wo 2014/143279 A1 || NN OO0 O R R

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

Organization é 0 00 OO0 O

International Bureau) L.
_").//)/ (10) International Publication Number

\

(43) International Publication Date WO 2014 /1 43 279 Al
18 September 2014 (18.09.2014) WIPO I PCT
(51) International Patent Classification: (72) Inventors: GARRETT, Charles D.; 17641 167th Ave
GO6F 11/34 (2006.01) GO6F 9/44 (2006.01) NE, Woodinville, Washington 98072 (US). FRASER,
. o . Christopher W.; 2477 Westmont Way West, Seattle,
(21) International Application Number: Washington 98199 (US).

PCT/US2013/075876

(81) Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(22) International Filing Date:
17 December 2013 (17.12.2013)

(25) Filing Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
o , DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

(26) Publication Language: Enghsh HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
61/801,298 15 March 2013 (15.03.2013) Us MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
13/866,014 18 April 2013 (18.04.2013) Us OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
13/866,020 18 April 2013 (18.04.2013) Us SC, 8D, SE, 8G, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
13/866,022 18 April 2013 (18.04.2013) Us g\fv TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,

(71) Applicant: CONCURIX CORPORATION [US/US]; 244
Market Street, Kirkland, Washington 98033 (US). (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

[Continued on next page]

(54) Title: BOTTLENECK DETECTOR FOR EXECUTING APPLICATIONS
(57) Abstract: A bottleneck detector may analyze individual

DATA workloads processed by an application by logging times
& COLLECTOR when the workload may be processed at different check-
AN~ e points in the application. For each checkpoint, a curve fitting
/' [CHECKPOINT \)_\ﬁ/ TIMESTAMP &_\/\ algorithm may be applied, and the fitted curves may be com-
bl Y/ LOADFACTOR ™{ ¢ pared between difterent checkpoints to identify bottlenecks
1 1

! N ! or other poorly performing sections of the application. A real
108’W A TIMESTAMPE L~ time implementation of a detection system may compare
104~ :: LOAD FACTOR ! newly captured data points against historical curves to detect
ENVIRONMENT | JL H : a shift in the curve, which may indicate a bottleneck. In some
110/—H O & 118 cases, the fitted curves from neighboring checkpoints may be
| JL H ! compared to identify sections of the application that may be a
' !\ 1 bottleneck. An automated system may apply one set check-

! [CHECKPOINT TIMESTAMP & _ / 0 : Y y apply one sct chec
11274\\ LOAD FACTOR/‘/“/\QO points in an application, identify an area for further investig-
ST ST ation, and apply a second set of checkpoints in the identified

area. Such a system may recursively search for bottlenecks in
124

L an executing application.
GRAPH
- 7

D

BACKLOG / c
%NECK 2

100
B BOTTLENECK ANALYSIS
FROM TRACER DATA

A

LOAD

FIG. 1

WO 2014/143279 A1 W00V A0 A AR

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Published:
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, S, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

with international search report (Art. 21(3))

Declarations under Rule 4.17:
— of inventorship (Rule 4.17(iv))

WO 2014/143279 PCT/US2013/075876

Bottleneck Detector for Executing Applications

Cross Reference to Related Applications

[0001] This application claims priority to and benefit of United States Patent
Application Serial Number 13/866,014 entitled “Bottleneck Detector for Executing
Applications” filed 18 Apr 2013, United States Patent Application Serial Number
13/866,020 entitled “Bottleneck Detector Application Programming Interface” filed
18 Apr 2013, and United States Patent Application Serial Number 13/866,022 entitled
“Iterative Bottleneck Detector for Executing Applications” filed 18 Apr 2013, the
entire contents of which are hereby expressly incorporated by reference for all they

disclose and teach.

Background

[0002] Computer applications often have bottlenecks that may limit the
throughput or efficiency of an application. Often, bottlenecks may not be fully
appreciated when the application code is being written and may only be noticeable
when the code may be executed under load.

[0003] The bottlenecks may be an artifact of the application design, poor
programming technique, or may be the result of outside constraints on an application.
When a bottleneck may be identified, a programmer may be able to investigate the
bottleneck and rewrite or otherwise improve the code to increase application

performance.

Summary

[0004] A bottleneck detector may analyze individual workloads processed by
an application by logging times when the workload may be processed at different
checkpoints in the application. For each checkpoint, a curve fitting algorithm may be
applied, and the fitted curves may be compared between different checkpoints to
identify bottlenecks or other poorly performing sections of the application. A real

time implementation of a detection system may compare newly captured data points

Page 1

WO 2014/143279 PCT/US2013/075876

against historical curves to detect a shift in the curve, which may indicate a
bottleneck. In some cases, the fitted curves from neighboring checkpoints may be
compared to identify sections of the application that may be a bottleneck. An
automated system may apply one set checkpoints in an application, identify an area
for further investigation, and apply a second set of checkpoints in the identified area.
Such a system may recursively search for bottlenecks in an executing application.

[0005] An application programming interface may receive workload
identifiers and checkpoint identifiers from which bottleneck detection may be
performed. Workloads may be tracked through various checkpoints in an application
and timestamps collected at each checkpoint. From these data, bottlenecks may be
identified in real time or by analyzing the data in a subsequent analysis. The
workloads may be processed by multiple devices which may comprise a large
application. In some cases, the workloads may be processed by different devices in
sequence or in a serial fashion, while in other cases workloads may be processed in
parallel by different devices. The application programming interface may be part of a
bottleneck detection service which may be sold on a pay-per-use model, a
subscription model, or some other payment scheme.

[0006] A bottleneck detector may use an iterative method to identify a
bottleneck with specificity. An automated checkpoint inserter may place checkpoints
in an application. When a bottleneck is detected in an area of an application, the first
set of checkpoints may be removed and a new set of checkpoints may be placed in the
arca of the bottleneck. The process may iterate until a bottleneck may be identified
with enough specificity to aid a developer or administrator of an application. In some
cases, the process may identify a specific function or line of code where a bottleneck
occurs.

[0007] This Summary is provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the claimed
subject matter, nor is it intended to be used to limit the scope of the claimed subject

matter.

Brief Description of the Drawings

Page 2

WO 2014/143279 PCT/US2013/075876

[0008] In the drawings,

[0009] FIGURE 1 is a diagram illustration of an embodiment showing a
method for performing bottleneck analysis.

[0010] FIGURE 2 is a diagram illustration of an embodiment showing a
network environment with devices to perform bottleneck analysis.

[0011] FIGURE 3A is a diagram illustration of an example embodiment
showing a backlog as a function of load for various checkpoints.

[0012] FIGURE 3B is a diagram illustration of an example embodiment
showing a backlog as a function of time for various checkpoints.

[0013] FIGURE 3C is a diagram illustration of an example embodiment
showing raw data plot of observations for various checkpoints.

[0014] FIGURE 4 is a flowchart illustration of an embodiment showing a
method for collecting data.

[0015] FIGURE 5 is a flowchart illustration of an embodiment showing a
method for analyzing data in real time.

[0016] FIGURE 6 is a flowchart illustration of an embodiment showing a
method for automated bottleneck detection.

[0017] FIGURE 7 is a flowchart illustration of an embodiment showing a

method for iterating to pinpoint a bottleneck.

Detailed Description

Bottleneck Detection Using Timestamps

[0018] Bottlenecks in executing programs may be identified by analyzing the
timestamps taken as workloads pass certain checkpoints. A bottleneck may be
identified when the time to execute a workload between two checkpoints increases at
a greater rate than the load increases.

[0019] A bottleneck detector may capture timestamps as workloads pass
checkpoints within an application, then analyze the timestamps to identify
bottlenecks. The workloads may be any type of memory object, message, process,
thread, or other application element that may be operated upon through a sequence of
operations. Throughout the course of the workload, various checkpoints may be
placed to track the progress of the workload. For each workload, a sequence of

timestamps may be collected for each of the checkpoints that the workload may pass.

Page 3

WO 2014/143279 PCT/US2013/075876

[0020] In a lightly loaded application, each workload may typically be
executed in approximately the same elapsed time. As the load increases to the point
where a bottleneck may occur, workloads may take an increasing amount of time at a
bottleneck.

[0021] In a simple analogy, workloads may be visualized as cars travelling on
a multilane highway. When there is very little traffic, each car may pass mile posts at
approximately the same time from the previous mile post. If there was a bottleneck in
the highway, due to construction or an accident, the number of lanes may constrict,
forcing the cars to slow down through the bottleneck. In such a case, the time from
one mile post to another for each car that may pass through the bottleneck. This
effect may be measured and detected as a bottleneck.

[0022] The timestamps may be taken at various locations within an
application. In some cases, an application may be decorated with function calls that
may transmit a workload identifier and capture a timestamp for each checkpoint. The
function calls may be placed throughout an application to track a workload’s progress
through the application. In such an embodiment, the executable code for an
application may be changed to include the checkpoint function calls. Such
embodiments may make such changes in source code, intermediate code, binary code,
or other phases of an application.

[0023] In some embodiments, an instrumented execution environment may
identify checkpoints and set events at each checkpoint to capture timestamp data. In
such embodiments, the checkpoints may be created and managed without changing
the executable code of an application. Such embodiments may have an identification
system for creating and setting the checkpoints, as well as a detection and collection
system that may detect the checkpoint and collect related data.

[0024] The application may operate on a single device or across multiple
devices. In a single device embodiments, the application may execute on a single
hardware platform, which may have multiple processors and various memory and
peripheral components. In a single device embodiment, the device may have a clock
from which timestamps may be taken.

[0025] In a multiple device application, the application may consist of similar
or different software components that may operate on different devices. For example,

some applications may operate in a computer cluster, where each device may execute

Page 4

WO 2014/143279 PCT/US2013/075876

a similar instance of an application to the other devices. In another example, several
devices may process workloads in series, where one device may process a workload
which may be passed to another device for additional processing. In such
embodiments, a synchronized clock may be used to coordinate timestamps that may
be gathered from multiple devices.

[0026] A bottleneck detection system may use various time series techniques
for capturing, analyzing, and displaying bottleneck information in real time or near-
real time. With each data collection event, a set of statistical parameters may be
gathered and summed, which may enable other statistical analyses to be performed.
The statistical parameters may be lightweight enough to be calculated and updated
with minimal computer processing overhead, and a separate analysis routine may
analyze the data for bottlenecks in an offline or near-real time basis.

Application Programming Interface for Bottleneck Detection

[0027] An application programming interface may receive workload
identifiers and checkpoint identifiers from applications being analyzed for
bottlenecks. The application programming interface may receive and store
timestamped data. In some embodiments, the application programming interface may
analyze and display the data in real time or near-real time. In other embodiments, a
detailed analysis may be performed on historical data.

[0028] The application programming interface may operate in several
different architectures. In one architecture, a programmer may add function calls
within an application, where the function calls may communicate with an application
programming interface locally or over a network connection. In another architecture,
an execution environment may have alerts or other monitoring functions that may
transmit information to the application programming interface when each checkpoint
is reached. In some such architectures, the execution environment may be an
integrated development environment with code editors, compilers, debugging tools,
and other components.

[0029] The application programming interface may operate as a
programmatic gateway to accept data in real time, and an accompanying analysis and
rendering engines may identify bottlenecks and may generate visualizations of the
data. In some cases, the analysis engines may identify bottlenecks automatically and

generate an alert or other report. In other cases, the analysis engine may generate

Page 5

WO 2014/143279 PCT/US2013/075876

graphs or other visualizations that may be displayed as data are received or using a
secondary analysis.

[0030] The application programming interface may be one component of a
paid service for application developers. The service may be a subscription based
service, pay-per-use service, or have some other payment mechanism.

Automatic Bottleneck Detection with Automated Checkpoint Selection

[0031] An automated bottleneck detection system may use a recursive
mechanism to isolate and identify a bottleneck in an application. A first set of
checkpoints may be used to identify a portion of an application that contains a
bottleneck, then a second set of checkpoints may be deployed within the identified
portion. From analysis of the second set of checkpoints, the location of a bottleneck
may be refined. Such a process may iterate until a bottleneck is defined with a high
degree of specificity.

[0032] An automated bottleneck detection system may include an automated
mechanism for identifying and placing checkpoints in an application. In some
embodiments, such a mechanism may insert function calls or otherwise decorate an
application in source code, intermediate code, binary code, or some other form. In
some cases, an automated bottleneck detection system may attempt to identify natural
breaks or other elements in an application into which to insert checkpoints. In some
cases, an automated mechanism for inserting checkpoints may place checkpoints at
locations that may not be natural breaks.

[0033] In some cases, an automated bottleneck detection system may use a set
of predefined checkpoint function calls that may be inserted automatically or inserted
by a programmer. In such embodiments, the automated bottleneck detection system
may turn on a first subset of checkpoint function calls, identify the general area of a
bottleneck, then turn on a second subset of checkpoint function calls that are nearer to
the bottleneck to hone in on the bottleneck location.

[0034] Throughout this specification and claims, the terms “profiler”,
“tracer”, and “instrumentation” are used interchangeably. These terms refer to any
mechanism that may collect data when an application is executed. In a classic
definition, “instrumentation” may refer to stubs, hooks, or other data collection
mechanisms that may be inserted into executable code and thereby change the

executable code, whereas “profiler” or “tracer” may classically refer to data collection

Page 6

WO 2014/143279 PCT/US2013/075876

mechanisms that may not change the executable code. The use of any of these terms
and their derivatives may implicate or imply the other. For example, data collection
using a “tracer” may be performed using non-contact data collection in the classic
sense of a “tracer” as well as data collection using the classic definition of
“instrumentation” where the executable code may be changed. Similarly, data
collected through “instrumentation” may include data collection using non-contact
data collection mechanisms.

[0035] Further, data collected through “profiling”, “tracing”, and
“instrumentation” may include any type of data that may be collected, including
performance related data such as processing times, throughput, performance counters,
and the like. The collected data may include function names, parameters passed,
memory object names and contents, messages passed, message contents, registry
settings, register contents, error flags, interrupts, or any other parameter or other
collectable data regarding an application being traced.

[0036] Throughout this specification and claims, the term “execution
environment” may be used to refer to any type of supporting software used to execute
an application. An example of an execution environment is an operating system. In
some illustrations, an “execution environment” may be shown separately from an
operating system. This may be to illustrate a virtual machine, such as a process
virtual machine, that provides various support functions for an application. In other
embodiments, a virtual machine may be a system virtual machine that may include its
own internal operating system and may simulate an entire computer system.
Throughout this specification and claims, the term “execution environment” includes
operating systems and other systems that may or may not have readily identifiable
“virtual machines” or other supporting software.

[0037] Throughout this specification, like reference numbers signify the same
elements throughout the description of the figures.

[0038] In the specification and claims, references to “a processor” includes
multiple processors. In some cases, a process that may be performed by “a processor”
may be actually performed by multiple processors on the same device or on different
devices. For the purposes of this specification and claims, any reference to “a
processor” shall include multiple processors which may be on the same device or

different devices, unless expressly specified otherwise.

Page 7

WO 2014/143279 PCT/US2013/075876

[0039] When elements are referred to as being “connected” or “coupled,” the
elements can be directly connected or coupled together or one or more intervening
clements may also be present. In contrast, when elements are referred to as being
“directly connected” or “directly coupled,” there are no intervening elements present.

[0040] The subject matter may be embodied as devices, systems, methods,
and/or computer program products. Accordingly, some or all of the subject matter
may be embodied in hardware and/or in software (including firmware, resident
software, micro-code, state machines, gate arrays, etc.) Furthermore, the subject
matter may take the form of a computer program product on a computer-usable or
computer-readable storage medium having computer-usable or computer-readable
program code embodied in the medium for use by or in connection with an instruction
execution system. In the context of this document, a computer-usable or computer-
readable medium may be any medium that can contain, store, communicate,
propagate, or transport the program for use by or in connection with the instruction
execution system, apparatus, or device.

[0041] The computer-usable or computer-readable medium may be, for
example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared,
or semiconductor system, apparatus, device, or propagation medium. By way of
example, and not limitation, computer readable media may comprise computer
storage media and communication media.

[0042] Computer storage media includes volatile and nonvolatile, removable
and non-removable media implemented in any method or technology for storage of
information such as computer readable instructions, data structures, program modules
or other data. Computer storage media includes, but is not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-ROM, digital versatile
disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other medium which can be
used to store the desired information and which can accessed by an instruction
execution system. Note that the computer-usable or computer-readable medium could
be paper or another suitable medium upon which the program is printed, as the
program can be electronically captured, via, for instance, optical scanning of the paper
or other medium, then compiled, interpreted, of otherwise processed in a suitable

manner, if necessary, and then stored in a computer memory.

Page §

WO 2014/143279 PCT/US2013/075876

[0043] When the subject matter is embodied in the general context of
computer-executable instructions, the embodiment may comprise program modules,
executed by one or more systems, computers, or other devices. Generally, program
modules include routines, programs, objects, components, data structures, etc. that
perform particular tasks or implement particular abstract data types. Typically, the
functionality of the program modules may be combined or distributed as desired in
various embodiments.

[0044] Figure 1 is a diagram of an embodiment 100 showing a bottleneck
detection mechanism in its operational parts. Embodiment 100 is merely one example
of a bottleneck detection system that may be performed on an application.

[0045] A set of workloads 102 may be executed by an application in an
execution environment 104. The workloads may be any units of work that may be
traced, tracked, or otherwise monitored on a series of checkpoints. As each workload
102 is executed, the various checkpoints 106, 108, 110, and 112 may capture a
respective set of timestamps 114, 116, 118, and 120. The timestamps may include
load factors and other data.

[0046] A data collector 122 may gather and transmit the data to an analyzer
124, which may generate a graph 126 or provide other output. In some cases, the
analyzer 124 may produce output in real time, while in other cases, the analyzer 124
may process the various data elements after collection has completed.

[0047] The bottleneck detection of embodiment 100 may identify bottlenecks
by measuring the difference in timestamps between various checkpoints for each
workload. A bottleneck may be identified when the time difference between two
checkpoints grows for each successive workload. In such a condition, the
downstream process may be processing fewer workloads than may be coming in,
causing the bottleneck.

[0048] The workloads may be any unit of work that may be tracked through
an application. In some cases, the unit of work may be captured in a data item that
may be passed from one portion of executable code to another. In other cases, the
unit of work may be a process, transaction, thread, or other executable or data element
that may undergo transformations or changes by several portions of an application.

[0049] In some embodiments, the workloads may be passed from one device

to another. For example, a high performance computing environment may use

Page 9

WO 2014/143279 PCT/US2013/075876

message passing to transmit workloads from one device to another. Other system,
such as computer cluster arrangements, may use multiple devices to handle workloads
in parallel or in series.

[0050] The workloads may or may not be independent of cach other. In some
embodiments, the workloads may be clearly delineated and independent. Other
embodiments may have workloads that may interact with each other or are not fully
independent. In many cases, a more reliable bottleneck detection may occur with
independent workloads.

[0051] At each checkpoint, a timestamp and workload identifier may be
captured. In many embodiments, a load factor and other data may also be gathered.
The timestamp may be a ‘wall clock’ time that may reflect the actual time a
checkpoint may have been encountered. Such a timestamp may be useful in cases
where a workload may be processed by multiple devices.

[0052] In some embodiments, the timestamp may be an elapsed time from
some designated start time. For example, some embodiments may start a clock when
a workload encounters a first checkpoint, then collect elapsed time from the first
checkpoint for each subsequent checkpoint. Other embodiments may determine
elapsed time from the preceding checkpoint.

[0053] With each checkpoint and timestamp, a workload identifier may be
captured. The workload identifier may be a mechanism to link subsequent checkpoint
timestamps to each other. In some cases, a workload identifier may have a natural
and meaningful name. In other cases, an arbitrary name may be assigned to
workloads, one example of which may be to assign consecutive numbers as workload
identifiers.

[0054] A load factor may be collected with the timestamp. The load factor
may be any indicator for the ‘busy-ness’ or amount of work attempting to be
processed by a system. In some embodiments, the load factor may be collected by a
different data collection mechanism and matched to the data collected from the
checkpoints by the timestamps or other mechanism. For example, a load factor may
be a network traffic metric gathered from a network interface, a processor use metric

collected from a

Page 10

WO 2014/143279 PCT/US2013/075876

[0055] The load factor may be implied in some embodiments. For example, a
load factor may be inferred from the number of workload items being processed at a
given time, or by the rate at which work items may be received by the system.

[0056] The analyzer 124 may organize the data by checkpoint and may create
a time series representing the time lag between a baseline time and the checkpoint
timestamp for each workload. Such a time series may be analyzed to determine when
the values grow. In a non-bottleneck steady state, such a time series would be
expected to be a flat, straight line. When a bottleneck occurs, the values in such a
time series would be expected to grow.

[0057] The growth in the time series values may be linear or non-linear,
depending on the application. Some embodiments may monitor the checkpoint data
in real time and, using time series analyses, may evaluate the data stream to determine
when the data stream has deviated from an expected constant value.

[0058] In many embodiments, such an analysis may take into consider the
variance of the data. Some data sets may contain more noise than others, and the
correlation coefficient or other metrics of noise may be different for each application.
In general, the larger the variance in the data, the greater a deviation may be present
before a bottleneck may be identified.

[0059] Figure 2 is a diagram of an embodiment 200 showing components that
may perform bottleneck detection. Embodiment 200 contains a device 202 that may
be a single device in which bottleneck detection may occur, as well as several devices
that may perform bottleneck detection on a larger scale, including monitoring
applications that execute over multiple devices.

[0060] A single device architecture may gather tracer data containing
timestamps gathered at various checkpoints, analyze the data, and graphically display
the data or perform bottleneck detection.

[0061] A multiple device architecture may divide different components of the
data gathering, analysis, and management functions over different devices. The
multiple device architecture may be one way to deliver an application programming
interface that may detect bottlenecks from tracer data.

[0062] The diagram of Figure 2 illustrates functional components of a system.
In some cases, the component may be a hardware component, a software component,

or a combination of hardware and software. Some of the components may be

Page 11

WO 2014/143279 PCT/US2013/075876

application level software, while other components may be execution environment
level components. In some cases, the connection of one component to another may
be a close connection where two or more components are operating on a single
hardware platform. In other cases, the connections may be made over network
connections spanning long distances. Each embodiment may use different hardware,
software, and interconnection architectures to achieve the functions described.

[0063] Embodiment 200 illustrates a device 202 that may have a hardware
platform 204 and various software components. The device 202 as illustrated
represents a conventional computing device, although other embodiments may have
different configurations, architectures, or components.

[0064] In many embodiments, the device 202 may be a server computer. In
some embodiments, the device 202 may still also be a desktop computer, laptop
computer, netbook computer, tablet or slate computer, wireless handset, cellular
telephone, game console or any other type of computing device.

[0065] The hardware platform 204 may include a processor 208, random
access memory 210, and nonvolatile storage 212. The hardware platform 204 may
also include a user interface 214 and network interface 216.

[0066] The random access memory 210 may be storage that contains data
objects and executable code that can be quickly accessed by the processors 208. In
many embodiments, the random access memory 210 may have a high-speed bus
connecting the memory 210 to the processors 208.

[0067] The nonvolatile storage 212 may be storage that persists after the
device 202 is shut down. The nonvolatile storage 212 may be any type of storage
device, including hard disk, solid state memory devices, magnetic tape, optical
storage, or other type of storage. The nonvolatile storage 212 may be read only or
read/write capable. In some embodiments, the nonvolatile storage 212 may be cloud
based, network storage, or other storage that may be accessed over a network
connection.

[0068] The user interface 214 may be any type of hardware capable of
displaying output and receiving input from a user. In many cases, the output display
may be a graphical display monitor, although output devices may include lights and
other visual output, audio output, kinetic actuator output, as well as other output

devices. Conventional input devices may include keyboards and pointing devices

Page 12

WO 2014/143279 PCT/US2013/075876

such as a mouse, stylus, trackball, or other pointing device. Other input devices may
include various sensors, including biometric input devices, audio and video input
devices, and other sensors.

[0069] The network interface 216 may be any type of connection to another
computer. In many embodiments, the network interface 216 may be a wired Ethernet
connection. Other embodiments may include wired or wireless connections over
various communication protocols.

[0070] The software components 206 may include an operating system 218
on which various software components and services may operate. An operating
system may provide an abstraction layer between executing routines and the hardware
components 204, and may include various routines and functions that communicate
directly with various hardware components.

[0071] An execution environment 220 may execute an application 222 and a
tracer 226 may collect timestamps and other information at checkpoints in the
application 222. The tracer 226 may store its output as tracer data 228.

[0072] The execution environment 220 may be any mechanism that may
cause the application 222 to be executed and include a tracer 226 that may gather data
at each checkpoint. In some embodiments, the execution environment 220 may be a
virtual machine such as a process virtual machine or system virtual machine that may
be instrumented with a tracer 226. In other embodiments, the execution environment
220 may be an integrated development environment that may include a code editor,
compiler, debugging tools, and other functionality.

[0073] The tracer 226 may be any mechanism that may collect data at each
checkpoint. In some cases, the tracer 226 may include function calls or other code
that may be inserted into the executable code as binary code, intermediate code, or
source code. In other cases, the tracer 226 may operate without modifying the
executable code of the application 222.

[0074] A checkpoint inserter 224 may create checkpoints and cause the tracer
226 to collect data at the various checkpoints. In some cases, the checkpoint inserter
224 may decorate the application 222 with function calls or other tracer-related code.
In other cases, the checkpoint inserter 224 may create checkpoints that may be

monitored by the tracer 226 to collect the tracer data 228.

Page 13

WO 2014/143279 PCT/US2013/075876

[0075] In some embodiments, the checkpoint inserter 224 may be a fully
automated application part that may select checkpoints and cause the tracer 226 to
execute at each checkpoint. In other embodiments, the checkpoint inserter 224 may
have some user interface through which a human programmer may select locations
for checkpoints, which may be automatically or manually inserted into an application.

[0076] A data analyzer 230 may receive the tracer data 228 to detect various
bottlenecks. In some embodiments, the output of the data analyzer 230 may be
transmitted to a rendering engine 232 to display graphical results.

[0077] In anetwork 234 environment, some embodiments may be deployed
over multiple devices.

[0078] A tracer manager device 236 may operate on a hardware platform 238,
which may be similar to the hardware platform 204. In some cases, the various
hardware platforms may include cloud based execution environments which may or
may not have a notion of a computing ‘device’.

[0079] A tracer manager 240 may manage the operations of a tracing system
over multiple devices, such as applications that may be deployed on a clustered
computer configuration or other multiple-device architecture. In such embodiments,
the tracer manager 240 may coordinate execution of an application, tracers on each
device, as well as load generators and other components. The tracer manager 240
may also control a checkpoint inserter 242 and data analyzer 244.

[0080] In some embodiments, the tracer manager 240 may operate a
bottleneck detection operation as a paid service. In such an embodiment, customers
may pay for bottleneck detection analysis using a payment manager 245, which may
charge on a subscription basis, a pay-per-use basis, or other mechanisms.

[0081] One or more execution platforms 246 may execute the application and
may collect checkpoint data. The execution platforms 246 may each have a hardware
platform 248 on which an execution environment 250 may run. Each application 252
may be identical instances of the same application or may be different components of
a larger application. The tracers 254 may gather trace data when a checkpoint is
reached.

[0082] A data collection device 264 may operate on a hardware platform 266
and may contain an application programming interface 268 that may receive data

from the tracers 254 and store the tracer data 270 for analysis. The application

Page 14

WO 2014/143279 PCT/US2013/075876

programming interface 268 may receive data taken at each checkpoint occurrence,
then store the data.

[0083] In some cases, the application programming interface 268 may
perform some processing of the incoming data. For example, some embodiments
may create a timestamp when a data element is received from a tracer 254. In another
example, some embodiments may preprocess the incoming data into a format that
may be further processed by an analysis engine.

[0084] The application programming interface 268 may be used by the tracer
226 that may operate on an embodiment with a single execution environment, as well
as gathering data from multiple tracers 254 on multiple execution environments.

[0085] A load generator device 258 may operate on a hardware platform 260
and may have a load generator 262 application. The load generator 262 may create
workloads that may be processed by an application. In some cases, such workloads
may be artificial or fictitious workloads that may exercise the application so that
bottlenecks may appear in the tracer data.

[0086] Figure 3A is a diagram illustration of an example embodiment 300
showing a graph identifying inflection points as bottlenecks from trace data.
Embodiment 300 illustrates a graph showing load on the X axis verses backlog on the
Y axis.

[0087] The backlog may indicate the amount of time that a workload took to
reach a given checkpoint. Five lines 304, 306, 308, 310, and 312 are shown in the
graph, and each line may represent the backlog for a given checkpoint as a function of
the load experienced by the system.

[0088] The graph of embodiment 300 may or may not reflect the sequence of
workloads processed by an application, but instead may reflect measurements taken at
different levels of loading. If the workload was applied in ever increasing amounts,
the graph 300 may represent the backlog received over time, but in many cases, data
used to generate a graph such as embodiment 300 may be gathered over many cycles
of high, medium, and low loads.

[0089] In a normal situation where a checkpoint does not experience a

bottleneck, the checkpoint line may be horizontal lines, such as for checkpoints 304

and 306.

Page 15

WO 2014/143279 PCT/US2013/075876

[0090] At a certain amount of load, checkpoint line 308 may diverge at the
inflection point 314. The inflection point 314 may identify the load at which a
bottleneck occurred, as well as identified that the bottleneck occurred between
checkpoints 306 and 308. A programmer may be able to spot the inflection point 314
visually and investigate the bottleneck in the code between checkpoints 306 and 308.

[0091] As the load increases, a second inflection point 316 may indicate a
second bottleneck that may occur between checkpoints 310 and 312. Again, a
programmer may be able to investigate and attempt to address the bottleneck.

[0092] The graph of embodiment 300 may be created by mapping the elapsed
time for each workload measured from an initial starting point. When such a
measurement or calculation is performed, each checkpoint may be illustrated as a
stacked line configuration, where the sequence of workflow may be from the bottom
of the graph to the top.

[0093] The result of such a measurement may also yield lines that are parallel
to each other. For example, checkpoint 310 remains parallel to checkpoint 308 after
the inflection point 314. This indicates that the time between checkpoints 308 and
310 may not have changed even after the bottleneck was incurred. The rise of the
checkpoint 310 may reflect the downstream effects of the bottleneck in checkpoint
308.

[0094] In some embodiments, the infection points 314 and 316 may be
identified through numerical analysis. Such numerical analysis may attempt to fit a
curve to the data points, beginning with a straight line curve, and progressing to more
complex curves. When the data may not fit a straight line curve, an analysis may
attempt to find an inflection point by fitting two line segments. The correlation
coefficient for each curve fitting step may be used as a measure of variance in the data
as well as a metric for determining when a fitted curve is a sufficient match.

[0095] The analysis of checkpoint lines may involve comparing the slope of a
linear curve fitting analysis, such as linear regression. In such analysis, a positive
change in slope from one checkpoint line to a subsequent checkpoint line may
indicate a bottleneck.

[0096] Figure 3B is a diagram illustration of an example embodiment 302
showing a graph identifying inflection points as bottlenecks from trace data.

Embodiment 302 illustrates a graph showing time on the X axis verses backlog on the

Page 16

WO 2014/143279 PCT/US2013/075876

Y axis. Embodiment 300 as described above represents load on the X axis,
embodiment 302 illustrates a different graph with time on the X axis.

[0097] The backlog may indicate the amount of time that a workload took to
reach a given checkpoint. Six lines 318, 320, 322, 324, 326, and 328 are shown in the
graph, and each line may represent the backlog for a given checkpoint as a function of
the time.

[0098] The graph of embodiment 302 may illustrate a system’s response to
increasing and decreasing loads. The amount of load is not shown in the graph, but
the effects of load may be illustrated.

[0099] As with graph 300, checkpoints 318 and 320 illustrate checkpoints
where no bottlenecks have been experienced. At inflection point 330, checkpoint 322
experienced a bottleneck that continues to build until inflection point 332, where the
bottleneck recedes until the bottleneck dissipates. While that is occurring, checkpoint
326 experiences an inflection point 334, which indicates a second bottleneck. In the
graph 302, the bottleneck of checkpoint 326 appears to build while the bottleneck of
checkpoint 332 recedes.

[00100] Figure 4 is a flowchart illustration of an embodiment 400 showing a
method for gathering tracer data. The operations of embodiment 400 may illustrate
one method that may be performed by the tracers 226 or 254 of embodiment 200.

[00101] Other embodiments may use different sequencing, additional or
fewer steps, and different nomenclature or terminology to accomplish similar
functions. In some embodiments, various operations or set of operations may be
performed in parallel with other operations, either in a synchronous or asynchronous
manner. The steps selected here were chosen to illustrate some principles of
operations in a simplified form.

[00102] A tracer may operate in an execution environment to gather
timestamp and other data at each checkpoint. In some cases, the checkpoint may be
identified by function calls or other markers in the executable code. In other cases, a
checkpoint may be an event, executable code component, or other identifiable
element of an executing code.

[00103] An execution environment may receive workloads for an application
in block 402. For each workload in block 404, the workload may be executed to a
first checkpoint in block 406 and timestamp and other data may be taken in block

Page 17

WO 2014/143279 PCT/US2013/075876

408. The workload may be executed to a second checkpoint in block 410 and a
second timestamp and other data may be taken in block 412. Similarly, the workload
may be executed to a third checkpoint in block 414 and a third timestamp and other
data may be taken in block 416. The sequence of execution to a checkpoint and
collecting data may continue until the workload has finished being processed.

[00104] The execution environment may process many workloads in the
manner of blocks 406 through 416. In many cases, multiple workloads may be
progressing through an application at once.

[00105] After collecting all the timestamps and other data, the data may be
stored in block 418 and analysis may be performed on the data in block 420.

[00106] Figure 5 is a flowchart illustration of an embodiment 500 showing a
method for analyzing tracer data in real time. The operations of embodiment 500 may
illustrate one method that may be performed by the data analyzers 230 or 244 of
embodiment 200.

[00107] Other embodiments may use different sequencing, additional or
fewer steps, and different nomenclature or terminology to accomplish similar
functions. In some embodiments, various operations or set of operations may be
performed in parallel with other operations, either in a synchronous or asynchronous
manner. The steps selected here were chosen to illustrate some principles of
operations in a simplified form.

[00108] Embodiment 500 illustrates one method for analyzing tracer data in
real time or near-real time. A timestamp may be received in block 502 and a
workload level or other data may be determined in block 504. The timestamp may
include a workload identifier and checkpoint identifier. In some embodiments, only
the workload identifier and checkpoint identifier may be received, and the timestamp
may be determined after receiving the data.

[00109] In the example of embodiment 500, the timestamp may represent a
value in the Y axis and the workload level may represent a value in the X axis, which
may be used to generate a graph such as may be shown in embodiment 300.

[00110] In the example of embodiment 302 where the X axis represents time,
the workload level may not be collected in block 504.

[00111] A set of time series statistics may be updated in block 506. The time

series statistics may be any type of statistics from which further analyses may be

Page 18

WO 2014/143279 PCT/US2013/075876

performed. In a simple example of such statistics, the time series statistics may
include the sum of all X values, sum of all Y values, the sum of the square of X
values, the sum of the square of Y values, the sum of the product of XY, and the
number of samples. From these time series data, linear regression may be performed
on the dataset to generate a slope and intercept as well as a correlation coefficient.

[00112] In such an embodiment, an analysis may be performed that compares
the slope of adjacent checkpoint datasets. When the slope of a later checkpoint
diverges or increases from a previous dataset, a bottleneck may be identified.

[00113] After updating the time series statistics in block 506, the process may
loop back to block 502 to process another incoming dataset. Such a loop may be
performed relatively quickly, and the remaining blocks 508 and 510 may be
performed either offline or in a different thread or process so that the data collection
of blocks 502 through 506 may proceed without delay.

[00114] In block 508, new values for a visualization graph may be
determined and the visualization may be rendered in block 510. In many cases, the
calculation and rendering operations of blocks 508 and 510 may consume a relatively
large amount of resources than blocks 502 through 506, thus blocks 508 and 510 may
be separated.

[00115] Figure 6 is a flowchart illustration of an embodiment 600 showing a
method for detecting bottlenecks from tracer data. The operations of embodiment 600
may illustrate one method that may be performed by the data analyzers 230 or 244 of
embodiment 200.

[00116] Other embodiments may use different sequencing, additional or
fewer steps, and different nomenclature or terminology to accomplish similar
functions. In some embodiments, various operations or set of operations may be
performed in parallel with other operations, either in a synchronous or asynchronous
manner. The steps selected here were chosen to illustrate some principles of
operations in a simplified form.

[00117] Embodiment 600 illustrates a method that analyzes data gathered in a
process such as that of embodiment 400 and detects bottlenecks.

[00118] Historical data may be received in block 602. The data may be
analyzed for each checkpoint in block 604. For a given checkpoint, the data for each
workload may be analyzed in block 606.

Page 19

WO 2014/143279 PCT/US2013/075876

[00119] For each workload, a time difference may be calculated from a
previous checkpoint in block 608. The time difference may be calculated from the
immediately preceding checkpoint in some embodiments, while other embodiments
may calculate the time difference from a start time for the workload.

[00120] In block 610, a workload factor may be identified for the time
corresponding to the timestamp of the current workload at the current checkpoint.
The workload factor may be used in embodiments where the analysis may be
performed on historical data. In an embodiment such as embodiment 302 where the
X axis of a graph may be time, a workload factor may not be used.

[00121] After preparing the data in blocks 606 through 610, a curve fitting
analysis may be performed. In some cases, the curve fitting may be performed
against a load factor, while in other cases, the curve fitting may be performed against
time.

[00122] An analysis of the fitted curve may be performed in block 614 for
any anomalies. An anomaly may be a very high correlation coefficient in a linear
curve fitting attempt, an inflection point in a more complicated curve fitting method,
or some other indicator that that data may not be adequately represented by a line.
When an anomaly is not detected in block 616, the checkpoint curve may not reveal a
bottleneck. When an anomaly is detected in block 616, the location may be labeled as
a bottleneck.

[00123] The analysis of blocks 604 through 618 may analyze the data at each
checkpoint to attempt to identify a bottleneck. The analysis from blocks 620 through
630 may attempt to identify bottlenecks by comparing two checkpoint data streams to
cach other.

[00124] For each checkpoint in block 620, the curve of the current checkpoint
is compared to the curve of the previous, upstream checkpoint in block 622. The
comparison in block 622 may compare the slope of one checkpoint dataset to the
slope of a second checkpoint dataset. In such embodiments, a diverging slope may
indicate that a later checkpoint contains a bottleneck with respect to the previous
checkpoint.

[00125] In other embodiments where the curve fitting is a more complex

expression, the comparison may detect whether both checkpoint curves are offset or

Page 20

WO 2014/143279 PCT/US2013/075876

parallel to each other. Diverging data sets may indicate that the later checkpoint may
contain a bottleneck with respect to the earlier checkpoint.

[00126] When the difference between the two curves is not significant in
block 624, the current checkpoint may not be considered as a bottleneck in block 626.

[00127] When the difference between the two curves is significant in block
624, the current checkpoint may be considered to have a bottleneck in block 628, and
the checkpoint may be labeled as a bottleneck in block 630.

[00128] Figure 7 is a flowchart illustration of an embodiment 700 showing an
iterative method for detecting bottlenecks from a running application. The operations
of embodiment 700 may illustrate one method that may be performed by the tracer
manager 240 of embodiment 200.

[00129] Other embodiments may use different sequencing, additional or
fewer steps, and different nomenclature or terminology to accomplish similar
functions. In some embodiments, various operations or set of operations may be
performed in parallel with other operations, either in a synchronous or asynchronous
manner. The steps selected here were chosen to illustrate some principles of
operations in a simplified form.

[00130] Embodiment 700 is an example of an iterative method to identify a
bottleneck with a high degree of specificity. Embodiment 700 is an example of a
method by which a relatively small number of checkpoints may be spread through an
application, and when a bottleneck is detected between two of the checkpoints,
another set of checkpoints may be placed in the area of the application between the
checkpoints and the process may be repeated.

[00131] The method of embodiment 700 may iterate repeatedly to find a
bottleneck with a high degree of specificity. Such specificity may be at the level of a
single function call or even a specific line of an application, depending on the
embodiment.

[00132] In block 702, an application may be received. The application may
be analyzed in block 704 to identify checkpoints, and the checkpoints may be added
to the application in block 706.

[00133] In some embodiments, the checkpoints in block 704 may be ‘natural’
locations in an application where a checkpoint may be relevant. Examples of such

locations may be at function calls or other points within the application. In other

Page 21

WO 2014/143279 PCT/US2013/075876

embodiments, the checkpoints may be identified by merely spacing the checkpoints
within the application code by a predefined number of instruction lines or some other
method.

[00134] The application may begin execution in block 708 and data may start
to be collected. In block 710, a load may be applied, which may be an artificial load
or a natural load in a production system.

[00135] The checkpoint data may be analyzed to identify a bottleneck in
block 712. In some cases, the application may be driven with ever increasing loads
until a bottleneck becomes apparent.

[00136] If the bottleneck is identified in block 712 but the bottleneck is not
identified with enough specificity in block 714, an additional set of checkpoints may
be determined in block 718 and added to the application in block 720. The older
checkpoints may be removed or turned off in block 722, and the process may return to
block 708 to iterate again.

[00137] The iterations may continue with smaller and smaller spacing
between checkpoints until the bottleneck is defined with sufficient specificity in block
714, at which point the iterations may stop and the bottleneck may be identified for
the developer in block 716.

[00138] The foregoing description of the subject matter has been presented
for purposes of illustration and description. It is not intended to be exhaustive or to
limit the subject matter to the precise form disclosed, and other modifications and
variations may be possible in light of the above teachings. The embodiment was
chosen and described in order to best explain the principles of the invention and its
practical application to thereby enable others skilled in the art to best utilize the
invention in various embodiments and various modifications as are suited to the
particular use contemplated. It is intended that the appended claims be construed to

include other alternative embodiments except insofar as limited by the prior art.

Page 22

WO 2014/143279 PCT/US2013/075876

CLAIMS
What is claimed is:
1. A method performed on a computer processor, said method comprising:
identifying a workload processed by said application, said workload
having multiple instances;
capturing timestamps each time a workload instance encounters each
of a plurality of checkpoints in said application; and
for a first checkpoint, curve fitting said timestamps across a plurality
of workload instances to generate a first historical curve.
2. The method of claim 1 further comprising:
for a second checkpoint, curve fitting said timestamps across a
plurality of workload instances to generate a second historical curve; and
comparing said first historical curve to said second historical curve to
identify a difference between said first historical curve and said second
historical curve, and determining that said difference indicates a
bottleneck.
3. The method of claim 2, said first historical curve having a first correlation
coefficient, said second historical curve having a second correlation
coefficient, and said difference comprising a difference between said first
correlation coefficient and said second correlation coefficient.
4. The method of claim 3, said first historical curve and said second historical
curve both being linear curve fitting.
5. The method of claim 2, said first historical curve having a first slope and
said second historical curve having a second slope, said difference comprising
a difference between said first slope and said second slope.
6. The method of claim 2, said first historical curve and said second historical
curve being a function of load.
7. The method of claim 1, said workload being a process.
8. The method of claim 1, said workload being a thread.
9. The method of claim 1, said timestamps being relative time difference from
a baseline timestamp.
10. The method of claim 9, said baseline timestamp being a starting

timestamp for said first workload.

Page 23

WO 2014/143279 PCT/US2013/075876

11. The method of claim 9, said baseline timestamp being a previous
timestamp of a previous checkpoint.
12. A system comprising:
a processor;
a bottleneck analyzer that:
identifies a workload processed by said application, said
workload having multiple instances;
captures timestamps each time a workload instance
encounters each of a plurality of checkpoints in said application;
and
for a first checkpoint, curve fits said timestamps across a
plurality of workload instances to generate a first historical
curve.
13. The system of claim 12, said bottleneck analyzer that further:
for a second checkpoint, curve fits said timestamps across a plurality
of workload instances to generate a second historical curve; and
compares said first historical curve to said second historical curve to
identify a difference between said first historical curve and said second
historical curve, and determining that said difference indicates a
bottleneck.
14. The system of claim 13, said first historical curve having a first
correlation coefficient, said second historical curve having a second
correlation coefficient, and said difference comprising a difference between
said first correlation coefficient and said second correlation coefficient.
15. The system of claim 14, said first historical curve and said second
historical curve both being linear curve fitting.
16. The system of claim 13, said first historical curve having a first slope and
said second historical curve having a second slope, said difference comprising
a difference between said first slope and said second slope.
17. The system of claim 13, said first historical curve and said second
historical curve being a function of load.
18. The system of claim 12, said workload being a process.

19. The system of claim 12, said workload being a thread.

Page 24

WO 2014/143279 PCT/US2013/075876

20. The system of claim 12, said timestamps being relative time difference
from a baseline timestamp.

21. The system of claim 20, said baseline timestamp being a starting
timestamp for said first workload.

22. The system of claim 20, said baseline timestamp being a previous

timestamp of a previous checkpoint.

Bottleneck Detector Application Programming Interface

23. A system comprising:
a processor;
a tracer operating on said processor, said tracer that:
listens for a start workload call on an interface and logs said
start workload call;
listens for a checkpoint call, determines a workload for said
checkpoint call, and logs said checkpoint call with a timestamp
and a checkpoint identifier;
a data analyzer that:
creates a first curve representing said checkpoint calls for a
first checkpoint; and
identifies an abnormality from said first curve, said
abnormality being identified from at least one of said checkpoint
calls that deviates from said first curve.
24. The system of claim 23, said tracer that further:
returns a workload identifier in response to said start workload call.
25. The system of claim 24, said tracer that further:
receives a workload identifier with said checkpoint call.
26. The system of claim 25, said timestamp being transmitted with said
checkpoint call.
27. The system of claim 25, said timestamp being determined when said
checkpoint call is received.

28. The system of claim 24, said tracer that further:

Page 25

WO 2014/143279 PCT/US2013/075876

creates a second curve representing said checkpoint calls for a second
checkpoint; and
identifies said abnormality by comparing said first curve to said
second curve, said at least one of said checkpoint calls being contained in
said second curve.
29. The system of claim 28, said first curve having a different slope from said
second curve.
30. The system of claim 28, said first curve having a different correlation
coefficient than said second curve.
31. The system of claim 23, said first curve being a linear curve.
32. The system of claim 23, said first curve being a polynomial curve.
33. The system of claim 23, said timestamp being an incremental time from a
beginning time.
34. The system of claim 33, said beginning time being defined at said start
workload call.
35. The system of claim 34, said beginning time being a timestamp
transmitted by a calling routine.
36. The system of claim 35, said beginning time being determined by said
data listener.
37. The system of claim 33, said beginning time being a time defined by a
previous checkpoint call.
38. The system of claim 23, said first curve correlating said timestamp and a
load factor.
39. The system of claim 38, said load factor being received in said workload
call.
40. The system of claim 38, said load factor being received in said checkpoint
call.
41. The system of claim 38, said load factor being received from an external
source.
42. The system of claim 41, said load factor being received as a data stream

comprising timestamps.

Page 26

WO 2014/143279 PCT/US2013/075876

Iterative Bottleneck Detector for Executing Applications

43. A method performed on a computer processor, said method comprising;:
identifying a first set of checkpoints in an application;
for each of said first set of checkpoints, establishing a checkpoint
function call that causes a checkpoint identifier and a timestamp to be
captured;
executing said application and capturing said checkpoint identifiers,
said timestamps, and workload identifiers for each of said first set of
checkpoints;
identifying a first bottleneck between a first checkpoint and a second
checkpoint;
identifying a second set of checkpoints between said first checkpoint
and said second checkpoint;
for each of said second set of checkpoints, establishing one of said
checkpoint calls;
executing said application and capturing said checkpoint identifiers,
said timestamps, and said workload identifiers for each of said second set
of checkpoints; and
identifying a second bottleneck between a third checkpoint and a
fourth checkpoint, said third checkpoint and said fourth checkpoint being
from said second set of checkpoints.
44. The method of claim 43, said first checkpoint and said second checkpoint
being consecutive checkpoints.
45. The method of claim 43 further comprising:
scanning said application to identify said first set of checkpoints.
46. The method of claim 45, said first set of checkpoints being selected based
on proximity to function calls.
47. The method of claim 46, said function calls comprising library function
calls.
48. The method of claim 46, said first set of checkpoints being identified by

analyzing source code for said application.

Page 27

WO 2014/143279 PCT/US2013/075876

49. The method of claim 48, said first set of checkpoints being identified
using a label comprising at least a portion of a function name.
50. The method of claim 49, said second set of checkpoints being identified
using a label comprising at least a portion of a function name.
51. The method of claim 46, said first set of checkpoints being identified by
analyzing intermediate code for said application.
52. The method of claim 43 further comprising:
executing a load generator while executing said application.
53. The method of claim 52 further comprising:
determining a load factor for a plurality of said timestamps.
54. The method of claim 53 further comprising:
correlating said load factor to said timestamps for said checkpoint
identifiers.
55. The method of claim 43, said first set of checkpoints being manually
inserted in said application.
56. The method of claim 55, said second set of checkpoints being manually
inserted in said application.
57. The method of claim 56, said first set of checkpoints being selected from
a plurality of checkpoints manually inserted in said application.
58. A system comprising:
a processor;
a checkpoint inserter that:
analyzes an application to identify a plurality of locations
for checkpoints; and
inserts a checkpoint function call that causes a checkpoint
identifier and a timestamp to be captured,;
an analyzer operating on said processor, said analyzer that:
identifies a first set of checkpoints;
executes said application and capturing said checkpoint
identifiers, said timestamps, and workload identifiers for each of
said first set of checkpoints;
identifies a first bottleneck between a first checkpoint and a

second checkpoint;

Page 28

WO 2014/143279 PCT/US2013/075876

identifies a second set of checkpoints between said first
checkpoint and said second checkpoint;
executes said application and capturing said checkpoint
identifiers, said timestamps, and said workload identifiers for
cach of said second set of checkpoints; and
identifies a second bottleneck between a third checkpoint
and a fourth checkpoint, said third checkpoint and said fourth
checkpoint being from said second set of checkpoints.
59. The system of claim 58, said checkpoint inserter that scans source code of
said application to identify said locations for checkpoints.
60. The system of claim 58, said checkpoint inserter that scans intermediate
code of said application to identify said locations for checkpoints.
61. The system of claim 58, said checkpoint function being a call to an

application programming interface for said analyzer.

Page 29

WO 2014/143279 PCT/US2013/075876
1/8
WORKLOAD DATA
>\ COLLECTOR
102 122
_ - -~ - . —— T~
7 ~N 7 N
/ AN /7 \\
/" | CHECKPOINT /" TIMESTAMP &
106”7 A)_7 LOAD FACTOR = 114
L '
| |
| [I
108" ™N—{ CHECKPOINT | TIMESTAMP & |
: B /:*} LOAD FACTOR ~T1 116
104~ L :
EXECUTION | JL L |
ENVIRONMENT | L ,
CHECKPOINT [,—T4 TIMESTAMP &
110 : o) | : LOAD FACTOR \/{/\118
| |
) .
| Pl]
\ \
CHECKPOINT TIMESTAMP & !
11273 D 7L‘\ LOAD FACTOR ¥~ 120
\\ // N //
\\‘__// __//
124
GRAPH
A %
D
BACKLOG c
BOTTLENECK 100
B BOTTLENECK ANALYSIS
A FROM TRACER DATA
LOAD

FIG. 1

WO 2014/143279 PCT/US2013/075876
2/8
270 268~ LOAD GENERATOR
APPLICATION GENERATOR DEVICE
TRACER PROGRAMMING 262 260 ~h_—258
DATA INTERFACE ARDWARE
PLATFORM
| HARDWARE PLATFORM 266

f_J

264
DATA
COLLECTION
DEVICE

DEVICE
202

SOFTWARE

| CHECKPOINT INSERTER |
24~ 222 | 226
| APPLICATION H TRACER|

EXECUTION
ENVIRONMENT

|
|
|
|
|
|
|
|
|
| 220~
| 230
|
|
|
|
|
|
|
|
|
|

DATA
ANALYZER
| 232

RENDERING
ENGINE

218
| OPERATING SYSTEM |

—_—_— e, e, e e e e —— —— ———

214

|

|

|
USER I
INTERFACE :
|

|

|

|

216

NETWORK
MEMORY INTERFACE

| APPLICATION | | TRACER |
2527 N-254
EXECUTION ENVIRONMENT
250~ 248

| HARDWARE PLATFORM |

H

246

FIG. 2

EXECUTION
TRACER PLATFORMS
MANAGER
DEVICE
236
CHECKPOINT INSERTER |
212 244
TRACER | [DATA
MANAGER | |ANALYZER
240 O\ 245
| PAYMENT MANAGER |
238
| HARDWARE PLATFORM |
200
ENVIRONMENT
WITH BOTTLENECK
ANALYSIS

WO 2014/143279 PCT/US2013/075876

3/8
GRAPH SHOWING
INFLECTION POINTS
OVER LOAD E 312
300 A
INFLECTION
POINT
316
D 310
BACKLOG /C 308
314 INFLECTION POINT
B 306
A 304
LOAD
GRAPH SHOWING
INFLECTION POINTS
OVER TIME A INFLECTION
302 POINT
332 INFLECTION
POINT
334
INFLECTION
POINT
BACKLOG F 328
E 326
D 324
C 322
B 320
A 318
>

LOAD

FIG. 3B

WO 2014/143279 PCT/US2013/075876

4/8
RAW DATA PLOT
OF OBSERVATIONS 338 WORKLOAD
336 340 WORKLOAD

342 WORKLOAD
344 WORKLOAD

A 354 DISTANCE
350 CHECKPOINT

TIME TO
CHECKPOINT

348 CHECKPOINT

A VS 2

DISTANCE 352——<«»

]
1
!
!
o 0 5 o O 346 CHECKPOINT
i
!

s « T

TIME

FIG. 3C

WO 2014/143279

PCT/US2013/075876
5/8
METHOD FOR
COLLECTING DATA
400
| RECEIVE WORKLOADS k402
404
FOR EACH <«
WORKLOAD
EXECUTE WORKLOAD TO FIRST
CHECKPOINT ~406
| TAKE TIMESTAMP k408
EXECUTE WORKLOAD TO SECOND | .
CHECKPOINT 410
| TAKE TIMESTAMP 412
EXECUTE WORKLOAD TO THIRD | -~
CHECKPOINT 414
| TAKE TIMESTAMP k416
Y
| STORE TII\iESTAMPS 418
| PERFORM ANALYSIS 4120

FIG. 4

WO 2014/143279 PCT/US2013/075876

6/8
METHOD FOR ANALYZING
DATA IN REAL TIME
500
| RECEIVE TIMESTAMP 502
| DETERMINE WORKLOAD LEVEL | "504
| UPDATE TIME SERIES STATISTICS 506
A y
CALCULATE NEW VALUES FOR

VISUALIZATION ~508

RENDER VISUALIZATION WITH |
UPDATED VALUES 510

FIG. 5

WO 2014/143279

| RECEIVE HISTORICAL DATA

<

CHECKPOINT

PCT/US2013/075876

7/8

METHOD FOR
BOTTLENECK DETECTION
600

602

FOR EACH

604

s

FOR EACH
WORKLOAD

606

S

CALCULATE TIME DIFFERENCE

FROM A PREVIOUS CHECKPOINT [~ 608

v

DETERMINE A WORKLOAD FACTOR
AT TIMESTAMP

~"610

A

PERFORM CURVE FITTING TO
TIME DIFFERENCE VS WORKLOAD
FACTOR

~"612

[ANALYZE CURVE FOR ANOMALIES

614

616

ANOMALIES NO

FOUND?

IDENTIFY LOCATION AS A
BOTTLENECK

~"618

CHECKPOINT

y
FOR EACH

"

620

COMPARE CURVE OF CURRENT
CHECKPOINT TO CURVE FOR
PREVIOUS CHECKPOINT

622

626

SIGNIFICANT
DIFFERENCE?

CURRENT CHECKPOINT
ISNOTA BOTTLENECK | A

CURRENT CHECKPOINT IS A
BOTTLENECK

~" 628

v

LABEL CURRENT CHECKPOINT
AND LOAD FACTOR AS A
BOTTLENECK

~" 630

FIG. 6

WO 2014/143279

ITERATIVE METHOD
FOR IDENTIFYING
BOTTLENECKS
700

PCT/US2013/075876
8/8
| RECEIVE AN APPLICATION L~702
ANALYZE APPLICATION TO IDENTIFY |_~7q,
CHECKPOINTS
DECORATE APPLICATION WITH
CHECKPOINT CALLS ~706

.

»

y

START EXECUTING APPLICATION AND

BEGIN COLLECTING CHECKPOINT DATA [~ 708

v

APPLY LOAD TO APPLICATION

710

v

ANALYZE CHECKPOINT DATA TO
IDENTIFY A BOTTLENECK BETWEEN
TWO CHECKPOINTS

~"T712

716

BOTTLENECK
IDENTIFIED WELL
ENOUGH?

YES

IDENTIFY BOTTLENECK
TO DEVELOPER

ANALYZE APPLICATION TO IDENTIFY
ADDITIONAL CHECKPOINTS BETWEEN
SELECTED CHECKPOINTS

~"718

v

DECORATE APPLICATION WITH
ADDITIONAL CHECKPOINT CALLS

~"720

v

TURN OFF/REMOVE OTHER
CHECKPOINT CALLS

722

FIG. 7

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2013/075876

A. CLASSIFICATION OF SUBJECT MATTER
GOG6F 11/34(2006.01)i, GO6F 9/44(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F 11/34; GO6F 11/30; GO6F 9/30; GO6F 15/00; GO6F 15/173; GO6F 9/46; GO6F 9/455; GO6F 9/44

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: bottleneck detector, workload, checkpoint, curve fitting, abnormality, analyzer, tracer,
inserter

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2008-0022285 A1 (LUDMILA CHERKASOVA et al.) 24 January 2008 1-61
See paragraphs [0003]-[0008]1, [0018]-[0027], [00511, [0068]1-[0095]; and
figures 1-2, 5-8.

A US 6970805 B1 (MICHAEL J. BIERMA et al.) 29 November 2005 1-61
See column 2, lines 3-61; column 3, line 13 - column 5, line 20; claim 1; and
figures 1A-2C.

A US 2012-0278594 A1 (PRATHIBA KUMAR et al.) 01 November 2012 1-61
See paragraphs [0001]-[0004]1, [0034]-[0040], [0044]; and figures 3-4.

A US 2010-0268816 A1 (TOSHIAKI TARUI et al.) 21 October 2010 1-61
See paragraphs [0020]-[0030]1, [0113]-[0136], [01651-[0176]; and figures 1, 8.

A US 2012-0233310 A1 (SANDIP AGARWALA et al.) 13 September 2012 1-61
See paragraphs [0004]1-[0008]1, [0019]-[0021], [0059]-[0068]; and figures 5-6.

|:| Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priotity ¢claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
04 April 2014 (04.04.2014) 07 April 2014 (07.04.2014)
Name and mailing address of the [ISA/KR Authorized officer

International Application Division

« Korean Intellectual Property Office

¥ 189 Cheongsa-ro, Seo-gu, Dagjeon Metropolitan City, 302-701,
Republic of Korea

Fécéirhile No. +82-42-472-7140 Telephone No. +82-42-481-8262

BYUN, Sung Cheal

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2013/075876
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2008-0022285 Al 24/01/2008 US 8112756 B2 07/02/2012
US 6970805 Bl 29/11/2005 None
US 2012-0278594 Al 01/11/2012 None
US 2010-0268816 Al 21/10/2010 JP 2010-250689 A 04/11/2010
US 2012-0233310 Al 13/09/2012 None

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - wo-search-report
	Page 41 - wo-search-report

