

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau

(43) International Publication Date
20 August 2020 (20.08.2020)

(10) International Publication Number

WO 2020/167849 A1

(51) International Patent Classification:

G06Q 20/18 (2012.01) *G07F 11/00* (2006.01)
G07F 7/00 (2006.01) *G06Q 30/02* (2012.01)
G07F 7/06 (2006.01) *H01R 27/00* (2006.01)

(74) Agent: JOHNSON, Benjamin Paul et al.; PERKINS COIE LLP, P.O. Box 1247, Seattle, Washington 98111-1247 (US).

(21) International Application Number:

PCT/US2020/017770

(22) International Filing Date:

11 February 2020 (11.02.2020)

(25) Filing Language:

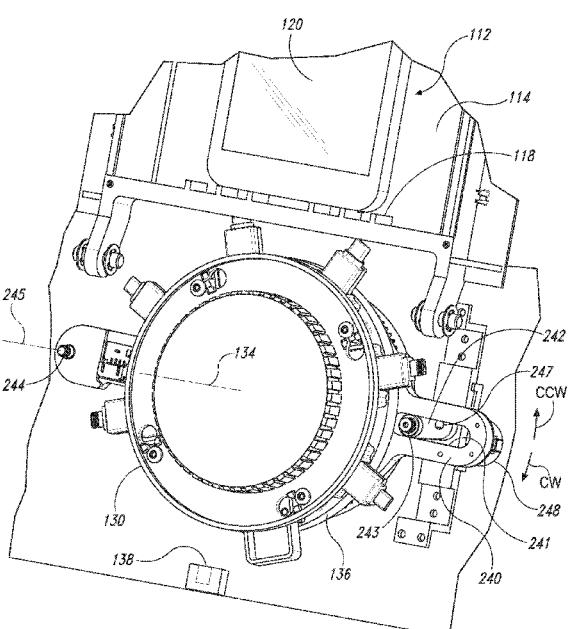
English

(26) Publication Language:

English

(30) Priority Data:

62/804,714 12 February 2019 (12.02.2019) US


(71) Applicant: ECOATM, LLC [US/US]; 10121 Barnes Canyon Road, San Diego, California 92121 (US).

(72) Inventors: FORUTANPOUR, Babak; c/o ecoATM, LLC, 10121 Barnes Canyon Road, San Diego, California 92121 (US). PLOETNER, Jeffrey; c/o ecoATM, LLC, 10121 Barnes Canyon Road, San Diego, California 92121 (US). O'NEIL, Robert; c/o ecoATM, LLC, 10121 Barnes Canyon Road, San Diego, California 92121 (US). VESCO, Neil; c/o ecoATM, LLC, 10121 Barnes Canyon Road, San Diego, California 92121 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(54) Title: CONNECTOR CARRIER FOR ELECTRONIC DEVICE KIOSK

Declarations under Rule 4.17:

- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))*

Published:

- *with international search report (Art. 21(3))*

CONNECTOR CARRIER FOR ELECTRONIC DEVICE KIOSK

CROSS-REFERENCE TO RELATED APPLICATION INCORPORATED BY REFERENCE

[0001] The present application claims priority to and the benefit of U.S. Provisional Application No. 62/804,714, titled CONNECTOR CARRIER FOR ELECTRONIC DEVICE KIOSK, which was filed on February 12, 2019, and is incorporated herein by reference in its entirety.

TECHNICAL FIELD

[0002] The present disclosure is generally related to kiosks for buying and/or selling mobile phones and/or other electronic devices and, more particularly, to connector carriers for use with such kiosks.

BACKGROUND

[0003] There are more mobile phones in use now than there are people on the planet. The rapid growth of mobile phones is due in part on the rapid pace at which these devices evolve. Because of the rapid pace of development, a relatively high percentage of mobile phones are replaced every year as consumers continually upgrade to obtain the latest features or a better operating plan. According to the U.S. Environmental Protection Agency, the U.S. alone disposes of over 370 million mobile phones, PDAs, tablets, and other electronic devices every year. Millions of other outdated or broken mobile phones are simply tossed into junk drawers or otherwise kept until a suitable disposal solution arises.

[0004] Although many mobile phone retailers and cell carrier stores now offer mobile phone trade-in or buyback programs, many old phones still end up in landfills or are improperly disassembled and disposed of in developing countries. Unfortunately, however, mobile phones and similar devices typically contain substances that can be harmful to the environment, such as arsenic, lithium, cadmium, copper, lead, mercury and zinc. If not properly disposed of, these toxic substances can seep into groundwater from decomposing landfills and contaminate the soil with potentially harmful consequences for humans and the environment.

[0005] As an alternative to retailer trade-in or buyback programs, consumers can recycle and/or sell their used mobile phones using self-service kiosks located in malls, retail stores, or other publicly accessible areas. Such kiosks are operated by ecoATM, LLC, the assignee of the present application, and aspects of these kiosks are described in, for example: U.S. Patent Nos. 7,881,965, 8,195,511, 8,200,533, 8,239,262, 8,423,404 and 8,463,646; U.S. Provisional Patent Application Nos. 62/169,072, 62/202,330, 62/332,736, 62/782,302 and 62/782,947; and U.S. Patent Application Nos. 14/498,763, 14/500,739, 14/506,449, 14/568,051, 14/598,469, 14/660,768, 14/663,331, 14/873,145, 14/873,158, 14/925,357, 14/925,375, 14/934,134, 14/964,963, 14/967,183, 14/966,346, 15/057,707, 15/130,851, 15/176,975 and 16/719,699, each of which is incorporated herein by reference in its entirety.

[0006] Mobile phone recycling kiosks typically provide users with a connector for connecting to the device they wish to sell so that the kiosk can electronically evaluate the device for identification, functionality, etc. Because different makes and models of mobile devices often require different connectors, the kiosk will generally include at least one of each type of commonly-found connector so that the kiosk can accommodate a broad range of commercially available devices. Each of the connectors is typically attached to an individual electrical cable that is carried on a rotating carrousel or other type of carrier device. To use a connector, the user pulls the connector and cable away from the carrier device and manually connects the connector to their device. As a result of repeated pulling and handling by users, the cables have a tendency to break or otherwise become damaged over time, requiring time-consuming replacement and contributing to kiosk down-time. Accordingly, it would be advantageous to provide a connector carrying device for use with mobile device recycling kiosks that is less susceptible to connector and/or cable damage from use, and thus requires less maintenance and has a longer service life than conventional connector carrying devices.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Figure 1A is a front isometric view of an electronic device recycling kiosk configured in accordance with embodiments of the present technology, and Figure 1B is a front isometric view of the kiosk with a front door and associated hardware omitted for purposes of better illustrating internal components and systems of the kiosk.

[0008] Figure 1C is an enlarged front isometric view of selected internal components and systems of the kiosk, and Figure 1D is a further enlarged isometric view of a connector carrier and associated components of the kiosk configured in accordance with embodiments of the present technology.

[0009] Figure 2A is an enlarged front isometric view of the connector carrier and associated components from Figure 1D, Figure 2B is a bottom front isometric view of the connector carrier and the associated components, and Figure 2C is a rear isometric view of the connector carrier and the associated components.

[0010] Figure 2D is a front view of the connector carrier with a selected connector in a first position, and Figure 2E is a similar front view of the connector carrier with the selected connector in a second position for connection to a mobile phone.

[0011] Figure 3A is a front isometric view of the connector carrier of Figures 1D-2C, and Figure 3B is an exploded front isometric view of the connector carrier configured in accordance with embodiments of the present technology.

DETAILED DESCRIPTION

[0012] The following disclosure describes various embodiments of connector carriers for use with kiosks, such as consumer-operated kiosks for purchasing mobile phones and/or other handheld electronic devices from consumers, and/or for selling mobile phones and/or other mobile electronic devices to consumers. In some embodiments, connector carriers configured in accordance with the present technology can include rotatable carousels that carry a plurality of different mobile phone connectors around a periphery thereof. In contrast to conventional connector carriers in which the connectors and the associated cables are manually extracted from the carrier for manual connection to a mobile device, in the connector carriers of the present technology the connectors remain stationary relative to the carrier and are not manually extracted for connection to mobile devices. Instead, as described in greater detail below, the connector carriers of the present technology are movable as a unit to present the correct connector to the user so that the user can dock their mobile device to the connector. After the electrical inspection, the kiosk automatically disconnects the connector from the mobile device. As a result, the connectors and associated cables are not subjected to repeated pulling and other rough handling that can lead to

premature wear and tear. Accordingly, use of connector carriers configured in accordance with the present technology can lead to longer connector/cable service life, reduced maintenance and greater kiosk up-time.

[0013] Certain details are set forth in the following description and in Figures 1A-3B to provide a thorough understanding of various embodiments of the present technology. In other instances, well-known structures, materials, operations and/or systems often associated with mobile electronic devices, mobile device recycling kiosks, etc. are not shown or described in detail in the following disclosure to avoid unnecessarily obscuring the description of the various embodiments of the technology. Those of ordinary skill in the art will recognize, however, that the present technology can be practiced without one or more of the details set forth herein, or with other structures, methods, components, and so forth.

[0014] The terminology used below is to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain examples of embodiments of the technology. Indeed, certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this Detailed Description section.

[0015] The accompanying Figures depict embodiments of the present technology and are not intended to be limiting of its scope. The sizes of various depicted elements are not necessarily drawn to scale, and these various elements may be arbitrarily enlarged to improve legibility. Component details may be abstracted in the Figures to exclude details such as position of components and certain precise connections between such components when such details are unnecessary for a complete understanding of how to make and use the invention. Many of the details, dimensions, angles and other features shown in the Figures are merely illustrative of particular embodiments of the disclosure. Accordingly, other embodiments can have other details, dimensions, angles and features without departing from the spirit or scope of the present invention. In addition, those of ordinary skill in the art will appreciate that further embodiments of the invention can be practiced without several of the details described below.

[0016] In the Figures, identical reference numbers identify identical, or at least generally similar, elements. To facilitate the discussion of any particular element, the most significant digit or digits of any reference number refers to the Figure in which that element is first introduced. For example, element 110 is first introduced and discussed with reference to Figure 1.

[0017] Figure 1A is a partially schematic front isometric view of a kiosk 100 configured in accordance with embodiments of the present technology for purchasing electronic devices (e.g., mobile phones) from consumers. Figure 1B is a front isometric view of the kiosk 100 with a front door 108 removed from a housing 106 to better illustrate selected internal components of the kiosk 100. Referring to Figures 1A and 1B together, in some embodiments the kiosk 100 can include a number of user interface devices to facilitate use of the kiosk 100. For example, in the illustrated embodiment the kiosk 100 includes a display 104 (e.g., an LCD screen) that can provide textual and/or graphical information to users to facilitate a phone purchasing process. The display 104 can include touch-screen capability for receiving user inputs in response to displayed prompts, etc. Additionally, in some embodiments the kiosk 100 can also include a keypad, an ID card reader, a thumbprint scanner, a cash dispenser, a receipt printer, and/or other user interface devices to facilitate the phone purchase process. The kiosk 100 further includes an access door 102 that covers an internal device inspection area 112. As shown in Figure 1B, the door 102 can be slidably coupled to an inclined track 122 so that the door 102 can move upwardly to provide a user with access to the inspection area 112. The kiosk 100 also includes a suitable processor 140 that controls operation of the kiosk components and systems as described herein in accordance with computer-readable instructions stored on system memory. The processor 140 may be any logic processing unit, such as one or more CPUs, digital signal processors (DSPs), application-specific integrated circuits (ASICs), etc. The processor 140 may be a single processing unit or multiple processing units in the kiosk or distributed across multiple devices.

[0018] Figure 1C is an enlarged front isometric view of the kiosk 100 with the housing 106 removed to better illustrate selected internal components of the kiosk 100 associated with device evaluation. Figure 1D is a further enlarged isometric view of the kiosk portion shown in Figure 1C with a cover 116 removed to expose a connector carrier 130 configured in accordance with embodiments of the present technology. In

both of these views, the access door 102 has been slid upwardly on the track 122 in direction U to expose the inspection area 112. As shown in Figure 1D, the connector carrier 130 can be rotatably mounted in an opening 143 in a support plate 145 positioned below the inspection area 112 and under the cover 116 (Figure 1C). In the illustrated embodiment, the connector carrier 130 has the form of a cylindrical carousel (which can also be referred to as a cylindrical hub) having a plurality of mobile phone electrical connectors 132a-f radially disposed around a periphery of a chassis 136. The individual connectors 132a-f can be selected so that all, or at least most, of the commercially available mobile phones can be connected to the carrier 130. For example, in some embodiments the connectors 132a-f can include Mini-USB, Micro-USB, Type-C and/or Lightning connectors.

[0019] In some embodiments, the process for selling a mobile phone via the kiosk 100 can be at least generally similar to one or more of the processes described in the patents and patent applications incorporated herein by reference. For example, referring to Figures 1A-1D together, a user wishing to sell a mobile phone 120 (Figures 1C and 1D) can approach the kiosk 100 and input various mobile phone and/or personal information via one or more of the user interface devices described above. Such information can include, for example, phone identification information (e.g., make and/or model), user identification information (e.g., a driver's license and/or a thumb print), etc.

[0020] Based on the phone make and/or model information as provided by the user, the connector carrier 130 rotates in a clockwise direction CW and/or a counterclockwise direction CCW about a central axis 134 as shown in Figure 1D to selectively position a corresponding one of the connectors 132a-f directly adjacent to an opening (not shown in Figure 1D) in a device shelf 118 (the shelf 118 can also be referred to as an edge member, guide, wall, etc.). As described in greater detail below, the connector carrier 130 then moves upwardly as a unit to insert the selected connector 132 through the opening so that it protrudes slightly above the shelf 118 and into the inspection area 112. The access door 102 then moves upwardly in direction U on the track 122 to expose a transparent plate 114 in the inspection area 112. In the illustrated embodiment, the transparent plate 114 is perpendicular to the central axis 134 and inclined relative to the horizontal plane at an angle of, for example, from about 45 degrees to about 75 degrees, from about 55 degrees to about 65 degrees, or about 60 degrees. In other embodiments, the transparent plate 114 can be positioned at other

angles relative to the horizontal plane, or the transparent plate 114 can be parallel to the horizontal plane. After the door 102 opens, the user docks or otherwise connects the mobile phone 120 to the selected connector 132 by positioning the connector port in the mobile phone 120 directly over the connector 132 and moving the phone 120 downwardly in direction D to insert the connector 132 into the port. With the electrical connection thus made and the phone 120 positioned face-up on the transparent plate 114 as shown in Figure 1D, the door 102 moves downwardly on the track 122 in direction D to the position shown in Figures 1A and 1B to close off the inspection area 112 and initiate the phone evaluation process. In some embodiments, the structures and functions of the kiosk 100 can be at least generally similar to the kiosk structures and functions described in U.S. Provisional Patent Application No. 62/807,153, titled KIOSK FOR EVALUATING AND PURCHASING USED ELECTRONIC DEVICES, which was filed on February 18, 2019, and is incorporated herein by reference in its entirety.

[0021] In some embodiments, the kiosk 100 and various features thereof can be at least generally similar in structure and function to the systems, methods and corresponding features described in the following patents and patent applications, each of which is incorporated herein by reference in its entirety: U.S. Patent Nos.: 10,496,963; 10,475,002; 10,445,708; 10,438,174; 10,417,615; 10,401,411; 10,269,110; 10,157,427; 10,127,647; 10,055,798; 10,032,140; 9,911,102; 9,904,911; 9,885,672; 9,881,284; 9,818,160; 8,463,646; 8,423,404; 8,239,262; 8,200,533; 8,195,511; and 7,881,965; U.S. Patent Application Nos.: 12/573,089; 12/727,624; 13/113,497; 12/785,465; 13/017,560; 13/438,924; 13/753,539; 13/658,825; 13/733,984; 13/705,252; 13/487,299; 13/492,835; 13/562,292; 13/658,828; 13/693,032; 13/792,030; 13/794,814; 13/794,816; 13/862,395; 13/913,408; 14/498,763; 14/500,739; 14/873,158; 14/506,449; 14/925,357; 14/925,375; 14/934,134; 14/964,963; 14/568,051; 14/966,346; 14/598,469; 14/660,768; 14/663,331; 15/057,707; 15/091,487; 15/214,791; 15/630,460; 15/641,145; 15/672,157; 15/855,320; 15/901,526; 15/977,729; 16/195,785; 16/357,041; 16/534,741; 16/556,018; 16/556,104; 16/575,003; 16/575,090; 16/601,492, and 16/719,699; U.S. Provisional Application No. 62/169,072, titled “METHODS AND SYSTEMS FOR VISUALLY EVALUATING ELECTRONIC DEVICES,” filed by the applicant on June 1, 2015; U.S. Provisional Application No. 62/202,330, titled

“METHODS AND SYSTEMS FOR INSPECTING MOBILE DEVICES AND OTHER CONSUMER ELECTRONIC DEVICES WITH ROBOTIC ACTUATION,” filed by the applicant on August 7, 2015; U.S. Provisional Application No. 62/332,736, titled “METHODS AND SYSTEMS FOR DETECTING DAMAGE IN EDGE REGIONS OF MOBILE ELECTRONIC DEVICES,” filed by the applicant on May 6, 2016; U.S. Provisional Application No. 62/782,302, titled “SYSTEMS AND METHODS FOR VENDING AND/OR PURCHASING MOBILE PHONES AND OTHER ELECTRONIC DEVICES,” filed by the applicant on December 19, 2019; U.S. Provisional Application No. 62/782,947, titled “SYSTEMS AND METHODS FOR VENDING AND/OR PURCHASING MOBILE PHONES AND OTHER ELECTRONIC DEVICES,” filed by the applicant on December 20, 2019; U.S. Provisional Application No. 62/804,714, titled “CONNECTOR CARRIER FOR ELECTRONIC DEVICE KIOSK,” filed by the applicant on February 12, 2019; U.S. Provisional Application No. 62/807,153, titled “KIOSK FOR EVALUATING AND PURCHASING USED ELECTRONIC DEVICES,” filed by the applicant on February 18, 2019, U.S. Provisional Application No. 62/807,165, titled “NEURAL NETWORK BASED PHYSICAL CONDITION EVALUATION OF ELECTRONIC DEVICES, AND ASSOCIATED SYSTEMS AND METHODS,” filed by the applicant on February 18, 2019, and U.S. Provisional Application No. 62/950,075, titled “SYSTEMS AND METHODS FOR VENDING AND/OR PURCHASING MOBILE PHONES AND OTHER ELECTRONIC DEVICES,” filed by the applicant on December 18, 2019. All the patents and patent applications listed in the preceding sentence and any other patents or patent applications identified herein are incorporated herein by reference in their entireties. Although the connector carrier 130 and embodiments thereof are described herein in the context of the kiosk 100, it should be understood that, unless the context requires otherwise, the connector carrier 130 is not limited to use with such kiosks. Accordingly, it is contemplated that the connector carrier 130 and various embodiments thereof can also be used with other types of kiosks and/or machines for mobile phone evaluation/recycling/purchasing/processing and/or other purposes.

[0022] Figure 2A is an enlarged front isometric view of the connector carrier 130 and associated components configured in accordance with embodiments of the present technology. Figure 2B is a bottom front isometric view of the connector carrier 130 and the associated components, and Figure 2C is a rear isometric view of the connector

carrier 130 and the associated components. In Figures 2A-2C, the support plate 145 (Figure 1D) has been omitted for clarity of illustration. Referring to Figures 2A-2C together, the connector carrier 130 is rotatably mounted to a support frame 240 (which can also be referred to as a yoke 240). The support frame 240 is pivotally mounted to a back side of the support plate 145 (Figure 1D) by a pivot pin 244 at a first end portion of the frame 240. An opposite end portion of the frame 240 includes a slot 241 that slidably receives a guide pin 243. In the illustrated embodiment, the slot 241 is generally orientated along a horizontal axis. The guide pin 243 is attached to a distal end portion of an eccentric crank arm 242, which in turn has a proximal end portion fixedly attached to a rotating shaft 247 extending from an electric motor 248. The electric motor 248 can be mounted to the back side of the support plate 145 (Figure 1D) by a suitable bracket. As shown in Figure 2C, the connector carrier chassis 136 includes a plurality of teeth 256 around the periphery thereof. The teeth 256 engage corresponding teeth on a pinion 254 (which can also be referred to as a spur gear 254), which is in turn attached to a drive shaft of an electric motor 252. The electric motor 252 is mounted to a back side of the support frame 240 by a suitable bracket.

[0023] Referring next to Figure 2B, in some embodiments the kiosk 100 can identify the appropriate connector 132 for connecting to the mobile phone 120 based on the make and/or model of the phone 120 as indicated by the user (via, e.g., the kiosk display 104; Figure 1A). In operation, the electric motor 252 (under control of, e.g., the kiosk processor 140) is activated to rotate the pinion 254, which through engagement with the teeth 256 rotates the connector carrier 130 about the central axis 134 to position the appropriate connector 132 in the 12 o'clock position directly adjacent to and aligned with an opening 246 in the shelf 118. In some embodiments, the electric motor 252 can rotate the connector carrier 130 up to 180 degrees in either the clockwise direction CW or the counterclockwise direction CCW about the central axis 134 to position a selected connector 132 adjacent to the opening 246. In other embodiments, the electric motor 252 can rotate the connector carrier 130 more or less than 180 degrees in either direction about the central axis 134 for connector positioning, such as a full 360 degrees in either direction. Before the connector carrier 130 rotates about the axis 134 in this manner, the crank arm 242 positions the guide pin 243 in the position shown in Figure 2A (e.g., the 9 o'clock position) or at a lower position (e.g., a lower position between the 9 o'clock position and the 3 o'clock position, such as the 6 o'clock position). Moving the

guide pin 243 to a lower position in this manner rotates the support frame 240 downwardly about the axis 245 in the CW direction and away from the shelf 118. This enables the connectors 132a-f to rotate about the axis 134 without striking the underside of the shelf 118 on either side of the opening 246.

[0024] Figure 2D is a front view of the connector carrier 130 with a selected connector (e.g., the connector 132a) aligned with the opening 246 in the shelf 118 (Figure 2B) but not extending through the opening 246, and Figure 2E is a similar front view with the connector 132a inserted through the opening 246 for connection to the mobile phone 120. Referring to Figures 2D and 2E together, once the correct connector 132a is positioned directly adjacent to the opening 246 and generally aligned with the opening 246 as shown in Figure 2D (in what can be referred to as, e.g., a “first connector position” or a “staging position”), the motor 252 stops rotation of the connector carrier 130, and the motor 248 rotates the crank arm 242 in, e.g., the clockwise direction CW to position the guide pin 243 (Figure 2B) at or near the 12 o'clock position. Moving the guide pin 243 in this manner causes the connector support 240 to rotate in the counterclockwise direction CCW about an axis 245 of the pivot pin 244 (Figure 2B), thereby moving the connector carrier 130 toward the inspection area 112 and inserting the selected connector 132a through the opening 246 so that at least a portion of the connector 132a (e.g., a tip portion 232) protrudes beyond the shelf 118 and into the inspection area 112 as shown in Figure 2E. As described above, when the selected connector 132a is in this position (which can be referred to as, e.g., a “second connector position” or an “engagement position”) the user can manually dock or otherwise connect the mobile phone 120 to the connector carrier 130 by moving the phone 120 downwardly on the transparent plate 114 to insert the selected connector 132a (e.g., the tip portion 232 of the selected connector 132a) into a connector port 250 on the phone 120 (Figure 2B).

[0025] Once the mobile phone 120 has been correctly connected to the appropriate connector 132 in the foregoing manner, the access door 102 on the kiosk 100 (Figures 1A and 1B) slides downwardly on the track 122 to close off the inspection area 112 to the user. The kiosk 100 can then perform an electrical inspection of the mobile phone 120 (for, e.g., device identification (e.g., IMEI number, etc.), battery capacity, functionality, etc.) and/or a visual analysis of the mobile phone 120 (for, e.g., cracks in the display screen, cosmetic condition, etc.). In some embodiments, the

electrical and/or visual inspections performed by the kiosk 100 can be at least generally similar to the electrical and visual inspections described in one or more of the patents and patent applications incorporated herein by reference. Once these inspections are complete, the kiosk 100 can automatically activate the motor 248 to rotate the crank arm 242 and the corresponding guide pin 243 downwardly from the 12 o'clock position. As the guide pin 243 moves downwardly in this manner, it drives the carrier support frame 240 downwardly in the clockwise direction CW about the pivot pin 244, which in turn causes the connector carrier 130 to move downwardly and away from the inspection area 112. This movement of the connector carrier 130 retracts the selected connector 132 back through the opening 246 to automatically disconnect the connector 132 from the mobile phone 120. If the user wishes to accept an offered price and sell the phone to the kiosk 100, the transparent plate 114 can be rotated back and downwardly to cause the phone 120 to slide out of the inspection area 112 and into a collection bin (not shown). Conversely, if the user declines to sell the phone for the offered price, the access door 102 (Figures 1A and 1B) can move upwardly on the guide track 122 to enable the user to reach into the inspection area 112 and retrieve the mobile phone 120.

[0026] In some embodiments, the kiosk 100 can periodically perform a self-test of the connectors 132a-f to ensure that all the connectors are functional and to identify any non-functional connectors that may need replacement. For example, as shown in Figure 2A, in some embodiments the kiosk 100 can include an electrical test port 138 (mounted to, e.g., a front side of the support plate 145; Figure 1D). The test port 138 can be a female port or socket configured to receive one or more of the connectors 132a-f and electrically test the functionality of the connectors. For example, to perform a self-test of a selected connector 132, the motor 252 (Figure 2C) can rotate the carrier 130 about the central axis 134 as needed to position the selected connector 132 in radial alignment with the test port 138. The motor 248 then rotates the crank arm 242 and the guide pin 243 downwardly toward the 6 o'clock position to thereby rotate the carrier support frame 240 downwardly in the CW direction about the pivot pin 244, which in turn drives the selected connector 132 into the test port 138. Once the test is complete, the motor 248 rotates the crank arm 242 and the guide pin 243 upwardly to thereby rotate the carrier support frame 240 upwardly about the pivot pin 244 in the CCW direction and disconnect the selected connector 132 from the test port 138. If

needed, the kiosk 100 can include multiple test ports 138 as necessary to accommodate different types of the connectors 132. The test port(s) 138 can be connected to suitable kiosk software and/or electrical systems to test the individual connectors 132a-f for continuity, impedance, etc. and ensure proper function. If any of the connectors 132 are found to be not functioning correctly, the kiosk 100 can send a corresponding text or other electronic message to service personnel to alert them about the faulty connector so that it can be promptly replaced.

[0027] Figure 3A is an enlarged front isometric view of the connector carrier 130, and Figure 3B is an exploded isometric view of the connector carrier 130 configured in accordance with embodiments of the present technology. Referring to Figures 3A and 3B together, in the illustrated embodiment the connector carrier 130 includes a plurality of connector cable assemblies 378a-f positioned beneath a top cover 370. The cover 370 is releasably secured to the carrier chassis 136 by a plurality of fasteners 372 (e.g., screws) that extend through slotted end portions of openings 374 in the cover 370. To remove the cover 370 and access the connector cable assemblies 378, a user can loosen the fasteners 372 and rotate the cover 370 in the counterclockwise direction CCW to align the faster heads with the over-sized end portion of the openings 374. The cover 370 can then be lifted clear of the fasteners 372 and off the chassis 136.

[0028] As shown in Figure 3B, each of the connector cable assemblies 378a-f includes one of the mobile phone connectors 132, a connector holder 360, an electrical cable 362, and a chassis connector 366 (e.g., a universal cable connector, such as a USB connector). Each of the electrical cables 362 has a first end portion electrically connected to a corresponding one of the phone connectors 132 and a second end portion electrically connected to a corresponding one of the chassis connectors 366. To hold (e.g., fixedly hold) the phone connectors 132 in their proper positions relative to the chassis 136, each connector 132 is received in a corresponding connector holder 360, which in turn is held in a corresponding bracket 364 that is fixedly attached to an annular flange 373 of the chassis 136. The connector holders 360 can include asymmetric protrusions 361a, b on either side thereof (such as the rectangular protrusions shown in Figure 3B) and/or other dimensional features to ensure that the holders 360 are positioned in the corresponding brackets 364 in the correct orientation (e.g., with the tip of the connector 132 pointing radially outward). Each of the chassis

connectors 366 is operably received in a corresponding connector socket 368 which is fixedly arranged on a carrier plate 370.

[0029] As noted above, some electronic device recycling kiosks include connectors and associated electrical cables that are configured to be pulled away from a connector carrier by a user and manually connected to a device the user wishes to sell. As a result, the electrical cables are subjected to stress and strain from manual use that can result in damage over time, thereby requiring replacement and/or repair. In contrast, the connector carrier 130 does not rely on the user to grasp the selected connector 132 and manually withdraw it from the carrier and connect it to their mobile device. To the contrary, with reference to Figure 2B, the user simply docks or otherwise connects the mobile device 120 to the presented connector 132 by aligning the mobile device connector port (e.g., the connector port 250) with the connector 132 and sliding the mobile device 120 downwardly to insert the connector into the connector port. Similarly, the mobile device 120 can be automatically disconnected from the presented connector 132 by movement of the connector carrier 130 downwardly about the pivot pin 244 in the clockwise direction CW as shown in Figure 2A. As a result of these features, the connectors 132 and associated electrical cables 362 (Figure 3B) described herein are not subjected to manual use that can lead to damage and the need for frequent and costly replacement or maintenance.

[0030] In addition to the foregoing features, in some embodiments the connector carrier 130 can include a plurality of visual indicators to assist service personnel in identifying broken or malfunctioning cable assemblies 378 in the event that they may need replacement. For example, as shown in Figure 3B, in some embodiments the connector carrier 130 can include a plurality of visual indicators 376a-f (e.g., light-emitting diodes (LEDs)) positioned on the flange 373 of the chassis 136 proximate to corresponding ones of the connectors 132a-f. If a particular cable assembly 378 is determined to need replacement (as a result of, e.g., a connector self-test as described above), the associated indicator 376 can be illuminated to signal the service personnel as to which of the cable assemblies 378 should be replaced. In other embodiments, each of the cable assemblies 378 and/or selected portions thereof can have a unique color, and when the service personnel receives an alert indicating that one of the cable assemblies 378 needs to be replaced, the alert can identify the color of the particular cable assembly 378 so that the service personnel can quickly identify it during the

service call. In further embodiments, other types of cable assembly identification can be used, such as identifying each cable assembly 378 with a selected number that is printed or otherwise provided adjacent each cable location.

[0031] Aspects of the invention can be embodied in a special purpose computer or data processor that is specifically programmed, configured, or constructed to perform one or more of the computer-executable instructions described in detail herein. While aspects of the invention, such as certain functions, are described as being performed exclusively on a single device, the invention can also be practiced in distributed environments where functions or modules are shared among disparate processing devices, which are linked through a communications network, such as a Local Area Network (LAN), Wide Area Network (WAN), or the Internet. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.

[0032] Aspects of the invention may be stored or distributed on tangible computer-readable media, including magnetically or optically readable computer discs, hard-wired or preprogrammed chips (e.g., EEPROM semiconductor chips), nanotechnology memory, biological memory, or other data storage media. Alternatively, computer implemented instructions, data structures, screen displays, and other data under aspects of the invention may be distributed over the Internet or over other networks (including wireless networks), on a propagated signal on a propagation medium (e.g., an electromagnetic wave(s), a sound wave, etc.) over a period of time, or they may be provided on any analog or digital network (packet switched, circuit switched, or other scheme). Although specific circuitry is described above, those of ordinary skill in the art will recognize that a microprocessor-based system could also be used where any logical decisions are configured in software.

[0033] References throughout the foregoing description to features, advantages, or similar language do not imply that all of the features and advantages that may be realized with the present technology should be or are in any single embodiment of the invention. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present technology. Thus,

discussion of the features and advantages, and similar language, throughout this specification may, but do not necessarily, refer to the same embodiment.

[0034] Furthermore, the described features, advantages, and characteristics of the present technology may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize that the present technology can be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the present technology.

[0035] Any patents and applications and other references noted above, including any that may be listed in accompanying filing papers, are incorporated herein by reference in the entirety, except for any subject matter disclaimers or disavowals, and except to the extent that the incorporated material is inconsistent with the express disclosure herein, in which case the language in this disclosure controls. Aspects of the invention can be modified, if necessary, to employ the systems, functions, and concepts of the various references described above to provide yet further implementations of the invention.

[0036] Unless the context clearly requires otherwise, throughout the description and the claims, the words "comprise," "comprising," and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of "including, but not limited to." As used herein, the terms "connected," "coupled," or any variant thereof means any connection or coupling, either direct or indirect, between two or more elements; the coupling or connection between the elements can be physical, logical, or a combination thereof. Additionally, the words "herein," "above," "below," and words of similar import, when used in this application, refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word "or," in reference to a list of two or more items, covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.

[0037] While the above description describes various embodiments of the invention and the best mode contemplated, regardless how detailed the above text, the invention can be practiced in many ways. Details of the system may vary considerably in its specific implementation, while still being encompassed by the present disclosure. As noted above, particular terminology used when describing certain features or aspects of the invention should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the invention with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the invention to the specific examples disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the invention encompasses not only the disclosed examples, but also all equivalent ways of practicing or implementing the invention under the claims.

[0038] From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the various embodiments of the invention. Further, while various advantages associated with certain embodiments of the invention have been described above in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the invention. Accordingly, the invention is not limited, except as by the appended claims.

[0039] Although certain aspects of the invention are presented below in certain claim forms, the applicant contemplates the various aspects of the invention in any number of claim forms. Accordingly, the applicant reserves the right to pursue additional claims after filing this application to pursue such additional claim forms, in either this application or in a continuing application.

CLAIMS

I/We claim:

1. A kiosk for purchasing mobile phones from users, the kiosk comprising:
an inspection area configured to receive a mobile phone from a user; and
a connector carrier, wherein the connector carrier includes —
 - a chassis; and
 - a plurality of electrical connectors positioned around a periphery of the chassis, wherein the connector carrier is configured to rotate about a central axis to position a selected one of the electrical connectors in a first position adjacent to the inspection area, and wherein the connector carrier is further configured to move toward the inspection area when the selected electrical connector is in the first position to move the selected electrical connector from the first position to a second position in which the selected electrical connector is positioned for connection to the mobile phone in the inspection area.
2. The kiosk of claim 1 wherein each of the electrical connectors is fixedly attached to the chassis of the connector carrier.
3. The kiosk of claim 1 wherein moving the selected electrical connector from the first position to the second position includes moving at least a tip portion of the selected electrical connector into the inspection area.
4. The kiosk of claim 1 wherein movement of the connector carrier toward the inspection area includes movement of the connector carrier in a first direction, and wherein the connector carrier is further configured to move in a second direction, opposite to the first direction, to move the selected electrical connector from the second position to the first position and automatically disconnect the selected electrical connector from the mobile phone.

5. The kiosk of claim 1 wherein the central axis is a first axis, and wherein movement of the connector carrier toward the inspection area includes rotation of the connector carrier about a second axis, spaced apart from the first axis.

6. The kiosk of claim 5 wherein movement of the connector carrier toward the inspection area includes rotation of the connector carrier about the second axis in a first direction, and wherein the connector carrier is further configured to rotate about the second axis in a second direction, opposite to the first direction, to move the selected electrical connector from the second position to the first position and automatically disconnect the one electrical connector from the mobile phone.

7. The kiosk of claim 1 wherein the central axis is a first axis, and wherein the kiosk further comprises:

a support frame configured to rotate about a second axis, spaced apart from the first axis, wherein:

the connector carrier is rotatably mounted to the support frame,

movement of the connector carrier toward the inspection area includes rotation of the support frame about the second axis in a first direction, and

the support frame is further configured to rotate about the second axis in a second direction, opposite to the first direction, to move the selected electrical connector from the second position to the first position and automatically disconnect the one electrical connector from the mobile phone.

8. The kiosk of claim 1 wherein the mobile phone includes a front surface, a back surface, and at least one side surface having a connector receptacle, and wherein the kiosk further includes:

a support surface positioned in the inspection area and configured to contact at least one of the front surface or the back surface of the mobile phone; and

a shelf having an opening positioned adjacent to the support surface, wherein the shelf is configured to contact the at least one side surface of the mobile phone having the connector receptacle, and wherein the opening is

configured to receive at least a portion of the selected electrical connector as the selected electrical connector moves into the second position.

9. The kiosk of claim 8 wherein the support surface is inclined at an angle relative to a horizontal plane.

10. The kiosk of claim 8 wherein the central axis extends perpendicular to the support surface.

11. The kiosk of claim 8, further comprising a transparent plate positioned in the inspection area, wherein the transparent plate includes the support surface.

12. The kiosk of claim 1 wherein the connector carrier has a cylindrical shape.

13. A connector carrier for use with a kiosk configured to purchase mobile phones from users, the connector carrier comprising:

a support frame configured to be movably mounted proximate a phone inspection area of the kiosk;

a carrier chassis rotatably supported by the support frame; and

a plurality of mobile phone electrical connectors fixedly positioned on the chassis and extending outwardly therefrom, wherein the chassis is configured to rotate about a central axis in the support frame to selectively position the electrical connectors relative to the inspection area, and wherein the support frame is configured to move the chassis relative to the inspection area.

14. The connector carrier of claim 13 wherein the support frame is configured to move the chassis through an arc relative to the inspection area.

15. The connector carrier of claim 14 wherein the arc lies in a plane that is perpendicular to the central axis of the carousel chassis.

16. The connector carrier of claim 13 wherein the support frame is configured to be pivotally mounted to a support structure of the kiosk at a pivot point spaced apart from the central axis of the chassis, and wherein the support frame is further configured to rotate about the pivot point to move the chassis relative to the inspection area.

17. The connector carrier of claim 13 wherein the inspection area of the kiosk includes a transparent plate configured to support mobile phones, and wherein the chassis is configured to rotate about the central axis in a plane that is parallel to the transparent plate.

18. A method for presenting a selected electrical connector of a plurality of different electrical connectors to a user of a kiosk for connection to a mobile phone, the method comprising:

rotating a connector carrousel about a central axis, wherein the connector carrousel carries the plurality of different electrical connectors around a periphery thereof;

stopping the rotating carrousel when the selected electrical connector is positioned adjacent to a mobile phone inspection area of the kiosk; and after stopping rotation of the carrousel, moving the carrousel toward the inspection area to present the selected electrical connector to the user for connection to the mobile phone.

19. The method of claim 18 wherein moving the carrousel toward the inspection area includes rotating the carrousel about a pivot axis spaced apart from the central axis.

20. The method of claim 18 further comprising, after moving the carrousel toward the inspection area to present the selected electrical connector to the user for connection to the mobile phone, moving the carrousel away from the inspection area to automatically disconnect the selected electrical connector from the mobile phone.

1/8

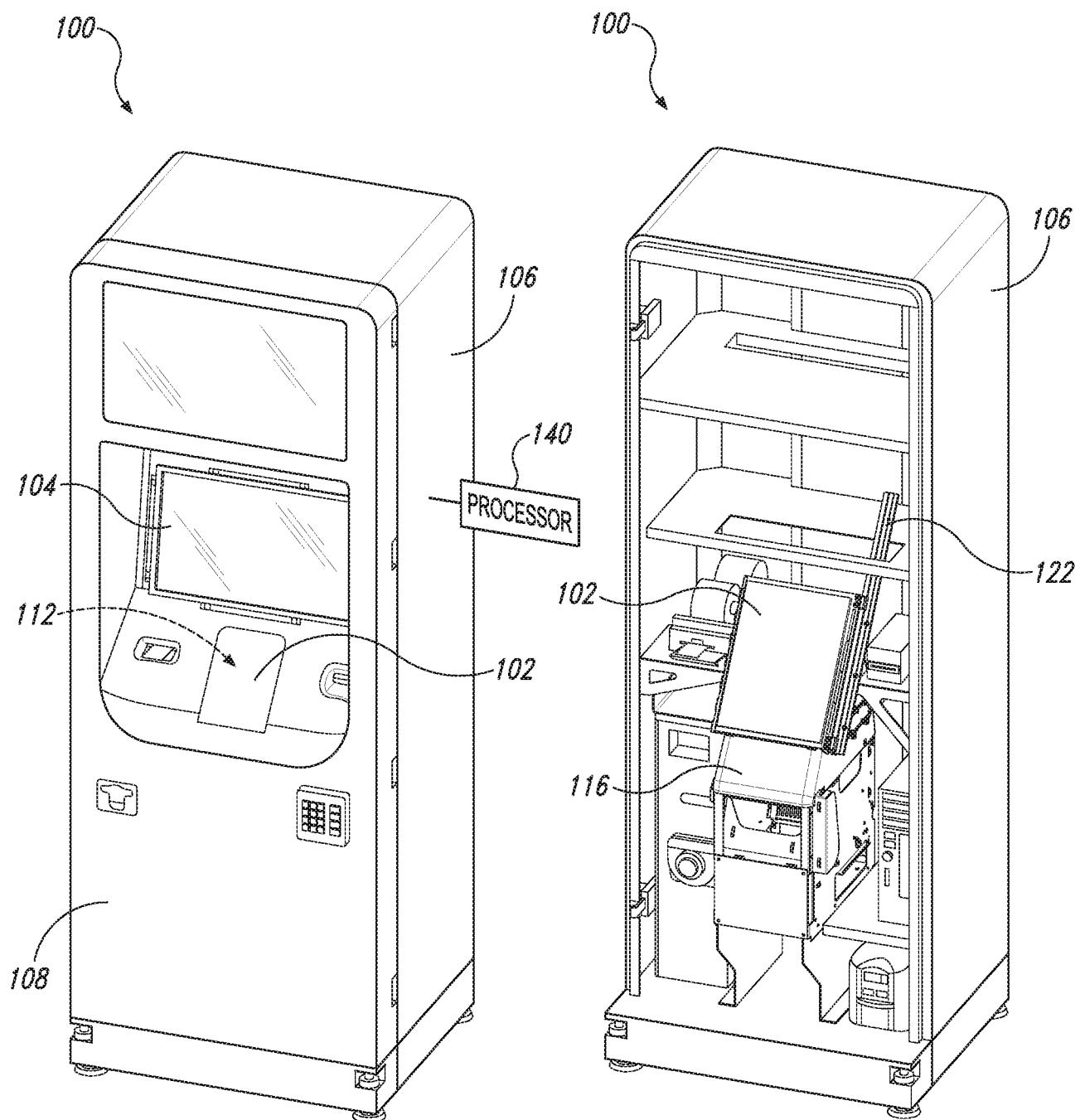
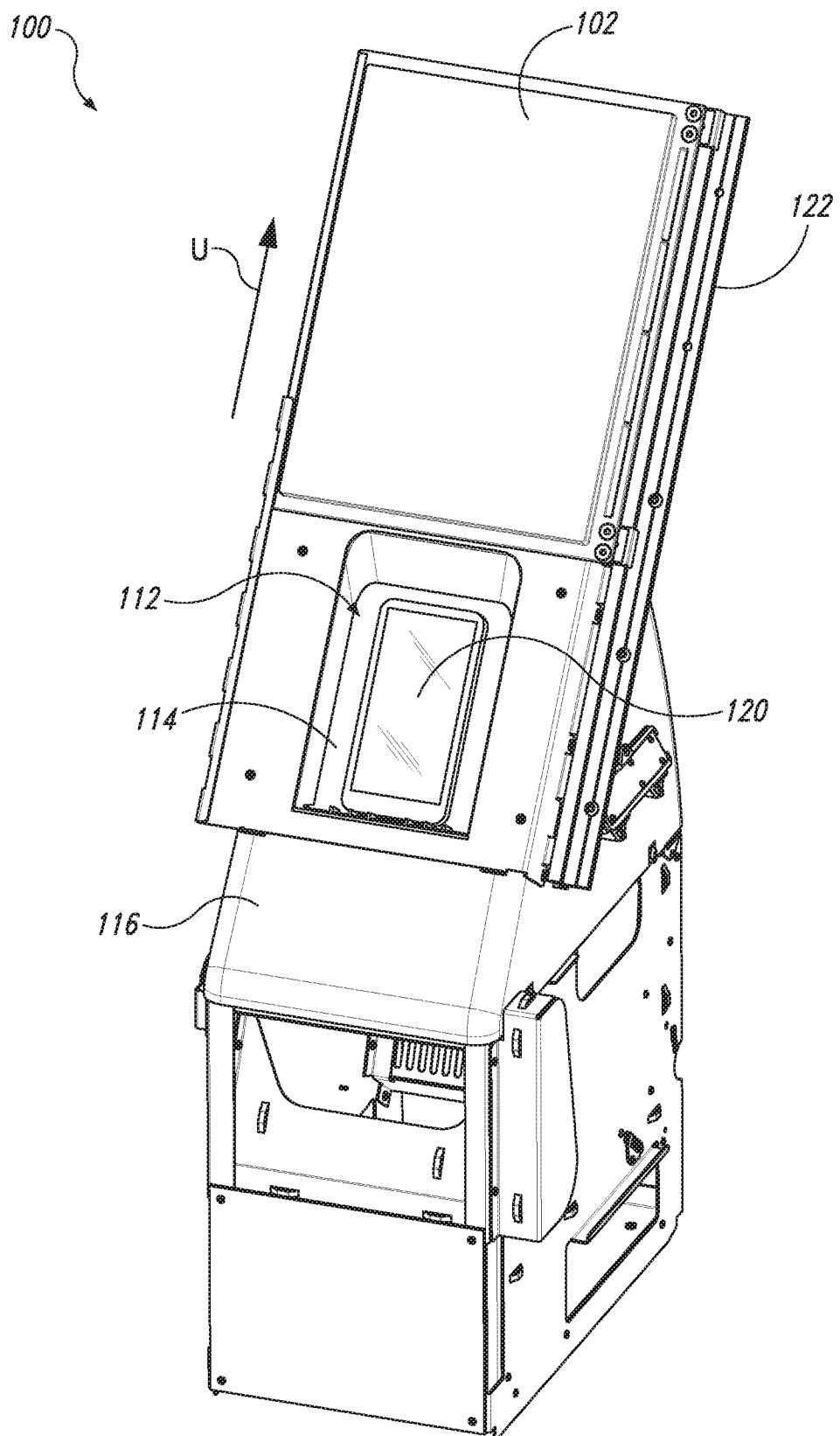
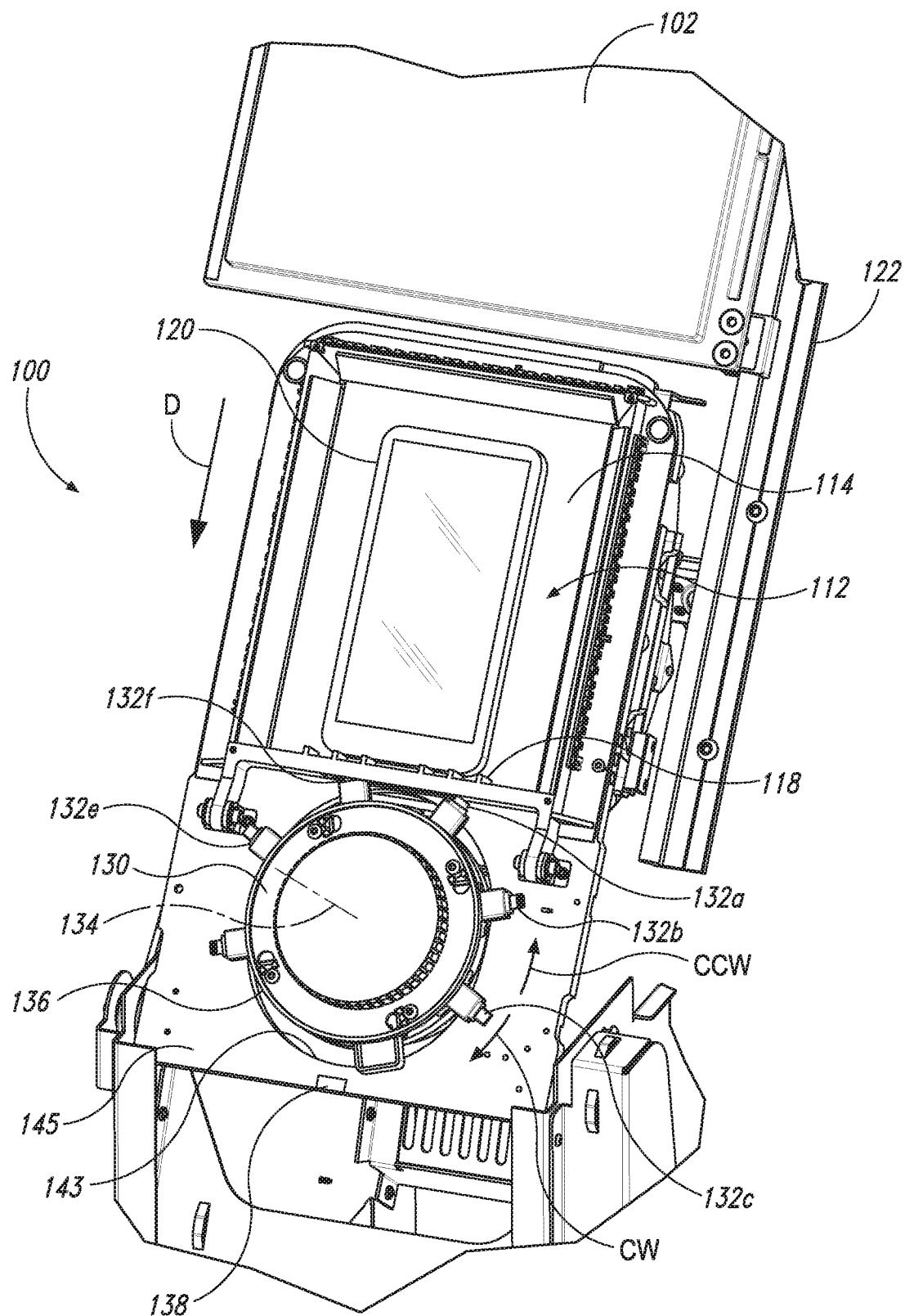
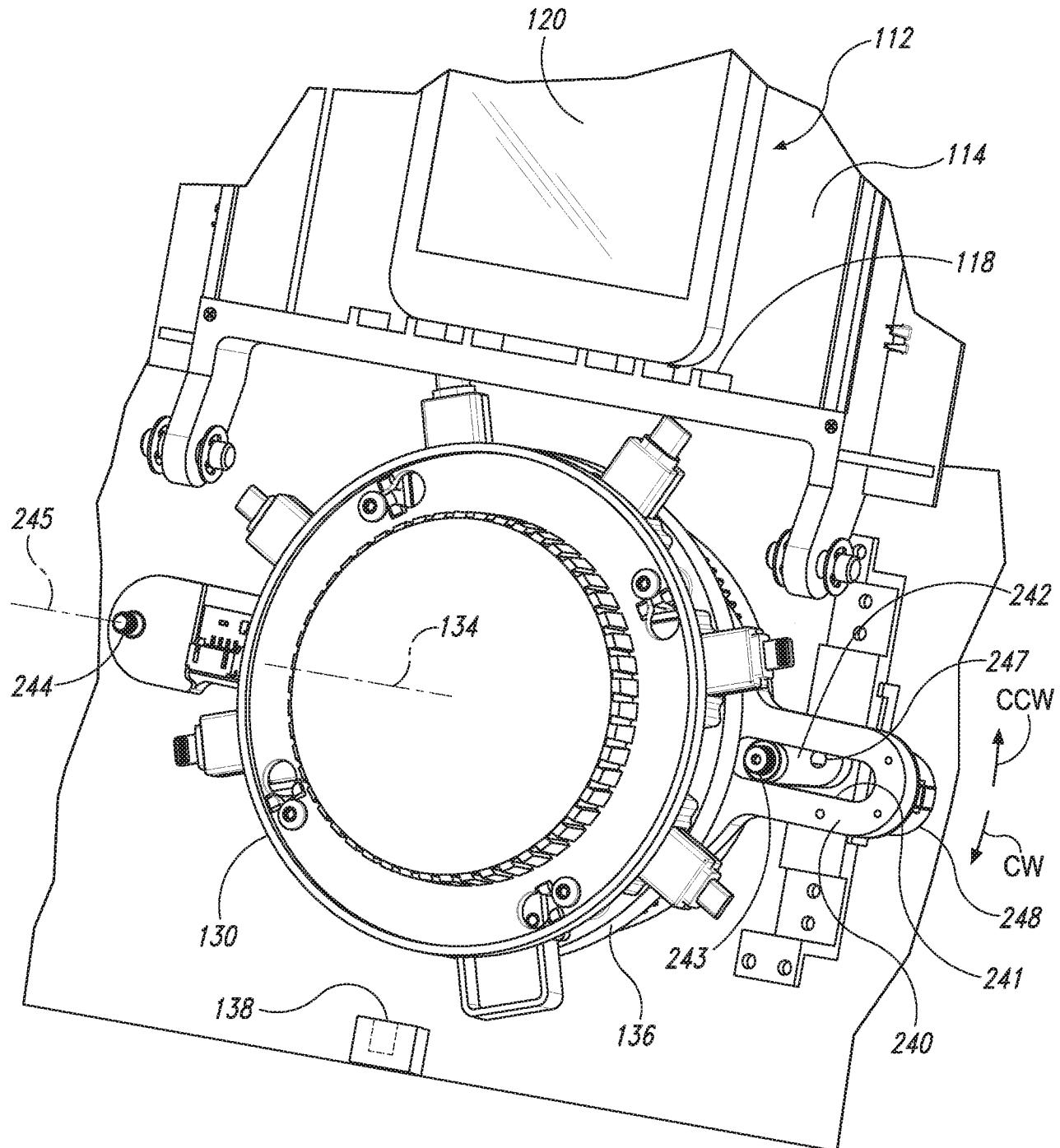
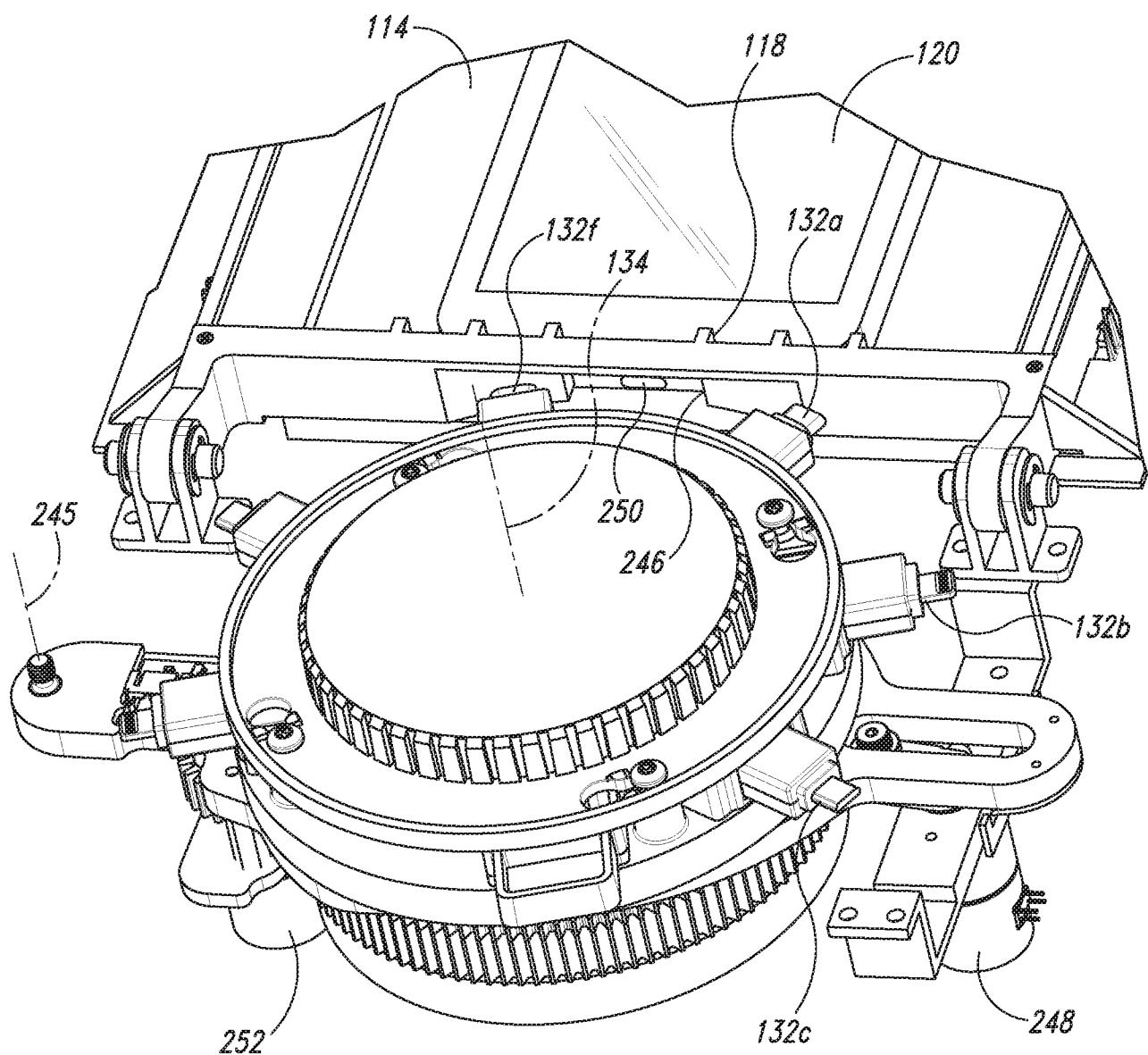



Fig. 1A

Fig. 1B

Fig. 1C

3/8

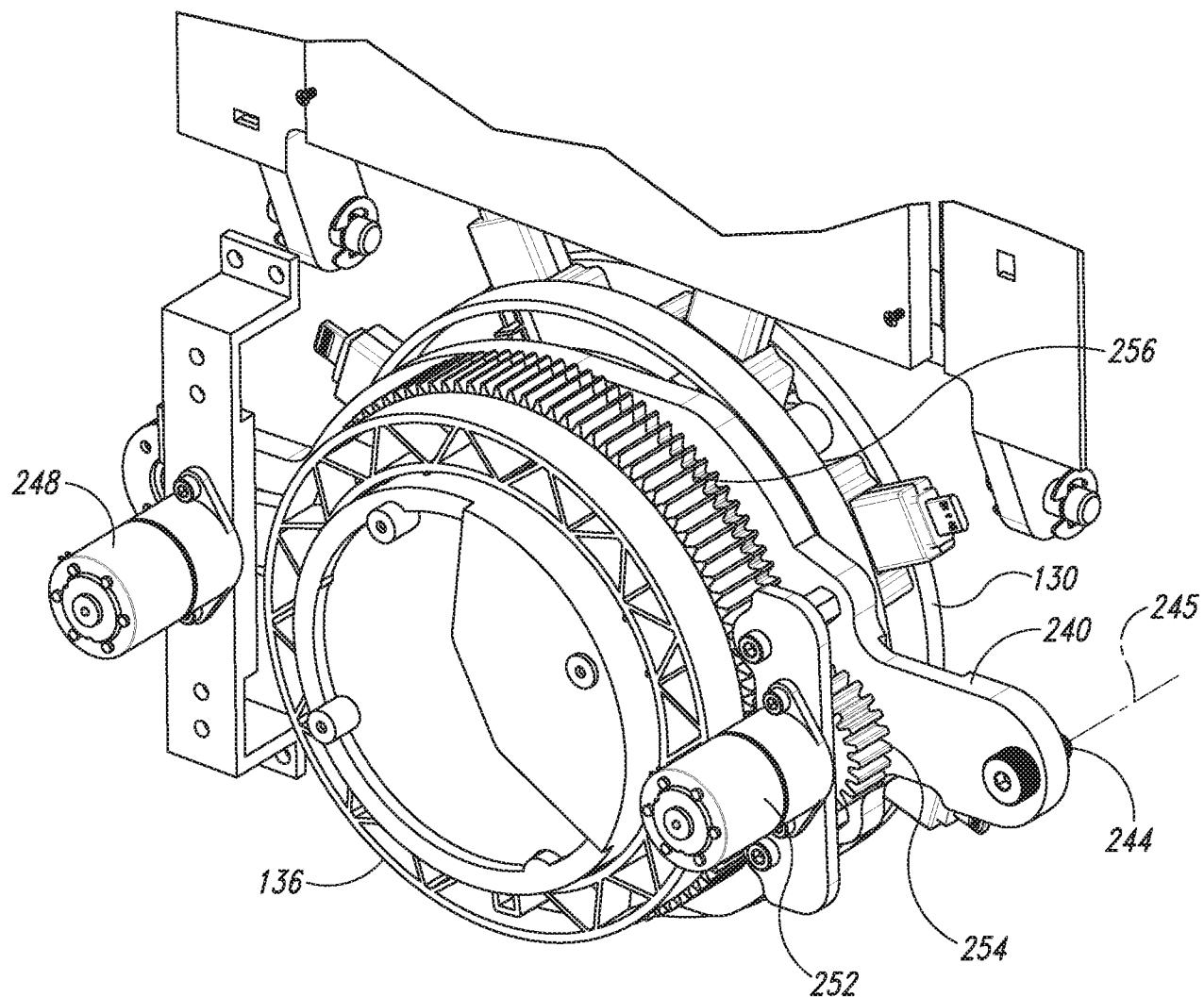

Fig. 1D

Fig. 2A

Fig. 2B

Fig. 2C

7/8



Fig. 2D

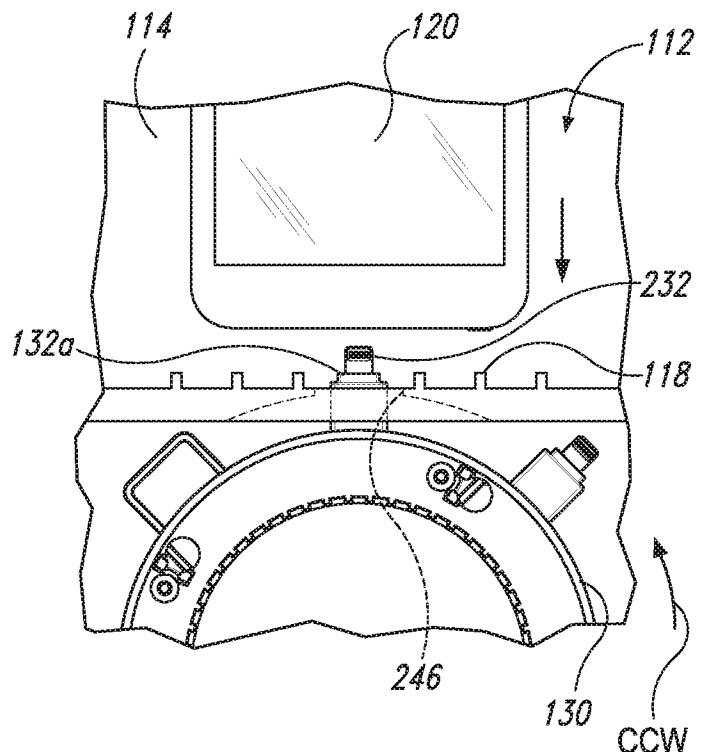


Fig. 2E

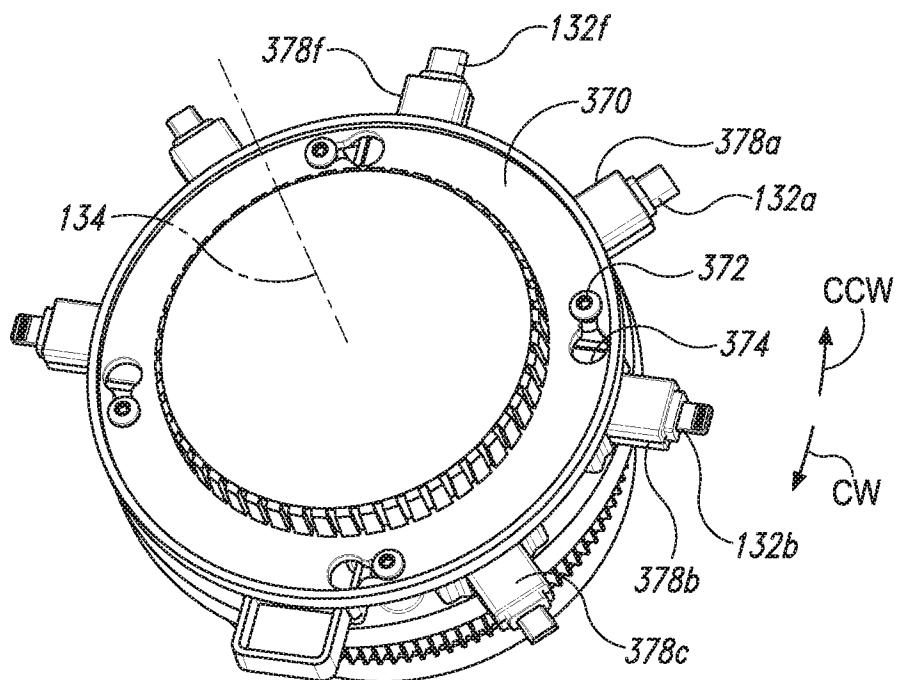


Fig. 3A

8/8

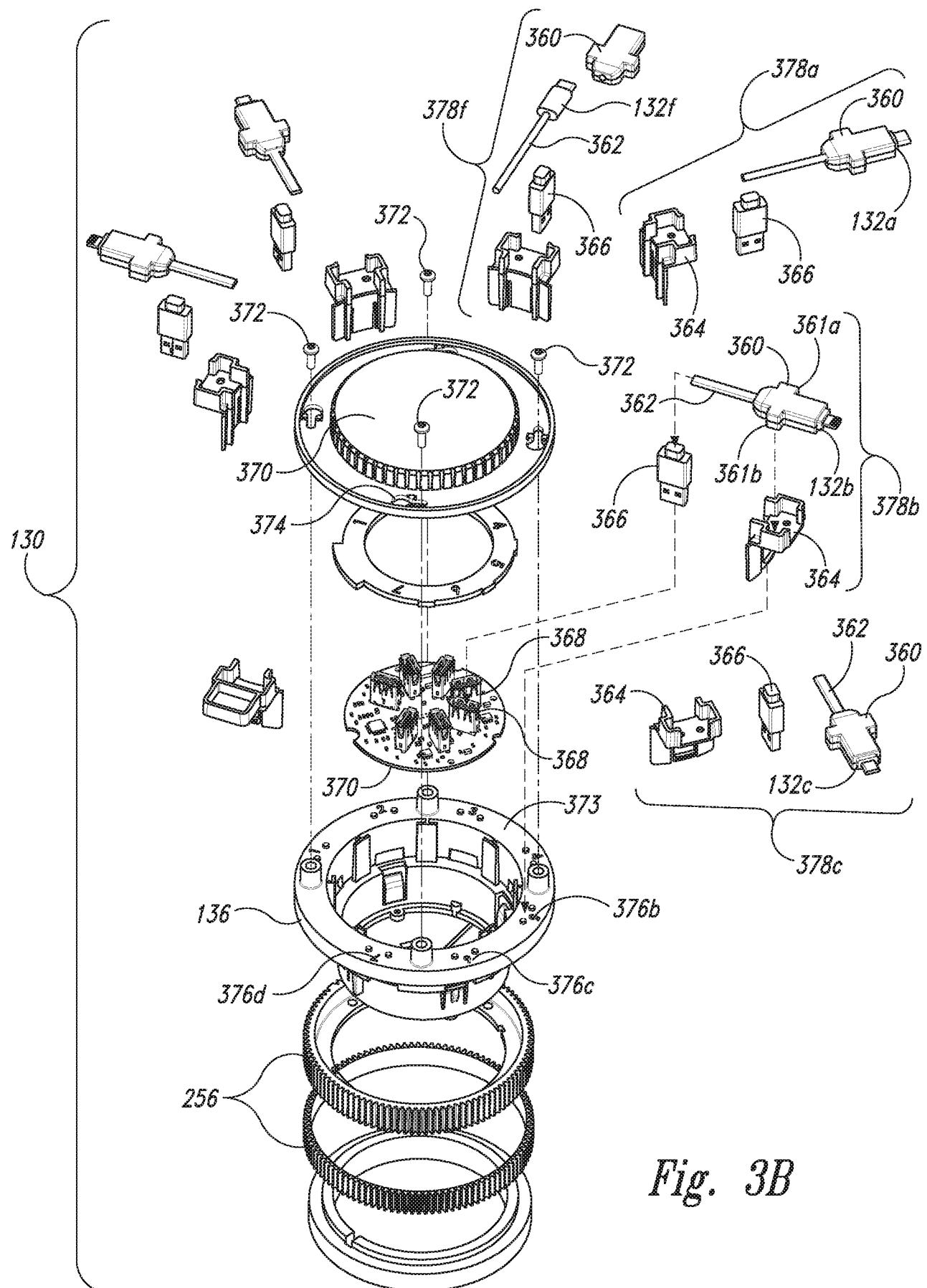


Fig. 3B