessarily separate
physical components. Figure 1 illustrates a generic architecture in which one content
provider 110, one push proxy 122, one push client 140 and one client application 150

exist. Alternatives are illustrated in Figure 2.

[0026] Specifically, a first alternative architecture 210 includes multiple content providers
110 communicating with a push proxy 122. Push proxy 122, as in the architecture of
Figure 1, communicates over wireless network 130 with a push client 140. Further,
multiple client applications 150 exist in architecture 210. This is therefore an N-1-1-N

system having multiple content providers 110 and multiple client applications 150.

[0027] Architecture 220 of Figure 2 includes one content provider 110 communicating
with and registered to push proxy 122. Further, push proxy 122 communicates over
wireless network 130 with multiple push clients 140. Each push client 140 communicates
with a client application 150. Architecture 220 therefore groups the logical components of

a client application 150 and a push client 140 and i1s an N(1-1)-1-1 system.

[0028] Architecture 230 of Figure 2 has multiple push proxies 122, each communicating
with a content provider 110. Each push proxy and content provider combination 232
communicates over wireless network 130 with a generic push client 140, which in turn

communicates with client application 150. This is an 1-1-N(1-1) system.

[0029] In architecture 240 of Figure 2, a content provider 110 and push proxy 122
grouping 232 communicates over wireless network 130 with a generic push client 140

and client application 150 combination. This is therefore an N(1-1)-N(1-1) system.

[0030] As will be appreciated by those skilled in the art, other alternatives are possible.
The above shows various logical components, which can be in separate physical

components or grouped together. For example, a push client can be imbedded in an
application, common shared clients can be used by multiple applications or other

alternatives.

[0031] Reference is now made to Figure 3. In order to add intelligence to a system,
content is associated with a metadata. Metadata, in this case, is defined as data that can

be used by a processing element to manipulate the content. As will be appreciated, a

A

10

1S

20

30

CA 02582064 2010-08-10

7

generic push system requires metadata to allow various content providers and
applications to exist within the system. The metadata can be in various forms, Iinciuding
processing parameters or rules, or a processing handler, code or reference provided

directly or a link to a processing handler, code or rules in another location,

[0032] As can be seen in Figure 3, content passes from content provider 110 to client
application 150 and is illustrated by arrow 310. Metadata, which provides instructions to
various components within the architecture 100 can also pass between components
within architecture 100, usually along with the content. For example, arrow 320 illustrates
metadata that originates at the content provider and is transparent to the delivery system

until it reaches a client application 150.

[0033] Arrow 330 shows metadata created by content provider 110 that is intended for

the push client 140, and thus only flows to generic push client 140.

10034] Arrow 340 illustrates metadata generated by service provider 120 and intended for

the push client 140, and thus is first associated with the content at the push proxy 122

and stripped from the content at generic push client 140. Examples of where this could
occur include agreements between a user and a service provider regarding a billing plan
and the level of service to be provided, where the service provider can use the metadata

to limit the services available or provide enhanced services.

[0035] The flow of metadata and the role of metadata is described in more detail below.

[0036] Reference is now made to Figure 4. Figure 4 illustrates a detailed exemplary
push proxy 410 which can be used in association with the present system and method.
As will be appreciated by those skilled in the art, push proxy 410 could be the same as

push proxy 122 from Figures 1 ana 2.

[0037] Push proxy 410 of Figure 4 includes various elements that enable push proxy 410
to operate in a generic push environment. This facilitates flexibility since the push proxy
is not limited to interaction with specific content providers or push clients, but instead can
be adapted to a dynamic environment. The elements described below for push proxy
410 are preferable have within push proxy 410, but the elements are not exhaustive, and
other elements are possible. Further, certain elements may be omitted from push proxy

410, with the remaining elements stilt able to perform generic push services.

10

15

20

235

30

335

CA 02582064 2007-03-16

[0038] Push proxy 410 includes content providers 412 registered to it. Content providers
412 register with a content provider registration service provider interface (SP1) 420. As
is described in more detail below, it is desirable in this registration that the content
provider 412 includes certain information for the channel being established, referred to
herein as channel metadata. Content providers 412 can be the same as content

providers 110 of Figure 1.

[0039] Push proxy 410 further includes a service administration block 430 to administer

the push proxy service.

[0040] Push proxy 410 includes various modules to deal with both the content and the
metadata associated with that content. A first module is the message broker and delivery
queue 440, which is a subsystem that consumes messages from content provider 412
and manages the content delivery queue. As will be appreciated by those skilled in the
art, not all content for all client applications can be delivered at once and a delivery queue
needs to be established in order to deliver the content in due course. For example, a

device may be out of coverage and content may need to be stored.

[0041] Push proxy 410 further includes a flow control management block 442. Flow
control management block 442 allows for the control of content flow. For example, a
mobile station with limited space may only be able to receive a certain amount of
information. |n this case, the mobile device, through a push client 140 as illustrated in

Figure 1, may ask push proxy 410 to stop the flow of data to push client 140. The flow
control management block 442 deals with this.

[0042] Alternatively, the mobile device can be off-line. Flow control management block
442 stops and starts the flow of data to push client 140 when content cannot be delivered

as received by push proxy 410.

[0043] A further component of push proxy 410 is push agents 444. Push agents 444 are

responsible for sending data to clients.

[0044] As will be appreciated by those skilled in the art, blocks 440, 442 and 444 deal
with messaging only, and are not metadata related. In other words, the blocks handle

the content of the messages, but not any metadata associated with the content.

A

20

25

33

CA 02582064 2010-08-10

[0045] A further component of push proxy 410 is the content metadata extractor and
cache block 450. Content metadata extractor and cache block 450 operate on
enveloped content metadata. Specifically, in the envelope model of metadata system,
which is described in more detail below, each logical component within the system can

have metadata associated with content processing. This metadata allows the logical

component to perform actions on the content. Each logical component thus needs to be

able to extract the metadata that is associated with it.

[0046] Content metadata extractor and cache block 450 is responsible for extracting
metadata that is associated with push proxy 410 and for caching this metadata. The
caching function allows optimization by eliminating the need to pass identical metadata in

subsequent content envelopes from the same content provider. The extraction ana

caching of metadata are described below.

[0047] Deferred retrieval message store block 452 is used when it is not efficient to

deliver content, or parts of it, to a client application. The deferred retrieval message store
block 452 can be used to store content that is not delivered to the client until it Is efficient
to send the content, or until the content is pulled by the client. The deferred retrieval
message store could also be used to cache auxiliary content that could be optionally

send to or pulled by the client depending on client application navigation through already

delivered content.

[0048] The purpose of deferred retrieval message store block 452 is better explained
below with reference to Figure 19 and 21. By way of example, deferred retrieval
message store block 452 may be used is the case where a user has requested location
information, such as a restaurant close to the location of the user. The content provider
or the service provider may have a model of providing information where advertisers can
pay to add their information to search requests. Thus, the user that's requesting
restaurant information for a location may also have information about stores, golf
courses, gyms or other services close to their location attended to their request. A

content provider bundles the restaurant information requested with the adaditional

information and passes it to push proxy 410.

[0049] Push proxy 410 can, based on the metadata provided, create a content package

to send to the client. The content package could inciude the information requested by the

10

15

20

25

30

35

CA 02582064 2007-03-16

10

client, as well as a digest or summary of related information that the user may be
interested in. The summary is sent to the user, but the deferred retrieval message store
block 452 stores the actual data that was received from content provider 110. Thus, if in

the future the user wishes to obtain more detailed information about information within the

digest, this information s already stored at push proxy 410.

[0050] An alternative use for deferred retrieval message store block 452 is in the case
where a user cannot accept the entire content at once. For example, if it is not feasible or
economical to send all content to device, part of the content can be stored until a later
time, when it can be pulled by the client or pushed when predefined rules are met. These
rules can be specified by the network or service conditions by certain network or service
conditions being satisfied. This is described in more detail with reference to Figure 19

below.

[0051] Push scheduler 454 schedules delivery slots for clients. As described above, in
some situations it may not be efficient to push all of the content at once. Push scheduler
452 can determine that it will push some information immediately and the rest according
to a predefined schedule. Also, push scheduler 454 may use nature of the content to
determine when the content should be pushed. Specifically, metadata may indicate that
some content is a high priority or has an expiry that is limited in time, and this content
may be pushed immediately, whereas content that has been indicated to have a low

priority or with no expiry may be pushed later when conditions for passing data are more

favorable.

[0052] As will be appreciated by those skilled in the art, blocks 450, 452 and 454 deal
with both the content of the message and the metadata that is associated with the

message.

[0053] Subscription and rules block 460 tracks applications that are registered to receive

a service and monitors rules on how to handle particular content being delivered.

Content is typically delivered based on a subscription by the client or on behalf of the
client. The user, for example if they want a particular service, can actively request
subscriptions. Subscriptions can be made on behalf of a user, for example, if the user
has sighed an agreement with their service provider 120 to receive a benefit for a service.
This could include the case where a user receives a preferred rate as long as the user

agrees to receive a certain number of advertisements each day. In this case, the service

10

15

20)

25

30

35

CA 02582064 2007-03-16

11

provider 120 may make the subscription to the advertisement provider on behalt of the

client.

[0054] When an application is deleted on a mobile device or when the application
unregisters from a subscription, subscription and rules block 460 can unsubscribe that

USer.

[0055] Content dependencies block 462 is used by push proxy 410 to advertise services
that a mobile device user can utilize. Thus, if a mobile device user does not have a
screen or bandwidth or memory sufficient for the service, content dependencies block

462 could block the advertisement of that service to the user.

[00566] Content fragmentation block 464 is used to fragment content. This could be used,
for example, if the mobile device is unable to receive all of the content at once. Content
fragmentation block 464 is used to break the content into various components. It can be
used in association with deferred retrieval and message store 452 to store fragmented

content that has not yet been delivered.

[0057] Content expiry and replacement block 466 is used for two purposes. First, this
block can be used to monitor subscriptions. Each subscription has an expiry time and

when this expiry time is met, the subscription can be ended.

[0058] Also, content expiry and replacement block 466 can be used to monitor
information. Certain content will have time limits on the validity of the information. For
example, a traffic application used to monitor rush hour traffic will be very time
dependent. If, for some reason, push proxy 410 is unable to deliver the content
immediately to a mobile device, this content is stored in content storage 480 for future
delivery. However, if the content is not delivered within a certain Specifi'ed time period,

then it could expire and not be delivered at all.

[0059] Similarly, content replacement deals with a situation where the information is
being updated. For example, a client application that is receiving stock quotes may only
want the latest stock quote. Thus, if the push proxy 410 is unable to deliver the stock
quote to push client 140 and a subsequent stock quote is received from a content
provider 110, metadata within the subsequent stock quote can indicate that it should be

used to replace the previous stock quote. Replacement of stored information rather than

10

15

20

25

30

35

CA 02582064 2007-03-16

12

adding all information to a delivery queue frees space within content storage 480.

[0060] Channel metadata repository 470 is used to store channel metadata, which is

described in more detail below.

[0061] The above describes an exemplary push proxy 410 that can be used with the
method and systems herein. The blocks and elements of push proxy 410 allow push

proxy 410 to be used in a generic dynamic content delivery system where the type of

content and handling of the content at an application can vary and is not predetermined.

[0062] Reference is now made to Figure 5. Figure 5 illustrates a push client 510 that

can be used in association with the system and methods herein. Push client 510 can be

the same as push client 140 from Figures 1 and 2.

[0063] As will be appreciated by those skilled in the art, a push client 510 that is to be
used in a generic system in which the content and processing of the content is not
predetermined should include blocks or modules that can be used to accommodate both
the content and the metadata associated with the content. The blocks defined with
regard to Figure 5 are not meant to be exhaustive, and other blocks could also exist
within a push client 510. Further, the blocks within push client 510 can, in some

iInstances, be omitted without restricting the functionality of the other blocks within push
client 510.

[0064] A push client 510 services applications, and one or more applications 512 can
register with push client $10. The application registration uses an application provider
interface 514 as the interface for registration and application provider interface 514 can

further be used to extract channel metadata for the application, as described in more

detail below.

[0065] Push client $10 includes client administration 520 used to administer the push
client 510.

[0066] As with push server 410 of Figure 4, push client 510 includes various blocks that
deal with messaging, various blocks that deal with metadata, and various blocks that deal

with both messaging and metadata.

10

15

20

25

30

35

CA 02582064 2007-03-16

13

[0067] Message broker and application queues 540 handle messages from push proxy

410 for delivery to applications 512. An application queue is a queue of messages for

applications 512.

[0068] Flow control management block 542 is used to notify push proxy 410 of Figure 4
to stop pushing content or to resume pushing content. This can be used, for example,
when the push client 510 has a limited amount of memory that it can accept pushed
content. In this case, before the push content is consumed push client 510 needs to stop
the flow of content from push proxy 410. Once the content has been consumed, flow
control management block 542 can be used to start the flow of data again.

[0069] Push agents 544 within push client 510 are used to receive information from push
proxy 410 of Figure 4.

[0070] As will be appreciated by those skilled in the art, message brokers and application
queues 540, flow control management block 542, and push agents 544 deal exclusively
with messaging and not with metadata.

[0071] Content metadata extractor and cache block 550 is used to extract dynamic
metadata destined for push client 510. As indicated above with reference to push proxy
410 of Figure 4, any of the processing elements in the dynamic content delivery
architecture could have metadata destined for them and this metadata needs to be
extracted. Thus metadata destined for push client 510 is extracted by content metadata
extractor and cache block 550.

[0072] Further, the content metadata extractor and cache block $50 is preferably adapted
to cache metadata. Metadata for push client 510 that does not change between a first
content package and a second content package does not need to be passed, saving
processing time at push client 510 by not requiring the extraction of this metadata, and
further saving network resources by not requiring metadata for push client 510 to be
passed over wireless network 130.

[0073] Deferred retrieval manager 552 is used for analyzing fragments of content that are
received and putting the content together in the correct way. As described in more detail
below, data can be either linear or non-linear. If the data is non-linear, then metadata is

required in order to reconstitute it, and this is done by deferred retrieval manager 552.

10

15

20

25

30

335

CA 02582064 2007-03-16

14

The deferred retrieval manager 552 also is adapted to analyse a digest of information
avallable in the deferred retrieval store 452 of push proxy 510 and drives the content puli
broker 554 (described below) to retrieve this information when required by user. This
Includes predictive retrieval when content navigation enters a certain branch of the

content structure graph or when bandwidth or cost conditions are satisfied

[0074] Content pull broker 554 is used in a push/pull model where the push client 510 is

also able to pull content in certain situations. Such situations are described below in

more detail with reference to Figure 19.

[0075] As will be appreciated by those skilled in the art, content metadata extractor and
cache 550, deferred retrieval manager 552 and content pull broker 554 deal both with

messaging content and with metadata.

[0076] Subscription management block 560 is the same as subscription and rules block
460 of Figure 4. Specifically, subscription management block 560 is used to manage
subscriptions. If an application de-registers or is deleted from a mobile device then
subscription management block 560 ends the subscription. The subscription

management block 560 can also re-subscribe on behalf of a client application when

subscription channel expires.

[0077] Update notification block 562 works with client applications and is used to notify

the applications that new content is waiting for them. This can be done in one of three

ways:

a. Afirst way that update notification block 562 can notify an application 512
is for push client 510 to send the content to application 512 directly.

b. A second way that update notification block 562 can notify applications
512 of new content is to store the content in content storage 580 and to
optionally notify applications 512 that content is waiting. Notification in this
case Is optional. Specifically, if an application 512 knows that information
destined for it is stored within a specific memory block, one option for the
application discovering that is has new data is to periodically poll the
memory location to see whether there has been something written to it.

Alternatively update notification block 562 can send a message to

application 512 indicating that it has new data an possibly the location that

10

20

35

CA 02582064 2010-08-10

the data is stored.
c. A third way that update notification 562 can notify applications $12 of new
content is to store the content internally and notify the application. The

application can then call on the push client to retrieve the content.

[0078] Content dependency block 564 Is the same as content dependency block 462 of

Figure 4, and can determine whether to advertise the service to the mobile device.

[0079] Content expiry and replacement block 566 is the same as content replacement
and expiry block 466 of Figure 4. The expiry of content and replacement of content can

thus be handled at push client 510 in addition to the push server or push proxy.

[0080] Channel metadata repository 570 I1s used to store channel metadata for

application 512.

[0081] Background update processing module 575 is used for performing updates when
an application 512 is unavailable. The background update allows, for example, the
replacement of data with newer data inside the application storage. Thereafter, when a

user starts the application, the data displayed by the application Is correct and updated.

[0082] Background update processing module 8§75 uses processing rules translate
content into a format acceptable for an application. It can execute and process content in

content store 580.

[0083] By way of example, a task list that is updated for a contractor overnight could
have tasks pushed to it. The task application is not started during this time, and
background update processing module 575 can be used to update the content for the
task application. This could be done with code for handling an extensible mark-up
language (XML) file, and could exist on the device in a file called "handler.exe”.
Background update processing block 575 on push client 5610 can run handler.exe,

passing the XML document as a parameter. The handler then constructs the task into

the application’'s internal format.

[0084] Once the background update processing block 575 of push client $10 constructs
the task into the application internal format, it then can read the task into the task list from

content storage 580 and append the new task to the list. It then can store the modified

10

15

20

25

30

35

CA 02582064 2007-03-16

16

back to content storage 580 for when the task application next connects to push client
510.

[0085] Figure 5 therefore illustrates a push client 510 that can be used in a generic
dynamic content delivery system, where content and processing of the content is
dynamic and not predetermined. The blocks described above with reference to the push
client 510 of Figure 5 are used to accommodate the dynamic nature of the system.

[0086] As indicated above with reference to Figure 3, content is associated with
metadata to provide intelligence for the processing of the content. In accordance with the
present method and system, metadata can be divided into two types of metadata.
Specifically, static (channel) metadata and dynamic (content) metadata.

[0087] Due to the unlimited possibilities of types of content providers and applications,
metadata is critical in order to build generic systems. The only way to handle the specific

type of content is through metadata.

[0088] Static metadata is metadata that provides rules on how to process specific types
of content. Static metadata can be broken into various levels of abstraction and include
for example structural information about the content itself. For example, a Real-time
Simple Syndication (RSS) document could be delivered with an RSS 2.0.XSD structure,
and all content from that content provider will be delivered with this structure.

{0089] A further level of abstraction for static metadata includes the provision of
processing rules for content subtype. This could be application specific. Thus, for
example, a financial news application indicates that data should be extracted from a
financial news RSS stream, stored in a predefined location, and that the application
should be notified about the arrival of the information. The application always requires

content destined for it to be handled in this way.

[0090] The static metadata (also referred to herein as channel metadata) stays the same
throughout the subscription between the application and the content provider, and thus
the static metadata can be established once for each element within the architecture and
for each content delivery channel. In one embodiment this is done at the time of

registration of the application or the content provider.

10

I3

20

235

30

35

CA 02582064 2010-08-10

17

[0091] Dynamic metadata is metadata that is associated with a particular piece of
content. For example, expiry information associated with a particular piece of qata or
replacement rules and information associated with a particular piece of data (l.e.

document K replaces document L.).

[0092] As indicated above with reference to Figures 4 and 5, each processing entity can
receive both static and dynamic metadata that is directed at that processing entity. Thus
push proxy 410 uses the content metadata extractor and cache 450 to extract the

dynamic metadata, and content expiry and replacement block 466 is used to replace

undelivered content with newer content received at push proxy 410.

[0093] Reference is now made to Figure 6. Figure 6 illustrates a multilayer envelope

model for content metadata.

[0094] A push proxy 410 receives a push envelope 610 that includes content processing
metadata for the proxy server 612 and a push client envelope 614. The push proxy 410
extracts content processing metadata 612 and uses this metadata to process push client
envelope 614. Metadata 612 dictates to push proxy what to do with the push client

envelope 614.

[0095] Push client envelope 614 is passed o push client 510 where it is broken into a
content envelope 620 and a content processing metadata 622. Content processing
metadata 622 is used by push client 510 to process the content envelope 620. For

example, this can be used to instruct push client 510 to perform replacement of

previously delivered content envelope 620 with the latest envelope if client application

150 is only interested in the latest version of the content.

[0096] Content envelope 620 is passed to client application 150. Content envelope 620
includes content processing metadata 630 for the application and the content payload

632 that Is to be consumed by client application 150.

[0097] As will be appreciated by those skilled in the art, the nesting of envelopes in

accordance with Figure 6 provides for a rich dynamic environment in which processing
can occur at any processing element of the architecture and which the content provider
110 can specify how specific content is to be dealt with. In one embodiment, metadata

directed to a particular logical element is opaque to other processing elements.

10

15

20

25

30

35

CA 02582064 2007-03-16

18

[0098] Alternatively, the service provider 120 can also add metadata at push proxy 410

for processing at push client 510 or client application 150.

[0099] Referring to Figure 7, this figure shows the envelope model.of Figure 6 and the
steps that each processing element takes with an envelope. As illustrated in Figure 7,
push proxy 410 first extracts the metadata from push envelope 610. This is done in step
710.

[00100]In step 712, push proxy 410 uses the metadata to process the push client
envelope 614. In step 714, push proxy 410 delivers the push client envelope 614 to push
client 510.

[00101] Similarly, push client 510, in step 720 extracts the content processing metadata
622 from push client envelope 614. [n step 722, push client 510 uses the content
processing metadata 622 on content envelope 620. in step 724, the push client 510

delivers content envelope 620 to client application 150.

[00102]In step 730, client application 150 extracts the content processing metadata 630

and in step 732 uses the content processing metadata 630 on content payload 632.

[00103] Referring to Figure 8, this figure shows the method as illustrated in Figure 7 with

the additional step of the use of static or channel metadata. Specifically, after the
metadata has been extracted in step 710 from push envelope 610, the push proxy 410

next uses the static channel metadata to process the push client envelope in step 810. In
step 712, push proxy 410 next processes the content processing dynamic metadata 612.

Push proxy 410 next delivers the push client envelope 614 in step 714.

[00104]Similarly, push client 510 extracts the content processing metadata 622 in step
720. Push client 510 then uses the channel metadata in step 820 on the content within
content envelope 620. Push client 510 then, in step 722, uses the dynamic content
metadata in content processing metatadata 622 prior to delivering content envelope 620

to client application 150 in step 724.

[00105] Client application 150 first extracts, in step 730, content processing metadata
630. It then uses the channel metadata in step 830 on content payload 632. Client

10

15

20

25

30

35

CA 02582064 2007-03-16

19

application 150 then uses, in step 732, content processing metadata 630 on content

payload 632.

[00106] As will be appreciated by those skilled in the art, the above model therefore
allows for both static metadata to be applied for the channel along with dynamic metadata

that 1s associated with the particular content being sent.

[00107]Reference is now made to Figure 9. As will be appreciated from Figure 5, push
client 510 can serve multiple target applications 512 on a mobile device. An efficient
runtime registration mechanism is required where applications can register with the

dynamic content delivery framework without interrupting service for other applications.

[00108] Referring to Figure 9, push client 510 includes three applications, specifically
applications 910, 912 and 914 that are already registered with the push client. As will be
appreciated, the plug in model is important because new devices can allow unlimited
application types to be installed on the device. Further, applications can be installed
dynamically, leading to a mobile device becoming an application platform. Because the
device can be an application platform, it must be capable of dynamically incorporating

new applications.

[00109]As seen in Figure 9, application 916 wants to register with push client 510.
Application 916 includes an application manifest 918 that, in a preferred embodiment.
provides the channel metadata for the application. Specifically, application manifest 918
provides information to push client 510, and ultimately push proxy 410 and content
provider 110 from Figure 1 with the static metadata for the application. This can include,
but is not limited to, what type of content the application expects, how the content will be
delivered, whether the application needs notification, or other channel information that
would be evident to those skilled in the art having regard to the present system and

method.

[00110] Application 916 therefore registers with push client 5§10, providing application

manifest 918 to establish a channel to a content provider for servicing application 916.

[00111] Referring to Figure 10, an alternate model could be the model described with
regard to architecture 220 of Figure 2. Specifically, in the model of Figure 10, a client
application 150 is paired with a push client 140. Each of the client application 150/push

10

15

20

25

30

35

CA 02582064 2007-03-16

20

client 140 pairs are coordinated with a push container 1010.

[00112]When application 1020 wishes to register with push container 1010, a client 140
Is created, or if it already exists is used, by push container 1010. Further, in registration,
the application 1020 provides an application manifest 1030 to push container 1010,

thereby providing channel metadata (static metadata) for application 1020.

[00113]An alternative illustration of Figure 10 is shown in Figure 11. Specifically, a push
container 1110 manages/maintains a pool of push clients. When an application registers
with the container it obtains a dedicated push client 510, which In the simple case could
be represented by a pair of a socket listener 1130 and content handler . The push client
is returned to the pool when the application unregisters from the container (and content

delivery service) or is deleted from the device.

[00114]Push container 1110 includes sockets 1120 for communication. Further, push
container 1110 includes socket listeners 1130 and content processors 1140 assigned to a

particular socket.

[00115]As seen in Figure 11, various content processor and socket listener pairs are

used by previously registered applications 150.

[00116]When a new application 1150 wants to register with push container 1110, a new

content processor and socket listener 1120 and 1130 are assigned to service application
1050.

[00117] The above therefore provides for a generic push framework in which a client
application 150 that is new can be implemented and registered with a push client 510 or
push container 1010 or 1110, thereby allowing the device to become an application
platform capable of dynamically incorporating new applications. The passing of an
application manifest 1030 or 918 from Figures 9 and 10 above allows for the
establishment of channel metadata, thereby allowing the content to be processed

according to the application’s requirements.

[00118] Referring to Figure 12, content providers 110 similarly need to register with a

push proxy 410. As seen in Figure 12, push proxy 410 includes three content providers,
namely, 1210, 1212 and 1214, already registered with push proxy 410. Content provider

10

15

20

235

30

35

CA 02582064 2007-03-16

21

1216 desires to register with push proxy 410.

[00119] Similarly to the application manifest 918 illustrated in Figure 9 provided by an
application 916 when registering with push client 5610, content provider 1216 includes a
service manifest 1218 that is passed to push proxy 410 when content provider 1216
registers. Service manifest 1218 includes information concerning the type of information
that the content provider will provide, how often it provides this information, the format of
the information, and any other information that is useful for the service or for
advertisement of the service. Other information is possible.

[00120]Push proxy 410 thus uses service manifest 1218 to establish channel (static)
metadata for content provider 1216.

[00121]Referring to Figure 13, an alternative embodiment, represented by architecture
230 of Figure 2, is to have a push container with a number of push proxy 122 and
content provider 110 pairings. As with Figure 12, various applications couid already be
registered with push container 1310, and in the example of Figure 12, applications 1312,
1314 and 1316 are already registered with push proxies 1313, 1315 and 1317
respectively.

[00122) A new application 1320 wants to register with push container 1310. Thus, push
container 1310 creates a new proxy (not shown) or uses an existing proxy (not shown)
with which it associates content provider 1320. Further, content provider 1320 provides
service manifest 1322 to describe the content that content provider 1320 will be
providing, thereby allowing the establishment of channel metadata.

[00123] As will be appreciated by those skilled in the art, the embodiments of Figures 9
and 10 show two options for push clients, either with shared applications or with
dedicated push clients per application. One skilled in the art will realize that other
embodiments are possible. Similarly, with respect to Figures 12 and 13, a push proxy
with multiple content providers registered to it is shown or a dedicated push proxy for
each content provider, and embodied in a push container is shown.

[00124] With reference to Figure 14, messaging between a content provider 110 and a
client application 150 is shown. Content provider 110 provides a registration message to
push proxy 410. This message can include the service manifest which can be used to

10

LS

2()

23

30

35

CA 02582064 2010-08-10

22

provide channel metadata to push proxy 410. This is done in step 1410.

[00125]Content provider 110 may also or alternatively provide channel metadata in a

subsequent message, as illustrated by step 1412.

[00126]Push proxy 410 then adds a service to a list of available services (the service

catalogue) in step 1414.

[00127]An optional step in the example of Figure 14 is for push proxy 410 to notify push
client 510 of the new service available in step 1416 and this notification may be

propagated to a client application 110 in step 1418.

[00128]As will be appreciated by those skilled in the art, steps 1416 and 1418 are
optional, and other alternatives include client application 150 pulling the service catalogue

periodically from push proxy 410 to view new services.

[00129]When a user or service provider for client application 150 decides that client
application 150 should subscribe to a service, it sends a subscription message in step

1420. The subscription message is further passed to push proxy 410 in step 1422

[00130)Once push proxy 410 receives the subscription message in step 1422, two

options are available. A first option is to send a message 1424 to content provider 110
for a subscription and then receive a message envelope that includes metadata back in
step 1426. The message is propagated to push client 510 in step 1428. The metadata

could be device or device type specific.

[00131] Alternatively, push proxy 410 may receive the subscription message In step 1422
and immediately, based on information already provided by content provider 110 and
stored on push proxy 410 reply in step 1430 to push client 510. This reply is propagated
to the client application 150 in step 1432. As will be appreciated, the reply can include

channel metadata specific for content provider 110.

[00132] The difference in models can be dependent on who is customizing the data for
the application. As will be appreciated, content provider 110 provides the best
customization of content compared with other processing elements. However, service

provider 120, through push proxy 410, can also provide for customization of content.

10

15

20

235

30

35

40

45

CA 02582064 2007-03-16

23

[00133] Further, as will be appreciated, the structure of the content could be dependent
on the data that the application requires. For example, in a financial application, the
application may want both stock quotes and currency rates. The following XML may be

used:

<FIN>
<quotes>
<quote ticker = ABC>
18.54
</quote>
<quote ticker = XYZ>
123.45
</quote>
</quotes>
<rates>
<rate id = “US-CAN">
1.15
<[rate>
<rate id = "US-EURQ">
0.85
</rate>
</rates>
</FIN>

[00134]If the user only wanted quotes and no currency exchange, the structure could

change to:

<FIN>
<quote ticker = ABC>
18.54
</quote>
<quote ticker = XYZ>
123.45
</quote>
</FIN>

[00135] The metadata can provide information to the application on the structure that of

the data being passed.

[00136] Thus, two models exist. Static metadata can be provided to push proxy 410 and
to push client 510 either during registration or afterwards. Alternatively, the metadata for
push proxy 410 and push client 510 can be pre-provisioned, i.e. information is stored at a

push client or a push proxy until an application registers with a client.

[00137]Reference is now made to Figure 15. Figure 15 shows logical steps that occur

upon registration of an application with a push client 510.

10

15

20

25

30

35

CA 02582064 2007-03-16

24

[00138]Once an application registers with push client 510, a first step 1510 is to match
the registered application with the content type required by the application. This is known

from the application manifest 918 as illustrated in Figure 9.

[00139] A second step 1520 is to set up the environment for the application. These
include but are not limited to storage and delivery options for the application. For
example, an application may limit transmissions to a predetermined amount of data. The
push client 510 in a flow control event, or if the application or client is out of touch, may
require the caching of the data for the application and optionally to notify the application

that data Is walting.

[00140] A third step 1530, is to notify push proxy 410 of the application settings. This
Includes for example available storage for the application or push client 510. As will be
appreciated, push proxy 410 should not push more data than push client 510 can store.
Thus, the application settings could include an upper limit of the data that is passed.
Referring to Figures 4 and 5, this could invoke content fragmentation block 464 to
fragment the content if it is greater than the application can process. Also, if the data is
non-linear, content dependencies block 462 may be required to create metadata for
content dependencies block 564 of Figure 5 in order to allow content dependencies block

564 to reconstitute the data.

[00141] Referring again to Figure 15, step 1530 can also indicate preference on data
delivery. For example, the application may prefer certain types of data over others and

these types of data may be given priority. Thus step 1530 can be used to establish a
delivery schedule where data of type “A” is delivered immediately while data of type “B”
can be delivered at a deferred time.

[00142] Reference is now made to Figure 16. When a content provider 110 registers
with a push proxy 410, various steps are performed. A first step 1610 includes analyzing
required client settings for content storage and delivery. This can be used, for example,
for service advertisement in order to identify push clients 510 on devices capable of

consuming content from content provider 110.

[00143]A second step 1620 allows push proxy 410 to set up the environment, including

proxy storage, delivery options, transformation options, among others.

10

15

20

25

30

35

CA 02582064 2007-03-16

23

[00144]in step 1630, push proxy 410 can check whether the application is already
registered to obtain content from a content provider 110. If this is the case, the
application is ready to receive content and a notification from push proxy 410 to content
provider 110 that the delivery channel is established and the application is ready for

content can be sent.

[00145]Step 1630 can'occur, for example, If an application is pre-installed on a device
prior to content provider 110 coming on-line. Thus, the application is waiting for content
provider 110 to become available or the application is of generic type (e.g. a browser or
RSS Viewer) and is capable of consuming information from multiple content providers. In
an alternative setting, if content provider 110 is already available before the application is
installed, the notification step 1530 in Figure 15 can be used to initiate the content

starting to flow from content provider 110 to a client application 150.

[00146] As will be appreciated with reference to Figure 16, client settings can include
certain information such as the available storage size used for content partitioning, the
queue size used for flow control, delivery scheduling including a push interval, whether
the client is retrieving information from the proxy, creating a pseudo-push mode,

customization options such as the screen size of a mobile device, among others.

[00147] As will be further appreciated, service catalogues may differ for different clients.
For example, certain clients may be able to utilize more data, have a different screen size

or other conditions which make the client more suitable for a content provider 110 than a
device that cannot handle this amount of information, has a smaller screen size, etc.
Thus, push proxy 410 can create a service catalogue for specific client applications
based on knowledge of those client applications, and only those devices with that client

application 150 installed can receive information concerning the content provider.

[00148] As will be further appreciated, in some cases the application may be installed
based on a service provider and content provider without the user intervention. For
example, if content provider 110 registers with push proxy 410, a user of a mobile device
may have a contract obligation to accept a certain application. Thus push proxy 410
could notify push client 510 that it is ready to install an application and push the
application to push client 510. This could, for example, include a user that has agreed to
receive a certain number of ads each month in order to get a preferred rate on their

mobile plan. The content provider 110 coulid be an ad provider and push proxy 410 may

10

15

20

25

30

35

CA 02582064 2007-03-16

26

therefore push an advertisement displaying application to push client §10, which might be
serviced by an application installer registered with push client 410, thereby having the

content provider 110 and the service provider 120 entirely driving the process.

[00149] The above therefore provides for a plug-in registration model in a push framework
where each application or content provider registers and provides an application manifest
or service manifest respectively. The application manifest or service manifest is used to
establish channel metadata at the push proxy 410 and push client $10 either during
registration or subsequently. Thereafter, when an application 150 registers and a content
provider 110 registers, content can start flowing between the application 150 and the

content provider 110.

[00150]With reference to Figures 4 and 5, the channel metadata is stored in a channel
metadata repository 470 and 570. It is, however, also advantageous to store dynamic
metadata on the various processing elements within architecture 100 if the dynamic
metadata is repeated. As will be appreciated, this will save processing on the push proxy
410 since current metadata extractor 450 does not need to extract the same metadata
over and over. Further, processing by various modules such as content expiry and
replacement module 466 or 566 do not need to be updated for each piece of content that
is passed. Since push proxy 410 could be working with a large number of push clients
510, this processing saving for each content message could be significant. Further,
bandwidth could be saved by not having to pass the metadata over a fixed line between
content provider 110 and push proxy 410 or over the air between push proxy 410 and
push client 510.

[00151]Reference is now made to Figure 17. Figure 17 illustrates an example of run

time flow where your last metadata version i1s stored by the processing element.

[00152]As seen in Figure 17, content provider 110 provides a content envelope which
includes content [C{+M (p,c,a) 4]. This means that a first content payload is being sent
along with metadata that includes proxy metadata, client metadata and application

metadata. This is sent in step 1710.

[00153] At step 1712, push proxy 410 uses the proxy metadata as illustrated by the
phrase “use M(p),”. Further, in step 1714 the content plus the metadata that includes the

client metadata and the application metadata is passed to push client 510.

10

15

20

25

30

35

CA 02582064 2007-03-16

27

[00154]In step 1716, push client 510 uses the client metadata and further in step 1718,
passes the content payload to client application 150. Client application 150 uses, in step

1720 the application metadata and further consumes the content payload.

[00155]As seen in step 1722, a second content payload, designated by C,, has the same
metadata as the first content payload. Because each processing element, namely, push
proxy 410, push client 510 and client application 150, cached the metadata for content
provider 110, the metadata does not need to be passed again but instead already resides

on the processing element.

[00156] Thereafter, in step 1724 the push proxy 410 uses metadata that was previously
cached for the push proxy 410. Similarly, in steps 1726 and 1728 the push client 510
uses the client metadata and the client application 150 uses the application metadata

respectively. Content is passed, without metadata, in steps 1725 and 1727.

[00157]As illustrated in step 1740, content may have new metadata for the push client
510 and client application 150, but may keep the old metadata for the push proxy 410. In
this case, the metadata that is passed in step 1740 includes only client metadata and
application metadata. In step 1742, the push proxy 410 uses the cached proxy metadata
and passes the content payload along with the new client metadata and application

metadata in step 1744.

[00158]In step 1746, the push client 510 uses the new client metadata that was passed

to it and further passes the content payload and application metadata in step 1748.

[00159]In step 1750, the client application uses the new application metadata and further

consumes the content payload.

[00160]As will be appreciated by one skilled in the art, various configurations could exist
concerning which metadata has changed and which metadata stays the same, and only
the metadata that has changed is passed to the processing element that requires it. As
will be appreciated by those skilled in the art, the processing element, if it does not
receive new metadata, goes back to the cached metadata that it has stored and uses this

on the content payload.

10

15

20

25

30

35

CA 02582064 2007-03-16

28

[00161]In a further alternative embodiment, incremental changes can also be made to
metadata. For example, in step 1760 a new content payload along with a delta metadata
version can be passed to service proxy 410. The delta of the proxy metadata can include
a difference between the proxy metadata previously passed and the current metadata
that the content should be processed with. The push proxy 410 composes the metadata
by adding the previous metadata with the delta and then using this to process the content
payload in step 1762. Thereafter, since there has been no change, in step 1764 the

content payload is sent by itself and in step 1766 the push client 510 uses the previously

cached client metadata.

[00162] Push client then passes the content payload in step 1768 to client application
150, which uses the previously cached location metadata on the content payload in step

1770 and then it consumes the content payload.

[00163]An example of where incremental data may be used is a situation in which a
content provider tells the proxy that of the existent fields within the content payload, 30
should be extracted to send to client application 150. In a subsequent transaction, two
additional fields that are important for that piece of content payload may be deemed
necessary to be passed to the client application 150 by content provider 110. The
content provider could therefore, using an incremental change, tell push proxy to extract
the two additional fields and add them to the 30 fields that were previously extracted. By
only having to pass the delta, i.e. the two additional fields, the processing time for

extracting the metadata at push proxy 410 is reduced, thereby optimizing the process.

[00164]As will be further appreciated, metadata can come in various forms. It could be
compiled such as native code or interpreted code such as Java or C#. The metadata can
also be a data/properties file that indicates to use certain properties. In another
alternative embodiment, it can be binary content, for example a transformation such as a

XSLT transformation on an XML document.

[00165] The above can be used for various applications to provide intelligence for content
being transferred to a specific client application. It can also provide for rich content
providers that can provide content for various applications merely based on the metadata

that they provide with their data. This can be illustrated by way of example in Figure 18.

[00166] A content provider 110 could, for example, be a on-line bookseller. An

10

15

20

25

30

35

CA 02582064 2007-03-16

29

application can register with the on-line bookseller to indicate to the on-line bookseller

that it wants to be informed of new releases of a specific genre. This could occur on a

daily or weekly or monthly basis.

[00167] Content provider 110, for example, on a weekly basis will send a content
envelope 1810 having a book list 1812, to push proxy 410. It can also send a transform
metadata 1814, which can be, for example, a URL link for transforming the specific

content based on the application receiving it.

[00168]In one embodiment, the book list 1812 could include numerous books,
descriptions of each book including the author and a synopsis of the book. The file may,
for example, be 100 KB in size.

[00169]Push proxy 410 can receive this large file and may realize, based on the client
application being serviced, that a transformation to the large content file needs to be done
in order to better accommodate the client which may only be able to receive, for example,
10 kilobytes of information. The transformation that is passed as a proxy metadata can
therefore be applied to the book list to reduce the book list to a 10 KB modified document
1820. This can, for example, be done by removing the synopsis, ranking the books and
only including the top 50 or other transformations as would be evident to those skilled in
the art.

[00170] Once the transformation is complete, the modified document 1820 is then sent to
the push client 510.

[00171]Further, the deferred retrieval message store 452, as seen in Figure 4, can be

used to store the extra content that was stripped out in the transformation process.

[00172] The advantage of the above is that the bookseller can have one site and send
one list to all of its clients. Since various clients will not be mobile wireless clients, the
100 KB file may be appropriate for these clients. By also providing the transformation
metadata, the bookseller can have one list that it sends to everyone. As will be
appreciated by those skilled in the art, most current web technologies require a separate
website for a mobile client, and this is overcome by the above solution.

[00173] The above also lends itself to a syndication model and reference is now made to

i

10

15

20

25

30

(s
L

CA 02582064 2010-08-10

Figure 19,

[00174]As will be appreciated by those skilled in the art, a mobile device may not wish to
receive large amounts of data when network conditions are not optimal for the receiving
of large amounts of data. Further, network operators may wish to avoid sending large
amounts of data during peak periods of bandwidth usage in order to spread network
traffic more evenly over time. This can be accomplished using a push/pull model as

llustrated in Figure 19.

[00175]As described with reference to Figure 4 above, content may be provided that
includes more information than the user may currently need. For example, if the user
requests location information for restaurants within his area, a service provider may wish
to add advertising such as other services available in the area. However, the service
provider may not wish to push this additional content immediately to the user, but instead

provide a primer such as a headline or a table of contents showing the additional content.

[00176]In other situations, the content may be too large to send to the user, and the user

may receive only the first part of the content and the remainder of the content is stored In

a deferred retrieval message store 452.

[00177] Thereafter, the stored content can be passed to push client 510 either by push
proxy 410 or when asked for by push client 510.

[00178]Push client 510 includes a network status monitor 1910 which can monitor the

status of the network. Push client 510 may wish to only receive extra data in certain
conditions. For example, on a hybrid mobile device that has a WiFi and a cellular option,
it is cheaper to provide data on the WiFi connection, and thus network status monitor
1910 could wait until the push client 510 is connected to a WiFi network prior to getting
the deferred content. Alternatively, network status monitor could check whether the client
is roaming in a foreign network or connected to the home network in order to minimize
roaming charges. Network status monitor may also check to see whether a dedicated
data channel is established for the device. One skilled in the art will realize that network

status monitor 1910 could also check for various other preconditions in the network

before requesting deferred data to be passed to push client $10.

[00179] A wireless network 130 could also provide information to either or both of push

10

15

20

235

30

35

CA 02582064 2007-03-16

31

client 510 and push proxy 410 concerning the costs of delivery of data. As will be
appreciated by those skilled in the art, various peak periods occur for the delivery of
content. In the case of traffic information, the peak periods may be at the beginning and
end of the workday when people are coming to and going from work. For stock quotes
the peak period may be during the time that the market is open. Other peak periods will
exist. In order to average the data traffic, it may be desirable for the network to charge
different rates based on the current data usage in the network. Thus during peak periods
a higher rate may be charged than a non-peak period such as the middle of the night.

Wireless network 130 therefore provides delivery cost notifications to a deferred retrieval

manager 552 on a push client 5610 and to push scheduler 454 on push proxy 410.

[00180]In one embodiment, data from content provider 110 and passed to push proxy
410 can be ranked based on its importance to the client. Certain information can be
designated through metadata to be delivered immediately. Other information can be
designated to be delivered when the network cost is less than a first value (for example
10¢ per megabyte) and other data may be designated to be delivered when the network
costs drop below a second value (for example, 5¢ per megabyte). Thus push scheduler
454 considers the data that is stored in deferred retrieval message store 452 and

instructs push agent 444 to pass deferred data to push agent 544 on push client 510.

[00181] Alternatively, deferred retrieval manager 552 couid also monitor network
conditions as sent from wireless network 130 and if the data rate is below a certain rate

can ask content pull broker §54 to puli content from deferred retrieval message store 452.

[00182] Alternatively, deferred retrieval manager 552 could see that the network status is
favorable for pulling larger amounts of data, such as if the mobile device has connected

with a Wiki network, and ask content pull broker 554 to pull the data from deferred

retrieval message store 452.

[00183] As will be further appreciated, a user can always request to have the content
pulled. Thus user request 1940 could also be used to trigger content pull broker 554 to

pull the data from deferred retrieval message store 452.

[00184] The rules stored in push scheduler 454 and deferred retrieval manager 552 could
pbe static metadata based on a classification of content. The rules could also be based on

dynamic metadata for the particular data that has been passed. In this case the content

10

15

20

25

30

35

CA 02582064 2007-03-16

32

provider 110 has classified the data.

[00185] Reference is now made to Figure 20. As will be appreciated by those skilled in
the art, data can be one of two forms, linear or non-linear. Linear data could, for
example, be arrays or strings or content that flows in a linear fashion. Non-linear data,

conversely, is data that does not linearly relate to each other and can include complex
dependencies with content maps or links.

[00186] For linear content, fragmentation merely involves the breaking of the data into
various components based on linear progression. The data is partitioned into segments
and the segments are delivered to the push client 410. As indicated in Figure 20,
fragmentation processor 2010 interacts with content 2012 and decides that the content
can be parsed with linear progression. The fragmentation processor 2010 next partitions
the data into segments 2014, 2016 and 2018 in the example of Figure 20, and, as
lllustrated in Figure 20, passes the first segment 2014 while deferring the passing of the
second and third segments 2016 and 2018 respectively.

[00187] The cursor management module 2030 keeps track of which segment has been
delivered and delivers the next segment in order.

[00188] Referring to Figure 21, non-linear content needs to be partitioned in a more
intelligent way. Further, at the other end, in order to reconstitute the segments, metadata
IS required.

[00189] A fragmentation processor 2110 analyses the content based on a metadata
based analysis. These could include keeping certain segments or data elements
together if logically required. Fragmentation processor 2110 analyses content 2112 and
partitions the content into segments based on logical rules. Each segment includes the

content plus metadata including for example, dependencies, maps, and navigation rules
for each segment.

[00190]Once partitioned, a first segment 2114 is sent to push client 510 and the passing
of the remainder of the segments 2116 and 2118 is deferred as illustrated in Figure 21.
Segment navigation block 2130 deals with which segment to send next. As will be
appreciated by those skilled in the art, first segment 2114 includes a data portion and a

metadata portion. The metadata portion of segment 2114 is a layer of metadata that is

A

L0

20

o
AN

30

35

CA 02582064 2010-08-10

33

added by the fragmentation processor 2110 to indicate to content dependencies module

564 how to reconstitute the content. Data portion of first segment 2114 can include both

content and metadata associjated with the channel or with the content.

[00191] Segment navigation block 2130 1s adapted to process how a user travels through
the data. For example, if the data is in a tree format and the user goes down a first
branch of the tree, segment navigation block 2130 may pass to push client 410 other

branches in the tree that can be reached from the element that the user has navigated to.

[00192]For example, a tree could include an employee database that has employee
names along with a structure for the corporation. Based on Figure 21, if the user
navigates into a specific depariment of the organization, the segmentation navigation
block 2130 might forward the group fragments for groups within that department. If the
user then navigates into a specific group within the department, the segmentation
navigation biock 2130 might then pass information fragments about the employees within

that group.

[00193] The above therefore requires that the data be partitioned into logicat components.

Identifiers are assigned to all types and content, and structural information is created

passing the information with the primer.

100194] The above therefore provides an architecture for dynamic content delivery that
can be used with generic systems where applications and content can be added without

changing the structure of the system. The content can be tailored to fit the application

receiving it, and be fragmented according to the above.

[00195]As will be appreciated, the push client and client applications can reside on any
mobile device. One exemplary mobile device Is described below with reference to Figure

22. This is not meant to be limiting, but is provided for illustrative purposes.

[00196] Figure 22 is a block diagram lillustrating a mobiie station apt to be used with
preferred embodiments of the apparatus and method of the present application. Mobiie
station 2200 is preferably a two-way wireless communication device having at least voice
and data communication capabilities. Mobile station 2200 preferably has the capability to
communicate with other computer systems on the Internet. Depending on the exact

functionality provided, the wireless device may be referred to as a data messaging

10

15

20

25

30

35

CA 02582064 2007-03-16

34

device, a two-way pager, a wireless e-mail device, a cellular telephone with data
messaging capabilities, a wireless Internet appliance, or a data communication device, as

examples.

[00197]Where mobile station 2200 is enabled for two-way communication, it will
iIncorporate a communication subsystem 2211, including both a receiver 2212 and a
transmitter 2214, as well as associated components such as one or more, preferably
embedded or internal, antenna elements 2216 and 2218, local oscillators (LOs) 2213,
and a processing module such as a digital signal processor (DSP) 2220. As will be
apparent to those skilled in the field of communications, the particular design of the
communication subsystem 2211 will be dependent upon the communication network In

which the device is intended to operate.

[00198] Network access requirements will also vary depending upon the type of network
2219. In some CDMA networks network access is associated with a subscriber or user of
mobile station 2200. A CDMA mobile station may require a removable user identity
module (RUIM) or a subscriber identity module (SIM) card in order to operate on a CDMA
network. . The SIM/RUIM interface 2244 is normally similar to a card-slot into which a
SIM/RUIM card can be inserted and ejected like a diskette or PCMCIA card. The

SIM/RUIM card can have approximately 64K of memory and hold many key configuration
2251, and other information 2253 such as identification, and subscriber related

information.

[00199]When required network registration or activation procedures have been
completed, mobile station 2200 may send and receive communication signals over the
network 2219. As illustrated in Figure 22, network 2219 can consist of multiple base

stations communicating with the mobile device. For example, in a hybrid CDMA 1x

EVDO system, a CDMA base station and an EVDO base station communicate with the
mobile station and the mobile station is connected to both simultaneously. The EVDO
and CDMA 1x base stations use different paging slots to communicate with the mobile

device.

[00200] Signals received by antenna 2216 through communication network 2219 are
Input to receiver 2212, which may perform such common receiver functions as signal
amplification, frequency down conversion, filtering, channel selection and the like, and in

the example system shown in Figure 22, analog to digital (A/D) conversion. A/D

10

15

20

25

30

35

CA 02582064 2007-03-16

35

conversion of a received signal allows more complex communication functions such as
demodulation and decoding to be performed in the DSP 2220. In a similar manner,
signals to be transmitted are processed, including modulation and encoding for example,
by DSP 2220 and input to transmitter 2214 for digital to analog conversion, frequency up
conversion, filtering, amplification and transmission over the communication network
2219 via antenna 2218. DSP 2220 not only processes communication signals, but also

provides for receiver and transmitter control. For example, the gains applied to

~.communication signals in receiver 2212 and transmitter 2214 may be adaptively

controlled through automatic gain control algorithms implemented in DSP 2220.

[00201] Mobile station 2200 preferably includes a microprocessor 2238 which controls the
overall operation of the device. Communication functions, including at least data and
voice communications, are performed through communication subsystem 2211.
Microprocessor 2238 also interacts with further device subsystems such as the display
2222, flash memory 2224, random access memory (RAM) 2226, auxiliary input/output
(1/0) subsystems 2228, serial port 2230, two or more keyboards or keypads 2232,
speaker 2234, microphone 2236, other communication subsystem 2240 such as a short-
range communications subsystem and any other device subsystems generally

designated as 2242. Serial port 2230 could include a USB port or other port known to

those in the art.

[00202] Some of the subsystems shown in Figure 22 perform communication-related
functions, whereas other subsystems may provide “resident” or on-device functions.

Notably, some subsystems, such as keyboard 2232 and display 2222, for example, may
be used for both communication-related functions, such as entering a text message for
transmission over a communication network, and device-resident functions such as a

calculator or task list.

[00203] Operating system software used by the microprocessor 2238 is preferably stored
In a persistent store such as flash memory 2224, which may instead be a read-only
memory (ROM) or similar storage element (not shown). Those skilled in the art will
appreciate that the operating system, specific device applications, or parts thereof, may
be temporarily loaded into a volatile memory such as RAM 2226. Received

communication signals may also be stored in RAM 2226.

[00204] As shown, flash memory 2224 can be segregated into different areas for both

10

15

20

25

30

35

CA 02582064 2007-03-16

36

computer programs 2258 and program data storage 2250, 2252, 2254 and 2256. These
different storage types indicate that each program can allocate a portion of flash memory
2224 for their own data storage requirements. Microprocessor 2238, in addition to its
operating system functions, preferably enables execution of software applications on the
mobile station. A predetermined set of applications that control basic operations,
including at least data and voice communication applications for example, will normally
be installed on mobile station 2200 during manufacturing. Other applications could be

installed subsequently or dynamically.

[00205]A preferred software applicatioh may be a personal information manager (PIM)
application having the ability to organize and manage data items relating to the user of
the mobile station such as, but not limited to, e-maii, calendar events, voice mails,
appointments, and task items. Naturally, one or more memory stores would be available
on the mobile station to facilitate storage of PIM data items. Such PIM application would
preferably have the ability to send and receive data items, via the wireless network 2219.
In a preferred embodiment, the PIM data items are seamlessly integrated, synchronized
and updated, via the wireless network 2219, with the mobile station user’s corresponding
data items stored or associated with a host computer system. Further applications may
also be loaded onto the mobile station 2200 through the network 2219, an auxiliary 1/0O
subsystem 2228, serial port 2230, short-range communications subsystem 2240 or any
other suitable subsystem 2242, and installed by a user in the RAM 2226 or preferably a
non-volatile store (not shown) for execution by the microprocessor 2238. Such flexibility
In application installation increases the functionality of the device and may provide

enhanced on-device functions, communication-related functions, or both. For example,
secure communication applications may enable electronic commerce functions and other

such financial transactions to be performed using the mobile station 2200.

[00206] In a data communication mode, a received signal such as a text message or web
page download will be processed by the communication subsystem 2211 and input to the

microprocessor 2238, which preferably further processes the received signal for output to
the display 2222, or alternatively to an auxiliary I/O device 2228. A push client 2260,

which could be equivalent to push clients 140 and 510, could also process the input.

[00207]A user of mobile station 2200 may also compose data items such as email
messages for example, using the keyboard 2232, which is preferably a complete

alphanumeric keyboard or telephone-type keypad, in conjunction with the display 2222

I3

20

25

30

35

CA 02582064 2010-08-10

37

and possibly an auxiliary /O device 2228. Such composed items may then be

transmitted over a communication network through the communication subsystem 2211.

[00208] For voice communications, overall operation of mobile station 2200 is similar,
except that received signals would preferably be output to a speaker 2234 and signals for
transmission would be generated by a microphone 2236. Alternative voice or audio I/O
subsystems, such as a voice message recording subsystem, may also be implemented
on mobile station 2200. Although voice or audio signal output is preferably accomplished
primartly through the speaker 2234, display 2222 may also be used to provide an
indication of the identity of a calling party, the duration of a voice call, or other voice call

related information for example.

[00209] Serial port 2230 in Figure 22, would normally be implemented in a personal
digital assistant (PDA)-type mobile station for which synchronization with a user's desktop
computer (not shown) may be desirable, but is an optional device component. Such a
port 2230 wouid enable a user to set preferences through an external device or software
application and would extend the capabilities of mobile station 2200 by providing for
information or software downloads to mobile station 2200 other than through a wireless
communication network. The alternate download path may for example be used to load
an encryption key onto the device through a direct and thus reliable and trusted
connection to thereby enable secure device communication. As will be appreciated by
those skilled in the art, serial port 2230 can further be used to connect the mobile device

to a computer to act as a modem.

[00210] Other communications subsystems 2240, such as a short-range communications
subsystem, is a further optional component which may provide for communication
between mobile station 2200 and different systems or devices, which need not
necessarily be similar devices. For example, the subsystem 2240 may include an
infrared device and associated circuits and components or a Bluetooth™ communication

module to provide for communication with similarly enabled systems and devices.

[00211] The embodiments described herein are examples of structures, systems or
methods having elements corresponding to elements of the technigues of this application.
This written description may enable those skilled in the art to make and use embodiments
having alternative elements that likewise correspond to the elements of the technigues of

this application. The intended scope of the techniques of this application thus includes

CA 02582064 2007-03-16

38

other structures, systems or methods that do not differ from the techniques of this
application as described herein, and further includes other structures, systems or
methods with insubstantial differences from the techniques of this application as

described herein.

10

15

20

CA 02582064 2011-07-11

39

]. A method performed by a delivery server, the method comprising:

receiving, from a content provider, a package consisting of nested envelopes, the
nested envelopes being: a client envelope including a payload and client metadata; and a
server envelope containing the client envelope and server metadata, wherein the client
metadata is opaque to the delivery server for instructing only a delivery client how to

process the payload, and wherein the server metadata 1s distinct or different from the
client metadata, the server metadata instructing only the delivery server how to process at

least one of the client envelope, the payload and the client metadata;

extracting the server metadata from the package consisting of nested envelopes,

the server metadata specifying network preferences for delivery of the chient envelope to

[[a]] delivery client; and

delivering, to the delivery client, the client envelope containing the payload and
the client metadata if network conditions correspond to the network preferences from the

server metadata.

2. The method of claim 1, wherein said network preferences are based on a price of

delivery for various network types.

3. The method of claim 1, wherein said network preferences are based on bandwidth

restrictions for various network types.

10

15

20

CA 02582064 2011-07-11

4()

4. The method of claim 1, wherein said server metadata specifies a rule regarding

whether delivery is acceptable during roaming.

5. The method of claim 1, wherein said server metadata specifies acceptable network
types.
0. The method of claim 1 wherein the client metadata contained in the client

envelope is configured for extraction and use by only the delivery client.

7. The method of claim 6 wherein the client envelope further includes metadata for

extraction and use by only an application which is registered with the delivery client.

8. A method performed by a delivery client, the method comprising:

receiving, from a delivery server, a package consisting of nested envelopes, the

nested envelopes being: a content envelope including a payload: and

a client envelope containing the content envelope and chent metadata, wherein
the client metadata is opaque to the delivery server for instructing only the delivery client

how to process the content envelope or the payload;

extracting the client metadata from the package consisting of nested envelopes,
the client metadata specifying network preferences for the delivery client to obtain

content; and

CA 02582064 2011-07-11

41

using the client metadata to request content from the delivery server according to

the network preterences.

9. The method of claim 8. wherein said network preferences are based on a price of

5 delivery for various network types.

10. The method of claim 8, wherein said network preferences are based on bandwidth

restrictions for various network types.

10 11. The method of claim 8, wherein said client metadata specifies a rule regarding

whether delivery is acceptable during roaming.

12. The method of claim 8, wherein said client metadata specifies acceptable network
types.

15
13. The method of claim 8 wherein the content envelope further includes metadata for
extraction and use by only an application which is registered with the delivery client.
14. A method performed by a content provider, the method comprising:

20 packaging, at a content provider, first metadata with a content envelope that

includes a payload such that a delivery client envelope is formed containing the first

10

15

20

CA 02582064 2011-07-11

42

metadata and the content envelope, the first metadata being opaque to a delivery server

for extraction from the delivery client envelope only by a delivery client and for use by

only the delivery client; and

nesting, at the content provider, the delivery client envelope 1n second metadata
such that a delivery server envelope containing the second metadata and the delivery
client envelope is formed, the second metadata being opaque to the delivery client tor
extraction from the delivery server envelope only by the delivery server and for use by

only the delivery server,

wherein the delivery server envelope contains the delivery chient envelope, and

the delivery client envelope contains the content envelope, and

wherein at least one of the first metadata and the second metadata specifies

preferences which facilitate selection of a network for delivery of content.

13. The method of claim 14 wherein the first metadata is configured for use by only
the delivery client to facilitate processing of the content envelope, and wherein the
second metadata is configured for use by only the delivery server to facilitate processing

of the delivery client envelope.

16. The method of claim 14 wherein at least one of the first metadata or the second

metadata includes information related to expiring or replacing the payload betfore the

payload is consumed by an application registered with the delivery client.

10

15

CA 02582064 2011-07-11

43

17. The method of claim 14, further comprising providing, to the delivery server and

the delivery client, third metadata that is related to a channel for the payload.

18. The method of claim 14, wherein the content envelope further includes third metadata
with the payload, the third metadata being configured to provide instructions regarding

processing of the payload to an application that is registered with the delivery client.

19. A non-transitory storage medium containing instructions which cause a machine to

perform the method of any one of claims 1 to 7.

20. A non-transitory storage medium containing instructions which cause a machine to

perform the method of any one ot claims 8 to 13.

21. A non-transitory storage medium containing instructions which cause a machine to

perform the method of any one of claims 14 to 18.

2007-03-16

CA 02582064

@)
1
S —
1

19PINOI-

JUSIU0N

OLl

|, D14

I'i'll!Illllllll'lll’l!i;li*lllllllIlllllllllllll!‘illlllll"

18PINOIH B2INIBS

m o€l

w 4d) _ y}Iomjau

| Axoid ysnd | SS[aJIM Jusi|n ysnd
S S A I ovL

GEE NS GEE NN G ST T S W S AN R A AR A) GRR el ttum aam Gk IIER I Ny R S

uoijeonddy

JUSl|O
0S1

2007-03-16

CA 02582064

¢ ‘b4

(L-LIN-(L-LIN L1 ZZ1 0Sl

oVl 0S1L
Nuoneolddy
JUal|o

}I0M)BU
SSalalIAN

JUsl|o ysnd

13pINOId

JUSIUCD

orl 0S5l

2/19

YJOM]SU
19pIN0Ig SSa|aJIAN 1USID YsShd uoyed||day
JusjuoD Jusi|o
0¢Z —> cee

L=L-(L-LIN
oLl oSl
r&A) oS L

N uoneolddy
1Usi[O

MJomiau

SS9lalIM JUStO Yshg

JapPINOI-
JUSIUON AX0ld uysnd

0¢l
ovL 051

Jual|o ysnd uoiesl|ddy

JUSi|O

cel

18pIACId AX0ld ysnd
JUBJU0D)

yiomiau
SS9JalIM

2007-03-16

CA 02582064

19PINOI-

JUSUON

3/19

OLl

0€¢

0C¢

OLE

SED WD ME CEE G WEn EEm Dam way mad why duid Wi @il GNP IP VR wad AED AN GIY TS o Dy o D b o SMD UER UG 4EN U A ans ans and AWM U AED IR DD IE aEm A GED A G G G T oy - e S AE TR T .y

18PINOIH BIINIBS !

0ClL

44} MIloMm]au
AXold ysnd SS9|aJINN Jual|D ysng
“ rld..N..—.\ lllllllllllll] ovi

(Jual|o ysnd <- 4S) € MO|} ejepejowl
(Jualo ysnd <- 40) Z MOj} ejepejawl
(pua-0}-pua) | Moj} ejepelawl

MOJ} JUSIUOD

uoleolddy

JUSio

2007-03-16

CA 02582064

4/19

A4

Content Provider Registration SPI

0cv

oLy

D14 08t

abe.l01g JuUsiuo0n

paje|al ejepelaw

Q
N~
A 3

fioysoday ejepejspy jsuueyd

salouspuada uonejuawbel4 Jusawade|day pue

sa|nNy pue
suoniduosqng

09% 29v ov 99v
0SY A1 1214

13|NpPayos
ysnd

JUSU0D JuUaJu0n Aldx3 juajuon

ayoeD pue Jojoenxy 2l0}S abessay
elRpRloN JUSIUOD [EABLIIDY palldie(

(s)ananp AlaAllaq pue Jusawabeue

(s)ioxo0ig abessap |0J]JU0D) MO|

---“--ﬁ-“-k------

UOIE]SIUIWPY 30IAIRS AX0i4 YSnd

ocy

2007-03-16

CA 02582064

5/19

¢lLS

VLS

o
<C
-
O
-
(O
—
B2,
O)
1,
A
C
0
e
O
O
Qo
Q.
<C

0LS

AN TN I N Gy e Iy Nieh AR S e wEe v dawh Gk i S e ey e B Rl Sep ER W= AR

o W gy ek ARG AR A SR A AP EEE AR S Gy AaEm .

pajelol ejepejasiu

Juawsbeuey
uonduosgns

0.S Alo)yisoday ejepelajy jauueyd)

G ‘b4

08S
abel0)g Jusju0n

AN GID NN O TS G TN T T aEr W vy wuy o wamk gk A AR AER AR Ay TR EEE A . .- IS WS T W W T W T e vy e e ey pemy ey ek sdep ek e il A A e

GG Buissasoid

a)lepdn punoibyoeq

UOI}eDIIION salouspuada(Juswiaoe|day pue
ayepdn IUE)(V[elg' Andx3 jusjuon

L------ﬂ”“_——--‘““-—-

0SS ayoen pue JojoeIIX] ¢SS Jebeuep oig |
B1EDBION JUBJUOD [EASLIDY Palidje(Ind uajuo)d |

y

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII "l

I

(s)snanp "ddy pue Juswabeueglp !

(s)iox01g abessan [0JJUOD MO |

| et e o o e o o = e = W T W e e e A e e Em Em e e e e e e e G e e e e e e e e e A e SR W R e e e e e e o

0259

UOHEJSIUIWPY JUSI[D Jusiio ysnd

2007-03-16

6/19

CA 02582064

9 "bi4

9dOo|2AUS JUBJU0D ¢e9

0¢9 éfg%ég
peojAed 1usjuod

T
(u-o1idde) ejepe}awl

adojaAua Jualjo ysnd

ado|aAus ysnd 19

‘
adojaAus jualo ysnd —

/

AP

y .‘.\.‘J\\\\.\‘\\.\\\\\\\.\\‘\‘

adojaAua JuUalu0d

Wff’?’.’.’.’.’”IpfJ.J..Ef.f._r..’f.f.ffﬁf’ffff/ffgjﬁ.’#

(Juaio ‘d) ejepelawl
Buissao0.d Juajuod

AV

TSI LT,

\\.

N
\
M
\

7

)

buissao0.d jJusjuod

’

(Janias Axoud) _ m 055 0Z9

ejepejawl buissaosold jusjuod | |
| (XA |

| 145 “

¢L9 0L9 m m

" "

| |

Axoud ysnd ! Jusi|2 ysnd ! uoneolidde jualo
OLY m 0LS m 0S1

MOJ} BlEPEJaW PUE JUBJU0D

2007-03-16

CA 02582064

7119

adojaaua ysnd

%

laplaoid JuUau00

adojaAua Jualo ysnd

7

(AXoiad) ejepelawl
BuIssa20.d Juajuod

Z1e |, »ﬂ» ols

VEYVIE] s, asn 10BI1X8
N 4%/ NZLL NOLL
Axoid ysnd

oLV

/ b4

adojaaua jualo ysnd 0¢3

e A
A R
mm adojaAua JUsJU0D m;
N N
AT
/ (JusI|0) elepelal [
/ /
m Buisses0.d Jusjuod m
D TZ7P77 777777777
A 4%
VEYIE)e oS JOBIIXS
\pzL (42 0z

Jualo ysnd olisuab
OLSG

adojaAus JuUaju09D AR

Aﬁﬁﬁﬁﬁﬁﬁﬂﬁﬂﬂﬂﬁﬁﬁﬁﬁﬁﬁﬂﬂ

%/ézx peojAed Juajuod
!

///////./////////////////ﬁ//////////
(u-o1dde) ejepejawl
puissaso.d juajuod

0£9 “ 029

asn }oelixe

N\
Ze. > 0¢l

uoneo||dde jual|o
051

2007-03-16

CA 02582064

8/19

adojaAua ysnd

7

JOATI|P
474

puissasold Juajuod

(Axo0.d) ejepelawl

asn 10BI)IX3
NZLL ~0LL

(AXoud) ejepelswl
jauuey?d

Axoud ysnd
1157

g 'bi4

‘ *
’Jr.f.f..f..f.f..f.f..’.faff.ff.lr.flrf,’f._f..fff’.dr.’fffdrfjr.f.ffflrlr’d ..,fJI;

L Ll
-
N

/

Y A NN SN AR R AR sl il by aiali S ST SR PR RPN Y

ccm__ov ejepejsw
puissasold H:&:oo

\‘\\‘w\ \AA S/ S A

/
!

'txmudﬁa
e

7
7
/
/
/
/
%

v_‘w

ISAll8p &sn 10BI)XS
Npz2 o el \ 02Z2

(Jual9) elepelall
jauuey?

T A TS 4OTE 4GEE T TR AR AR TS O AER A TEn AR TS ARS eeis saak e e Egek P PR RN PEEE R PEYY DI D I B Anlh dmie O mmmy e

Jualjo ysnd olisuab
0LS

A%
adojaAua Jusjuod

%f S /.épﬂl

/ peo|Aed Jusjuod
/%%%/

E.o__aamv ejepejsul
) puissasold juajuod

M1 M/M/MDIMNIM
omm 029

oS JOEIIX2
Ngel ‘oS

(dde)

ejepelawl
Jauueyd

-
I
ot
|l.lvllll
I
aun W=—

uonesljdde jualo
0S1

2007-03-16

CA 02582064

9/19

0€01L

]S8jluew
uoneoldde

0L "bi . 6 "Bi

0C0lL
916
06l
141°
816
_ oYl 1sajiuew O
uoljeoljdde
buus)sibai si g 1aulejuon) ysnd buusjsibei st d Jual|d ysnd
e 0L0L
orl 0LS
— ori
rA N 0L6

0S1l 051

2007-03-16

CA 02582064

10/19

IENE SR
19X00S

19U9]ST
134908

IENETSR
194905

IENEER
19005

IEREER

19008

IENEISR
194005

0Sti

]0SSa00.14
1u3jU0H

10SSa701d
JusjuUon

105590014
JUau0H

10SS8001d
E)[Vlele

10SS8001d
JUSJUOD

105580014
JUSJUO0D

ovii

Pe3()

2007-03-16

CA 02582064

11/19

¢l

}Sajiuew
CRITNEL

buus)sibe. Si (J

gLel

¢l b

0ctlL

d 91L¢1

b

Jaulejuon ysnd

vLEL A%

OLEL

ELel

8LCl

1SajluBWw
92IAISS

buus)siba Si (7

OLvy

2l b

giLcl
474"
AX0ld ysnd
AYA’ 0LCl

2007-03-16

CA 02582064

9cvi

(')

vevl

12/19

BlepelS|N |auueyd

Olvi
(}sajiue\ adiIAI8S) J9)sibay

0Ll JSpIAOIH Judluod OLb Axoid ysnd

S2IAI8S 0} 8qUISANS |ZzpL 9o1AI8g 0) BQUOSANS

a|qejieAe o0 abueyd J0 AJIJON

A E

¢evl
8cPl

CRIT . ()N

ocvi Aidox

0cvi

90IAJ8S 0} 2quIsqns

(Ind 10 ysnd) sa0IM8S

S9OIAI9S

NLpL s|qejieAe jo abueyd j0 AJjoN
. vivi

S92IAI3S 9|qe|leAy Jo
ISl| O} S0IAIBS PPY

0LS jual|D ysnd 051 uoled||ddy jusiD

2007-03-16

CA 02582064

13/19

"
“
I
. 0ZS1
|
“
i
|

AXxold ysnd

LY

Gl "B

0€St

(aoeds abe.ojs ‘b'8) sbues uonesijdde uo Axoid Ajjou

(suondo Lisnljap pue abeio)s ‘b'a) Jusiuoiinus dnas

adA] Jusjuo9o 8y) yum uoiealjdde paisjsibal yojew

JUSi0 Yshg

0lLS

0LSl

2007-03-16

CA 02582064

0€91

14/19

suorjdo uoneuliojsuel]

_
|
)
_
!
}
)
|
|
|

0291

| 0L91
J9PINOIH JUajUO)

OLl

-1opino.d Juajuoo Apou pausisibes Apeaife uoneoldde Ji

fianijep pue abelojs jusjuod 1oy sbuljjes Jusifo azAjeue

9l "b1

JU8JU0D 10 Apeal,

‘Aianljep ‘ebeiojs Axoud :Juswiuoiinue dnjos

AXxold ysnd

OLY

2007-03-16

CA 02582064

L1 "B
sbexoed YN — N7 |

elepejaw ‘|dde =N(e)\ \

ejepejawl Jual|o —"(9)IN Pe) asn _N ol

eyepelaw Axold =N(d)\ 0221 189, el
/- A2)N esn

ejepejaw jusjuoo—(")IN 99/} [v9z1

Z9/1 [Md)wv + 0]
MNd)WV+Md)N esn 09/1

peojAed Juayuoo - N

e N
pusba (e)IN 8sn W [P(e) +7'D]
054t 8V.l

A(2)IN @sn
PN Ov.LlL

H(e)N asn _le e

8CLL 77
YO esn

15/19

9C.1

()N asn _ [H(e) + ‘O]

0CLl
8LLL m
()N mwsw_‘\._‘
1474° YN l
(i osn | [EIDN +40]
uolneoljdde jual|o Jualo ysnd Axoid ysnd Japinoid Juajuod

051 0LS oLy OLl

2010-08-10

CA 02582064

16/19

01G JUalo
ysnd o}

<

Q1 b4

(3uajUu0N

aM 0l)
JU2WINO0Pp

PIUIPOIN

0281 |

j -

wiojsuel |

1421’

AX0l1d ysnd

(usjuop |
gy 001)

IS joog |

3

7
0LV

|

wiojsued | _

14215

1

i N\

4

018l
ISPINOIH JUBUOD

_

!
OblL

2007-03-16

CA 02582064

17/19

uoneolol JIS03 AISAT8p

1414

7617 9101S abessay
leAsl}ey pallajed

AXxo0id ysnd

0SL yioM}ON SSORIIM

61 "bi

1an1es Ag paysnd jusjuod pajebalbby - a
Jusl|o AQ paAail}al Jusluod pajebalbby - a
(o3 ‘uondiosap ‘dew Jusjuod ‘sauljpeay 68) Jawud Jusjuoy - CEH)

ayo.g |ind
U0

LoyesyoU
spow

m pueqpeo.iq
Juslio Ysnd gLel

leasll}ay paliayegd

JOHUO SNIEIS HIOMISN

:puaba

TONedljijou JS00 AIBAIIBP

labeuep

\—/ 1senba.
1esn

06l

|||lll'l|"'l""

2007-03-16

CA 02582064

18/19

X Juswbas 10} (s9|n. ‘Aeu ‘dew ‘seouspuadap) ejepejaw -

1z b1

0¢lc

uonebianeu juswbag

'O Ataaijep o}
_ IIIIIIIIWV
8112 “ E
AE
I
sojn. PLLE

uonebineu 9kke
uewBes wewoo
aulep sisAleue

sjuswboas | ¢khe |

paseq
opul uopiied elEpR)OW

10S$820.14
uonejuawbel

OLLc

Syull ‘dew jusjuoo -
salouspuadep -
Blepels|N Juajuon

JUSJU0) Jeaulj-uUoN

0c

81L0¢

9L0¢

s)uswbss
ojul uoned

0L0¢C

Juswsbeuew
10SInD

WIS

X Juawbas - H

@_n_ ‘pusba’

O Assaijep o
| —>

o

2102 uoissaiboud
leaul

108880014
uolnejuawbel 4

'JUSJU0Y) Jeaul

2012-05-03

CA 02582064

19/19

mrEmW>wm3w _ |
201na(JBYIO 19410 L\/"/mmmm
m 13410 cvee o “
o $ - s0BLa)u| — _

m 0vZZ Ly NINS/NIS . HiO -~ 95¢C
“ | . Nid #oul0 yGZZ
- 9Cl&~ v

2 | bvic

_, ﬂ NV yoog SSa1ppPyY

ﬂ A | = sweibold

B Il Pecce — -

, Vellw | | —

Jo)eads l Juald ysnd 09¢¢

_" NMNN/P | M 101)U0D —

___ e Pmmjﬁwx 10889004d |, 1 | dSQ Aﬁ — JjonIwsuel |

W72 E . L I R S sleubls < — H

_“ _ Aejdsi(g Tlv_ o 0ccc | ‘— b172

“ o | S

' 0E2C ., o “] cize| S0 |

| vod [euss] e |

| B o |0JJU0D

. Belln, o JEYNERE)S

| O @m___.xs,q “. BB]

“ | .\\. .. “

m 3ET 1122

lnll"'lll!-l’l.llll
— wae S e e e -

150 110

- 7/ SR {2 a /
Client 140 R £120_. 1| Content
Application I . Provider

| APPTICAton |1 | push Client Wireless | Push Proxy
network 129

130

Service Provider

dden demn SEm O AEEE O SEEE TSN S BN RSN B BN N BN A ey e SN

L I R I R I T S S ———
Wy aEm ans Juif Bubd SaES TEE NS WEF SN S I W T WIS BT T W G I AR R e A b A

Push Framework

h-------_“__--——__—___-—_-_—_--*““_““*ﬁ*---_—_-—---_“‘--*—-

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - abstract drawing

